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Logistics Review

Announcements, Assignments, and Reminders

Homework 2, due Nov 2nd, 11:59pm on our assignment dropbox
(https://canvas.uw.edu/courses/1397085/assignments).
Reminder, all lectures are being recorded and posted to youtube. To
get the links, see our announcements
(https://canvas.uw.edu/courses/1397085/announcements).
Office hours, Wed & Thur, 10:00pm at our class zoom link.
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Class Road Map - EE563
L1(9/30): Motivation, Applications,
Definitions, Properties
L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory
L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial
Examples, Matrix Rank, Properties, Other
Defs, Independence
L5(10/14): Properties, Defs of
Submodularity, Independence
L6(10/19): Matroids, Matroid Examples,
Matroid Rank,
L7(10/21): Matroid Rank, More on
Partition Matroid, Laminar Matroids,
System of Distinct Reps, Transversals
L8(10/26): Transversal Matroid, Matroid
and representation, Dual Matroid
L9(10/28): Other Matroid Properties,
Combinatorial Geometries, Matroid and
Greedy, Polyhedra, Matroid Polytopes,
Matroids → Polymatroids
L10(11/2):

L11(11/4):
L12(11/9):
L–(11/11): Veterans Day, Holiday
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Logistics Review

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 9.2.2
Let (V,V) where V = (V1, V2, . . . , V`) be a subset system. Let
I = {1, . . . , `}. Let I be the set of partial transversals of V. Then (V, I) is
a matroid.

Proof.
We note that ∅ ∈ I since the empty set is a transversal of the empty
subfamily of V, thus (I1’) holds.
We already saw that if T is a partial transversal of V, and if T ′ ⊆ T ,
then T ′ is also a partial transversal. So (I2’) holds.
Suppose that T1 and T2 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3’) holds.
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Logistics Review

Representable

Definition 9.2.2 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves independence
(equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z).
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.
We can more generally define matroids on a field.

Definition 9.2.4 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable
over F
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Representability of Transversal Matroids

Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.
In particular:

Theorem 9.2.2
Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Logistics Review

Spanning Sets

We have the following definitions:

Definition 9.2.3 (spanning set of a set)

Given a matroidM = (V, I), and a set Y ⊆ V , then any set X ⊆ Y such
that r(X) = r(Y ) is called a spanning set of Y .

Definition 9.2.4 (spanning set of a matroid)

Given a matroidM = (V, I), any set A ⊆ V such that r(A) = r(V ) is
called a spanning set of the matroid.

A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.
V is always trivially spanning.
Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Logistics Review

Dual of a Matroid
Given a matroid M = (V, I), a dual matroid M∗ = (V, I∗) can be
defined on the same ground set V , but using a very different set of
independent sets I∗.
We define the set of sets I∗ for M∗ as follows:

I∗ = {A ⊆ V : V \A is a spanning set of M} (9.12)
= {V \ S : S ⊆ V is a spanning set of M} (9.13)

i.e., I∗ are complements of spanning sets of M .
That is, a set A is independent in the dual matroid M∗ if removal of A
from V does not decrease the rank in M :

I∗ = {A ⊆ V : rankM (V \A) = rankM (V )} (9.14)

In other words, a set A ⊆ V is independent in the dual M∗ (i.e.,
A ∈ I∗) if A’s complement is spanning in M (residual V \A must
contain a base in M).
Dual of the dual: Note, we have that (M∗)∗ = M .
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Logistics Review

Dual of a Matroid: Bases

The smallest spanning sets are bases. Hence, a base B of M (where
B = V \B∗ is as small as possible while still spanning) is the
complement of a base B∗ of M∗ (where B∗ = V \B is as large as
possible while still being independent).
In fact, we have that

Theorem 9.2.3 (Dual matroid bases)

Let M = (V, I) be a matroid and B(M) be the set of bases of M . Then
define

B∗(M) = {V \B : B ∈ B(M)}. (9.12)

Then B∗(M) is the set of basis of M∗ (that is, B∗(M) = B(M∗).
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Logistics Review

Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Logistics Review

Dual Matroid Rank
Theorem 9.2.7
The rank function rM∗ of the dual matroid M∗ may be specified in terms of
the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (9.15)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.
Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ).
Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.
Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Matroid Intersection
Let M1 = (V, I1) and M2 = (V, I2) be two matroids. Consider their
common independent sets I1 ∩ I2.

While (V, I1 ∩ I2) is typically not a matroid (Exercise: show graphical
example.), we might be interested in finding the maximum size
common independent set. That is, find max |X| such that both
X ∈ I1 and X ∈ I2.

Theorem 9.3.1
Let M1 and M2 be given as above, with rank functions r1 and r2. Then the
size of the maximum size set in I1 ∩ I2 is given by

(r1 ∗ r2)(V ) , min
X⊆V

(
r1(X) + r2(V \X)

)
(9.1)

This is an instance of the convolution of two submodular functions, f1
and f2 that, evaluated at Y ⊆ V , is written as:

(f1 ∗ f2)(Y ) = min
X⊆Y

(
f1(X) + f2(Y \X)

)
(9.2)
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Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Convolution and Hall’s Theorem

Recall Hall’s theorem, that a transversal exists iff for all X ⊆ V , we
have |Γ(X)| ≥ |X|.
⇔ |Γ(X)| − |X| ≥ 0,∀X
⇔ minX |Γ(X)| − |X| ≥ 0

⇔ minX |Γ(X)|+ |V | − |X| ≥ |V |
⇔ minX

(
|Γ(X)|+ |V \X|

)
≥ |V |

⇔ [Γ(·) ∗ | · |](V ) ≥ |V |
So Hall’s theorem can be expressed as convolution. Exercise: define
g(A) = [Γ(·) ∗ | · |](A), prove that g is submodular.
Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Matroid Union
Definition 9.3.2
Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids. We
define the union of matroids as
M1 ∨M2 ∨ · · · ∨Mk = (V1 ] V2 ] · · · ] Vk, I1 ∨ I2 ∨ · · · ∨ Ik), where

I1 ∨ I2 ∨ · · · ∨ Ik = {I1 ] I2 ] · · · ] Ik|I1 ∈ I1, . . . , Ik ∈ Ik} (9.3)

Note A ]B designates the disjoint union of A and B.

Theorem 9.3.3
Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids, with
rank functions r1, . . . , rk. Then the union of these matroids is still a
matroid, having rank function

r(Y ) = min
X⊆Y

(
|Y \X|+ r1(X ∩ V1) + · · ·+ rk(X ∩ Vk)

)
(9.4)

for any Y ⊆ V1 ] . . . V2 ] · · · ] Vk.
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Exercise: Matroid Union, and Matroid duality

Exercise: Fully characterize M ∨M∗.
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Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Matroids of three or fewer elements are graphic

All matroids up to and including three elements (edges) are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

This is a nice way to visualize matroids with very low ground set sizes.
What about matroids that are low rank but with many elements?
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Linear and Affine Independence

A set of vectors x1, x2, . . . , xk ∈ Rm are linearly independent if the
unique solution to

k∑
i=1

λixi = 0 (9.5)

is λi = 0 for all i = 1, . . . , k.

A set of vectors x1, x2, . . . , xk ∈ Rm are affinely independent if the
unique solution to

k∑
i=1

λixi = 0 such that
k∑

i=1

λi = 0 (9.6)

is λi = 0 for all i = 1, . . . , k.
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Affine Matroids
Given an n×m matrix with entries over field F, we say that a subset
S ⊆ {1, . . . ,m} of indices (with corresponding column vectors
{vi : i ∈ S}, with |S| = k ≤ m) is affinely dependent if m ≥ 1 and
there exists elements {a1, . . . , ak} ∈ F, not all zero with

∑k
i=1 ai = 0,

such that
∑k

i=1 aivi = 0.

Otherwise, set is called affinely independent

.

Concisely: points {v1, v2, . . . , vk} are affinely independent if
v2 − v1, v3 − v1, . . . , vk − v1 are linearly independent.

Alternatively, if
no point is in the affine hull of the remaining points.

Example in 2D: one point is (or any two distinct points are) affinely
independent, three collinear points are affinely dependent, three
non-collinear points are affinely independent, and ≥ 4 collinear or
non-collinear points are affinely dependent.

Proposition 9.4.1 (affine matroid)

Let ground set E = {1, . . . ,m} index column vectors of a matrix, and let I
be the set of subsets X of E such that X indices affinely independent
vectors. Then (E, I) is a matroid.

Exercise: prove this.
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non-collinear points are affinely independent, and ≥ 4 collinear or
non-collinear points are affinely dependent.
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Let ground set E = {1, . . . ,m} index column vectors of a matrix, and let I
be the set of subsets X of E such that X indices affinely independent
vectors. Then (E, I) is a matroid.

Exercise: prove this.
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Euclidean Representation of Low-rank Matroids

Consider the affine matroid with n×m = 2× 6 matrix on the field
F = R, and let the elements be {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

We can plot the points in R2 as on the right:
A point has rank 1, points that comprise a line
have rank 2, points that comprise a plane have
rank 3.
Flats (points, lines, planes, etc.) have rank equal
to one more than their geometric dimension.
Any two distinct points constitute a line, but lines
with only two points are not drawn.
Lines indicate collinear sets with ≥ 3 points, while
any two points have rank 2.
Dependent sets consist of all subsets with ≥ 4
elements (rank 3), or 3 collinear elements (rank 2).
Any two points have rank 2.

x

y

(0,1) (0,2)

(1,1)(1,0)

(2,0)

(0,0)
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Euclidean Representation of Low-rank Matroids

As another example on
the right, a rank 4 ma-
troid (0,0,0)

(0,0,1)
(0,1,1)

(0,1,0)

(1,1,0)
(1,0,0)

A
B

C D

E F

All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)},
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
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Euclidean Representation of Low-rank Matroids

In general, for a matroidM of rank m+ 1 with m ≤ 3, then a subset
X in a geometric representation in Rm is dependent if:

1 |X| ≥ 2 and the points are identical;
2 |X| ≥ 3 and the points are collinear;
3 |X| ≥ 4 and the points are coplanar; or
4 |X| ≥ 5 and the points are anywhere in space.

When they exist, loops are represented in a geometry by a separate box
indicating how many loops there are.
Parallel elements, when they exist in a matroid, are indicated by a
multiplicity next to a point.

Theorem 9.4.2
Any matroid of rank m ≤ 4 can be represented by an affine matroid in
Rm−1.

True regardless of how big |V | is.
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Euclidean Rep. of Low-rank Matroids: Summary Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set of
parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not dependent
unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet in at
most one point.
If diagram has more than one plane, then: 1) any two distinct planes
meeting in more than two points do so in a line; 2) any two distinct
lines meeting in a point do so in at most one point and lie in on a
common plane; 3) any line not lying on a plane intersects it in at most
one point.
(see Oxley 2011 for more details).
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Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which still
have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
for some field)?

Yes, consider the matroid
1

7
8

9

2 3

654

Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7, 8, 9} is
dependent, hence requiring an additional line in the above.
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Another example: Vámos Matroid

Vámos matroid has |V | = 8 and
r(M) = 4. It has independence
structure that is shown
geometrically on the right.

This matroid is not representable
over any field.
In fact, this matroid is the
smallest non-representable
matroid. I.e., any matroid with
|V | < 8 is representable (see
Oxley 2011, proposition 6.4.10).
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7}, Y = {1, 4, 5, 6, 7}.
So r(X) =

3, and r(Y ) =

3

, and r(X ∪ Y ) =

4

, so we must have, by
submodularity, that
r({1, 6, 7}) = r(X ∩ Y ) ≤ r(X) + r(Y )− r(X ∪ Y ) = 2.

However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?
Hence, not all 2D or 3D graphs of points and lines are matroids.
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Matroid?

Consider the following geometry on |V | = 8 points with
V = {a, b, c, d, e, f, g, h}.

a

b

c

de

f

g

hh

Note, we are given that the points {b, d, h, f} are not coplanar.
However, the following sets of points are coplanar: {a, b, e, f},
{d, c, g, h}, {a, d, h, e}, {b, c, g, f}, {b, c, d, a}, {f, g, h, e}, and
{a, c, g, e}.
Exercise: Is this a matroid? Exercise: If so, is it representable?
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Projective Geometries: Other Examples
Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

a b c

d e f

g
h i

m

j
l

k

Right: a matroid (and a 2D depiction of a geometry) over the field
GF(3) = {0, 1, 2} mod 3 and is “coordinatizable” in GF(3)3.
Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in
3D) can be twisted.
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Matroids, Representation and Equivalence: Summary

Matroids with |V | ≤ 3 are graphic.

Matroids with r(V ) ≤ 4 can be geometrically represented in R3.
Not all matroids are linear (i.e., matric) matroids (although any with
|V | < 8 are, Vámos matroid is an example with |V | = 8 that is not
linear).
Matroids can be seen as related to projective geometries (and are
sometimes called combinatorial geometries).
Exists much research on different subclasses of matroids, and if/when
they are contained in (or isomorphic to) each other.
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Matroid Further Reading

“Matroids: A Geometric Introduction”, Gordon and McNulty, 2012.
“The Coming of the Matroids”, William Cunningham, 2012 (a nice
history)
Welsh, “Matroid Theory”, 1975.
Oxley, “Matroid Theory”, 1992 (and 2011) (perhaps best “single source”
on matroids right now).
Crapo & Rota, “On the Foundations of Combinatorial Theory:
Combinatorial Geometries”, 1970 (while this is old, it is very readable).
Lawler, “Combinatorial Optimization: Networks and Matroids”, 1976.
Schrijver, “Combinatorial Optimization”, 2003
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The greedy algorithm

In combinatorial optimization, the greedy algorithm is often useful as a
heuristic that can work quite well in practice.

The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best, without the possibility of later recall or backtracking.
Sometimes, this gives the optimal solution (we saw in Lecture 5 three
greedy algorithms that can find the maximum weight spanning tree,
namely Kruskal, Jarník/Prim/Dijkstra, and Borůvka’s Algorithms).
Greedy is good since it can be made to run very fast, e.g., O(n log n).
Often, however, greedy is heuristic (it might work well in practice, but
worst-case performance can be unboundedly poor).
We will next see that the greedy algorithm working optimally is a
defining property of a matroid, and is also a defining property of a
polymatroid function.
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namely Kruskal, Jarník/Prim/Dijkstra, and Borůvka’s Algorithms).
Greedy is good since it can be made to run very fast, e.g., O(n log n).

Often, however, greedy is heuristic (it might work well in practice, but
worst-case performance can be unboundedly poor).
We will next see that the greedy algorithm working optimally is a
defining property of a matroid, and is also a defining property of a
polymatroid function.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a non-negative
modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm
1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing items
in that order that retain independence.

Theorem 9.5.1

Let (E, I) be an independence system. Then the pair (E, I) is a matroid if
and only if for each weight function w ∈ RE

+, Algorithm 1 above leads to a
set I ∈ I of maximum weight w(I).
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Review from Lecture 6

The next slide is from Lecture 6.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 9.5.3 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B′ ∈ B, and x ∈ B′ \B, then B′−x+ y ∈ B for some y ∈ B \B′.
3 If B,B′ ∈ B, and x ∈ B′ \B, then B− y+ x ∈ B for some y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroid and the greedy algorithm

proof of Theorem 9.5.1.

Assume (E, I) is a matroid and w : E → R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as they
were chosen (so w(a1) ≥ w(a2) ≥ · · · ≥ w(ar)).
A is a base of M , and let B = (b1, . . . , br) be any another base of M
with elements also ordered decreasing by weight, so
w(b1) ≥ w(b2) ≥ · · · ≥ w(br).
We next show that not only is w(A) ≥ w(B) but that w(ai) ≥ w(bi)
for all i.

. . .
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Matroid and the greedy algorithm

proof of Theorem 9.5.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) ≥ w(bj) for j < k.

Define independent sets Ak−1 = {a1, . . . , ak−1} and
Bk = {b1, . . . , bk}.
Since |Ak−1| < |Bk|, there exists a bi ∈ Bk \Ak−1 where
Ak−1 ∪ {bi} ∈ I for some 1 ≤ i ≤ k.
But w(bi) ≥ w(bk) > w(ak), and so the greedy algorithm would have
chosen bi rather than ak, contradicting what greedy does.

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 9.5.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.

Emptyset containing and down monotonicity already holds (since we’ve
started with an independence system).
Let I, J ∈ I with |I| < |J |. Suppose to the contrary, that I ∪ {z} /∈ I
for all z ∈ J \ I.
Define the following modular weight function w on E, and define
k = |I|.

w(v) =


k + 2 if v ∈ I,
k + 1 if v ∈ J \ I,
0 if v ∈ E \ (I ∪ J)

(9.7)

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 9.5.1.
Now greedy will, after k iterations, recover I, but it cannot choose any
element in J \ I by assumption. Thus, greedy chooses a set of weight
k(k + 2) = w(I).

On the other hand, J has weight

w(J) ≥ |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2) = w(I) (9.8)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.
Therefore, there must be a z ∈ J \ I such that I ∪ {z} ∈ I, and since
I and J are arbitrary, (E, I) must be a matroid.

. . .
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Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a base if
we keep going even if the weights are 0.
If we don’t want elements with weight 0, we can stop once (and if) the
weight hits zero, thus giving us a maximum weight independent set.
We don’t need non-negativity, we can use any w ∈ RE and keep going
until we have a base.
If we stop at a negative value, we’ll once again get a maximum weight
independent set.
Exercise: what if we keep going until a base even if we encounter
negative values?
We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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If we stop at a negative value, we’ll once again get a maximum weight
independent set.
Exercise: what if we keep going until a base even if we encounter
negative values?
We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of
the following:

All maximally independent sets have the same size.
A normalized monotone non-decreasing submodular integral rank
function with unit increments.
The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 9.6.1

A subset P ⊆ RE = Rm is a polyhedron if there exists an `×m matrix A
and vector b ∈ R` (for some ` ≥ 0) such that

P =
{
x ∈ RE : Ax ≤ b

}
(9.9)

Thus, P is intersection of finitely many (`) affine halfspaces, which are
of the form aix ≤ bi where ai is a row vector and bi a real scalar.
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Convex Polytope

A polytope is defined as follows

Definition 9.6.2

A subset P ⊆ RE = Rm is a polytope if it is the convex hull of finitely many
vectors in RE . That is, if ∃, x1, x2, . . . , xk ∈ RE such that for all x ∈ P ,
there exits {λi} with

∑
i λi = 1 and λi ≥ 0 ∀i with x =

∑
i λixi.

We define the convex hull operator as follows:

conv(x1, x2, . . . , xk)
def
=

{
k∑

i=1

λixi : ∀i, λi ≥ 0, and
∑
i

λi = 1

}
(9.10)
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Convex Polytope - key representation theorem

A polytope can be defined in a number of ways, two of which include

Theorem 9.6.3

A subset P ⊆ RE is a polytope iff it can be described in either of the
following (equivalent) ways:

P is the convex hull of a finite set of points.

If it is a bounded intersection of halfspaces, that is there exits matrix A and
vector b such that

P = {x : Ax ≤ b} (9.11)

This result follows directly from results proven by Fourier, Motzkin,
Farkas, and Carátheodory.
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Linear Programming

Theorem 9.6.4 (weak duality)

Let A be a matrix and b and c vectors, then

max {cᵀx|Ax ≤ b} ≤ min {yᵀb : y ≥ 0, yᵀA = cᵀ} (9.12)

Theorem 9.6.5 (strong duality)

Let A be a matrix and b and c vectors, then

max {cᵀx|Ax ≤ b} = min {yᵀb : y ≥ 0, yᵀA = cᵀ} (9.13)
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Linear Programming duality forms

There are many ways to construct the dual. For example,

max {cᵀx|x ≥ 0, Ax ≤ b} = min {yᵀb|y ≥ 0, yᵀA ≥ cᵀ} (9.14)
max {cᵀx|x ≥ 0, Ax = b} = min {yᵀb|yᵀA ≥ cᵀ} (9.15)

min {cᵀx|x ≥ 0, Ax ≥ b} = max {yᵀb|y ≥ 0, yᵀA ≤ cᵀ} (9.16)
min {cᵀx|Ax ≥ b} = max {yᵀb|y ≥ 0, yᵀA = cᵀ} (9.17)
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Linear Programming duality forms

How to form the dual in general? We quote V. Vazirani (2001)

Intuitively, why is [one set of equations] the dual of [another quite
different set of equations]? In our experience, this is not the right
question to be asked. As stated in Section 12.1, there is a purely
mechanical procedure for obtaining the dual of a linear program.
Once the dual is obtained, one can devise intuitive, and possibly
physical meaningful, ways of thinking about it. Using this mechani-
cal procedure, one can obtain the dual of a complex linear program
in a fairly straightforward manner. Indeed, the LP-duality-based
approach derives its wide applicability from this fact.

Also see the text “Convex Optimization” by Boyd and Vandenberghe,
chapter 5, for a great discussion on duality and easy mechanical ways to
construct it.
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Vector, modular, incidence

Recall, any vector x ∈ RE can be seen as a normalized modular
function, as for any A ⊆ E, we have

x(A) =
∑
a∈A

xa (9.18)

Given an A ⊆ E, define the incidence vector 1A ∈ {0, 1}E on the unit
hypercube as follows:

1A
def
=
{
x ∈ {0, 1}E : xi = 1 iff i ∈ A

}
(9.19)

equivalently,

1A(j)
def
=

{
1 if j ∈ A
0 if j /∈ A

(9.20)
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Review from Lecture 6

The next slide is review from lecture 6.
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 9.7.3 (Matroid-II)

A set system (E, I) is a Matroid if
(I1’) ∅ ∈ I
(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)
(I3’) ∀I, J ∈ I, with |I| > |J |, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)≡(I3’) using induction.
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Independence Polyhedra

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I ∈ {0, 1}E ⊂ [0, 1]E ⊂ RE

+.

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv

{⋃
I∈I
{1I}

}
⊆ [0, 1]E (9.21)

Now take the rank function r of M , and define the following
polyhedron:

P+
r ,

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.22)

Examples of P+
r are forthcoming.

Now, take any x ∈ Pind. set, then we will show that that x ∈ P+
r (or

Pind. set ⊆ P+
r ). We show this after a few examples of P+

r .
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Matroid Polyhedron in 2D

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.23)

Consider this in two dimensions. We have equations of the form:

x1 ≥ 0 and x2 ≥ 0 (9.24)
x1 ≤ r({v1}) ∈ {0, 1} (9.25)
x2 ≤ r({v2}) ∈ {0, 1} (9.26)

x1 + x2 ≤ r({v1, v2}) ∈ {0, 1, 2} (9.27)

Because r is submodular, we have

r({v1}) + r({v2}) ≥ r({v1, v2}) + r(∅) (9.28)

so since r({v1, v2}) ≤ r({v1}) + r({v2}), the last inequality is either
superfluous (r(v1, v2) = r(v1) + r(v2), “inactive”) or “active.”

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F48/75 (pg.138/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Matroid Polyhedron in 2D

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.23)

Consider this in two dimensions. We have equations of the form:

x1 ≥ 0 and x2 ≥ 0 (9.24)
x1 ≤ r({v1}) ∈ {0, 1} (9.25)
x2 ≤ r({v2}) ∈ {0, 1} (9.26)

x1 + x2 ≤ r({v1, v2}) ∈ {0, 1, 2} (9.27)

Because r is submodular, we have

r({v1}) + r({v2}) ≥ r({v1, v2}) + r(∅) (9.28)

so since r({v1, v2}) ≤ r({v1}) + r({v2}), the last inequality is either
superfluous (r(v1, v2) = r(v1) + r(v2), “inactive”) or “active.”

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F48/75 (pg.139/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Matroid Polyhedron in 2D

x1 ≥ 0

x2 ≥ 0

x1 ≤ r({v1})

x2 ≤ r({v2})
x
1 +

x
2 ≤

r({v
1 , v

2 })
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Matroid Polyhedron in 2D

x1

x2

r(v1)=1

r(v2)=1
x1 + = 1x2 = r({v1, v2})
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Matroid Polyhedron in 2D

x1

x2

= 0r({v1, v2})
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Matroid Polyhedron in 2D

x1 + = 2x2 = r({v1, v2})

x1

x2

r(v1)=1

r(v2)=1
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Matroid Polyhedron in 2D

r(v1)=1

r(v2)=0

= 1r({v1, v2})

x1

x2

And, if v2 is a loop ...
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Matroid Polyhedron in 2D
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x2

x1

x2

r(v1)=1

r(v1)=1

r(v2)=1

r(v2)=0

x1 + = 2x2 = r({v1, v2})

x1 + = 1x2 = r({v1, v2})

= 1r({v1, v2})
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x1

x2

x1

x2

r(v1)=1

r(v2)=1

x1 ≥ 0

x2 ≥ 0

x1 ≤ r({v1})

x2 ≤ r({v2})
x
1 +

x
2 ≤

r({v
1 , v

2 })

And, if v2 is a loop ...
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Matroid Polyhedron in 2D

x1 ≥ 0

x2 ≥ 0

x1 ≤ r({v1})

x2 ≤ r({v2})

x1 + x2 ≤ r({v1, v2})
Possible

N
ot

Possible

Not
Possible
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Matroid Polyhedron in 3D

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.29)

Consider three dimensions, E = {1, 2, 3}. Get equations of the form:

x1 ≥ 0 and x2 ≥ 0 and x3 ≥ 0 (9.30)
x1 ≤ r({v1}) (9.31)
x2 ≤ r({v2}) (9.32)
x3 ≤ r({v3}) (9.33)

x1 + x2 ≤ r({v1, v2}) (9.34)
x2 + x3 ≤ r({v2, v3}) (9.35)
x1 + x3 ≤ r({v1, v3}) (9.36)

x1 + x2 + x3 ≤ r({v1, v2, v3}) (9.37)
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I ∈ I is a forest.

So any set of either one or two edges is independent, and has rank
equal to cardinality.
The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I ∈ I is a forest.
So any set of either one or two edges is independent, and has rank
equal to cardinality.

The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D
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Matroid Polyhedron in 3D

Two view of P+
r associated with a matroid

({e1, e2, e3}, {∅, {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}}).
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Matroid Polyhedron in 3D

P+
r associated with the “free” matroid in 3D.
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Matroid Polyhedron in 3D

P+
r associated with the “free” matroid in 3D.
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Another Polytope in 3D

Thought question: what kind of polytope might this be?
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Independence Polyhedra

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I ∈ {0, 1}E ⊂ [0, 1]E ⊂ RE

+.
Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv

{⋃
I∈I
{1I}

}
⊆ [0, 1]E (9.21)

Now take the rank function r of M , and define the following
polyhedron:

P+
r ,

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.22)

Examples of P+
r are forthcoming.

Now, take any x ∈ Pind. set, then we will show that that x ∈ P+
r (or

Pind. set ⊆ P+
r ). We show this after a few examples of P+

r .
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Pind. set ⊆ P+
r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).

Clearly, for such x, x ≥ 0.
Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)

Thus, x ∈ P+
r and hence Pind. set ⊆ P+

r .
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Pind. set ⊆ P+
r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).
Clearly, for such x, x ≥ 0.

Now, for any A ⊆ E,
x(A) = xᵀ1A =

∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)

Thus, x ∈ P+
r and hence Pind. set ⊆ P+

r .
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r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).
Clearly, for such x, x ≥ 0.
Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)
Thus, x ∈ P+

r and hence Pind. set ⊆ P+
r .
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Pind. set ⊆ P+
r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).
Clearly, for such x, x ≥ 0.
Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)
Thus, x ∈ P+

r and hence Pind. set ⊆ P+
r .
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Pind. set ⊆ P+
r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).
Clearly, for such x, x ≥ 0.
Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)
Thus, x ∈ P+

r and hence Pind. set ⊆ P+
r .
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Pind. set ⊆ P+
r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).
Clearly, for such x, x ≥ 0.
Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)

Thus, x ∈ P+
r and hence Pind. set ⊆ P+

r .
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Pind. set ⊆ P+
r

Lemma 9.7.1 (Pind. set ⊆ P+
r )

If x ∈ Pind. set, then
x =

∑
i

λi1Ii (9.38)

for some appropriate vector λ = (λ1, λ2, . . . , λn).
Clearly, for such x, x ≥ 0.
Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (9.39)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (9.40)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (9.41)

= r(A) (9.42)
Thus, x ∈ P+

r and hence Pind. set ⊆ P+
r .
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Containment

Therefore, since {1I : I ∈ I} ⊆ conv
{⋃

I∈I {1I}
}

= Pind. set ⊆ P+
r ,

we have that

max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.43)
≤ max

{
wᵀx : x ∈ P+

r

}
(9.44)
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Matroid Independence Polyhedron

So recall from a moment ago, that we have that

Pind. set = conv {∪I∈I{1I}}
⊆ P+

r =
{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.45)

In fact, the two polyhedra are identical (and thus both are polytopes).
We’ll show this in the next few theorems.
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}
(9.45)

In fact, the two polyhedra are identical (and thus both are polytopes).

We’ll show this in the next few theorems.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F59/75 (pg.166/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Matroid Independence Polyhedron

So recall from a moment ago, that we have that

Pind. set = conv {∪I∈I{1I}}
⊆ P+

r =
{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
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Maximum weight independent set via greedy weighted rank

Theorem 9.7.2

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w ∈ RV

+, there exists a chain of sets U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ V
such that

max {w(I)|I ∈ I} =

n∑
i=1

λir(Ui) (9.46)

where λi ≥ 0 satisfy

w =

n∑
i=1

λi1Ui (9.47)
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Maximum weight independent set via weighted rank
Proof.

Firstly, note that for any such w ∈ RE , we have


w1

w2

...
wn

 =
(
w1 − w2

)


1
0
...
0

+
(
w2 − w3

)


1
1
0
...
0

+

· · ·+
(
wn−1 − wn

)


1
1
...
1
0

+
(
wn

)


1
1
...
1
1

 (9.48)

If we can take w in non-increasing order (w1 ≥ w2 ≥ · · · ≥ wn), then
each coefficient of the vectors is non-negative (except possibly the last
one, wn).

. . .
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Maximum weight independent set via weighted rank
Proof.

Firstly, note that for any such w ∈ RE , we have
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(
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0

+

· · ·+
(
wn−1 − wn

)


1
1
...
1
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+
(
wn

)


1
1
...
1
1

 (9.48)

If we can take w in non-increasing order (w1 ≥ w2 ≥ · · · ≥ wn), then
each coefficient of the vectors is non-negative (except possibly the last
one, wn). . . .
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w ∈ RE
+, order the elements of V non-increasing

by w so (v1, v2, . . . , vn) such that w(v1) ≥ w(v2) ≥ · · · ≥ w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.49)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui−1)}. (9.50)

Hence, given an i with vi /∈ I, r(Ui) = r(Ui−1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I ∈ I}.
And therefore, I is a maximum weight independent set (can even be a
base, actually).

. . .
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w ∈ RE
+, order the elements of V non-increasing

by w so (v1, v2, . . . , vn) such that w(v1) ≥ w(v2) ≥ · · · ≥ w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.49)

Note that U0 = ∅ and

1U0 =


0
0
...
0

 ,1U1 =


1
0
0
...
0

 , . . . ,1U`
=



1
`×

1
...
1
0
(n− `)×0

...
0


, etc.

(9.50)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui−1)}. (9.51)

Hence, given an i with vi /∈ I, r(Ui) = r(Ui−1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I ∈ I}.
And therefore, I is a maximum weight independent set (can even be a
base, actually).

. . .
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def
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I
def
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w ∈ RE
+, order the elements of V non-increasing

by w so (v1, v2, . . . , vn) such that w(v1) ≥ w(v2) ≥ · · · ≥ w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.49)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui−1)}. (9.50)

Hence, given an i with vi /∈ I, r(Ui) = r(Ui−1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I ∈ I}. since items vi are ordered decreasing by w(vi), and we only
choose the ones that increase the rank, which means they don’t violate
independence.

And therefore, I is a maximum weight independent set (can even be a
base, actually).

. . .
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def
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I
def
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Hence, given an i with vi /∈ I, r(Ui) = r(Ui−1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I ∈ I}.
And therefore, I is a maximum weight independent set (can even be a
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. . .
Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F61/75 (pg.175/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Maximum weight independent set via weighted rank
Proof.

Now, we define λi as follows

0 ≤ λi def
= w(vi)− w(vi+1) for i = 1, . . . , n− 1 (9.51)

λn
def
= w(vn) (9.52)

And the weight of the independent set w(I) is given by

w(I) =
∑
v∈I

w(v) =

n∑
i=1

w(vi)
(
r(Ui)− r(Ui−1)

)
(9.53)

= w(vn)r(Un) +
n−1∑
i=1

(
w(vi)− w(vi+1)

)
r(Ui) =

n∑
i=1

λir(Ui)

(9.54)

Since we ordered v1, v2, . . . non-increasing by w, for all i, and since
w ∈ RE

+, we have λi ≥ 0

. . .
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Maximum weight independent set via weighted rank
Proof.

Now, we define λi as follows

0 ≤ λi def
= w(vi)− w(vi+1) for i = 1, . . . , n− 1 (9.51)

λn
def
= w(vn) (9.52)

And the weight of the independent set w(I) is given by

w(I) =
∑
v∈I

w(v) =

n∑
i=1

w(vi)
(
r(Ui)− r(Ui−1)

)
(9.53)

= w(vn)r(Un) +
n−1∑
i=1

(
w(vi)− w(vi+1)

)
r(Ui) =

n∑
i=1

λir(Ui)

(9.54)

Since we ordered v1, v2, . . . non-increasing by w, for all i, and since
w ∈ RE

+, we have λi ≥ 0

. . .
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Maximum weight independent set via weighted rank
Proof.

Now, we define λi as follows

0 ≤ λi def
= w(vi)− w(vi+1) for i = 1, . . . , n− 1 (9.51)

λn
def
= w(vn) (9.52)

And the weight of the independent set w(I) is given by

w(I) =
∑
v∈I

w(v) =

n∑
i=1

w(vi)
(
r(Ui)− r(Ui−1)

)
(9.53)

= w(vn)r(Un) +
n−1∑
i=1

(
w(vi)− w(vi+1)

)
r(Ui) =

n∑
i=1

λir(Ui)

(9.54)

Since we ordered v1, v2, . . . non-increasing by w, for all i, and since
w ∈ RE

+, we have λi ≥ 0

. . .
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Maximum weight independent set via weighted rank
Proof.

Now, we define λi as follows

0 ≤ λi def
= w(vi)− w(vi+1) for i = 1, . . . , n− 1 (9.51)

λn
def
= w(vn) (9.52)

And the weight of the independent set w(I) is given by

w(I) =
∑
v∈I

w(v) =

n∑
i=1

w(vi)
(
r(Ui)− r(Ui−1)

)
(9.53)

= w(vn)r(Un) +
n−1∑
i=1

(
w(vi)− w(vi+1)

)
r(Ui)

=
n∑

i=1

λir(Ui)

(9.54)

Since we ordered v1, v2, . . . non-increasing by w, for all i, and since
w ∈ RE

+, we have λi ≥ 0

. . .
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Linear Program LP

Consider the linear programming primal problem

maximize wᵀx

subject to xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )

(9.55)

And its convex dual (note y ∈ R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
∑

U⊆V yUr(U),

subject to yU ≥ 0 (∀U ⊆ V )∑
U⊆V yU1U ≥ w

(9.56)

Thanks to strong duality, the solutions to these are equal to each other.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F62/75 (pg.182/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Linear Program LP

Consider the linear programming primal problem

maximize wᵀx

subject to xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )

(9.55)

And its convex dual (note y ∈ R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
∑

U⊆V yUr(U),

subject to yU ≥ 0 (∀U ⊆ V )∑
U⊆V yU1U ≥ w

(9.56)

Thanks to strong duality, the solutions to these are equal to each other.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F62/75 (pg.183/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Linear Program LP

Consider the linear programming primal problem

maximize wᵀx

subject to xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )

(9.55)

And its convex dual (note y ∈ R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
∑

U⊆V yUr(U),

subject to yU ≥ 0 (∀U ⊆ V )∑
U⊆V yU1U ≥ w

(9.56)

Thanks to strong duality, the solutions to these are equal to each other.
Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F62/75 (pg.184/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Linear Program LP

Consider the linear programming primal problem

maximize wᵀx
s.t. xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )
(9.57)

This is identical to the problem

maxwᵀx such that x ∈ P+
r (9.58)

where, again, P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
.

Therefore, since Pind. set ⊆ P+
r , the above problem can only have a

larger solution. I.e.,

maxwᵀx s.t. x ∈ Pind. set ≤ maxwᵀx s.t. x ∈ P+
r . (9.59)
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Polytope equivalence
Hence, we have the following relations:
max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.60)

≤ max
{
wᵀx : x ∈ P+

r

}
(9.61)

def
= αmin = min

∑
U⊆V

yUr(U) : ∀U, yU ≥ 0;
∑
U⊆V

yU1U ≥ w


(9.62)
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Polytope equivalence
Hence, we have the following relations:
max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.60)
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wᵀx : x ∈ P+

r

}
(9.61)

def
= αmin = min

∑
U⊆V

yUr(U) : ∀U, yU ≥ 0;
∑
U⊆V

yU1U ≥ w


(9.62)Theorem 9.7.2 states that

max {w(I) : I ∈ I} =

n∑
i=1

λir(Ui) (9.63)

for the chain of Ui’s and λi ≥ 0 that satisfies w =
∑n

i=1 λi1Ui (i.e., the
r.h.s. of Eq. 9.63 is feasible w.r.t. the dual LP).

Therefore, we also have max {w(I) : I ∈ I} ≤ αmin and

max {w(I) : I ∈ I} =

n∑
i=1

λir(Ui) ≥ αmin (9.64)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F64/75 (pg.189/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Polytope equivalence
Hence, we have the following relations:
max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.60)

≤ max
{
wᵀx : x ∈ P+

r

}
(9.61)

def
= αmin = min

∑
U⊆V

yUr(U) : ∀U, yU ≥ 0;
∑
U⊆V

yU1U ≥ w


(9.62)Theorem 9.7.2 states that

max {w(I) : I ∈ I} =

n∑
i=1

λir(Ui) (9.63)

for the chain of Ui’s and λi ≥ 0 that satisfies w =
∑n

i=1 λi1Ui (i.e., the
r.h.s. of Eq. 9.63 is feasible w.r.t. the dual LP).
Therefore, we also have max {w(I) : I ∈ I} ≤ αmin and

max {w(I) : I ∈ I} =

n∑
i=1

λir(Ui) ≥ αmin (9.64)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 9 - Oct 28th, 2020 F64/75 (pg.190/239)



Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids → Polymatroids

Polytope equivalence
Hence, we have the following relations:
max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.60)
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{
wᵀx : x ∈ P+

r
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(9.61)

def
= αmin = min

∑
U⊆V

yUr(U) : ∀U, yU ≥ 0;
∑
U⊆V

yU1U ≥ w


(9.62)

Therefore, all the inequalities above are equalities.

And since w ∈ RE
+ is an arbitrary direction into the positive orthant, we see

that P+
r = Pind. set

That is, we have just proven:

Theorem 9.7.3

P+
r = Pind. set (9.65)
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Polytope Equivalence (Summarizing the above)

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv {∪I∈I{1I}} (9.66)

Now take the rank function r of M , and define the following polytope:

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A),∀A ⊆ E

}
(9.67)

Theorem 9.7.4

P+
r = Pind. set (9.68)
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Greedy solves a linear programming problem

So we can describe the independence polytope of a matroid using the
set of inequalities (an exponential number of them).

In fact, considering equations starting at Eq 9.60, the LP problem with
exponential number of constraints max {wᵀx : x ∈ P+

r } is identical to
the maximum weight independent set problem in a matroid, and since
greedy solves the latter problem exactly, we have also proven:

Theorem 9.7.5

The LP problem max {wᵀx : x ∈ P+
r } can be solved exactly using the

greedy algorithm.

Note that this LP problem has an exponential number of constraints
(since P+

r is described as the intersection of an exponential number of
half spaces).

This means that if LP problems have certain structure, they can be
solved much easier than immediately implied by the equations.
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Base Polytope Equivalence

Consider convex hull of indicator vectors just of the bases of a matroid,
rather than all of the independent sets.

Consider a polytope defined by the following constraints:

x ≥ 0 (9.69)
x(A) ≤ r(A) ∀A ⊆ V (9.70)
x(V ) = r(V ) (9.71)

Note the third requirement, x(V ) = r(V ).
By essentially the same argument as above (Exercise:), we can shown
that the convex hull of the incidence vectors of the bases of a matroid
is a polytope that can be described by Eq. 9.69- 9.71 above.
What does this look like?
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Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).

Consider convex hull of incidence vectors of spanning sets of a matroid
M , and call this Pspanning(M).

Theorem 9.7.6
The spanning set polytope is determined by the following equations:

0 ≤ xe ≤ 1 for e ∈ E (9.72)
x(A) ≥ r(E)− r(E \A) for A ⊆ E (9.73)

Example of spanning set
polytope in 2D.

x1

x2

r(v1)=1

r(v2)=1

x1 + = 1x2 = r({v1, v2})
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Spanning set polytope

Proof.
Recall that any A is spanning in M iff E \A is independent in M∗ (the
dual matroid).

For any x ∈ RE , we have that

x ∈ Pspanning(M)⇔ 1− x ∈ Pind. set(M
∗) (9.74)

as we show next . . .

. . .
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Spanning set polytope

. . . proof continued.

This follows since if x ∈ Pspanning(M), we can represent x as a convex
combination:

x =
∑
i

λi1Ai (9.75)

where Ai is spanning in M .

Consider

1− x = 1E − x = 1E −
∑
i

λi1Ai =
∑
i

λi1E\Ai
, (9.76)

which follows since
∑

i λi1 = 1E , so 1− x is a convex combination of
independent sets in M∗ and so 1− x ∈ Pind. set(M

∗).

. . .
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∑

i λi1 = 1E , so 1− x is a convex combination of
independent sets in M∗ and so 1− x ∈ Pind. set(M

∗). . . .
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Spanning set polytope

. . . proof continued.

which means, from the definition of Pind. set(M
∗), that

1− x ≥ 0 (9.77)
1A − x(A) = |A| − x(A) ≤ rM∗(A) for A ⊆ E (9.78)

And we know the dual rank function is

rM∗(A) = |A|+ rM (E \A)− rM (E) (9.79)

giving

x(A) ≥ rM (E)− rM (E \A) for all A ⊆ E (9.80)

. . .
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Matroids
where are we going with this?

We’ve been discussing results about matroids (independence polytope,
etc.).

By now, it is clear that matroid rank functions are special cases of
submodular functions. We ultimately will be reviewing submodular
function minimization procedures, but in some cases it it worth showing
a result for a general submodular function first.
Henceforth, we will skip between submodular functions and matroids,
each lecture talking less about matroids specifically and taking more
about submodular functions more generally ...
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ⊆ RE , we say
that a vector x is maximal within P if it is the case that for any ε > 0,
and for all directions e ∈ E, we have that

x+ ε1e /∈ P (9.81)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.
Given any compact (essentially closed & bounded) set P ⊆ RE , we say
that a vector x is maximal within P if it is the case that for any ε > 0,
and for all directions e ∈ E, we have that

x+ ε1e /∈ P (9.81)

Examples of maximal regions (in red)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.
Given any compact (essentially closed & bounded) set P ⊆ RE , we say
that a vector x is maximal within P if it is the case that for any ε > 0,
and for all directions e ∈ E, we have that

x+ ε1e /∈ P (9.81)

Examples of non-maximal regions (in green)
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Review from Lecture 6

The next slide comes from Lecture 6.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.
A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B ∈ I
and there is no Z ∈ I with B ⊂ Z ⊆ U .
A base of a matroid: If U = E, then a “base of E” is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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P -basis of x given compact set P ⊆ RE
+

Definition 9.8.1 (subvector)

y is a subvector of x if y ≤ x (meaning y(e) ≤ x(e) for all e ∈ E).

Definition 9.8.2 (P -basis)

Given a compact set P ⊆ RE
+, for any x ∈ RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z ≥ y+ ε1e for some e ∈ E and ε > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y ≤ x (y is a subvector of x); and
2 y ∈ P and y + ε1e /∈ P for all e ∈ E where y(e) < x(e) and ∀ε > 0 (y

is maximal P -contained).
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A vector form of rank
Recall the definition of rank from a matroid M = (E, I).

rank(A) = max {|I| : I ⊆ A, I ∈ I} = max
I∈I
|A ∩ I| (9.82)

vector rank: Given a compact set P ⊆ RE
+, define a form of “vector rank”

relative to P : Given an x ∈ RE :

rank(x) = max (y(E) : y ≤ x, y ∈ P ) = max
y∈P

(x ∧ y)(E) (9.83)

where y ≤ x is componentwise inequality (yi ≤ xi, ∀i), and where
(x ∧ y) ∈ RE

+ has (x ∧ y)(i) = min(x(i), y(i)).
Sometimes use rankP (x) to make P explicit.
If Bx is the set of P -bases of x, than rank(x) = maxy∈Bx y(E).
If x ∈ P , then rank(x) = x(E) (x is its own unique self P -basis).
If xmin = minx∈P x(E), and x ≤ xmin what then? −∞?
In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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(x ∧ y) ∈ RE

+ has (x ∧ y)(i) = min(x(i), y(i)).
Sometimes use rankP (x) to make P explicit.
If Bx is the set of P -bases of x, than rank(x) = maxy∈Bx y(E).
If x ∈ P , then rank(x) = x(E) (x is its own unique self P -basis).

If xmin = minx∈P x(E), and x ≤ xmin what then? −∞?
In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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