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Logistics Review

Announcements, Assignments, and Reminders

Homework 1 is out, due Monday 10/19/2020 at 11:59pm.
Lecture 5 was posted to YouTube. See our announcements
(https://canvas.uw.edu/courses/1397085/announcements) for
the link.
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Logistics Review

Class Road Map - EE563
L1(9/30): Motivation, Applications,
Definitions, Properties
L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory
L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial
Examples, Matrix Rank, Properties, Other
Defs, Independence
L5(10/14): Properties, Defs of
Submodularity, Independence
L6(10/19): Matroids, Matroid Examples,
Matroid Rank, More on Partition Matroid,
Laminar Matroids, System of Distinct
Reps
L7(10/21):
L8(10/26):
L9(10/28):
L10(11/2):

L11(11/4):
L12(11/9):
L–(11/11): Veterans Day, Holiday
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Logistics Review

Summary: Properties so far
Cover functionsf(A) = w(

⋃
a∈A Ua) are submodular.

SCCM is submodular f(A) =
∑

u∈U φu(mu(A)) where mu is a
non-negative modular and φu is concave.
max is submodular f(A) = maxj∈A cj , as is facility location
f(A) =

∑
u∈U maxa∈A sa,u.

Matrix rank function is submodular.
Log determinant f(A) = log det(ΣA) submodular for p.d. Σ.
Matrix rank r(A), dim. of space spanned by the vector set {xa}a∈A.
Graph cut, set cover, and incidence functions,
quadratics with non-positive off-diagonals f(X) = mᵀ1X + 1

21ᵀ
XM1X .

Number connected components in induced graph c(A), and interior
edge function E(S), is supermodular.
Submodular plus modular is submodular, f(A) = f ′(A) +m(A).
Complementation: f ′(A) = f(V \A) is submodular if f is submodular
(same for supermodular, modular).
Conix mixture: αi ≥ 0, fi : 2V → R submodular, then so is

∑
i αifi.

Restrictions preserve submodularity: f ′(A) = f(A ∩ S)
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Logistics Review

Summary: Other properties from last lecture

Given non-decreasing submodular f and non-decreasing concave φ then
h(A) = φ(f(A)) is submodular.
h(A) = min(f(A), g(A)) is submodular if both f and g are, and if
f − g is monotone (increasing or decreasing).
Any set function h can be represented as h(A) = c+ f(A)− g(A)
where c is a constant, and f, g are polymatroidal.
Gain f(j|A) is like a discrete gradient ∇jf(A).
Any submodular g function can be represented by a sum of a totally
normalized polymatroidal function ḡ and a modular function mg.
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Logistics Review

Many (Equivalent) Definitions of Submodularity

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V (6.16)
f(j|S) ≥ f(j|T ), ∀S ⊆ T ⊆ V, with j ∈ V \ T (6.17)
f(C|S) ≥ f(C|T ),∀S ⊆ T ⊆ V, with C ⊆ V \ T (6.18)
f(j|S) ≥ f(j|S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (6.19)

f(A ∪B|A ∩B) ≤ f(A|A ∩B) + f(B|A ∩B), ∀A,B ⊆ V (6.20)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S)−
∑
j∈S\T

f(j|S ∪ T − {j}), ∀S, T ⊆ V

(6.21)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S), ∀S ⊆ T ⊆ V (6.22)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}) +
∑
j∈T\S

f(j|S ∩ T ) ∀S, T ⊆ V

(6.23)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}), ∀T ⊆ S ⊆ V (6.24)Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F6/46 (pg.6/61)



Matroids Matroid Examples Matroid Rank More on Partition Matroid Laminar Matroids System of Distinct Reps

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.
Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I ∈ I,
the vectors indexed by I are linearly independent.
Given a set B ∈ I of linearly independent vectors, then any subset A ⊆ B
is also linearly independent. Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (6.1)

maxInd: Inclusionwise maximal independent subsets of (i.e., the set of
bases of) any set B ⊆ V defined as:

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (6.2)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| = rank(B) (6.3)
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From Matrix Rank → Matroid

Let I = {I1, I2, . . .} be the set of sets as described above.
Thus, for all I ∈ I, the matrix rank function has the property

r(I) = max {|A| : A ⊆ I and A ∈ I} = |I| (6.4)

and for any B /∈ I,

r(B) = max {|A| : A ⊆ B and A ∈ I} < |B| (6.5)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Matroids

Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.
In a matroid, there is an underlying ground set, say E (or V ), and a
collection of subsets I = {I1, I2, . . .} of E that correspond to
independent elements.
There are many definitions of matroids that are mathematically
equivalent, we’ll see some of them here.
“If a theorem about graphs can be expressed in terms of edges and
circuits only, it probably exemplifies a more general theorem about
matroids.” – Tutte
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Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, ∅ 6= I ⊆ 2E is called a set
system, notated (E, I).

Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S ⊆ E has S ∈ I. No inherent structure.
One useful structural property is “heredity.” Namely, a set system is
said to be a hereditary set system if for any A ⊂ B ∈ I, we have that
A ∈ I.
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Independence System

Definition 6.3.2 (independence (or hereditary) system)

A set system (V, I) is an independence system if

∅ ∈ I (emptyset containing) (I1)

and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Property (I2) called “down monotone,” “down closed,” or “subclusive”
Example: E = {1, 2, 3, 4}. With I = {∅, {1}, {1, 2}, {1, 2, 4}}.
Then (E, I) is a set system, but not an independence system since it is
not down closed (e.g., we have {1, 2} ∈ I but not {2} ∈ I).
With I = {∅, {1}, {2}, {1, 2}}, then (E, I) is now an independence
(hereditary) system.
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Independence System


1 2 3 4 5 6 7 8

1 0 0 1 1 2 1 3 1

2 0 1 1 0 2 0 2 4

3 1 1 1 0 0 3 1 5

 =


1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

 (6.6)

Given any set of linearly independent vectors A, any subset B ⊂ A will
also be linearly independent.
Given any forest Gf that is an edge-induced sub-graph of a graph G,
any sub-graph of Gf is also a forest.
So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J ∈ I, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E, I) is a Matroid if
(I1) ∅ ∈ I
(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)
(I3) ∀I, J ∈ I, with |I| = |J |+ 1, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I.

Why is (I1) is not redundant given (I2)? Because without (I1) could have a
non-matroid where I = {}.
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On Matroid History - a brief minor digression

Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.
Takeo Nakasawa, 1935, also early work.
Forgotten for 20 years until mid 1950s.
Matroids are powerful and flexible combinatorial objects.
The rank function of a matroid is already a very powerful submodular
function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic term ’matroid’, which we prefer
to avoid in favor of the term ’pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.3.4 (Matroid-II)

A set system (E, I) is a Matroid if
(I1’) ∅ ∈ I
(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)
(I3’) ∀I, J ∈ I, with |I| > |J |, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)≡(I3’) using induction.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.
A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B ∈ I
and there is no Z ∈ I with B ⊂ Z ⊆ U .
A base of a matroid: If U = E, then a “base of E” is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 6.3.5

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have the
same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank
Thus, in any matroid M = (E, I), ∀U ⊆ E(M), any two bases of U
have the same size.
The common size of all the bases of U is called the rank of U , denoted
rM (U) or just r(U) when the matroid in equation is unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of all
the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2E → Z+ defined by

r(A) = max {|X| : X ⊆ A,X ∈ I} = max
X∈I
|A ∩X| (6.7)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 6.3.8 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid M
if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)− 1.

Definition 6.3.9 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 6.3.10 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A, r(A \ {a}) = |A| − 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.3.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B′ ∈ B, and x ∈ B′ \B, then B′−x+ y ∈ B for some y ∈ B \B′.
3 If B,B′ ∈ B, and x ∈ B′ \B, then B− y+ x ∈ B for some y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 6.3.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ∅ /∈ C
2 (C2): if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.
3 (C3): if C1, C2 ∈ C with C1 6= C2, and e ∈ C1 ∩C2, then there exists a
C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;
2 if C,C ′ ∈ C, and x ∈ C ∩ C ′, then (C ∪ C ′) \ {x} contains a set in C;
3 if C,C ′ ∈ C, and x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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Uniform Matroid
Given E, consider I to be all subsets of E that are at most size k.
That is I = {A ⊆ E : |A| ≤ k}.
Then (E, I) is a matroid called a k-uniform matroid.
Note, if I, J ∈ I, and |I| < |J | ≤ k, and j ∈ J such that j 6∈ I, then j
is such that |I + j| ≤ k and so I + j ∈ I.
Rank function

r(A) =

{
|A| if |A| ≤ k
k if |A| > k

(6.8)

Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.
Closure function

span(A) =

{
A if |A| < k,

E if |A| ≥ k,
(6.9)

A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

Let X be an n×m matrix and E = {1, . . . ,m}
Let I consists of subsets of E such that if A ∈ I, and
A = {a1, a2, . . . , ak} then the vectors xa1 , xa2 , . . . , xak are linearly
independent.
the rank function is just the rank of the space spanned by the
corresponding set of vectors.
rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).
Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V,E) be a graph. Consider (E, I) where the edges of the
graph E are the ground set and A ∈ I if the edge-induced graph
G(V,A) by A does not contain any cycle.
Then M = (E, I) is a matroid.
I contains all forests.
Bases are spanning forests (spanning trees if G is connected).
Rank function r(A) is the size of the largest spanning forest contained
in G(V,A).
Recall from earlier, r(A) = |V (G)| − kG(A), where for A ⊆ E(G), we
define kG(A) as the number of connected components of the
edge-induced spanning subgraph (V (G), A), and that kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid
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Partition Matroid

Let V be our ground set.
Let V = V1 ∪ V2 ∪ · · · ∪ V` be a partition of V into ` blocks (i.e.,
disjoint sets). Define a set of subsets of V as

I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}. (6.10)

where k1, . . . , k` are fixed “limit” parameters, ki ≥ 0. Then M = (V, I)
is a matroid.
Note that a k-uniform matroid is a trivial example of a partition
matroid with ` = 1, V1 = V , and k1 = k.
Parameters associated with a partition matroid: ` and k1, k2, . . . , k`
although often the ki’s are all the same.
We’ll show that property (I3’) in Def 6.3.4 holds. First note, for any
X ⊆ V , |X| = ∑`

i=1 |X ∩ Vi| since {V1, V2, . . . , V`} is a partition.
If X,Y ∈ I with |Y | > |X|, then there must be at least one i with
|Y ∩ Vi| > |X ∩ Vi|. Therefore, adding one element e ∈ Vi ∩ (Y \X)
to X won’t break independence.
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Partition Matroid

Ground set of objects, V =

{

}
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Partition Matroid
Partition of V into six blocks, V1, V2, . . . , V6

}
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Partition Matroid
Limit associated with each block, {k1, k2, . . . , k6}

}
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Partition Matroid
Independent subset but not maximally independent.

}
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Partition Matroid
Maximally independent subset, what is called a base.

}
Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F28/46 (pg.37/61)

Matroids Matroid Examples Matroid Rank More on Partition Matroid Laminar Matroids System of Distinct Reps

Partition Matroid
Not independent since over limit in set six.

}
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Partition Matroid

Is this a cycle/circuit?

}
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Partition Matroid

No. Does it contain a cycle/circuit?

}
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Partition Matroid

Yes.

}
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Matroids - rank function is submodular
Lemma 6.5.1

The rank function r : 2E → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

Proof.
1 Let X ∈ I be an inclusionwise maximal set with X ⊆ A ∩B
2 Let Y ∈ I be inclusionwise maximal set with X ⊆ Y ⊆ A ∪B.
3 Since M is a matroid, we know that r(A ∩B) = r(X) = |X|, and
r(A ∪B) = r(Y ) = |Y |. Also, for any U ∈ I, r(A) ≥ |A ∩ U |.

4 Then we have (since X ⊆ A ∩B, X ⊆ Y , and Y ⊆ A ∪B),

r(A) + r(B) ≥ |Y ∩A|+ |Y ∩B| (6.11)
= |Y ∩ (A ∩B)|+ |Y ∩ (A ∪B)| (6.12)
≥ |X|+ |Y | = r(A ∩B) + r(A ∪B) (6.13)
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A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ E:
(R1) ∀A ⊆ E 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)
(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ E (monotone non-decreasing)
(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) for all A,B ⊆ E (submodular)

From above, r(∅) = 0. Let v /∈ A, then by monotonicity and
submodularity, r(A) ≤ r(A ∪ {v}) ≤ r(A) + r({v}) which gives only
two possible values to r(A ∪ {v}), namely r(A) or r(A) + 1.
Hence, unit increment (if r(A) = k, then either r(A ∪ {v}) = k or
r(A ∪ {v}) = k + 1) holds.
Thus, submodularity, normalized, monotone non-decreasing, & unit
increment of rank is necessary & sufficient to define matroids.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.
Conversely, assume we have r satisfying (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X) + r(∅) (6.14)
≥ |Y | − |Y \X| (6.15)
= |X| (6.16)

implying r(X) = |X|, and thus X ∈ I. . . .
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note 1 ≤ k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, A+ b /∈ I, which means for
all such b, r(A+ b) = r(A) = |A| < |A|+ 1. Then

r(B) ≤ r(A ∪B) (6.17)
≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (6.18)
= r(A ∪ (B \ {b1}) (6.19)
≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (6.20)
= r(A ∪ (B \ {b1, b2})) (6.21)
≤ . . . ≤ r(A) = |A| < |B| (6.22)

giving a contradiction since B ∈ I.
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Matroids from rank II

Another way of using function r to define a matroid.

Theorem 6.5.3 (Matroid from rank II)

Let E be a finite set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all X ⊆ E, and
x, y ∈ E:

(R1’) r(∅) = 0;
(R2’) r(X) ≤ r(X ∪ {y}) ≤ r(X) + 1;
(R3’) If r(X ∪ {x}) = r(X ∪ {y}) = r(X), then r(X ∪ {x, y}) = r(X).
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Matroids by submodular functions

Theorem 6.5.4 (Matroid by submodular functions)

Let f : 2E → Z be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f) =
{
C ⊆ E : C is non-empty,

is inclusionwise-minimal,

and has f(C) < |C|
}

(6.23)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C ∈ C(f), then there exists
no C ′ ⊂ C with C ′ ∈ C(f) (i.e., C ′ ⊂ C would either be empty or have
f(C ′) ≥ |C ′|). Also, recall inclusionwise-minimal in Definition 6.3.10, the
definition of a circuit.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F34/46 (pg.47/61)

Matroids Matroid Examples Matroid Rank More on Partition Matroid Laminar Matroids System of Distinct Reps

Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

Independence (define the independent sets).
Base axioms (exchangeability)
Circuit axioms
Closure axioms (we didn’t see this, but it is possible)
Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)
Matroids by integral submodular functions.
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Maximization problems for matroids

Given a matroid M = (E, I) and a modular value function c : E → R,
the task is to find an X ∈ I such that c(X) =

∑
x∈X c(x) is maximum.

This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

Given a matroid M = (E, I) and a modular cost function c : E → R,
the task is to find a basis B ∈ B such that c(B) is minimized.
This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

What is the partition matroid’s rank function?
A partition matroids rank function:

r(A) =
∑̀
i=1

min(|A ∩ Vi|, ki) (6.24)

which we also immediately see is submodular using properties we spoke
about last week. That is:

1 |A ∩ Vi| is submodular (in fact modular) in A
2 min(submodular(A), ki) is submodular in A since |A ∩ Vi| is monotone.
3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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From 2-partition matroid rank to truncated matroid rank
Example: 2-partition matroid rank function: Given natural numbers
a, b ∈ Z+ with a < b, and any set R ⊆ V with |R| = b.
Create two-block partition V = (R, R̄), where R̄ = V \R so
|R̄| = |V | − b. Gives 2-partition matroid rank function as follows:

r(A) = min(|A ∩R|, a) + min(|A ∩ R̄|, |R̄|) (6.25)
= min(|A ∩R|, a) + |A ∩ R̄| (6.26)
= min(|A ∩ R̄|+ |A ∩R|, |A ∩ R̄|+ a) (6.27)
= min(|A|, |A ∩ R̄|+ a) (6.28)

Figure showing partition blocks and partition matroid limits.

V

R̄

R a < |R| = b

a

|V | b−
Since |R̄| = |V | − b

the limit on R̄ is vacuous.
V

R̄

R a < |R| = b

a

|V | b−
Since |R̄| = |V | − b

the limit on R̄ is vacuous.

A
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Truncated Matroid Rank Function
Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A ∩R|, a) + min(|A ∩ R̄|, |R̄|), a < b. Define:

fR(A) = min
{
r(A) , b

}
(6.29)

= min
{

min(|A|, |A ∩ R̄|+ a) , b
}

(6.30)

= min
{
|A|, a+ |A ∩ R̄|, b

}
(6.31)

Defines a matroid M = (V, fR) = (V, I) (Goemans et. al.) with
I = {I ⊆ V : |I| ≤ b and |I ∩R| ≤ a}, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B ⊆ V with |B| = b. Recall R fixed, and |R| = b.

For R, we have fR(R) = min(b, a, b) = a < b.
For any B with |B ∩R| ≤ a, fR(B) = b.
For any B with |B ∩R| = `, with a ≤ ` ≤ b, fR(B) = a+ b− `.
R, the set with minimum valuation amongst size-b sets, is hidden
within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.
Letting V denote the ground set, and V1, V2, . . . the partition, the
bipartite graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.
I = (I1, I2, . . . , I`) is a set of k =

∑`
i=1 ki nodes, grouped into `

clusters, where there are ki nodes in the ith group Ii, and |Ii| = ki.
(v, i) ∈ E(G) iff v ∈ Vj and i ∈ Ij .
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Partition Matroid, rank as matching

Example where ` = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I
Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) 6= ∅}, and
recall that |Γ(X)| is submodular.
Here, for X ⊆ V , we have Γ(X) =
{i ∈ I : (v, i) ∈ E(G) and v ∈ X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑`
i=1 min(|X ∩ Vi|, ki) = the

maximum matching involving X.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F42/46 (pg.55/61)

Matroids Matroid Examples Matroid Rank More on Partition Matroid Laminar Matroids System of Distinct Reps

Laminar Family and Laminar Matroid
We can define a matroid with structures richer than just partitions.
A set system (V,F) is called a laminar family if for any two sets
A,B ∈ F , at least one of the three sets A ∩B, A \B, or B \A is empty.

A B

A

B A

B

A BBA

Family is laminar ∃ no two properly intersecting members: ∀A,B ∈ F ,
either A,B disjoint (A ∩B = ∅) or comparable (A ⊆ B or B ⊆ A).
Suppose we have a laminar family F of subsets of V and an integer kA for
every set A ∈ F . Then (V, I) defines a matroid where

I = {I ⊆ E : |I ∩A| ≤ kA for all A ∈ F} (6.33)

Exercise: what is the rank function here?
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System of Representatives

Let (V,V) be a set system (i.e., V = (Vi : i ∈ I) where ∅ ⊂ Vi ⊆ V for
all i), and I is an index set. Hence, |I| = |V|.
Here, the sets Vi ∈ V are like “groups” and any v ∈ V with v ∈ Vi is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).
A family (vi : i ∈ I) with vi ∈ V is said to be a system of
representatives of V if ∃ a bijection π : I → I such that vi ∈ Vπ(i).
vi is the representative of set (or group) Vπ(i), meaning the ith

representative is meant to represent set Vπ(i).
Example: Consider the house of representatives, vi = “Pramila
Jayapal”, while i = “King County, WA-7”.
In a system of representatives, there is no requirement for the
representatives to be distinct. I.e., we could have some v1 ∈ V1 ∩ V2,
where v1 represents both V1 and V2.
We can view this as a bipartite graph.
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System of Representatives

We can view this as a bipartite graph. The groups of V are marked by
color tags on the left, and also via right neighbors in the graph.
Here, ` = 6 groups, with V = (V1, V2, . . . , V6)

=
(
{e, f, h} , {d, e, g} , {b, c, e, h} , {a, b, h} , {a} , {a}

)
.

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would make
sure that there is a representative for
each color group. For example,
The representatives ({a, c, d, f, h}) are
shown as colors on the left.
Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Representatives

We can view this as a bipartite graph. The groups of V are marked by
color tags on the left, and also via right neighbors in the graph.
Here, ` = 6 groups, with V = (V1, V2, . . . , V6)

=
(
{e, f, h} , {d, e, g} , {b, c, e, h} , {a, b, h} , {a} , {a}

)
.

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would make
sure that there is a representative for
each color group. For example,
The representatives ({a, c, d, f, h}) are
shown as colors on the left.
Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 6 - Oct 19th, 2020 F45/46 (pg.59/61)

Matroids Matroid Examples Matroid Rank More on Partition Matroid Laminar Matroids System of Distinct Reps

System of Representatives

We can view this as a bipartite graph. The groups of V are marked by
color tags on the left, and also via right neighbors in the graph.
Here, ` = 6 groups, with V = (V1, V2, . . . , V6)

=
(
{e, f, h} , {d, e, g} , {b, c, e, h} , {a, b, h} , {a} , {a}

)
.

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would make
sure that there is a representative for
each color group. For example,
The representatives ({a, c, d, f, h}) are
shown as colors on the left.
Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vi : i ∈ I) where Vi ⊆ V for all
i), and I is an index set. Hence, |I| = |V|.
A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i) and
vi 6= vj for all i 6= j.
In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 6.8.1 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T ⊆ V is a transversal of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (6.34)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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