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Logistics Review

Cumulative Outstanding Reading

Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Maximum weight independent set via greedy weighted rank

Theorem 10.2.6

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w ∈ RV

+, there exists a chain of sets U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ V
such that

max {w(I)|I ∈ I} =
n∑

i=1

λir(Ui) (10.19)

where λi ≥ 0 satisfy

w =

n∑
i=1

λi1Ui (10.20)
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Logistics Review

Polytope Equivalence (Summarizing the above)

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv {∪I∈I{1I}} (10.12)

Now take the rank function r of M , and define the following
polyhedron:

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(10.13)

Theorem 10.2.2

P+
r = Pind. set (10.14)
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Logistics Review

P -basis of x given compact set P ⊆ RE
+

Definition 10.2.4 (subvector)

y is a subvector of x if y ≤ x (meaning y(e) ≤ x(e) for all e ∈ E).

Definition 10.2.5 (P -basis)

Given a compact set P ⊆ RE
+, for any x ∈ RE

+, a subvector y of x is
called a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained
subvector of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z ≥ y + ε1e for some e ∈ E and ε > 0) having the
properties of y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y ≤ x (y is a subvector of x); and
2 y ∈ P and y + ε1e /∈ P for all e ∈ E where y(e) < x(e) and ∀ε > 0

(y is maximal P -contained).
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Logistics Review

A vector form of rank

Recall the definition of rank from a matroid M = (E, I).

rank(A) = max {|I| : I ⊆ A, I ∈ I} (10.25)

vector rank: Given a compact set P ⊆ RE
+, we can define a form of

“vector rank” relative to this P in the following way: Given an
x ∈ RE , we define the vector rank, relative to P , as:

rank(x) = max (y(E) : y ≤ x, y ∈ P ) (10.26)

where y ≤ x is componentwise inequality (yi ≤ xi, ∀i).

If Bx is the set of P -bases of x, than rank(x) = maxy∈Bx y(E).

If x ∈ P , then rank(x) = x(E) (x is its own unique self P -basis).

In general, this might be hard to compute and/or have ill-defined
properties. We next look at an object that restrains and cultivates
this form of rank.
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Logistics Review

Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.2.4 (polymatroid)

A polymatroid is a compact set P ⊆ RE
+ satisfying

1 0 ∈ P
2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y ∈ P ) are called independent, and any
vector outside of P is called dependent.

Since all P -bases of x have the same component sum, if Bx is the
set of P -bases of x, than rank(x) = y(E) for any y ∈ Bx.
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Logistics Review

Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ∅ ∈ I
3 down closed, ∅ ⊆ I ′ ⊆ I ∈ I ⇒ I ′ ∈ I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ⊆ A has same size
|I|).

A Polymatroid is:

1 a compact set P ⊆ RE
+

2 zero containing, 0 ∈ P
3 down monotone, 0 ≤ y ≤ x ∈ P ⇒ y ∈ P
4 any maximal vector y in P , bounded by another vector x, has the

same vector rank (any maximal independent subvector y ≤ x has
same sum y(E)).
.
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Logistics Review

Polymatroid function and its polyhedron.

Definition 10.2.4

A polymatroid function is a real-valued function f defined on subsets of
E which is normalized, non-decreasing, and submodular. That is we have

1 f(∅) = 0 (normalized)

2 f(A) ≤ f(B) for any A ⊆ B ⊆ E (monotone non-decreasing)

3 f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for any A,B ⊆ E
(submodular)

We can define the polyhedron P+
f associated with a polymatroid function

as follows

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(10.25)

=
{
y ∈ RE : y ≥ 0, y(A) ≤ f(A) for all A ⊆ E

}
(10.26)
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Logistics Review

Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain
graph v1− v2− v3. That is, f(S) = |{(v, s) ∈ E(G) : v ∈ V, s ∈ S}|
is count of any edges within S or between S and V \ S, so that
δ(S) = f(S) + f(V \ S)− f(V ) is the standard graph cut.

Observe: P+
f (at two views):
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Logistics Review

Associated polyhedron with a polymatroid function

Consider modular function w : V → R+ as w = (1, 1.5, 2)ᵀ, and
then the submodular function f(S) =

√
w(S).

Observe: P+
f (at two views):
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(10.34)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 10.2.4

Let f be a polymatroid function defined on subsets of E. For any
x ∈ RE

+, and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)
= min (x(A) + f(E \A) : A ⊆ E) (10.34)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

By taking B = supp(x) (so elements E \B are zero in x), and for b ∈ B,
x(b) is big enough, the r.h.s. min has solution A∗ = E \B. We recover
submodular function from the polymatroid polyhedron via the following:

f(B) = max
{
y(B) : y ∈ P+

f

}
(10.35)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P+

f is a polymatroid)
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f .

So, P+
f is down-monotone.

Now suppose that we are given an x ∈ RE
+, and maximal yx ∈ P+

f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent
only on x and also f (which defines the polytope) but not
dependent on yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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Polymatroid
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

First trivial case: could have yx = x, which happens if
x(A) ≤ f(A), ∀A ⊆ E (i.e., x ∈ P+

f strictly). In such case,

min (x(A) + f(E \A) : A ⊆ E) (10.1)

= x(E) + min (f(E \A)− x(E \A) : A ⊆ E) (10.2)

= x(E) + min (f(A)− x(A) : A ⊆ E) (10.3)

= x(E) (10.4)

. . .
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

2nd trivial case: when x(A) > f(A),∀A ⊆ E (i.e., x /∈ P+
f strictly),

Then for any order (a1, a2, . . . ) of the elements and
Ai , (a1, a2, . . . , ai), we have x(ai) ≥ f(ai) ≥ f(ai|Ai−1), the
second inequality by submodularity.

This gives

min (x(A) + f(E \A) : A ⊆ E) (10.5)

= x(E) + min (f(A)− x(A) : A ⊆ E) (10.6)

= x(E) + min

(∑
i

f(ai|Ai−1)−
∑
i

x(ai) : A ⊆ E
)

(10.7)

= x(E) + min

∑
i

(
f(ai|Ai−1)− x(ai)

)
︸ ︷︷ ︸

≤0

: A ⊆ E

 (10.8)

= x(E) + f(E)− x(E) = f(E) (10.9)

. . .
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Polymatroid
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A ⊆ E.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (10.10)

For any P+
f -basis yx of x, and any A ⊆ E, we have that

yx(E) = yx(A) + yx(E \A) (10.11)

≤ x(A) + f(E \A). (10.12)

This follows since yx ≤ x and since yx ∈ P+
f .

Given one A where equality holds, the above min result follows.

. . .
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Polymatroid
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.
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We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (10.10)

For any P+
f -basis yx of x, and any A ⊆ E, we have that
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

For any y ∈ P+
f , call a set B ⊆ E tight if y(B) = f(B). The union

(and intersection) of tight sets B,C is again tight, since

f(B) + f(C)

= y(B) + y(C) (10.13)

= y(B ∩ C) + y(B ∪ C) (10.14)

≤ f(B ∩ C) + f(B ∪ C) (10.15)

≤ f(B) + f(C) (10.16)

which requires equality everywhere above.

Because y(B) ≤ f(B),∀B, this means y(B ∩ C) = f(B ∩ C) and
y(B ∪ C) = f(B ∪ C), so both also are tight.

For y ∈ P+
f , it will be ultimately useful to define this lattice family

of tight sets: D(y) , {A : A ⊆ E, y(A) = f(A)}.

. . .
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Polymatroid
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Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Also, define sat(y)
def
=
⋃ {T : T ∈ D(y)}

Consider again a P+
f -basis yx (so maximal).

Given a e ∈ E, either yx(e) is cut off due to x (so yx(e) = x(e)) or
e is saturated by f , meaning it is an element of some tight set and
e ∈ sat(yx).

Let E \A = sat(yx) be the union of all such tight sets (which is
also tight, so yx(E \A) = f(E \A)).

Hence, we have

yx(E) = yx(A) + yx(E \A) = x(A) + f(E \A) (10.17)

So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.
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Polymatroid

A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 10.3.1

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone,

and ∀x ∈ RE
+ any maximal independent subvector y ≤ x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E → R (normalized,

monotone non-decreasing, submodular) such that P = P+
f where

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A),∀A ⊆ E

}
.
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Polymatroid

First, a bit on D(y)
Recall the definition of the set of tight sets at y ∈ P+

f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (10.18)

Theorem 10.3.2

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (10.19)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 10 - May 5th, 2014 F23/37 (pg.46/110)



Polymatroid

First, a bit on D(y)
Recall the definition of the set of tight sets at y ∈ P+

f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (10.18)

Theorem 10.3.2

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (10.19)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 10 - May 5th, 2014 F23/37 (pg.47/110)



Polymatroid

First, a bit on D(y)
Recall the definition of the set of tight sets at y ∈ P+

f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (10.18)

Theorem 10.3.2

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (10.19)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 10 - May 5th, 2014 F23/37 (pg.48/110)



Polymatroid

Join ∨ and meet ∧ for x, y ∈ RE
+

For x, y ∈ RE
+, define vectors x ∧ y ∈ RE

+ and x ∨ y ∈ RE
+ such that, for

all e ∈ E

(x ∨ y)(e) = max(x(e), y(e)) (10.20)

(x ∧ y)(e) = min(x(e), y(e)) (10.21)

Hence,

x ∨ y ,

(
max

(
x(e1), y(e1)

)
,max

(
x(e2), y(e2)

)
, . . . ,max

(
x(en), y(en)

))
and similarly

x ∧ y ,

(
min

(
x(e1), y(e1)

)
,min

(
x(e2), y(e2)

)
, . . . ,min

(
x(en), y(en)

))

From this, we can define things like an lattices, and other constructs.
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Polymatroid

Vector rank, rank(x), is submodular

Recall that the matroid rank function is submodular.

The vector rank function rank(x) also satisfies a form of
submodularity.

Theorem 10.3.3 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function
rank : RE

+ → R with rank(x) = max (y(E) : y ≤ x, y ∈ P ) satisfies, for
all u, v ∈ RE

+

rank(u) + rank(v) ≥ rank(u ∨ v) + rank(u ∧ v) (10.22)
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Polymatroid

Vector rank rank(x) is submodular, proof

Proof of Theorem 10.3.3.

Let a be a P -basis of u ∧ v, so rank(u ∧ v) = a(E).

By the polymatroid property, ∃ an independent b ∈ P such that:
a ≤ b ≤ u ∨ v

and also such that rank(b) = b(E) = rank(u ∨ v).

Given e ∈ E, if a(e) is maximal due to P , then then
a(e) = b(e) ≤ min(u(e), v(e)).

If a(e) is maximal due to (u ∧ v)(e), then
a(e) = min(u(e), v(e)) ≤ b(e).
Therefore, a = b ∧ (u ∧ v).

Since a = b ∧ (u ∧ v)

and since b ≤ u ∨ v, we get

a+ b

= b+ b ∧ u ∧ v = b ∧ u+ b ∧ v

(10.23)

To see this, consider each case where either b is the minimum, or u is minimum

with b ≤ v, or v is minimum with b ≤ u.
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Polymatroid

Vector rank rank(x) is submodular, proof

. . . proof of Theorem 10.3.3.

But b ∧ u and b ∧ v are independent subvectors of u and v
respectively, so (b ∧ u)(E) ≤ rank(u) and (b ∧ v)(E) ≤ rank(v).

Hence,
rank(u ∧ v) + rank(u ∨ v)

= a(E) + b(E) (10.24)

= (b ∧ u)(E) + (b ∧ v)(E) (10.25)

≤ rank(u) + rank(v) (10.26)
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Polymatroid

A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 10.3.3
and the proof of Theorem ?? that the standard matroid rank
function is submodular.

Next, we prove Theorem 10.3.1, that any polymatroid polytope P
has a polymatroid function f such that P = P+

f .

Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra”).
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Polymatroid

Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

We are given a polymatroid P .

Define αmax , max {x(E) : x ∈ P}, and note that αmax > 0 when
P is non-empty, and αmax = rank(∞1E) = rank(αmax1E).

Hence, for any x ∈ P , x(e) ≤ αmax,∀e ∈ E.

Define a function f : 2V → R as, for any A ⊆ E,

f(A) , rank(αmax1A) (10.27)

Then f is submodular since

f(A) + f(B)

= rank(αmax1A) + rank(αmax1B) (10.28)

≥ rank(αmax1A ∨ αmax1B) + rank(αmax1A ∧ αmax1B)
(10.29)

= rank(αmax1A∪B) + rank(αmax1A∩B) (10.30)

= f(A ∪B) + f(A ∩B) (10.31)
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

Moreover, we have that f is non-negative, normalized with
f(∅) = 0, and monotone non-decreasing (since rank is monotone).

Hence, f is a polymatroid function.

Consider the polytope P+
f defined as:

P+
f =

{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}

(10.32)

Given an x ∈ P , then for any A ⊆ E,
x(A) ≤ max {z(E) : z ∈ P, z ≤ αmax1A} = rank(αmax1A) = f(A),

therefore x ∈ P+
f .

Hence, P ⊆ P+
f .

We will next show that P+
f ⊆ P to complete the proof.

. . .
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Given an x ∈ P , then for any A ⊆ E,
x(A) ≤ max {z(E) : z ∈ P, z ≤ αmax1A} = rank(αmax1A) = f(A),

therefore x ∈ P+
f .

Hence, P ⊆ P+
f .

We will next show that P+
f ⊆ P to complete the proof.

. . .
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P .

Then, choose y to be a P -basis of x that
maximizes the number of y elements strictly less than the
corresponding x element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (10.33)

Choose w between y and x, so that

y ≤ w , (y + x)/2 ≤ x (10.34)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .
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Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

For any A ⊆ E, define xA ∈ RE
+ as

xA(e) =

{
x(e) if e ∈ A
0 else

(10.35)

note this is an analogous definition to 1A but for a non-unity vector.

Now, we have

y(N(y)) < w(N(y)) ≤ f(N(y)) = rank(αmax1N(y)) (10.36)

the last inequality follows since w ≤ x ∈ P+
f , and y ≤ w.

Thus, y ∧ xN(y) is not a P -basis of w ∧ xN(y) since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).
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Proof of Theorem 10.3.1.

We can extend y ∧ xN(y) to be a P -basis of w ∧ xN(y) since
y ∧ xN(y) < w ∧ xN(y).

This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.

Now, we have ŷ(N(y)) > y(N(y)),

and also that ŷ(E) = y(E) (since both are P -bases),

hence ŷ(e) < y(e) for some e /∈ N(y).

Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x ∈ P .

Therefore, P+
f = P .
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Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x ∈ P .

Therefore, P+
f = P .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 10 - May 5th, 2014 F33/37 (pg.99/110)



Polymatroid

Proof of Theorem 10.3.1

Proof of Theorem 10.3.1.

We can extend y ∧ xN(y) to be a P -basis of w ∧ xN(y) since
y ∧ xN(y) < w ∧ xN(y).

This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
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More on polymatroids

Theorem 10.3.4

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE

+ is a compact non-empty set of
independent vectors such that

1 every subvector of an independent vector is independent (if x ∈ P
and y ≤ x then y ∈ P , i.e., down closed)

2 If u, v ∈ P (i.e., are independent) and
u(E) < v(E), then there exists a vector
w ∈ P such that

u < w ≤ u ∨ v (10.37)
u

v u∨v

w1

w2

Corollary 10.3.5

The independent vectors of a polymatroid form a convex polyhedron in
RE
+.
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Review

The next slide comes from lecture 5.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 10.3.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′ − x+ y ∈ B for some
y ∈ B \B′.

3 If B,B′ ∈ B, and x ∈ B′ \B, then B − y + x ∈ B for some
y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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More on polymatroids
For any compact set P , b is a base of P if it is a maximal subvector
within P . Recall the bases of matroids. In fact, we can define a
polymatroid via vector bases (analogous to how a matroid can be defined
via matroid bases).

Theorem 10.3.6

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE

+ is a compact non-empty set of
independent vectors such that

1 every subvector of an independent vector is independent (if x ∈ P
and y ≤ x then y ∈ P , i.e., down closed)

2 if b, c are bases of P and d is such that b ∧ c < d < b, then there
exists an f , with d ∧ c < f ≤ c such that d ∨ f is a base of P

3 All of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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