Submodular Functions, Optimization, and Applications to Machine Learning
— Fall Quarter, Lecture 8 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Oct 26th, 2020

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \]

\[-f(A) + 2f(C) + f(B) \]

\[-f(A) + f(C) + f(B) \]

\[-f(A \cap B) \]
Announcements, Assignments, and Reminders

- Homework 2.
- Reminder, all lectures are being recorded and posted to youtube. To get the links, see our announcements (https://canvas.uw.edu/courses/1397085/announcements).
Class Road Map - EE563

L1(9/30): Motivation, Applications, Definitions, Properties
L2(10/5): Sums concave(modular), uses (diversity/costs, feature selection), information theory
L3(10/7): Monge, More Definitions, Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial Examples, Matrix Rank, Properties, OtherDefs, Independence
L5(10/14): Properties,Defs of Submodularity, Independence
L6(10/19): Matroids, Matroid Examples, Matroid Rank,
L8(10/26): Transversal Matroid, Matroid and representation, Dual Matroid, Other Matroid Properties, Combinatorial Geometries, Matroid and Greedy
L9(10/28):
L10(11/2):
L11(11/4):
L12(11/9):
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
System of Distinct Representatives

- Let \((V, \mathcal{V})\) be a set system (i.e., \(\mathcal{V} = (V_i : i \in I)\) where \(V_i \subseteq V\) for all \(i\)), and \(I\) is an index set. Hence, \(|I| = |\mathcal{V}|\).
- A family \((v_i : i \in I)\) with \(v_i \in V\) is said to be a system of distinct representatives of \(\mathcal{V}\) if \(\exists\) a bijection \(\pi : I \leftrightarrow I\) such that \(v_i \in V_{\pi(i)}\) and \(v_i \neq v_j\) for all \(i \neq j\).
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. We can re-state (and rename) this as a:

Definition 8.2.3 (transversal)

Given a set system \((V, \mathcal{V})\) and index set \(I\) for \(\mathcal{V}\) as defined above, a set \(T \subseteq V\) is a transversal of \(\mathcal{V}\) if there is a bijection \(\pi : T \leftrightarrow I\) such that

\[
x \in V_{\pi(x)} \text{ for all } x \in T
\]

(8.19)

- Note that due to \(\pi : T \leftrightarrow I\) being a bijection, all of \(I\) and \(T\) are “covered” (so this makes things distinct automatically).
When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?

- Given a set system \((V, \mathcal{V})\) with \(\mathcal{V} = (V_i : i \in I)\), and \(V_i \subseteq V\) for all \(i\). Then, for any \(J \subseteq I\), let

\[
V(J) = \bigcup_{j \in J} V_j
\]

(8.19)

so \(|V(J)| : 2^I \rightarrow \mathbb{Z}_+\) is the set cover func. (we know is submodular).

- We have

Theorem 8.2.3 (Hall’s theorem)

Given a set system \((V, \mathcal{V})\), the family of subsets \(\mathcal{V} = (V_i : i \in I)\) has a transversal \((v_i : i \in I)\) iff for all \(J \subseteq I\)

\[
|V(J)| \geq |J|
\]

(8.20)
When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system \((V, \mathcal{V})\) with \(\mathcal{V} = (V_i : i \in I)\), and \(V_i \subseteq V\) for all \(i\). Then, for any \(J \subseteq I\), let

\[
V(J) = \bigcup_{j \in J} V_j
\]

so \(|V(J)| : 2^I \to \mathbb{Z}_+\) is the set cover func. (we know is submodular).
- Hall's theorem \((\forall J \subseteq I, |V(J)| \geq |J|)\) as a bipartite graph.
When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system \((V, \mathcal{V})\) with \(\mathcal{V} = (V_i : i \in I)\), and \(V_i \subseteq V\) for all \(i\).

Then, for any \(J \subseteq I\), let

\[
V(J) = \bigcup_{j \in J} V_j
\]

so \(|V(J)| : 2^I \rightarrow \mathbb{Z}_+\) is the set cover func. (we know is submodular).

- Hall’s theorem \((\forall J \subseteq I, |V(J)| \geq |J|)\) as a bipartite graph.
When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system \((V, \mathcal{V})\) with \(\mathcal{V} = (V_i : i \in I)\), and \(V_i \subseteq V\) for all \(i\).

Then, for any \(J \subseteq I\), let

\[
V(J) = \bigcup_{j \in J} V_j
\] (8.19)

so \(|V(J)| : 2^I \rightarrow \mathbb{Z}_+\) is the set cover func. (we know is submodular).

- Moreover, we have

Theorem 8.2.4 (Rado’s theorem (1942))

If \(M = (V, r)\) is a matroid on \(V\) with rank function \(r\), then the family of subsets \((V_i : i \in I)\) of \(V\) has a transversal \((v_i : i \in I)\) that is independent in \(M\) iff for all \(J \subseteq I\)

\[
r(V(J)) \geq |J|
\] (8.21)
More general conditions for existence of transversals

Theorem 8.2.3 (Polymatroid transversal theorem)

If $\mathcal{V} = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f : 2^V \rightarrow \mathbb{Z}^+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that

$$f(\bigcup_{i \in J} \{v_i\}) \geq |J| \text{ for all } J \subseteq I \quad (8.19)$$

if and only if

$$f(V(J)) \geq |J| \text{ for all } J \subseteq I \quad (8.20)$$

- Given Theorem ??, we immediately get Theorem 8.2.3 by taking $f(S) = |S|$ for $S \subseteq V$.
- We get Theorem 8.2.4 by taking $f(S) = r(S)$ for $S \subseteq V$, the rank function of the matroid.
Transversals, themselves, define a matroid.

Theorem 8.3.1

If \(V \) is a family of finite subsets of a ground set \(V \), then the collection of partial transversals of \(V \) is the set of independent sets of a matroid \(M = (V, \mathcal{V}) \) on \(V \).
Transversals, themselves, define a matroid.

Theorem 8.3.1

If \(\mathcal{V} \) is a family of finite subsets of a ground set \(V \), then the collection of partial transversals of \(\mathcal{V} \) is the set of independent sets of a matroid \(M = (V, \mathcal{V}) \) on \(V \).

- This means that the transversals of \(\mathcal{V} \) are the bases of matroid \(M \).
Transversals, themselves, define a matroid.

Theorem 8.3.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M = (V, \mathcal{V})$ on V.

- This means that the transversals of \mathcal{V} are the bases of matroid M.
- Therefore, all maximal partial transversals of \mathcal{V} have the same cardinality!
Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system \((V, \mathcal{V})\), with \(\mathcal{V} = (V_i : i \in I)\), we can define a bipartite graph \(G = (V, I, E)\) associated with \(\mathcal{V}\) that has edge set \(\{(v, i) : v \in V, i \in I, v \in V_i\}\).
Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system \((V, \mathcal{V})\), with \(\mathcal{V} = (V_i : i \in I)\), we can define a bipartite graph \(G = (V, I, E)\) associated with \(\mathcal{V}\) that has edge set \(\{(v, i) : v \in V, i \in I, v \in V_i\}\).
- A matching in this graph is a set of edges no two of which that have a common endpoint.
Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system \((V, \mathcal{V})\), with \(\mathcal{V} = (V_i : i \in I)\), we can define a bipartite graph \(G = (V, I, E)\) associated with \(\mathcal{V}\) that has edge set \(\{(v, i) : v \in V, i \in I, v \in V_i\}\).
- A matching in this graph is a set of edges no two of which that have a common endpoint. In fact, we easily have:
Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system \((V, \mathcal{V})\), with \(\mathcal{V} = (V_i : i \in I)\), we can define a bipartite graph \(G = (V, I, E)\) associated with \(\mathcal{V}\) that has edge set \(\{(v, i) : v \in V, i \in I, v \in V_i\}\).
- A matching in this graph is a set of edges no two of which have a common endpoint. In fact, we easily have:

Lemma 8.3.2

A subset \(T \subseteq V\) is a partial transversal of \(\mathcal{V}\) iff there is a matching in \((V, I, E)\) in which every edge has one endpoint in \(T\) (\(T\) matched into \(I\)).
Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

\[
\begin{array}{c}
\text{A} & \text{B} \\
\text{D} & \text{C} \\
\end{array}
\quad
\begin{array}{c}
\text{A} & \text{B} \\
\text{D} & \text{C} \\
\end{array}
\quad
\begin{array}{c}
\text{A} & \text{B} \\
\text{D} & \text{C} \\
\end{array}
\]
Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

\[\{AC\} \text{ is a maximum matching, as is } \{AD, BC\}, \text{ but they are not the same size.} \]
Are arbitrary matchings matroids?

Consider the following graph (left), and two max-matchings (two right instances)

\{AC\} is a maximum matching, as is \{AD, BC\}, but they are not the same size.

Let \(\mathcal{M} \) be the set of matchings in an arbitrary graph \(G = (V, E) \). Hence, \((E, M)\) is a set system. I1 holds since \(\emptyset \in \mathcal{M} \). I2 also holds since if \(M \in \mathcal{M} \) is a matching, then so is any \(M' \subseteq M \). I3 doesn't hold (as seen above). Exercise: fully characterize the problem of finding the largest subset \(\mathcal{M'} \subseteq \mathcal{M} \) of matchings so that \((E, \mathcal{M'})\) also satisfies I3?
Next slide is from lecture 7.
Partition Matroid, rank as matching

- Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.

- Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

- Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}$.

- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i)$, which is the maximum matching involving X.

\begin{itemize}
 \item Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
 \item Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}$.
 \item For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i)$, which is the maximum matching involving X.
\end{itemize}
Morphing Partition Matroid Rank

Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \bigcup_{j \in J} V_j$).
Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \cup_{j \in J} V_j$).

Start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i \in \{1, \ldots, \ell\}} \min(|A \cap V_i|, k_i)$$

(8.1)
Recall the partition matroid rank function. Note, \(k_i = |I_i| \) in the bipartite graph representation, and since a matroid, w.l.o.g., \(|V_i| \geq k_i \) (also, recall, \(V(J) = \bigcup_{j \in J} V_j \)).

Start with partition matroid rank function in the subsequent equations.

\[
r(A) = \sum_{i \in \{1, \ldots, \ell\}} \min(|A \cap V_i|, k_i) \tag{8.1}
\]

\[
= \sum_{i=1}^\ell \min(|A \cap V(I_i)|, |I_i|) \tag{8.2}
\]
Recall the partition matroid rank function. Note, \(k_i = |I_i| \) in the bipartite graph representation, and since a matroid, w.l.o.g., \(|V_i| \geq k_i \) (also, recall, \(V(J) = \bigcup_{j \in J} V_j \)).

Start with partition matroid rank function in the subsequent equations.

\[
\begin{align*}
 r(A) &= \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i) \\
 &= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|) \\
 &= \sum_{i=1}^{\ell} \min \left(\begin{array}{l}
 |A \cap V(I_i)|, \\
 0
 \end{array} \right) + |I_i \setminus J_i|
\end{align*}
\]
Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \ge k_i$ (also, recall, $V(J) = \bigcup_{j \in J} V_j$).
- Start with partition matroid rank function in the subsequent equations.

\[
r(A) = \sum_{i \in \{1, \ldots, \ell\}} \min(|A \cap V_i|, k_i) \tag{8.1}
\]
\[
= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|) \tag{8.2}
\]
\[
= \sum_{i \in \{1, \ldots, \ell\}} \min_{J_i \in \{\emptyset, I_i\}} \left(\begin{cases} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{cases} \right) + |I_i \setminus J_i| \tag{8.3}
\]
\[
= \sum_{i \in \{1, \ldots, \ell\}} \min_{J_i \subseteq I_i} \left(\begin{cases} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{cases} \right) + |I_i \setminus J_i| \tag{8.4}
\]
Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \bigcup_{j \in J} V_j$).

Start with partition matroid rank function in the subsequent equations.

\[
r(A) = \sum_{i \in \{1, \ldots, \ell\}} \min(|A \cap V_i|, k_i) = \ell \sum_{i=1} \min(|A \cap V(I_i)|, |I_i|) = \sum_{i=1} \min_{J_i \in \{\emptyset, I_i\}} \left(\begin{cases} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{cases} \right) + |I_i \setminus J_i| \] (8.1)

\[
= \sum_{i=1} \min_{J_i \subseteq I_i} \left(\begin{cases} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{cases} \right) + |I_i \setminus J_i| \] (8.2)

\[
= \sum_{i=1} \min_{J_i \subseteq I_i} (|V(J_i) \cap A| + |I_i \setminus J_i|) \] (8.3)
Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left(|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i| \right)$$ \hspace{1cm} (8.6)
Continuing,

\[
\begin{align*}
 r(A) &= \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|) \quad (8.6) \\
 &= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right) \quad (8.7)
\end{align*}
\]
Continuing,

\[
r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|) \quad (8.6)
\]

\[
= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right) \quad (8.7)
\]

\[
= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|) \quad (8.8)
\]
Continuing,

\[r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|) \] \hspace{1cm} (8.6)

\[= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right) \] \hspace{1cm} (8.7)

\[= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|) \] \hspace{1cm} (8.8)

\[= \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \] \hspace{1cm} (8.9)
Continuing,

\[
\begin{align*}
r(A) &= \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|) \\
&= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right) \\
&= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|) \\
&= \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|)
\end{align*}
\]

In fact, this bottom (more general) expression is the expression for the rank of a transversal matroid.
In fact, we have

Theorem 8.3.3

Let \((V, \mathcal{V})\) where \(\mathcal{V} = (V_1, V_2, \ldots, V_\ell)\) be a subset system. Let \(I = \{1, \ldots, \ell\}\). Let \(\mathcal{I}\) be the set of partial transversals of \(\mathcal{V}\). Then \((V, \mathcal{I})\) is a matroid.

Proof.

We note that \(\emptyset \in \mathcal{I}\) since the empty set is a transversal of the empty subfamily of \(\mathcal{V}\), thus (I1') holds.

We already saw that if \(T\) is a partial transversal of \(\mathcal{V}\), and if \(T' \subseteq T\), then \(T'\) is also a partial transversal. So (I2') holds.

Suppose that \(T_1\) and \(T_2\) are partial transversals of \(\mathcal{V}\) such that \(|T_1| < |T_2|\). Exercise: show that (I3') holds.
In fact, we have

Theorem 8.3.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \ldots, V_\ell)$ be a subset system. Let $I = \{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus $(I1')$ holds.
Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 8.3.3

Let \((V, \mathcal{V})\) where \(\mathcal{V} = (V_1, V_2, \ldots, V_\ell)\) be a subset system. Let \(I = \{1, \ldots, \ell\}\). Let \(\mathcal{I}\) be the set of partial transversals of \(\mathcal{V}\). Then \((V, \mathcal{I})\) is a matroid.

Proof.

- We note that \(\emptyset \in \mathcal{I}\) since the empty set is a transversal of the empty subfamily of \(\mathcal{V}\), thus (I1') holds.
- We already saw that if \(T\) is a partial transversal of \(\mathcal{V}\), and if \(T' \subseteq T\), then \(T'\) is also a partial transversal. So (I2') holds.
In fact, we have

Theorem 8.3.3

Let \((V, \mathcal{V})\) where \(\mathcal{V} = (V_1, V_2, \ldots, V_\ell)\) be a subset system. Let \(I = \{1, \ldots, \ell\}\). Let \(\mathcal{I}\) be the set of partial transversals of \(\mathcal{V}\). Then \((V, \mathcal{I})\) is a matroid.

Proof.

- We note that \(\emptyset \in \mathcal{I}\) since the empty set is a transversal of the empty subfamily of \(\mathcal{V}\), thus (I1’) holds.

- We already saw that if \(T\) is a partial transversal of \(\mathcal{V}\), and if \(T' \subseteq T\), then \(T'\) is also a partial transversal. So (I2’) holds.

- Suppose that \(T_1\) and \(T_2\) are partial transversals of \(\mathcal{V}\) such that \(|T_1| < |T_2|\). Exercise: show that (I3’) holds.
Transversal Matroid Rank

- Transversal matroid has rank

\[r(A) = \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \] \hspace{1cm} (8.10)

\[= \min_{J \subseteq I} m_J(I) \] \hspace{1cm} (8.11)

Therefore, this function is submodular.

Note that it is a minimum over a set of modular functions in \(I \). Is this true in general?

Exercise: Can you identify a set of sufficient properties over a set of modular functions \(m_i: V \rightarrow \mathbb{R}^+ \) so that \(f(A) = \min_i m_i(A) \) is submodular? Can you identify both necessary and sufficient conditions?
Transversal Matroid Rank

- Transversal matroid has rank

\[
r(A) = \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|)
\]

(8.10)

\[
= \min_{J \subseteq I} m_J(I)
\]

(8.11)

- Therefore, this function is submodular.
Transversal Matroid Rank

- Transversal matroid has rank

\[r(A) = \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \]

\[= \min_{J \subseteq I} m_J(I) \]

- Therefore, this function is submodular.

- Note that it is a minimum over a set of modular functions in \(I \). Is this true in general?
Transversal Matroid Rank

- Transversal matroid has rank

\[r(A) = \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \] \hspace{1cm} (8.10)

\[= \min_{J \subseteq I} m_J(I) \] \hspace{1cm} (8.11)

- Therefore, this function is submodular.

- Note that it is a minimum over a set of modular functions in \(I \). Is this true in general?
Transversal Matroid Rank

- Transversal matroid has rank

\[r(A) = \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \quad (8.10) \]

\[= \min_{J \subseteq I} m_J(I) \quad (8.11) \]

- Therefore, this function is submodular.

- Note that it is a minimum over a set of modular functions in \(I \). Is this true in general? Exercise:

Exercise: Can you identify a set of sufficient properties over a set of modular functions \(m_i : V \rightarrow \mathbb{R}_+ \) so that \(f(A) = \min_i m_i(A) \) is submodular? Can you identify both necessary and sufficient conditions?
Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
- There is no reason in a matroid such an A could not consist of a single element.
Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is **circuit** if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a **loop**.
Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value 0, as all non-zero vectors have rank 1. The 0 can appear ≥ 1 time with different indices, as can a self loop in a graph appear on different nodes.
A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

There is no reason in a matroid such an A could not consist of a single element.

Such an $\{a\}$ is called a loop.

In a matric (i.e., linear) matroid, the only such loop is the value 0, as all non-zero vectors have rank 1. The 0 can appear ≥ 1 time with different indices, as can a self loop in a graph appear on different nodes.

Note, we also say that two elements s, t are said to be parallel if $\{s, t\}$ is a circuit (e.g., in a matrix, two column vectors, one of which is a scalar multiple of the other).
Definition 8.4.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi : V_1 \rightarrow V_2$ which preserves independence (equivalently, rank, circuits, and so on).
Definition 8.4.1 (Matroid isomorphism)

Two matroids \(M_1 \) and \(M_2 \) respectively on ground sets \(V_1 \) and \(V_2 \) are isomorphic if there is a bijection \(\pi : V_1 \rightarrow V_2 \) which preserves independence (equivalently, rank, circuits, and so on).

- Let \(\mathbb{F} \) be any field (such as \(\mathbb{R}, \mathbb{Q} \), or some finite field \(\mathbb{F} \), such as a Galois field \(\text{GF}(p) \) where \(p \) is prime (such as \(\text{GF}(2) \)), but not \(\mathbb{Z} \)).
- Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplicative identities and inverses.
Definition 8.4.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are **isomorphic** if there is a bijection $\pi : V_1 \rightarrow V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\text{GF}(p)$ where p is prime (such as $\text{GF}(2)$), but not \mathbb{Z}). Succinctly: A field is a set with $+$, \times, closure, associativity, commutativity, and additive and multiplicative identities and inverses.
- We can more generally define matroids on a field.
Definition 8.4.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are **isomorphic** if there is a bijection $\pi : V_1 \rightarrow V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $GF(p)$ where p is prime (such as $GF(2)$), but not \mathbb{Z}). Succinctly: A field is a set with $+$, \times, closure, associativity, commutativity, and additive and multiplicative identities and inverses.
- We can more generally define matroids on a field.

Definition 8.4.2 (linear matroids on a field)

Let X be an $n \times m$ matrix and $E = \{1, \ldots, m\}$, where $X_{ij} \in \mathbb{F}$ for some field, and let \mathcal{I} be the set of subsets of E such that the columns of X are linearly independent over \mathbb{F}.
Definition 8.4.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi : V_1 \rightarrow V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let F be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field F, such as a Galois field $GF(p)$ where p is prime (such as $GF(2)$), but not \mathbb{Z}). Succinctly: A field is a set with $+$, \times, closure, associativity, commutativity, and additive and multiplicative identities and inverses.
- We can more generally define matroids on a field.

Definition 8.4.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over F.

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020
Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.
Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.

In particular:

Theorem 8.4.4

Transversal matroids are representable over all finite fields of sufficiently large cardinality, and are representable over any infinite field.
Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 8.4.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1, 2\}, \{3, 4\}, \{5, 6\}$.
Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 8.4.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1, 2\}, \{3, 4\}, \{5, 6\}$.

- It can be shown that this is a matroid and is representable.
The converse is not true, however.

Example 8.4.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, I)$ be a set system where I is all subsets of V of cardinality ≤ 2 except for the pairs \{1, 2\}, \{3, 4\}, \{5, 6\}.

- It can be shown that this is a matroid and is representable.
- However, this matroid is not isomorphic to any transversal matroid.
Review from Lecture 6

The next frame comes from lecture 6.
Definition 8.5.3 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank $r(M) - 1$.

Definition 8.5.4 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by

$$\text{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$$

Therefore, a closed set A has $\text{span}(A) = A$, and the span of a set is closed.

Definition 8.5.5 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
Spanning Sets

We have the following definitions:

Definition 8.5.1 (spanning set of a set)
Given a matroid \(M = (V, I) \), and a set \(Y \subseteq V \), then any set \(X \subseteq Y \) such that \(r(X) = r(Y) \) is called a spanning set of \(Y \).

Definition 8.5.2 (spanning set of a matroid)
Given a matroid \(M = (V, I) \), any set \(A \subseteq V \) such that \(r(A) = r(V) \) is called a spanning set of the matroid.

A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

\(V \) is always trivially spanning.

Consider the terminology: “spanning tree in a graph”, comes from spanning in a matroid sense.
Spanning Sets

- We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X) = r(Y)$ is called a **spanning set** of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A) = r(V)$ is called a **spanning set** of the matroid.
Spanning Sets

- We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X) = r(Y)$ is called a **spanning set** of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A) = r(V)$ is called a **spanning set** of the matroid.
We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X) = r(Y)$ is called a spanning set of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A) = r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
Spanning Sets

- We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X) = r(Y)$ is called a **spanning set** of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A) = r(V)$ is called a **spanning set** of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
Spanning Sets

- We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid \(\mathcal{M} = (V, \mathcal{I}) \), and a set \(Y \subseteq V \), then any set \(X \subseteq Y \) such that \(r(X) = r(Y) \) is called a **spanning set** of \(Y \).

Definition 8.5.2 (spanning set of a matroid)

Given a matroid \(\mathcal{M} = (V, \mathcal{I}) \), any set \(A \subseteq V \) such that \(r(A) = r(V) \) is called a **spanning set** of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

- \(V \) is always trivially spanning.

- Consider the terminology: “spanning tree in a graph”, comes from spanning in a matroid sense.
Dual of a Matroid

- Given a matroid $M = (V, \mathcal{I})$, a dual matroid $M^* = (V, \mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^*.

\[
\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}
\]

\[
\mathcal{I}^* = \{ V \setminus S : S \subseteq V \text{ is a spanning set of } M \}
\]

i.e., \mathcal{I}^* are complements of spanning sets of M. That is, a set $A \subseteq V$ is independent in the dual matroid M^* (i.e., $A \in \mathcal{I}^*$) if A's complement is spanning in M (residual $V \setminus A$ must contain a base in M).

Dual of the dual: Note, we have that $(M^*)^* = M$.

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020

Dual of a Matroid

Given a matroid $M = (V, \mathcal{I})$, a dual matroid $M^* = (V, \mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^*.

We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \quad (8.12)$$

$$= \{ V \setminus S : S \subseteq V \text{ is a spanning set of } M \} \quad (8.13)$$

i.e., \mathcal{I}^* are complements of spanning sets of M.
Dual of a Matroid

- Given a matroid $M = (V, \mathcal{I})$, a dual matroid $M^* = (V, \mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^*.
- We define the set of sets \mathcal{I}^* for M^* as follows:

 $\mathcal{I}^* = \{A \subseteq V : V \setminus A$ is a spanning set of $M\}$ \hspace{1cm} (8.12)

 $= \{V \setminus S : S \subseteq V$ is a spanning set of $M\}$ \hspace{1cm} (8.13)

 i.e., \mathcal{I}^* are complements of spanning sets of M.
- That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

 $\mathcal{I}^* = \{A \subseteq V : \text{rank}_M(V \setminus A) = \text{rank}_M(V)\}$ \hspace{1cm} (8.14)
Dual of a Matroid

- Given a matroid \(M = (V, \mathcal{I}) \), a dual matroid \(M^* = (V, \mathcal{I}^*) \) can be defined on the same ground set \(V \), but using a very different set of independent sets \(\mathcal{I}^* \).

- We define the set of sets \(\mathcal{I}^* \) for \(M^* \) as follows:

\[
\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}
\]

\[
= \{ V \setminus S : S \subseteq V \text{ is a spanning set of } M \}
\]

(8.12)

(8.13)

i.e., \(\mathcal{I}^* \) are complements of spanning sets of \(M \).

- That is, a set \(A \) is independent in the dual matroid \(M^* \) if removal of \(A \) from \(V \) does not decrease the rank in \(M \):

\[
\mathcal{I}^* = \{ A \subseteq V : \text{rank}_M(V \setminus A) = \text{rank}_M(V) \}
\]

(8.14)

- In other words, a set \(A \subseteq V \) is independent in the dual \(M^* \) (i.e., \(A \in \mathcal{I}^* \)) if \(A \)'s complement is spanning in \(M \) (residual \(V \setminus A \) must contain a base in \(M \)).
Dual of a Matroid

- Given a matroid $M = (V, \mathcal{I})$, a dual matroid $M^* = (V, \mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^*.

- We define the set of sets \mathcal{I}^* for M^* as follows:

\[
\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}
\]

\[
= \{ V \setminus S : S \subseteq V \text{ is a spanning set of } M \}
\]

i.e., \mathcal{I}^* are complements of spanning sets of M.

- That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

\[
\mathcal{I}^* = \{ A \subseteq V : \text{rank}_M(V \setminus A) = \text{rank}_M(V) \}
\]

- In other words, a set $A \subseteq V$ is independent in the dual M^* (i.e., $A \in \mathcal{I}^*$) if A's complement is spanning in M (residual $V \setminus A$ must contain a base in M).

- Dual of the dual: Note, we have that $(M^*)^* = M$.

Graphic matroid over edges $E = \{a, b, c, d, e\}$ for the graph on the right. Independent sets (green) and spanning sets (blue) are shown.

Diagram showing the graphic matroid over edges $E = \{a, b, c, d, e\}$ for the graph on the right. Independent sets (green) and spanning sets (blue) are shown.
Graphic matroid over edges $E = \{a, b, c, d, e\}$ for the graph on the right. Spanning sets of M are blue. Complement of spanning sets of M (independent sets of M^*) are orange.
Dual of a Matroid: Bases

- The smallest spanning sets are bases.
The smallest spanning sets are bases. Hence, a base B of M (where $B = V \setminus B^*$ is as small as possible while still spanning) is the complement of a base B^* of M^* (where $B^* = V \setminus B$ is as large as possible while still being independent).
The smallest spanning sets are bases. Hence, a base B of M (where $B = V \setminus B^*$ is as small as possible while still spanning) is the complement of a base B^* of M^* (where $B^* = V \setminus B$ is as large as possible while still being independent).

In fact, we have that
The smallest spanning sets are bases. Hence, a base B of M (where $B = V \setminus B^*$ is as small as possible while still spanning) is the complement of a base B^* of M^* (where $B^* = V \setminus B$ is as large as possible while still being independent).

In fact, we have that

Theorem 8.5.3 (Dual matroid bases)

Let $M = (V, I)$ be a matroid and $\mathcal{B}(M)$ be the set of bases of M. Then define

$$\mathcal{B}^*(M) = \{V \setminus B : B \in \mathcal{B}(M)\}. \quad (8.15)$$

Then $\mathcal{B}^*(M)$ is the set of basis of M^* (that is, $\mathcal{B}^*(M) = \mathcal{B}(M^*)$).
An exercise in duality Terminology

- \(B^*(M) \), the bases of \(M^* \), are called cobases of \(M \).
An exercise in duality Terminology

- $\mathcal{B}^*(M)$, the bases of M^*, are called cobases of M.
- The circuits of M^* are called cocircuits of M.
An exercise in duality Terminology

- $\mathcal{B}^*(M)$, the bases of M^*, are called **cobases** of M.
- The circuits of M^* are called **cocircuits** of M.
- The hyperplanes of M^* are called **cohyperplanes** of M.

Proposition 8.5.4 (from Oxley 2011)

Let $M = (V, I)$ be a matroid, and let $X \subseteq V$. Then
1. X is independent in M if and only if $V \setminus X$ is cospanning in M (spanning in M^*).
2. X is spanning in M if and only if $V \setminus X$ is coindependent in M (independent in M^*).
3. X is a hyperplane in M if and only if $V \setminus X$ is a cocircuit in M (circuit in M^*).
4. X is a circuit in M if and only if $V \setminus X$ is a cohyperplane in M (hyperplane in M^*).
An exercise in duality Terminology

- \(B^*(M) \), the bases of \(M^* \), are called cobases of \(M \).
- The circuits of \(M^* \) are called cocircuits of \(M \).
- The hyperplanes of \(M^* \) are called cohyperplanes of \(M \).
- The independent sets of \(M^* \) are called coindependent sets of \(M \).
An exercise in duality Terminology

- $\mathcal{B}^*(M)$, the bases of M^*, are called **cobases** of M.
- The circuits of M^* are called **cocircuits** of M.
- The hyperplanes of M^* are called **cohyperplanes** of M.
- The independent sets of M^* are called **coindependent** sets of M.
- The spanning sets of M^* are called **cospanning** sets of M.
An exercise in duality Terminology

- $\mathcal{B}^*(M)$, the bases of M^*, are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then
An exercise in duality Terminology

- $\mathcal{B}^*(M)$, the bases of M^*, are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)

Let $M = (V, I)$ be a matroid, and let $X \subseteq V$. Then

1. X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).
An exercise in duality Terminology

- $B^*(M)$, the bases of M^*, are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

1. X is independent in M if and only if $V \setminus X$ is cospanning in M (spanning in M^*).
2. X is spanning in M if and only if $V \setminus X$ is coindependent in M (independent in M^*).
An exercise in duality Terminology

- \(B^*(M) \), the bases of \(M^* \), are called cobases of \(M \).
- The circuits of \(M^* \) are called cocircuits of \(M \).
- The hyperplanes of \(M^* \) are called cohyperplanes of \(M \).
- The independent sets of \(M^* \) are called coindependent sets of \(M \).
- The spanning sets of \(M^* \) are called cospanning sets of \(M \).

Proposition 8.5.4 (from Oxley 2011)

Let \(M = (V, I) \) be a matroid, and let \(X \subseteq V \). Then

1. \(X \) is independent in \(M \) iff \(V \setminus X \) is cospanning in \(M \) (spanning in \(M^* \)).
2. \(X \) is spanning in \(M \) iff \(V \setminus X \) is coindependent in \(M \) (independent in \(M^* \)).
3. \(X \) is a hyperplane in \(M \) iff \(V \setminus X \) is a cocircuit in \(M \) (circuit in \(M^* \)).
An exercise in duality Terminology

- $\mathcal{B}^*(M)$, the bases of M^*, are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

1. X is independent in M if and only if $V \setminus X$ is cospanning in M (spanning in M^*).
2. X is spanning in M if and only if $V \setminus X$ is coindependent in M (independent in M^*).
3. X is a hyperplane in M if and only if $V \setminus X$ is a cocircuit in M (circuit in M^*).
4. X is a circuit in M if and only if $V \setminus X$ is a cohyperplane in M (hyperplane in M^*).
Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrate the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrate the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrate the extraordinary flexibility and power that a matroid can have.

- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).

- A **cut** in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.

- A **minimal cut** in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrate the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
- A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.
Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.

- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).

- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.

- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.

- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

- A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.

- All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a minimal cut or contains one).
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall,
 \[I^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \]
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall,
 \[\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \]

- \(\mathcal{I}^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall, \(\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \)
- \(\mathcal{I}^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

A graph G
The dual of the cycle matroid is called the cocycle matroid. Recall, \(I^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \)

\(I^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in \(M \) (and thus a base (maximally independent) in \(M \))

Maximally independent in \(M^* \) (thus a base, minimally spanning, in \(M^* \))
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)
Maximally independent in M^* (thus a base, minimally spanning, in M^*)
Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, \(\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \)

- \(\mathcal{I}^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in \(M \), and not closed in \(M \).

Dependent in \(M^* \) (contains a cocycle, is a nonminimal cut)
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall, \(\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \)

- \(\mathcal{I}^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

Spanning in \(M \), but not a base, and not independent (has cycles)

Independent in \(M^* \) (does not contain a cut)
Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall,
 \[I^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \]

- \(I^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in \(M \), and not closed in \(M \).

Dependent in \(M^* \) (contains a cocycle, is a nonminimal cut).
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $I^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$
- I^* consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M^* (minimally dependent in M^*, a cocycle, or a minimal cut)
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall, \(I^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \)

- \(I^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in \(M \), dependent but not spanning in \(M \)

A cycle in \(M^* \) (minimally dependent in \(M^* \), a cocycle, or a minimal cut)
Example: cocycle matroid (sometimes “cut matroid”)

- The dual of the cycle matroid is called the cocycle matroid. Recall, \(\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \} \)
- \(\mathcal{I}^* \) consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can’t consist of edges that, if removed, would render the graph non-spanning.

Cycle Matroid - independent sets have no cycles.

Cocycle matroid, independent sets contain no cuts.
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid \(M = (V, \mathcal{I}) \), let \(M^* = (V, \mathcal{I}^*) \) be as previously defined. Then \(M^* \) is a matroid.

Proof.

- Since \(V \setminus \emptyset \) is spanning in primal, clearly \(\emptyset \in \mathcal{I}^* \), so (I1') holds.
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Since $V \setminus \emptyset$ is spanning in primal, clearly $\emptyset \in \mathcal{I}^*$, so (I1') holds.

- Also, if $I \subseteq J \in \mathcal{I}^*$, then clearly also $I \in \mathcal{I}^*$ since if $V \setminus J$ is spanning in M, so must $V \setminus I$. Therefore, (I2') holds.

- Next, given $I, J \in \mathcal{I}^*$ with $|I| < |J|$, it must be the case that $\bar{I} = V \setminus I$ and $\bar{J} = V \setminus J$ are both spanning in M with $|\bar{I}| > |\bar{J}|$.

...
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid \(M = (V, \mathcal{I}) \), let \(M^* = (V, \mathcal{I}^*) \) be as previously defined. Then \(M^* \) is a matroid.

Proof.

Consider \(I, J \in \mathcal{I}^* \) with \(|I| < |J|\). We need to show that there is some member \(v \in J \setminus I \) such that \(I + v \) is independent in \(M^* \), which means that \(V \setminus (I + v) = (V \setminus I) \setminus v = \overline{I} - v \) is still spanning in \(M \). That is, removing \(v \) from \(V \setminus I \) doesn’t make \((V \setminus I) \setminus v \) not spanning in \(M \).
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid \(M = (V, \mathcal{I}) \), *let* \(M^* = (V, \mathcal{I}^*) \) *be as previously defined. Then* \(M^* \) *is a matroid.*

Proof.

- Consider \(I, J \in \mathcal{I}^* \) with \(|I| < |J| \). We need to show that there is some member \(v \in J \setminus I \) such that \(I + v \) is independent in \(M^* \), which means that \(V \setminus (I + v) = (V \setminus I) \setminus v = \bar{I} - v \) is still spanning in \(M \). That is, removing \(v \) from \(V \setminus I \) doesn’t make \((V \setminus I) \setminus v \) not spanning in \(M \).

- Since \(V \setminus J \) is spanning in \(M \), \(V \setminus J \) contains some base (say \(B_J \subseteq V \setminus J \)) of \(M \). Also, \(V \setminus I \) contains a base of \(M \), say \(B_{\bar{I}} \subseteq V \setminus I \).
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.*

Proof.

- Consider $I, J \in \mathcal{I}^*$ with $|I| < |J|$. We need to show that there is some member $v \in J \setminus I$ such that $I + v$ is independent in M^*, which means that $V \setminus (I + v) = (V \setminus I) \setminus v = \bar{I} - v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn’t make $(V \setminus I) \setminus v$ not spanning in M.

- Since $V \setminus J$ is spanning in M, $V \setminus J$ contains some base (say $B_{\bar{J}} \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B_{\bar{I}} \subseteq V \setminus I$.

- Since $B_{\bar{J}} \setminus I \subseteq V \setminus I$, and $B_{\bar{J}} \setminus I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{J}} \setminus I \subseteq B_{\bar{I}} \subseteq V \setminus I$.

...
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid \(M = (V, \mathcal{I}) \), *let* \(M^* = (V, \mathcal{I}^*) \) *be as previously defined. Then* \(M^* \) *is a matroid."

Proof.

- Consider \(I, J \in \mathcal{I}^* \) with \(|I| < |J| \). We need to show that there is some member \(v \in J \setminus I \) such that \(I + v \) is independent in \(M^* \), which means that \(V \setminus (I + v) = (V \setminus I) \setminus v = \bar{I} - v \) is still spanning in \(M \). That is, removing \(v \) from \(V \setminus I \) doesn’t make \((V \setminus I) \setminus v \) not spanning in \(M \).

- Since \(V \setminus J \) is spanning in \(M \), \(V \setminus J \) contains some base (say \(B_{\bar{J}} \subseteq V \setminus J \)) of \(M \). Also, \(V \setminus I \) contains a base of \(M \), say \(B_{\bar{I}} \subseteq V \setminus I \).

- Since \(B_{\bar{J}} \setminus I \subseteq V \setminus I \), and \(B_{\bar{J}} \setminus I \) is independent in \(M \), we can choose the base \(B_{\bar{I}} \) of \(M \) s.t. \(B_{\bar{J}} \setminus I \subseteq B_{\bar{I}} \subseteq V \setminus I \).

- Since \(B_{\bar{J}} \) and \(J \) are disjoint, we have both: 1) \(B_{\bar{J}} \setminus I \) and \(J \setminus I \) are disjoint; and 2) \(B_{\bar{J}} \cap I \subseteq I \setminus J \). Also note, \(B_{\bar{I}} \) and \(I \) are disjoint. ...
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

Now $J \setminus I \not\subseteq B_I$, since otherwise (i.e., assuming $J \setminus I \subseteq B_I$):

$$|B_J| = |B_J \cap I| + |B_J \setminus I|$$

$$\leq |I \setminus J| + |B_J \setminus I|$$

$$< |J \setminus I| + |B_J \setminus I| \leq |B_I|$$

which is a contradiction. The last inequality on the right follows since $J \setminus I \subseteq B_I$ (by assumption) and $B_J \setminus I \subseteq B_I$ implies that $(J \setminus I) \cup (B_J \setminus I) \subseteq B_I$, but since J and B_J are disjoint, we have that $|J \setminus I| + |B_J \setminus I| \leq |B_I|$.
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid $M = (V, \mathcal{I})$, *let* $M^* = (V, \mathcal{I}^*)$ *be as previously defined. Then* M^* *is a matroid.*

Proof.

- Now $J \setminus I \not\subseteq B_{\overline{I}}$, since otherwise (i.e., assuming $J \setminus I \subseteq B_{\overline{I}}$):

 $$|B_J| = |B_J \cap I| + |B_J \setminus I|$$

 $$\leq |I \setminus J| + |B_J \setminus I|$$

 $$< |J \setminus I| + |B_J \setminus I| \leq |B_{\overline{I}}|$$

 which is a contradiction.

- Therefore, $J \setminus I \not\subseteq B_{\overline{I}}$, and there is a $v \in J \setminus I$ s.t. $v \notin B_{\overline{I}}$.

 ...
The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Now $J \setminus I \not\subseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \setminus I \subseteq B_{\bar{I}}$):

 \begin{align*}
 |B_J| &= |B_J \cap I| + |B_J \setminus I| \\
 &\leq |I \setminus J| + |B_J \setminus I| \\
 &< |J \setminus I| + |B_J \setminus I| \leq |B_{\bar{I}}|
 \end{align*}

 which is a contradiction.

- Therefore, $J \setminus I \not\subseteq B_{\bar{I}}$, and there is a $v \in J \setminus I$ s.t. $v \notin B_{\bar{I}}$.

- So $B_{\bar{I}}$ is disjoint with $I \cup \{v\}$, means $B_{\bar{I}} \subseteq V \setminus (I \cup \{v\})$, or $V \setminus (I \cup \{v\})$ is spanning in M, and therefore $I \cup \{v\} \in \mathcal{I}^*$.

Prof. Jeff Bilmes

EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020

F29/57 (pg.114/247)
Theorem 8.5.6

Let \(M \) be an \(\mathbb{F} \)-representable matroid (i.e., one that can be represented by a finite sized matrix over field \(\mathbb{F} \)). Then \(M^* \) is also \(\mathbb{F} \)-representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.
Theorem 8.5.6

Let M be an \mathbb{F}-representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F}-representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.

Theorem 8.5.7

Let M be a graphic matroid (i.e., one that can be represented by a graph $G = (V, E)$). Then M^* is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of matroids, and since they are based on a graph, they are relatively easy to use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases of a cut are any one edge removed from minimal cuts; 4) independent sets are edges that are not cuts (minimal or otherwise); 5) bases of matroid are maximal non-cuts (non-cut containing edge sets).
Theorem 8.5.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \quad (8.19)$$

Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. I.e., $|X|$ is modular, complement $f(V \setminus X)$ is submodular if f is submodular, $r_M(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.
Theorem 8.5.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$

(8.19)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \geq r_M(X) + r_M(V \setminus X) \geq r_M(V)$. The right inequality follows since r_M is submodular.
Theorem 8.5.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \quad (8.19)$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since

 $$|X| + r_M(V \setminus X) \geq r_M(X) + r_M(V \setminus X) \geq r_M(V).$$

- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.
The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \tag{8.19}$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \geq r_M(X) + r_M(V \setminus X) \geq r_M(V)$.
- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.
- Therefore, r_{M^*} is the rank function of a matroid. That it is the dual matroid rank function is shown in the next proof.
The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \quad (8.19)$$

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X| \quad (8.20)$$
Theorem 8.5.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \quad (8.19)$$

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X| \quad (8.20)$$

or

$$r_M(V \setminus X) = r_M(V) \quad (8.21)$$
The rank function r_{M^*} of the dual matroid M^* may be specified in terms of
the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$ \hfill (8.19)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$ \hfill (8.20)

or

$$r_M(V \setminus X) = r_M(V)$$ \hfill (8.21)

But a subset X is independent in M^* only if $V \setminus X$ is spanning in M (by
the definition of the dual matroid).
Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.
Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\}$$

(8.22)

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

This is called the restriction of M to Y, and is often written $M|_Y$.

Prof. Jeff Bilmes

EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020

F32/57 (pg.125/247)
Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$. This is called the restriction of M to Y, and is often written $M|Y$.

If $Y = V \setminus X$, then we have that $M|Y$ has the form:

$$\mathcal{I}_Y = \{Z : Z \cap X = \emptyset, Z \in \mathcal{I}\}$$

is considered a deletion of X from M, and is often written $M \setminus X$.
Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$

(8.22)

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

This is called the restriction of M to Y, and is often written $M|Y$.

If $Y = V \setminus X$, then we have that $M|Y$ has the form:

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$

(8.23)

is considered a deletion of X from M, and is often written $M \setminus X$.

Hence, $M|Y = M \setminus (V \setminus Y)$, and $M|(V \setminus X) = M \setminus X$.
Matroid restriction/deletion

- Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

- This is called the restriction of M to Y, and is often written $M|Y$.

- If $Y = V \setminus X$, then we have that $M|Y$ has the form:

$$\mathcal{I}_Y = \{Z : Z \cap X = \emptyset, Z \in \mathcal{I}\}$$

is considered a deletion of X from M, and is often written $M \setminus X$.

- Hence, $M|Y = M \setminus (V \setminus Y)$, and $M|(V \setminus X) = M \setminus X$.

- The rank function is of the same form. I.e., $r_Y : 2^Y \to \mathbb{Z}_+$, where $r_Y(Z) = r(Z)$ for $Z \subseteq Y$, $Y = V \setminus X$.
Matroid contraction M/Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z.
- Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.

The rank function takes the form:

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y \mid Z)$$ \hspace{1cm} (8.24)$$

$$= r(Y \cup B_Z) - r(B_Z) = r(Y \mid B_Z)$$ \hspace{1cm} (8.25)$$

So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.

A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid. In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.

Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.

The rank function takes the form:

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y | Z)$$

(8.24)

$$= r(Y \cup B_Z) - r(B_Z) = r(Y | B_Z)$$

(8.25)

So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I)$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.

A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid. In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
Matroid contraction M/Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.

- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.

- The rank function takes the form

\[
\begin{align*}
 r_{M/Z}(Y) &= r(Y \cup Z) - r(Z) = r(Y|Z) \\
 &= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)
\end{align*}
\] (8.24)
Matroid contraction M/Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.

- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.

- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)$$

(8.24)

(8.25)

- So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020
Matroid contraction M/Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. **Contracting Z is written M/Z.** Updated ground set in M/Z is $V \setminus Z$.
- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)$$ (8.24) (8.25)

- So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.
- A **minor** of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.
Matroid contraction \(M/Z \)

- Contraction by \(Z \) is dual to deletion, and is like a forced inclusion of a contained base \(B_Z \) of \(Z \), but with a similar ground set removal by \(Z \). **Contracting \(Z \) is written \(M/Z \).** Updated ground set in \(M/Z \) is \(V \setminus Z \).

- Let \(Z \subseteq V \) and let \(B_Z \) be a base of \(Z \). Then a subset \(I \subseteq V \setminus Z \) is independent in \(M/Z \) iff \(I \cup B_Z \) is independent in \(M \).

- The rank function takes the form

\[
r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y | Z)
\]

\[
= r(Y \cup B_Z) - r(B_Z) = r(Y | B_Z)
\]

So given \(I \subseteq V \setminus Z \) and \(B_Z \) is a base of \(Z \), \(r_{M/Z}(I) = |I| \) is identical to \(r(I \cup Z) = |I| + r(Z) = |I| + |B_Z| \). Since \(r(I \cup Z) = r(I \cup B_Z) \), this implies \(r(I \cup B_Z) = |I| + |B_Z| \), or \(I \cup B_Z \) is independent in \(M \).

- A **minor** of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

- In fact, it is the case \(M/Z = (M^* \setminus Z)^* \) (Exercise: show why).
Matroid Intersection

Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.

Theorem 8.6.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2. Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$\left(r_1 \ast r_2 \right)(V) \equiv \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$

(8.26)

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 \ast f_2)(Y) = \min_{X \subseteq Y} \left(f_1(X) + f_2(Y \setminus X) \right)$$

(8.27)
Matroid Intersection

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

\[\text{Theorem 8.6.1} \]

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2. Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

\[
(r_1 \ast r_2)(V) \equiv \min_{X \subseteq V} (r_1(X) + r_2(V \setminus X))
\]

(8.26)

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

\[
(f_1 \ast f_2)(Y) = \min_{X \subseteq Y} (f_1(X) + f_2(Y \setminus X))
\]

(8.27)
Matroid Intersection

Let $M_1 = (V, I_1)$ and $M_2 = (V, I_2)$ be two matroids. Consider their common independent sets $I_1 \cap I_2$.

While $(V, I_1 \cap I_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in I_1$ and $X \in I_2$.

Theorem 8.6.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2. Then the size of the maximum size set in $I_1 \cap I_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$

(8.26)
Matroid Intersection

- Let \(M_1 = (V, \mathcal{I}_1) \) and \(M_2 = (V, \mathcal{I}_2) \) be two matroids. Consider their common independent sets \(\mathcal{I}_1 \cap \mathcal{I}_2 \).
- While \((V, \mathcal{I}_1 \cap \mathcal{I}_2) \) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find \(\max |X| \) such that both \(X \in \mathcal{I}_1 \) and \(X \in \mathcal{I}_2 \).

Theorem 8.6.1

Let \(M_1 \) and \(M_2 \) be given as above, with rank functions \(r_1 \) and \(r_2 \). Then the size of the maximum size set in \(\mathcal{I}_1 \cap \mathcal{I}_2 \) is given by

\[
(r_1 \ast r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)
\]

(8.26)

This is an instance of the convolution of two submodular functions, \(f_1 \) and \(f_2 \) that, evaluated at \(Y \subseteq V \), is written as:

\[
(f_1 \ast f_2)(Y) = \min_{X \subseteq Y} \left(f_1(X) + f_2(Y \setminus X) \right)
\]

(8.27)
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\Leftrightarrow |\Gamma(X)| - |X| \geq 0, \forall X$
Recall Hall’s theorem, that a transversal exists if and only if for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\iff |\Gamma(X)| - |X| \geq 0, \forall X$

$\iff \min_X |\Gamma(X)| - |X| \geq 0$
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\iff |\Gamma(X)| - |X| \geq 0, \forall X$

$\iff \min_X |\Gamma(X)| - |X| \geq 0$

$\iff \min_X |\Gamma(X)| + |V| - |X| \geq |V|$
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\iff |\Gamma(X)| - |X| \geq 0, \forall X$

$\iff \min_X |\Gamma(X)| - |X| \geq 0$

$\iff \min_X |\Gamma(X)| + |V| - |X| \geq |V|$

$\iff \min_X \left(|\Gamma(X)| + |V \setminus X| \right) \geq |V|$
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\iff |\Gamma(X)| - |X| \geq 0, \forall X$

$\iff \min_X |\Gamma(X)| - |X| \geq 0$

$\iff \min_X |\Gamma(X)| + |V| - |X| \geq |V|$

$\iff \min_X \left(|\Gamma(X)| + |V \setminus X| \right) \geq |V|$

$\iff [\Gamma(\cdot) \ast |\cdot|](V) \geq |V|$
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\iff |\Gamma(X)| - |X| \geq 0, \forall X$

$\iff \min_X |\Gamma(X)| - |X| \geq 0$

$\iff \min_X |\Gamma(X)| + |V| - |X| \geq |V|$

$\iff \min_X \left(|\Gamma(X)| + |V \setminus X| \right) \geq |V|$

$\iff [\Gamma(\cdot) \ast |\cdot|](V) \geq |V|$

So Hall’s theorem can be expressed as convolution. Exercise: define $g(A) = [\Gamma(\cdot) \ast |\cdot|](A)$, prove that g is submodular.
Recall Hall’s theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.

$\iff |\Gamma(X)| - |X| \geq 0, \forall X$

$\iff \min_X |\Gamma(X)| - |X| \geq 0$

$\iff \min_X |\Gamma(X)| + |V| - |X| \geq |V|$

$\iff \min_X \left(|\Gamma(X)| + |V \setminus X|\right) \geq |V|$

$\iff [\Gamma(\cdot) \ast |\cdot|](V) \geq |V|$

So Hall’s theorem can be expressed as convolution. Exercise: define $g(A) = [\Gamma(\cdot) \ast |\cdot|](A)$, prove that g is submodular.

Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).
Matroid Union

Definition 8.6.2

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, ..., $M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the union of matroids as

$$M_1 \vee M_2 \vee \cdots \vee M_k = (V_1 \cup V_2 \cup \cdots \cup V_k, \mathcal{I}_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k),$$

where

$$\mathcal{I}_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{I_1 \cup I_2 \cup \cdots \cup I_k | I_1 \in \mathcal{I}_1, \ldots, I_k \in \mathcal{I}_k\} \quad (8.28)$$

Note $A \cup B$ designates the disjoint union of A and B.
Matroid Union

Definition 8.6.2

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, \ldots, $M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the **union** of matroids as

$$M_1 \vee M_2 \vee \cdots \vee M_k = (V_1 \cup V_2 \cup \cdots \cup V_k, \mathcal{I}_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k),$$

where

$$\mathcal{I}_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{ I_1 \cup I_2 \cup \cdots \cup I_k | I_1 \in \mathcal{I}_1, \ldots, I_k \in \mathcal{I}_k \} \quad (8.28)$$

Note $A \cup B$ designates the disjoint union of A and B.

Theorem 8.6.3

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, \ldots, $M_k = (V_k, \mathcal{I}_k)$ be matroids, with rank functions r_1, \ldots, r_k. Then the union of these matroids is still a matroid, having rank function

$$r(Y) = \min_{X \subseteq Y} \left(|Y \setminus X| + r_1(X \cap V_1) + \cdots + r_k(X \cap V_k) \right) \quad (8.29)$$

for any $Y \subseteq V_1 \cup \ldots \cup V_k$.

Prof. Jeff Bilmes

EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020

F36/57 (pg.148/247)
Exercise: Matroid Union, and Matroid duality

Exercise: Fully characterize $M \vee M^*$.
Matroids of three or fewer elements are graphic

- All matroids up to and including three elements (edges) are graphic.
Matroids of three or fewer elements are graphic

- All matroids up to and including three elements (edges) are graphic.

(a) The only matroid with zero elements.
(b) The two one-element matroids.
(c) The four two-element matroids.
(d) The eight three-element matroids.
Matroids of three or fewer elements are graphic

- All matroids up to and including three elements (edges) are graphic.

(a) The only matroid with zero elements.
(b) The two one-element matroids.
(c) The four two-element matroids.
(d) The eight three-element matroids.

This is a nice way to visualize matroids with very low ground set sizes.

What about matroids that are low rank but with many elements?
Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with $|S| = k \leq m$) is **affinely dependent** if $m \geq 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_i = 0$, such that $\sum_{i=1}^{k} a_i v_i = 0$.

Concisely: points $\{v_1, v_2, \ldots, v_k\}$ are affinely independent if $v_2 - v_1$, $v_3 - v_1$, ..., $v_k - v_1$ are linearly independent.

Example: in 2D, three collinear points are affinely dependent, three non-collinear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

Proposition 8.7.1 (affine matroid)

Let ground set $E = \{1, \ldots, m\}$ index column vectors of a matrix, and let I be the set of subsets X of E such that X indices affinely independent vectors. Then (E, I) is a matroid.

Exercise: prove this.
Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with $|S| = k \leq m$) is **affinely dependent** if $m \geq 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_i = 0$, such that $\sum_{i=1}^{k} a_i v_i = 0$.

- Otherwise, the set is called **affinely independent**.
Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with $|S| = k \leq m$) is affinely dependent if $m \geq 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_i = 0$, such that $\sum_{i=1}^{k} a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1, v_2, \ldots, v_k\}$ are affinely independent if $v_2 - v_1, v_3 - v_1, \ldots, v_k - v_1$ are linearly independent.
Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with $|S| = k \leq m$) is **affinely dependent** if $m \geq 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_i = 0$, such that $\sum_{i=1}^{k} a_i v_i = 0$.

- Otherwise, the set is called **affinely independent**.

- Concisely: points $\{v_1, v_2, \ldots, v_k\}$ are affinely independent if $v_2 - v_1, v_3 - v_1, \ldots, v_k - v_1$ are linearly independent.

- Example: in 2D, three collinear points are affinely dependent, three non-colinear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.
Affine Matroids

- Given an \(n \times m \) matrix with entries over some field \(\mathbb{F} \), we say that a subset \(S \subseteq \{1, \ldots, m\} \) of indices (with corresponding column vectors \(\{v_i : i \in S\} \), with \(|S| = k \leq m \)) is affinely dependent if \(m \geq 1 \) and there exists elements \(\{a_1, \ldots, a_k\} \in \mathbb{F} \), not all zero with \(\sum_{i=1}^{k} a_i = 0 \), such that \(\sum_{i=1}^{k} a_i v_i = 0 \).

- Otherwise, the set is called affinely independent.

- Concisely: points \(\{v_1, v_2, \ldots, v_k\} \) are affinely independent if \(v_2 - v_1, v_3 - v_1, \ldots, v_k - v_1 \) are linearly independent.

- Example: in 2D, three collinear points are affinely dependent, three non-collinear points are affinely independent, and \(\geq 4 \) collinear or non-collinear points are affinely dependent.

Proposition 8.7.1 (affine matroid)

Let ground set \(E = \{1, \ldots, m\} \) index column vectors of a matrix, and let \(\mathcal{I} \) be the set of subsets \(X \) of \(E \) such that \(X \) indices affinely independent vectors. Then \((E, \mathcal{I}) \) is a matroid.
Affine Matroids

- Given an \(n \times m \) matrix with entries over some field \(\mathbb{F} \), we say that a subset \(S \subseteq \{1, \ldots, m\} \) of indices (with corresponding column vectors \(\{v_i : i \in S\} \), with \(|S| = k \leq m \)) is **affinely dependent** if \(m \geq 1 \) and there exists elements \(\{a_1, \ldots, a_k\} \in \mathbb{F} \), not all zero with \(\sum_{i=1}^{k} a_i = 0 \), such that \(\sum_{i=1}^{k} a_i v_i = 0 \).

- Otherwise, the set is called **affinely independent**.

- Concisely: points \(\{v_1, v_2, \ldots, v_k\} \) are affinely independent if \(v_2 - v_1, v_3 - v_1, \ldots, v_k - v_1 \) are linearly independent.

- Example: in 2D, three collinear points are affinely dependent, three non-collinear points are affinely independent, and \(\geq 4 \) collinear or non-collinear points are affinely dependent.

Proposition 8.7.1 (affine matroid)

Let ground set \(E = \{1, \ldots, m\} \) index column vectors of a matrix, and let \(\mathcal{I} \) be the set of subsets \(X \) of \(E \) such that \(X \) indices affinely independent vectors. Then \((E, \mathcal{I}) \) is a matroid.

Exercise: prove this.
Consider the affine matroid with \(n \times m = 2 \times 6 \) matrix on the field \(\mathbb{F} = \mathbb{R} \), and let the elements be \(\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\} \).
Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\}$.
- We can plot the points in \mathbb{R}^2 as on the right:
Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $F = \mathbb{R}$, and let the elements be $\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\}$.
- We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
Euclidean Representation of Low-rank Matroids

Consider the affine matroid with \(n \times m = 2 \times 6 \) matrix on the field \(\mathbb{F} = \mathbb{R} \), and let the elements be \(\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\} \).

We can plot the points in \(\mathbb{R}^2 \) as on the right:

A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.

Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
Euclidean Representation of Low-rank Matroids

Consider the affine matroid with \(n \times m = 2 \times 6 \) matrix on the field \(F = \mathbb{R} \), and let the elements be \(\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\} \).

We can plot the points in \(\mathbb{R}^2 \) as on the right:

A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.

Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.

Any two distinct points constitute a line, but lines with only two points are not drawn.
Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\}$.

We can plot the points in \mathbb{R}^2 as on the right:

A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.

Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.

Any two distinct points constitute a line, but lines with only two points are not drawn.

Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.
Euclidean Representation of Low-rank Matroids

Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)\}$.

We can plot the points in \mathbb{R}^2 as on the right:

A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.

Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.

Any two distinct points constitute a line, but lines with only two points are not drawn.

Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.

Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank 2). Any two points have rank 2.
As another example on the right, a rank 4 matroid
As another example on the right, a rank 4 matroid

All sets of 5 points are dependent. The only other sets of dependent points are coplanar ones of size 4. Namely:

\{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)\},
\{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)\}, and
\{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)\}.
Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:

 1. $|X| \geq 2$ and the points are identical;
 2. $|X| \geq 3$ and the points are collinear;
 3. $|X| \geq 4$ and the points are coplanar; or
 4. $|X| \geq 5$ and the points are anywhere in space.

When they exist, loops are represented in a geometry by a separate box indicating how many loops there are. Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

Theorem 8.7.2

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathbb{R}^{m-1}. True regardless of how big $|V|$ is.
Euclidean Representation of Low-rank Matroids

In general, for a matroid \mathcal{M} of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:

1. $|X| \geq 2$ and the points are identical;
In general, for a matroid M of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:

1. $|X| \geq 2$ and the points are identical;
2. $|X| \geq 3$ and the points are collinear;
In general, for a matroid M of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:

1. $|X| \geq 2$ and the points are identical;
2. $|X| \geq 3$ and the points are collinear;
3. $|X| \geq 4$ and the points are coplanar; or
Euclidean Representation of Low-rank Matroids

In general, for a matroid \mathcal{M} of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:

1. $|X| \geq 2$ and the points are identical;
2. $|X| \geq 3$ and the points are collinear;
3. $|X| \geq 4$ and the points are coplanar; or
4. $|X| \geq 5$ and the points are anywhere in space.
Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 1. $|X| \geq 2$ and the points are identical;
 2. $|X| \geq 3$ and the points are collinear;
 3. $|X| \geq 4$ and the points are coplanar; or
 4. $|X| \geq 5$ and the points are anywhere in space.

- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.
Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 1. $|X| \geq 2$ and the points are identical;
 2. $|X| \geq 3$ and the points are collinear;
 3. $|X| \geq 4$ and the points are coplanar; or
 4. $|X| \geq 5$ and the points are anywhere in space.

- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.

- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

True regardless of how big $|V|$ is.
Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m + 1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 1. $|X| \geq 2$ and the points are identical;
 2. $|X| \geq 3$ and the points are collinear;
 3. $|X| \geq 4$ and the points are coplanar; or
 4. $|X| \geq 5$ and the points are anywhere in space.

- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.

- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

Theorem 8.7.2

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathbb{R}^{m-1}.

True regardless of how big $|V|$ is.
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless \(\geq 2 \)).
- any two distinct points lie on a line (often not drawn when only two)
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)

(see Oxley 2011 for more details)
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless \(> 2 \)).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless \(> 3 \))
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
- (see Oxley 2011 for more details).
Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.

- Example: Is there a matroid that is not representable (i.e., not linear for some field)?

Consider the matroid

\[
\begin{pmatrix}
1 & 7 & 8 & 9 \\
2 & 3 & 6 & 5 & 4
\end{pmatrix}
\]

Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that \{7, 8, 9\} is dependent, hence requiring an additional line in the above.
Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

```
1 7
2 8
3 9
4 5
5 6
```

Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that \{7, 8, 9\} is dependent, hence requiring an additional line in the above.
Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.

- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

```
  1 2 3
  4 5 6
  7 8 9
```

- Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that \(\{7, 8, 9\} \) is dependent, hence requiring an additional line in the above.
Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3
4
7
5
6

Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) = 3$, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $r(\{1, 6, 7\}) = r(X \cap Y) \leq r(X) + r(Y) - r(X \cup Y) = 2$.

However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$. If we extend the line from 6-7 to 1, then is it a matroid? Hence, not all 2D or 3D graphs of points and lines are matroids.

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 8 - Oct 26th, 2020
Is this a matroid?

Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) =$
Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$
Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) =$
Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) = 3$
Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) = 3$, and $r(X \cup Y) =$
Is this a matroid?

Check rank’s submodularity: Let \(X = \{1, 2, 3, 6, 7\} \), \(Y = \{1, 4, 5, 6, 7\} \). So \(r(X) = 3 \), and \(r(Y) = 3 \), and \(r(X \cup Y) = 4 \)
Is this a matroid?

Check rank’s submodularity: Let \(X = \{1, 2, 3, 6, 7\} \), \(Y = \{1, 4, 5, 6, 7\} \). So \(r(X) = 3 \), and \(r(Y) = 3 \), and \(r(X \cup Y) = 4 \), so we must have, by submodularity, that
\[
r(\{1, 6, 7\}) = r(X \cap Y) \leq r(X) + r(Y) - r(X \cup Y) = 2.
\]
Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) = 3$, and $r(X \cup Y) = 4$, so we must have, by submodularity, that

 $r(\{1, 6, 7\}) = r(X \cap Y) \leq r(X) + r(Y) - r(X \cup Y) = 2$.

- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) =$
Is this a matroid?

Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) = 3$, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $r(\{1, 6, 7\}) = r(X \cap Y) \leq r(X) + r(Y) - r(X \cup Y) = 2$.

However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$.
Is this a matroid?

Check rank’s submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So $r(X) = 3$, and $r(Y) = 3$, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $$r(\{1, 6, 7\}) = r(X \cap Y) \leq r(X) + r(Y) - r(X \cup Y) = 2.$$ However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$.
Is this a matroid?

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
Consider the following geometry on $|V| = 8$ points with $V = \{a, b, c, d, e, f, g, h\}$.

Exercise: Is this a matroid? Exercise: If so, is it representable?
Consider the following geometry on $|V| = 8$ points with $V = \{a, b, c, d, e, f, g, h\}$.

Note, we are given that the points $\{b, d, h, f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a, b, e, f\}$, $\{d, c, g, h\}$, $\{a, d, h, e\}$, $\{b, c, g, f\}$, $\{b, c, d, a\}$, $\{f, g, h, e\}$, and $\{a, c, g, e\}$.
Consider the following geometry on $|V| = 8$ points with $V = \{a, b, c, d, e, f, g, h\}$.

Note, we are given that the points $\{b, d, h, f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a, b, e, f\}$, $\{d, c, g, h\}$, $\{a, d, h, e\}$, $\{b, c, g, f\}$, $\{b, c, d, a\}$, $\{f, g, h, e\}$, and $\{a, c, g, e\}$.

Exercise: Is this a matroid? Exercise: If so, is it representable?
Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Projective Geometries: Other Examples

Other examples can be more complex, consider the following two matroids (from Oxley, 2011):
Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

Right: a matroid (and a 2D depiction of a geometry) over the field $\text{GF}(3) = \{0, 1, 2\} \mod 3$ and is “coordinatizable” in $\text{GF}(3)^3$.
Projective Geometries: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Right: a matroid (and a 2D depiction of a geometry) over the field $GF(3) = \{0, 1, 2\} \mod 3$ and is “coordinatizable” in $GF(3)^3$.

- Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in 3D) can be twisted.
Matroids with $|V| \leq 3$ are graphic.
Matroids with $|V| \leq 3$ are graphic.

Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3.
Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3.
- Not all matroids are linear (i.e., matric) matroids.
Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3.
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).
Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3.
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).
- Exists much research on different subclasses of matroids, and if/when they are contained in (or isomorphic to) each other.
Matroid Further Reading

- “The Coming of the Matroids”, William Cunningham, 2012 (a nice history)
- Crapo & Rota, “On the Foundations of Combinatorial Theory: Combinatorial Geometries”, 1970 (while this is old, it is very readable).
- Schrijver, “Combinatorial Optimization”, 2003
The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.

- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.

The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.

Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).
The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).
- We will next see that the greedy algorithm working optimally is a defining property of a matroid, and is also a defining property of a polymatroid function.
Matroid and the greedy algorithm

Let \((E, \mathcal{I})\) be an independence system, and we are given a non-negative modular weight function \(w : E \rightarrow \mathbb{R}_+\).
Matroid and the greedy algorithm

Let \((E, I)\) be an independence system, and we are given a non-negative modular weight function \(w : E \to \mathbb{R}_+\).

Algorithm 1: The Matroid Greedy Algorithm

1. Set \(X \leftarrow \emptyset\);
2. while \(\exists v \in E \setminus X\) s.t. \(X \cup \{v\} \in I\) do
3. \hspace{0.5cm} \(v \in \text{argmax} \{w(v) : v \in E \setminus X, X \cup \{v\} \in I\}\);
4. \hspace{0.5cm} \(X \leftarrow X \cup \{v\}\);
Matroid and the greedy algorithm

Let \((E, \mathcal{I})\) be an independence system, and we are given a non-negative modular weight function \(w : E \rightarrow \mathbb{R}_+\).

Algorithm 1: The Matroid Greedy Algorithm

1. Set \(X \leftarrow \emptyset\);
2. while \(\exists v \in E \setminus X \text{ s.t. } X \cup \{v\} \in \mathcal{I}\) do
3. \hspace{1em} \(v \in \arg\max \{w(v) : v \in E \setminus X, \ X \cup \{v\} \in \mathcal{I}\}\);
4. \hspace{1em} \(X \leftarrow X \cup \{v\}\);

Same as sorting items by decreasing weight \(w\), and then choosing items in that order that retain independence.

Theorem 8.8.1

Let \((E, \mathcal{I})\) be an independence system. Then the pair \((E, \mathcal{I})\) is a matroid if and only if for each weight function \(w \in \mathbb{R}_+^E\), Algorithm 1 above leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).
Let \((E, \mathcal{I})\) be an independence system, and we are given a non-negative modular weight function \(w : E \to \mathbb{R}_+\).

Algorithm 1: The Matroid Greedy Algorithm

1. Set \(X \leftarrow \emptyset\);
2. while \(\exists v \in E \setminus X\) s.t. \(X \cup \{v\} \in \mathcal{I}\) do
3. \[v \in \arg\max \{w(v) : v \in E \setminus X, X \cup \{v\} \in \mathcal{I}\} ; \]
4. \[X \leftarrow X \cup \{v\} ; \]

Same as sorting items by decreasing weight \(w\), and then choosing items in that order that retain independence.

Theorem 8.8.1

Let \((E, \mathcal{I})\) be an independence system. Then the pair \((E, \mathcal{I})\) is a matroid if and only if for each weight function \(w \in \mathbb{R}_+^E\), Algorithm 1 above leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).
The next slide is from Lecture 6.
In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 8.8.3 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

1. \mathcal{B} is the collection of bases of a matroid;
2. if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' - x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
3. if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B - y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.
proof of Theorem 8.8.1.

- Assume \((E, I)\) is a matroid and \(w : E \to \mathcal{R}_+\) is given.

\[\text{...}\]
proof of Theorem 8.8.1.

- Assume (E, I) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A = (a_1, a_2, \ldots, a_r)$ be the solution returned by greedy, where $r = r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \geq w(a_2) \geq \cdots \geq w(a_r)$).
proof of Theorem 8.8.1.

- Assume (E, I) is a matroid and $w : E \rightarrow \mathcal{R}_+$ is given.
- Let $A = (a_1, a_2, \ldots, a_r)$ be the solution returned by greedy, where $r = r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \geq w(a_2) \geq \cdots \geq w(a_r)$).
- A is a base of M, and let $B = (b_1, \ldots, b_r)$ be any another base of M with elements also ordered decreasing by weight, so $w(b_1) \geq w(b_2) \geq \cdots \geq w(b_r)$.
proof of Theorem 8.8.1.

- Assume \((E, \mathcal{I})\) is a matroid and \(w : E \to \mathbb{R}_+\) is given.

- Let \(A = (a_1, a_2, \ldots, a_r)\) be the solution returned by greedy, where \(r = r(M)\) the rank of the matroid, and we order the elements as they were chosen (so \(w(a_1) \geq w(a_2) \geq \cdots \geq w(a_r)\)).

- \(A\) is a base of \(M\), and let \(B = (b_1, \ldots, b_r)\) be any another base of \(M\) with elements also ordered decreasing by weight, so \(w(b_1) \geq w(b_2) \geq \cdots \geq w(b_r)\).

- We next show that not only is \(w(A) \geq w(B)\) but that \(w(a_i) \geq w(b_i)\) for all \(i\).
proof of Theorem 8.8.1.

Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \geq w(b_j)$ for $j < k$.

...
proof of Theorem 8.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \geq w(b_j)$ for $j < k$.
- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}$.

...
proof of Theorem 8.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \geq w(b_j)$ for $j < k$.

- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}$.

- Since $|A_{k-1}| < |B_k|$, there exists a $b_i \in B_k \setminus A_{k-1}$ where $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \leq i \leq k$.

...
proof of Theorem 8.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \geq w(b_j)$ for $j < k$.

- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}$.

- Since $|A_{k-1}| < |B_k|$, there exists a $b_i \in B_k \setminus A_{k-1}$ where $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \leq i \leq k$.

- But $w(b_i) \geq w(b_k) > w(a_k)$, and so the greedy algorithm would have chosen b_i rather than a_k, contradicting what greedy does.
Given an independence system \((E, I)\), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We’ll show \((E, I)\) is a matroid.
Given an independence system \((E, \mathcal{I})\), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We’ll show \((E, \mathcal{I})\) is a matroid.

- Emptyset containing and down monotonicity already holds (since we’ve started with an independence system).
Given an independence system \((E, \mathcal{I})\), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We’ll show \((E, \mathcal{I})\) is a matroid.

- Emptyset containing and down monotonicity already holds (since we’ve started with an independence system).

- Let \(I, J \in \mathcal{I}\) with \(|I| < |J|\). Suppose to the contrary, that \(I \cup \{z\} \notin \mathcal{I}\) for all \(z \in J \setminus I\).
converse proof of Theorem 8.8.1.

- Given an independence system \((E, \mathcal{I})\), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We’ll show \((E, \mathcal{I})\) is a matroid.

- Emptyset containing and down monotonicity already holds (since we’ve started with an independence system).

- Let \(I, J \in \mathcal{I}\) with \(|I| < |J|\). Suppose to the contrary, that \(I \cup \{z\} \notin \mathcal{I}\) for all \(z \in J \setminus I\).

- Define the following modular weight function \(w\) on \(E\), and define \(k = |I|\).

\[
w(v) = \begin{cases}
 k + 2 & \text{if } v \in I, \\
 k + 1 & \text{if } v \in J \setminus I, \\
 0 & \text{if } v \in E \setminus (I \cup J)
\end{cases} \quad (8.30)
\]
converse proof of Theorem 8.8.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight $k(k + 2) = w(I)$.

On the other hand, J has weight $w(J) \geq |J|(k + 1) \geq (k + 1)(k + 1) > k(k + 2) = w(I)$ (8.31), so J has strictly larger weight but is still independent, contradicting greedy's optimality.

Therefore, there must be a $z \in J \setminus I$ such that $I \cup \{z\} \in I$, and since I and J are arbitrary, (E, I) must be a matroid.
converse proof of Theorem 8.8.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight $k(k + 2) = w(I)$.

- On the other hand, J has weight

$$w(J) \geq |J|(k + 1) \geq (k + 1)(k + 1) > k(k + 2) = w(I) \quad (8.31)$$

so J has strictly larger weight but is still independent, contradicting greedy’s optimality.
Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight $k(k + 2) = w(I)$.

On the other hand, J has weight

$$w(J) \geq |J|(k + 1) \geq (k + 1)(k + 1) > k(k + 2) = w(I)$$

so J has strictly larger weight but is still independent, contradicting greedy’s optimality.

Therefore, there must be a $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$, and since I and J are arbitrary, (E, \mathcal{I}) must be a matroid.
As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.

- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E_+$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?
- We can instead do as small as possible thus giving us a minimum weight independent set/base.
Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$. This will not only return an independent set, but it will return a base if we keep going even if the weights are 0. If we don’t want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
As given, the theorem asked for a modular function \(w \in \mathbb{R}^E_+ \).

This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

We don’t need non-negativity, we can use any \(w \in \mathbb{R}^E \) and keep going until we have a base.
As given, the theorem asked for a modular function \(w \in \mathbb{R}^E_+ \).

This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

We don’t need non-negativity, we can use any \(w \in \mathbb{R}^E \) and keep going until we have a base.

If we stop at a negative value, we’ll once again get a maximum weight independent set.
Matroid and greedy

- As given, the theorem asked for a modular function \(w \in \mathbb{R}^E_+ \).
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don’t want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don’t need non-negativity, we can use any \(w \in \mathbb{R}^E \) and keep going until we have a base.
- If we stop at a negative value, we’ll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?
As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$. This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

We don’t need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.

If we stop at a negative value, we’ll once again get a maximum weight independent set.

Exercise: what if we keep going until a base even if we encounter negative values?

We can instead do as small as possible thus giving us a minimum weight independent set/base.
Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of the following:

- All maximally independent sets have the same size.
- A monotone non-decreasing submodular integral rank function with unit increments.
- The greedy algorithm achieves the maximum weight independent set for all weight functions.