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Logistics
1l

Announcements, Assignments, and Reminders

@ Homework 1 is out, due Monday 10/19/2020 at 11:59pm.

@ Lecture 5 was posted to YouTube. See our announcements
(https://canvas.uw.edu/courses/1397085/announcements) for
the link.
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Class Road Map - EE563

L1(9/30): Motivation, Applications, @ L11(11/4):

Definitions, Properties @ L12(11/9):

L2(10/5): Sums concave(modular), uses @ |—(11/11): Veterans Day, Holiday
(diversity/costs, feature selection), o L13(11/16):

information theory o L14(11/18):

L3(10/7): Monge, More Definitions, o L15(11/23):

Graph and Combinatorial Examples, '

L4(10/12): Graph & Combinatorial ® L16(11/25):

Examples, Matrix Rank, Properties, Other @ L17(11/30):

Defs, Independence @ L18(12/2):

L5(10/14): Properties, Defs of @ L19(12/7):
Submodularity, Independence @ L20(12/9): maximization.

L6(10/19): Matroids, Matroid Examples,
Matroid Rank, More on Partition Matroid,
Laminar Matroids, System of Distinct
Reps

L7(10/21):

L8(10/26):

L9(10/28):

L10(11/2):

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Summary: Properties so far

Cover functionsf(A) = w({J,c4 Ua) are submodular.

SCCM is submodular f(A) = > ,cir du(mu(A)) where m,, is a
non-negative modular and ¢,, is concave.

max is submodular f(A) = max;ca cj, as is facility location
f(A) =3 ,cv MaXaca Sau-

Matrix rank function is submodular.

Log determinant f(A) = logdet(X4) submodular for p.d. X.
Matrix rank r(A), dim. of space spanned by the vector set {z,}
Graph cut, set cover, and incidence functions,

quadratics with non-positive off-diagonals f(X) = mT1x + 31T Mly.
Number connected components in induced graph ¢(A), and interior
edge function E(.5), is supermodular.

Submodular plus modular is submodular, f(A) = f'(A) + m(A).
Complementation: f/(A) = f(V \ A) is submodular if f is submodular
(same for supermodular, modular).

Conix mixture: a; > 0, f; : 2 — R submodular, then so is > i fi
Restrictions preserve submodularity: f(A) = f(ANS)

acA-
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Summary: Other properties from last lecture

@ Given non-decreasing submodular f and non-decreasing concave ¢ then
h(A) = ¢(f(A)) is submodular.

@ h(A) =min(f(A),g(A)) is submodular if both f and g are, and if
f — g is monotone (increasing or decreasing).

@ Any set function h can be represented as h(A) = c+ f(A) — g(A)
where ¢ is a constant, and f, g are polymatroidal.

e Gain f(j|A) is like a discrete gradient V; f(A).
@ Any submodular g function can be represented by a sum of a totally
normalized polymatroidal function g and a modular function m,.
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB)+ f(ANB), VA, BCV (6.16)
fG1S) > f(GIT), VS CT CV, with j e V\T (6.17)
f(C|S) > f(C|T),¥S CT CV, withCCV\T (6.18)
fG1S) > f(HISU{k}), VS CV with j € V\ (SU{k}) (6.19)

f(AuB\AmB) < f(A|IANnB)+ f(B|[ANnB), VA, BCV (6.20)

O SFS+ D, fUIS) = Y fUISUT={j}), ¥STCV

JET\S JES\T
6.21)
FT) < FS)+ D f(IS), vSCTCV (6.22)
JET\S
FO) <) = D fGIS\GH+ D FGISNT)VS,TCV
JES\T JET\S
(6.23)
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Matroids
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let Z = {Iy,Is,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset A C B
is also linearly independent. Hence, Z is down-closed or “subclusive”,
under subsets. In other words,

ACBandBel=>Acl (6.1)

@ maxind: Inclusionwise maximal independent subsets of (i.e., the set of
bases of) any set B C V' defined as:

maxind(B) = {ACB:AcZTandVv e B\ A, AUu{v} ¢TI} (6.2)

@ Given any set B C V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B C V,

VA1, Ay € maxind(B), |Ai|=|A2| = rank(B) (6.3)
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Matroids
IRt

From Matrix Rank — Matroid

@ Let Z = {1, Is,...} be the set of sets as described above.
@ Thus, for all I € 7, the matrix rank function has the property

r(I) =max{|A|: ACTand AT} =] (6.4)
and for any B ¢ 7,
r(B) =max{|A]: AC Band A€ T} < |B]| (6.5)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Matroids
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Matroids

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say F (or V), and a
collection of subsets Z = {I1, I>, ...} of E that correspond to
independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.

@ “If a theorem about graphs can be expressed in terms of edges and
circuits only, it probably exemplifies a more general theorem about
matroids.” — Tutte
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Matroids
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Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, } # T C 2F is called a set
system, notated (E,Z).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € Z. No inherent structure.

@ One useful structural property is “heredity.” Namely, a set system is
said to be a hereditary set system if for any A C B € Z, we have that
Ael.
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Matroids
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Independence System

Definition 6.3.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (11)
and
VIeZ,JCI=JecZ (subclusive) (12)

v

@ Property (12) called “down monotone,” “down closed,” or “subclusive”

o Example: F ={1,2,3,4}. With Z = {0,{1},{1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it is
not down closed (e.g., we have {1,2} € 7 but not {2} € 7).

o With Z = {0, {1}, {2}, {1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Matroids
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8

1y X2 X3 T4 Ts5 Te IT7 IT§ (66)

—_ = O N
— = =W
S O o
O NN Ot
w O = O
e VSN |
Gl = o
Il

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest G ¢ that is an edge-induced sub-graph of a graph G,
any sub-graph of Gy is also a forest.

@ So these both constitute independence systems.
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Matroids
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E,Z) is a Matroid if
(1) 0eZ
(I2) VI €Z,J Cc I = J € I (down-closed or subclusive)

(I3) VI,J € Z, with |I| = |J| + 1, then there exists x € I \ J such that
JU{z} €T

Why is (I1) is not redundant given (12)7 Because without (I11) could have a
non-matroid where Z = {}.
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Matroids
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On Matroid History - a brief minor digression

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

@ Understanding matroids crucial for understanding submodularity.

@ Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.

@ Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic term 'matroid’, which we prefer
to avoid in favor of the term 'pregeometry’.”
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Matroids
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.3.4 (Matroid-I1)

A set system (E,Z) is a Matroid if
(11 0eZ
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VI,J € Z, with |I| > |J|, then there exists x € I \ J such that
Ju{z} el

Note (11)=(I11"), (12)=(I2"), and we get (I13)=(I13") using induction.
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Matroids
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B € Z
and thereisno Z € Z with BCc Z CU.

@ A base of a matroid: If U = E, then a "base of E" is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids
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Matroids - important property

Proposition 6.3.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V,Z) is a Matroid if
(11") @ € Z (emptyset containing)
(12") YI € Z,J C I = J € T (down-closed or subclusive)

(I13") VX CV, and Iy, I5 € maxIind(X), we have |I;| = |I2] (all maximally
independent subsets of X have the same size).
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), VU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

o 7(E) = (g is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2% — Z_ defined by

T(A):maX{‘XlZXQA,XEI}II)I{I&%(‘AHX| (6.7)
€

@ From the above, we immediately see that r(A) < |A|.

@ Moreover, if 7(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 6.3.8 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank »(M) — 1.

Definition 6.3.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 6.3.10 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a € A4, r(A\{a}) = |A] - 1).
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Matroids
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.3.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
Q@ ifB,B '€ B,andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
© IfB,B' € B,andx € B'\ B, then B—y+x € B for somey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.
Theorem 6.3.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

Q (Cl)Déc
Q (C2) ifCl,Cg € C and C1 C Oy, then C1 = C5.

© (C3): if C1,Cy € C with C; # C5, and e € C1 N Cy, then there exists a
C3 € C such that C3 C (01 U 02) \ {6}
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Matroids
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx e CNC’, then (CUC")\ {x} contains a set inC;
Q@ ifC,C"eC,andx e CNC’,andy € C\ ', then (CUC")\ {z}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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Matroid Examples

Uniform Matroid

Given E, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E: |A| < k}.

@ Then (E,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that |/ +j| <kandso [+ j€Z.

@ Rank function
Al if 1Al < k
ray = A TlAlS (6.8)
k if |[A| >k

@ Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.

@ Closure function

A if|A| <k,

. (6.9)
E if |A] >k,

span(A) = {

@ A “free” matroid sets k = |E|, so everything is independent.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F23/46 (pg.23/61)

Matroid Examples
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Linear (or Matric) Matroid

@ Let X be an n x m matrixand £ = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={ay,az,...,a;} then the vectors x4, , gy, . .., x4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F24/46 (pg.24/61)




Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V,A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).

@ Recall from earlier, 7(A) = |V (G)| — kg(A), where for A C E(G), we
define kg (A) as the number of connected components of the
edge-induced spanning subgraph (V(G), A), and that kg(A) is
supermodular, so |V (G)| — kg(A) is submodular.

@ Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F26/46 (pg.30,/61)




Matroid Examples
(WA RN

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Partition Matroid

@ Let V' be our ground set.
o Let V=V, UVoU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

IT={XCV: | XnVj|<kjforalli=1,... ¢} (6.10)
where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with ¢ =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and k1, ko, ..., ky
although often the k;'s are all the same.

e We'll show that property (13') in Def 6.3.4 holds. First note, for any
X CV, X=Xt 1X NV since {Vi,Va,...,V;} is a partition.

o If X,Y € 7 with |Y| > |X]|, then there must be at least one i with
Y NV;| > |X NV;|. Therefore, adding one element e € V; N (Y \ X)
to X won't break independence.
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Matroid Examples
L

Partition Matroid

Ground set of objects, V' = {
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Matroid Examples
L

Partition Matroid

Partition of V into six blocks, V1, Vs, ..., Vs
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Matroid Examples

Partition Matroid

Limit associated with each block, {ki, k2, ..., ke}

| *
el
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Matroid Examples

Partition Matroid

Maximally independent subset, what is called a base.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F28/46 (pg.37/61)

Matroid Examples
L

Partition Matroid

Not independent since over limit in set six.
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Matroid Examples
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Partition Matroid

Is this a cycle/circuit?
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Matroid Examples
L

Partition Matroid

No. Does it contain a cycle/circuit?
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Matroid Examples
L

Partition Matroid

Yes.
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Matroid Rank
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Matroids - rank function is submodular

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.
© Since M is a matroid, we know that (AN B) = r(X) = |X|, and
r(AUB) =7r(Y)=1Y]|. Also, forany U € Z, r(A) > |[ANU|.
© Then we have (since X CANB, X CY,and Y C AU B),
r(A)+r(B) > |YNA|+|Y NB,| (6.11)
=YN(ANB)|+|Y N(AUB)| (6.12)
> |X|+|Y|=r(ANB)+r(AUB) (6.13)
]

v
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Matroid Rank
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A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2F — 7 be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E':

(R1) VACFE 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(AnB) <r(A)+r(B) forall A,B C E (submodular)

v

e From above, 7()) = 0. Let v ¢ A, then by monotonicity and
submodularity, 7(A) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}), namely 7(A) or r(A) + 1.

@ Hence, unit increment (if 7(A) = k, then either r(AU {v}) =k or
r(AU{v}) =k + 1) holds.

@ Thus, submodularity, normalized, monotone non-decreasing, & unit
increment of rank is necessary & sufficient to define matroids.

@ Can refer to matroid as (F,r), E is ground set, r is rank function.
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Matroid Rank
[N ARRE RN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

@ Given a matroid M = (FE,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

o Conversely, assume we have r satisfying (R1), (R2), and (R3). Define
IT={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € Z.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \X)+r(0) (6.14)
> y| - ¥\ X (6.15)
— X (6.16)

implying r(X) = | X|, and thus X € 7.
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Matroid Rank
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={b1,ba,...,b;} (note 1 <k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0) =7(A) =|A| < |A| + 1. Then

r(B) < r(AU B) (6.17)

<7(AU(B\{b1})) +r(AU{b1}) —7(A) (6.18)

=r(AU(B\{b}) (6.19)

<7(AU(B\{b1,b2})) + (AU {ba}) — 7(A) (6.20)

= (AU (B\ {b1,2})) (6.21)

<...<r(A)=|A| < |B| (6.22)

giving a contradiction since B € 7.
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Matroids from rank Il

Another way of using function r to define a matroid.
Theorem 6.5.3 (Matroid from rank I1)

Let E be a finite set and let r : 2¥ — 7 be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all X C E, and
x,y € B:

R1") r(0) =0;
R2') r(X) <r(X U{y}) <r(X) + 1,
R3) Ifr(X U{x}) =r(X U{y}) =r(X), then r(X U{z,y}) = r(X).
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Matroids by submodular functions

Theorem 6.5.4 (Matroid by submodular functions)

Let f:2F — 7Z be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f) = {C C E : C is non-empty,
is inclusionwise-minimal,

and has f(C) < |C] } (6.23)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C' € C(f), then there exists
no C’' C C with C" € C(f) (i.e., C' C C would either be empty or have
f(C") > |C"]). Also, recall inclusionwise-minimal in Definition 6.3.10, the
definition of a circuit.
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

e Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)

@ Matroids by integral submodular functions.
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Maximization problems for matroids

e Given a matroid M = (F,Z) and a modular value function ¢: £ — R,
the task is to find an X € T such that ¢(X) = > .y c(z) is maximum.

@ This seems remarkably similar to the max spanning tree problem.
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Matroid Rank
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Minimization problems for matroids

@ Given a matroid M = (F,Z) and a modular cost function ¢: £ — R,
the task is to find a basis B € B such that ¢(B) is minimized.

@ This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANV|, k) (6.24)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:
© |ANYV;| is submodular (in fact modular) in A

© min(submodular(A), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy with a < b, and any set R C V with |R| =b.

e Create two-block partition V = (R, R), where R =V \ R so
|R| = |V| — b. Gives 2-partition matroid rank function as follows:

r(4) = min(]AN R|,a) + min(|A N R|, |R|)
= min(|A N R|,a) + |[AN R|
=min(|ANR|+ |[ANR|,|ANR| + a)
= min(|A|,|AN R| + a)
e Figure showing partition blocks and partition matroid limits.

Since |R| = |V| —b v Since |R| = |V| —b

the limit on R is vacuous. the limit on R is vacuo

a<|R|=0b
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank 7(A) = min(|]A N R|,a) + min(|]A N R|, |R|), a < b. Define:

fr(A) = min{ r(A) ,b} (6.29)
= min{ min(|A|,|A N R| + a) ,b} (6.30)
= min {|A],a + |ANR|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I[|<band [[NR|<al, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = b. Recall R fixed, and |R| = b.
@ For R, we have fr(R) = min(b,a,b) = a < b.
e For any B with |BNR| < a, fr(B) =0b.
@ Forany B with |[BNR| =/, witha <{<b, fr(B)=a+0b—/.
@ R, the set with minimum valuation amongst size-b sets, is hidden
within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V' denote the ground set, and Vi, V5, ... the partition, the
bipartite graph is G = (V, I, E') where V is the ground set, [ is a set of
“indices’, and FE is the set of edges.

I=(L,I...,1) is a set of k = Zle k; nodes, grouped into ¢
clusters, where there are k; nodes in the it" group I;, and |I;| = k;.

(v,i) € E(G) iff v e Vj and i € I;.
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(b1, k2, k3, kq, ks) =

(2,2,1,1,3). @ Recall, T : 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {fveV(G)\ X : E(X,{v}) # 0}, and
recall that |T'(X)| is submodular.
Vs I e Here, for X CV, we have ['X) =

{iel:(v,i) € E(G)and v e X}.
I3 e For such a constructed bipartite graph,
the rank function of a partition matroid
lq is 7(X) = S0 min(|X N Vj|, k;) = the
maximum matching involving X.
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B A A B
A ‘

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ()) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

I={ICE:|INA|<kyforall Aec F} (6.33)

@ Exercise: what is the rank function here?
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I) where ) CV; CV for
all 4), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups’ and any v € V with v € V; is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V(.

@ v; is the representative of set (or group) Vy(;), meaning the A
representative is meant to represent set V(;).

@ Example: Consider the house of representatives, v; = “Pramila
Jayapal”, while i = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v € V1 N V5,
where vy represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.

e Here, ¢ =6 groups, with V = (V4,V5,...,Vg)

= (e, - G NEERENN (Cvvy. . l)

@ A system of representatives would make
sure that there is a representative for
each color group. For example,

@ The representatives ({a,c,d, f, h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.

@ Here, £ =6 groups, with V = (V1, V5, ..., V)

= (e - e ENEREN (Cvvy. . l)

@ A system of representatives would make
sure that there is a representative for
each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.

@ Here, £ =6 groups, with V = (V1, Vo, ..., Vg)

= (e, - G NEERENN (Cvvy. . l)

@ A system of representatives would make
V | sure that there is a representative for
O each color group. For example,

@ The representatives ({a,c,d, f, h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (V;:i € I) where V; CV for all
i), and I is an index set. Hence, |I| = |V|.

e A family (v; : ¢ € I) with v; € V is said to be a system of distinct
representatives of V if 3 a bijection 7 : I <+ I such that v; € V(;) and

v; # v; for all 4 # j.
@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 6.8.1 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T C V is a transversal of V if there is a bijection 7 : T' <> I such that

T € Vi forallzeT (6.34)

@ Note that due to 7 : 7" <+ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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