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Cumulative Outstanding Reading

@ Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

@ Good references for today: Schrijver-2003, Oxley-1992 /2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
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Announcements, Assignments, and Reminders

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, & L11: More properties of polymatroids,
Basic Definitions SFM special cases

(]

@ L2: (4/2): Applications, Basic o L12:

Definitions, Properties @ L13:

@ L3: More examples and properties (e.g., o L14:

closure properties), and examples, ° Li5:

spanning trees ° Li6:

@ L4: proofs of equivalent definitions, ]

. . @ L17:
independence, start matroids

@ L5: matroids, basic definitions and S

examples @ L19:

@ L20:

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

Finals Week: June 9th-13th, 2014.
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Maximum weight independent set via greedy weighted rank

Theorem 10.2.6

Let M = (V,Z) be a matroid, with rank function r, then for any weight
function w € RY, there exists a chain of sets Uy Cc Uy C ---C U, CV
such that

max {w(I[)|I € T} = i Air(U;) (10.19)
i=1

where \; > 0 satisfy

w = )\ilU, 10.20
2 My,
1=1
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Polytope Equivalence (Summarizing the above)

@ For each I € 7 of a matroid M = (E,Z), we can form the incidence
vector 1;.

e Taking the convex hull, we get the independent set polytope, that is

Ping. set = conv {UIEI{]-I}} (1012)

@ Now take the rank function r of M, and define the following
polyhedron:

Theorem 10.2.2

Pqﬂ_ = Pind. set (1014)
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. . E
P-basis of x given compact set P C RY

Definition 10.2.4 (subvector)
y is a subvector of x if y < x (meaning y(e) < z(e) for all e € E).

A\

Definition 10.2.5 (P-basis)

Given a compact set P C ng for any z € RE, a subvector y of z is
called a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained
subvector of z.

A\

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z > y + €1, for some e € E and € > 0) having the
properties of y (the properties of y being: in P, and a subvector of ).
In still other words: ¥y is a P-basis of x if:

@ y <z (y is a subvector of z); and

@ ycPandy+el, ¢ P forall e € E where y(e) < x(e) and Ve > 0

(y is maximal P-contained).
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A vector form of rank

@ Recall the definition of rank from a matroid M = (F,Z).
rank(A) = max {|I|: I C A, I €T} (10.25)

@ vector rank: Given a compact set P C RE we can define a form of
“vector rank” relative to this P in the following way: Given an
xr € RE, we define the vector rank, relative to P, as:

rank(z) = max (y(E) : y < z,y € P) (10.26)

where y < z is componentwise inequality (y; < z;, Vi).
o If B, is the set of P-bases of x, than rank(z) = maxyep, y(E).
o If z € P, then rank(xz) = x(FE) (« is its own unique self P-basis).

@ In general, this might be hard to compute and/or have ill-defined
properties. We next look at an object that restrains and cultivates
this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.2.4 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q@0cP
@ If y <z € P then y € P (called down monotone).

© For every x € R¥Y, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(F)
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Matroid and Polymatroid: side-by-side

A Matroid is:

a set system (E,7)

empty-set containing ) €
downclosed, 0 CI'CIecl=1€T.

any maximal set [ in Z, bounded by another set A, has the same
matroid rank (any maximal independent subset I C A has same size
|11).

A Polymatroid is:

©C000

a compact set P C R{E
zero containing, 0 € P
down monotone, 0 <y<zxe P=yeP

©000

any maximal vector y in P, bounded by another vector x, has the
same vector rank (any maximal independent subvector y < z has
same sum y(E)).
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Polymatroid function and its polyhedron.

Definition 10.2.4

A polymatroid function is a real-valued function f defined on subsets of
E which is normalized, non-decreasing, and submodular. That is we have

@ f(0) =0 (normalized)
Q@ f(A) < f(B) for any A C B C E (monotone non-decreasing)

Q@ f(AUB)+ f(AnB) < f(A)+ f(B) forany ABCFE
(submodular)

We can define the polyhedron P]?L associated with a polymatroid function
as follows

= {y e RY :y(A) < f(A) for all AC E} (10.25)
—{yeR”:y>0,y(4) < f(A) forall ACE}  (10.26)
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Associated polyhedron with a polymatroid function

@ Consider the asymmetric graph cut function on the simple chain
graph v; —vy —w3. Thatis, f(S) = |{(v,s) € E(G) : v e V,s € S}|
is count of any edges within S or between S and V' \ S, so that
5(S) = f(S)+ f(V\S)— f(V) is the standard graph cut.

o Observe: Pjﬁr (at two views):

@ which axis is which?
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Associated polyhedron with a polymatroid function

e Consider modular function w: V — Ry as w = (1,1.5,2)7, and
then the submodular function f(S) = /w(S).

@ Observe: PJT (at two views):

1 1 0.5

@ which axis is which?
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A polymatroid vs. a polymatroid function’'s polyhedron

@ Summarizing the above, we have:

e Given a polymatroid function f , its associated polytope is given as
Pl ={yeRY:y(A) < f(A)forall AC E} (10.34)

o We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and Vz any maximal
independent subvector y < x has same component sum y(E)).

@ |s there any relationship between these two polytopes?
@ In the next theorem, we show that any P}F—basis has the same
component sum, when f is a polymatroid function, and PJT satisfies

the other properties so that PJZ" is a polymatroid.
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A polymatroid function’'s polyhedron is a polymatroid.

Theorem 10.2.4

Let f be a polymatroid function defined on subsets of E. For any
z € RE, and any P}F-basis y* € RY of z, the component sum of y* is

y*(F) = rank(x) = max (y(E) Ly <,y € PJ?L)
= min (z(A) + f(E\ A): AC E) (10.34)

As a consequence, PJT is a polymatroid, since r.h.s. is constant w.r.t. y*.

v

By taking B = supp(z) (so elements E \ B are zero in x), and for b € B,
x(b) is big enough, the r.h.s. min has solution A* = E \ B. We recover
submodular function from the polymatroid polyhedron via the following:

£(B) = max {y(B) Ly € P;} (10.35)

In fact, we will ultimately see a number of important consequences of

this theorem (other than just that P} is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

@ Clearly 0 € P]?L since f is non-negative.

@ Also, for any y € P];F then any x <=y is also such that = € PJ?L.

So, PJZ" is down-monotone.

o Now suppose that we are given an € RY, and maximal y* € PJZ"
with y* <z (i.e., y* is a P;“—basis of x).
@ Goal is to show that any such y* has y”(E) = const, dependent

only on z and also f (which defines the polytope) but not
dependent on y*, the particular P-basis.

@ Doing so will thus establish that Pf+ is a polymatroid.
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A polymatroid function’'s polyhedron is a polymatroid.

... proof continued.

@ First trivial case: could have y* = x, which happens if
z(A) < f(A),YACE (ie, z € P;“ strictly). In such case,

min (z(4) + f(E\A): ACE) (10.1)
=z(E)+min(f(E\A)—z(E\A): ACE) (10.2)
=z(F)+min(f(A) —z(A): ACE) (10.3)
=z(FE) (10.4)
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A polymatroid function’s polyhedron is a polymatroid.

... proof continued.

@ 2nd trivial case: when z(A) > f(A),VAC FE (ie, z ¢ PJZF strictly),

@ Then for any order (a1, as,...) of the elements and
A; £ (ay,az,...,a;), we have x(a;) > f(a;) > f(ai|Ai_1), the
second inequality by submodularity. This gives
min (z(A) + f(E\A): ACE) (10.5)
= z(F) +min (f(A) —z(4) : ACFE) (10.6)

= z(E) + min Zf(ai’Ai—l) — Zx(ai) A C E) (10.7)

(

= 2(E) +min | Y (f(a2~|AZ-_1) . x(ai)) L ACE| @08)

— 2(E) + (B) - «(B) = f(B) (10.9)
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Polymatroid
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A polymatroid function’'s polyhedron is a polymatroid.

... proof continued.

@ Assume neither trivial case. Because y* € P}, we have that
y*(A) < f(A) forall AC E.

@ We show that the constant is given by
y*(E) =min (z(A) + f(E\A): ACE) (10.10)
e For any P}F—basis y* of x, and any A C E, we have that

Yy (E) =y*(A) +y*(E\ 4) (10.11)
< 2(A) + f(E\ A). (10.12)

This follows since y* < x and since y* € PJT.

@ Given one A where equality holds, the above min result follows.
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A polymatroid function’s polyhedron is a polymatroid.

... proof continued.

@ Foranyy € PJT, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C' is again tight, since

f(B)+ f(C) =y(B) +y(C) (10.13)
=y(BNC)+y(BUCQO) (10.14)
<f(BNC)+ f(BUC) (10.15)
< f(B) + f(C) (10.16)

which requires equality everywhere above.

@ Because y(B) < f(B),VB, this means y(BNC) = f(BNC) and
y(BUC) = f(BUC), so both also are tight.

e For y € P/, it will be ultimately useful to define this lattice family
of tight sets: D(y) £ {A: AC E, y(A) = f(A)}.
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A polymatroid function’s polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) def U{T : T € D(y)}

o Consider again a P;r—basis y”* (so maximal).

e Given a e € E, either y®(e) is cut off due to = (so y*(e) = z(e)) or
e is saturated by f, meaning it is an element of some tight set and
e € sat(y”).

o Let £\ A =sat(y”) be the union of all such tight sets (which is
also tight, so y*(E'\ A) = f(E\ A)).

@ Hence, we have
Yy (E) =y (A) +y*(E\4) =z(A)+ f(E\ A) (10.17)

@ So we identified the A to be the elements that are non-tight, and

achieved the min, as desired. O

v
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A polymatroid is a polymatroid function’s polytope

@ So, when f is a polymatroid function, PJT is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = P]fr?

Theorem 10.3.1

For any polymatroid P (compact subset of RY, zero containing, down-monotone,
and Vz € ]Rf any maximal independent subvector y < x has same component sum
y(E) = rank(z)), there is a polymatroid function f : 2¥ — R (normalized,
monotone non-decreasing, submodular) such that P = P]j— where

Pi—lie R¥ : 2 >0,2(A4) < f(A),VA C E}.
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First, a bit on D(y)

Recall the definition of the set of tight sets at y € P;r:

D(y) 2 {A: AC E, y(4) = f(A)} (10.18)

Theorem 10.3.2

For any y € P}, with f a polymatroid function, then D(y) is closed
under union and intersection.

| \

Proof.
We have already proven this as part of Theorem 9.4.5 ]

A\

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T: T € D(y)} (10.19)
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Join VV and meet A for x,y € R

@ Forx,y € Rf, define vectors x Ay € ]Rf and xVy € Rf such that, for
allee E

(x Vy)(e) = max(x(e),y(e)) (10.20)
(x Ay)(e) = min(x(e),y(e)) (10.21)

Hence,

TVy2 (max(:z:(el), y(el)) : maX(x(eg), y(eg)), . ,max(:zs(en), y(en)>>

and similarly

T Ay = (min (:z:(el), y(el)) , min (x((aQ), y(eQ)), ...,min (:z:(en), y(en)>>

@ From this, we can define things like an lattices, and other constructs.
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Vector rank, rank(z), is submodular

@ Recall that the matroid rank function is submodular.

@ The vector rank function rank(z) also satisfies a form of
submodularity.

Theorem 10.3.3 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function
rank : RE — R with rank(z) = max (y(E) : y < z,y € P) satisfies, for
all u,v € Rf

rank(u) + rank(v) > rank(u V v) + rank(u A v) (10.22)

v
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.3.3.

@ Let a be a P-basis of u A v, so rank(u A v) = a(F).

@ By the polymatroid property, 3 an independent b € P such that:
a < b<wuVwvand also such that rank(b) = b(F) = rank(u V v).
@ Given e € F, if a(e) is maximal due to P, then then
a(e) = b(e) < min(u(e),v(e)).
If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).
Therefore, a = b A (u Av).

@ Sincea=0bA (uAwv) and since b < u Vv, we get

a+b=b+bANuANv=bAu+bAv (10.23)

To see this, consider each case where either b is the minimum, or w is minimum

with b < v, or v is minimum with b < w.
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Vector rank rank(x) is submodular, proof

... proof of Theorem 10.3.3.

@ But b A w and b A v are independent subvectors of u and v
respectively, so (b A u)(E) < rank(u) and (b A v)(FE) < rank(v).

° Hen(r::ﬁk(u Av) +rank(u Vv) = a(F) 4+ b(E) (10.24)
=(bAu)(E)+ (bAv)(E) (10.25)

< rank(u) 4 rank(v) (10.26)

[
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A polymatroid function’'s polyhedron vs. a polymatroid.

@ Note the remarkable similarity between the proof of Theorem 10.3.3
and the proof of Theorem ?? that the standard matroid rank
function is submodular.

@ Next, we prove Theorem 10.3.1, that any polymatroid polytope P
has a polymatroid function f such that P = Pj"f.

@ Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra”).
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

@ We are given a polymatroid P.

o Define amax = max {x(E) : x € P}, and note that aymax > 0 when
P is non-empty, and amax = rank(colg) = rank(amaxlg).

@ Hence, for any = € P, z(e) < amax, Ve € E.
o Define a function f: 2V — R as, for any A C E,

f(A) = rank(amax1.4) (10.27)

@ Then f is submodular since

f(A) + f(B) = rank(amax14) + rank(amax1p) (10.28)
> rank(@max14 V amax1B) + rank(amaxla A amax13)

(10.29)

= rank(amax1auB) + rank(amax1anB) (10.30)

= f(AU)B AQDB 10.31
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

@ Moreover, we have that f is non-negative, normalized with
f(®) = 0, and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.

@ Consider the polytope PJT defined as:
Pt = {z e RY : x(4) < f(4), VAC E} (10.32)

@ Given an z € P, then forany A C F,
z(A) <max{z(F):z € P,z < amaxla} = rank(amax1a) = f(A),
therefore x € PJT.

@ Hence, P C P;r.

@ We will next show that P]?L C P to complete the proof.
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

o Letz € P;r be chosen arbitrarily (goal is to show that = € P).

@ Suppose x ¢ P. Then, choose y to be a P-basis of x that
maximizes the number of y elements strictly less than the

corresponding = element. l.e., that maximizes |N(y)|, where
N(y)={ec€ E :y(e) < z(e)} (10.33)
@ Choose w between y and x, so that
y<w=(y+a)/2<w (10.34)

so y is also a P-basis of w.

@ Hence, rank(z) = rank(w), and the set of P-bases of w are also

P-bases of z.
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Proof of Theorem 10.3.1
Proof of Theorem 10.3.1.

@ Forany A C E, define x4 € Rf as

{:z;(e) ifeec A

10.35
0 else ( )

note this is an analogous definition to 14 but for a non-unity vector.

@ Now, we have

y(N(y)) <w(N(y)) < f(N(y)) = rank(amaxIn))  (10.36)

the last inequality follows since w < z € P;, and y < w.

@ Thus, y A xn(y) is not a P-basis of w Az, since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N (y)).
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

@ We can extend y Az () to be a P-basis of w Az, since
YNTN(y) <WANATN@y)-

This P-basis, in turn, can be extended to be a P-basis § of w & .
Now, we have §(N(y)) > y(N(y)),

and also that §(F) = y(F) (since both are P-bases),

hence g(e) < y(e) for some e ¢ N(y).

Thus, g is a base of x, which violates the maximality of |V (y)].
This contradiction means that we must have had z € P.

+ _
Therefore, Pf = P. O
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More on polymatroids

Theorem 10.3.4

A polymatroid can equivalently be defined as a pair (E, P) where E is a
finite ground set and P C Rf Is a compact non-empty set of
independent vectors such that

@ every subvector of an independent vector is independent (if x € P
and y < x theny € P, i.e., down closed)

@ If u,v € P (ie, are independent) and
u(E) < v(E), then there exists a vector
w € P such that

u<w<uVo (10.37) |

Corollary 10.3.5

The independent vectors of a polymatroid form a convex polyhedron in
RE.
+
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Review

@ The next slide comes from lecture 5.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 10.3.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, andx € B'\ B, then B'— x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y€ B\ B.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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More on polymatroids

For any compact set P, b is a base of P if it is a maximal subvector
within P. Recall the bases of matroids. In fact, we can define a
polymatroid via vector bases (analogous to how a matroid can be defined
via matroid bases).

Theorem 10.3.6

A polymatroid can equivalently be defined as a pair (E, P) where E is a
finite ground set and P C Rf Is a compact non-empty set of
independent vectors such that

@ every subvector of an independent vector is independent (if x € P
and y < x theny € P, i.e., down closed)

@ ifb,c are bases of P and d is such that b A\ c < d < b, then there
exists an f, with d N\ c < f < c such that dV f is a base of P

© AIll of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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