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Logistics Review

Announcements, Assignments, and Reminders

Homework 1 is out, due Friday at 11:59pm.
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Logistics Review

Class Road Map - EE563
L1(9/30): Motivation, Applications,
Definitions, Properties
L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory
L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial
Examples, Matrix Rank, Properties, Other
Defs, Independence
L5(10/14): Independence, Matroids,
Matroid Examples, Matroid Rank, More
on Partition Matroid
L6(10/19):
L7(10/21):
L8(10/26):
L9(10/28):
L10(11/2):

L11(11/4):
L12(11/9):
L–(11/11): Veterans Day, Holiday
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Logistics Review

Summary: Properties so far
Cover functionsf(A) = w(

S
a2A Ua) are submodular.

SCCM is submodular f(A) =
P

u2U �u(mu(A)) where mu is a
non-negative modular and �u is concave.
max is submodular f(A) = maxj2A cj , as is facility location
f(A) =

P
u2U maxa2A sa,u.

Matrix rank function is submodular.
Log determinant f(A) = log det(⌃A) submodular for p.d. ⌃.
Matrix rank r(A), dim. of space spanned by the vector set {xa}a2A.
Graph cut, set cover, and incidence functions,
quadratics with non-positive off-diagonals f(X) = m

|1X + 1
21

|
XM1X .

Number connected components in induced graph c(A), and interior
edge function E(S), is supermodular.
Submodular plus modular is submodular, f(A) = f

0(A) +m(A).
Complementation: f

0(A) = f(V \A) is submodular if f is submodular
(same for supermodular, modular).
Conix mixture: ↵i � 0, fi : 2V ! R submodular, then so is

P
i ↵ifi.

Restrictions preserve submodularity: f
0(A) = f(A \ S)
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Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Concave over non-negative modular

Let m 2 RE
+ be a non-negative modular function, and � a concave function

over R. Define f : 2E ! R as

f(A) = �(m(A)) (5.1)

then f is submodular.

Proof.
Given A ✓ B ✓ E \ v, we have 0  a = m(A)  b = m(B), and
0  c = m(v). For g concave, we have �(a+ c)� �(a) � �(b+ c)� �(b),
and thus

�(m(A) +m(v))� �(m(A)) � �(m(B) +m(v))� �(m(B)) (5.2)

A form of converse is true as well.
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Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Concave composed with non-negative modular
Theorem 5.3.1
Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V ! R+, then f : 2V ! R defined as
f(A) = �(m(A)) is submodular

2 � : R+ ! R is concave.

If � is non-decreasing concave & �(0) = 0, then f is polymatroidal.

Sums of concave over modular functions are submodular

f(A) =
KX

i=1

�i(mi(A)) (5.3)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, Iyer, & Bilmes 2014).
However, Vondrak showed that a graphic matroid rank function over
K4 (we’ll define this after we define matroids) are not members.
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Monotonicity

Definition 5.3.2
A function f : 2V ! R is monotone nondecreasing (resp. monotone
increasing) if for all A ⇢ B, we have f(A)  f(B) (resp. f(A) < f(B)).

Definition 5.3.3
A function f : 2V ! R is monotone nonincreasing (resp. monotone
decreasing) if for all A ⇢ B, we have f(A) � f(B) (resp. f(A) > f(B)).
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Composition of non-decreasing submodular and
non-decreasing concave

Theorem 5.3.4

Given two functions, one defined on sets

f : 2V ! R (5.4)

and another continuous valued one:

� : R! R (5.5)

the composition formed as h = � � f : 2V ! R (defined as
h(S) = �(f(S))) is nondecreasing submodular, if � is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let
(f � g)(·) be either monotone non-decreasing or monotone non-increasing
Then h : 2V ! R defined by

h(A) = min(f(A), g(A)) (5.6)

is submodular.
Proof.
If h agrees with f on both X and Y (or g on both X and Y ), and since

h(X) + h(Y ) = f(X) + f(Y ) � f(X [ Y ) + f(X \ Y ) (5.7)
or

h(X) + h(Y ) = g(X) + g(Y ) � g(X [ Y ) + g(X \ Y ), (5.8)
the result (Equation 5.6 being submodular) follows since
f(X) + f(Y )

g(X) + g(Y )
� min(f(X [ Y ), g(X [ Y )) + min(f(X \ Y ), g(X \ Y ))

(5.9)
. . .
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Monotone difference of two functions

...cont.
Otherwise, w.l.o.g., h(X) = f(X) and h(Y ) = g(Y ), giving

h(X) + h(Y ) = f(X) + g(Y ) � f(X [ Y ) + f(X \ Y ) + g(Y )� f(Y )
(5.10)

Assume the case where f � g is monotone non-decreasing. Hence,
f(X [ Y ) + g(Y )� f(Y ) � g(X [ Y ) giving

h(X) + h(Y ) � g(X [ Y ) + f(X \ Y ) � h(X [ Y ) + h(X \ Y ) (5.11)

What is an easy way to prove the case where f � g is monotone
non-increasing?
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Saturation via the min(·) function

Let f : 2V ! R be a monotone non-decreqasing or non-increasing
submodular function and let ↵ be a constant. Then the function
h : 2V ! R defined by

h(A) = min(↵, f(A)) (5.12)

is submodular.

Proof.
For constant k, we have that (f � k) is non-decreasing (or non-increasing)
so this follows from the previous result.

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More on Min - the saturate trick

minimax facility location is similar to the following maximin function (a
form of “robust facility location”): h(A) = minv2V maxa2A s(i, a) and
the goal is to maximize this maxA✓V :|A|k h(A). h therefore is the min
of a set of submodular functions.

In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).
However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function h↵ : 2V ! R as

h↵(A) =
1

2

⇣
min(↵, f(A)) + min(↵, g(A))

⌘
(5.13)

then h↵ is submodular, and h↵(A) � ↵ if and only if both f(A) � ↵

and g(A) � ↵, for constant ↵ 2 R.
Useful in applications. Like DS functions, another instance of a
submodular surrogate (where we take a non-submodular problem and
find a submodular one that can tell us something about it).
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Arbitrary functions: difference between submodular funcs.

Theorem 5.3.5
Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., 8h 2 2V ! R,
9f, g s.t. 8A, h(A) = f(A)� g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

↵
�
= min

X,Y :X 6✓Y,Y 6✓X

⇣
h(X) + h(Y )� h(X [ Y )� h(X \ Y )

⌘
(5.14)

If ↵ � 0 then h is submodular, so by assumption ↵ < 0.

Now let f be an
arbitrary strict submodular function and define

�
�
= min

X,Y :X 6✓Y,Y 6✓X

⇣
f(X) + f(Y )� f(X [ Y )� f(X \ Y )

⌘
. (5.15)

Strict means that � > 0. . . .
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Arbitrary functions as difference between submodular funcs.

...cont.
Define h

0 : 2V ! R as

h
0(A) = h(A) +

|↵|
�

f(A) (5.16)

Then h
0 is submodular (why?), and h = h

0(A)� |↵|
� f(A), a difference

between two submodular functions as desired.
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Gain

We often wish to express the gain of an item j 2 V in context A,
namely f(A [ {j})� f(A).

This is called the gain and is used so often, there are equally as many
ways to notate this. I.e., you might see:

f(A [ {j})� f(A)
�
= ⇢j(A) (5.17)
�
= ⇢A(j) (5.18)
�
= rjf(A) (5.19)
�
= f({j}|A) (5.20)
�
= f(j|A) (5.21)

We’ll use f(j|A).
diminishing returns can be stated as saying that f(j|A) is a monotone
non-increasing function of A, since f(j|A) � f(j|B) whenever A ✓ B

(i.e., further conditioning reduces valuation).
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Gain Notation

It will also be useful to extend this to sets.
Let A,B be any two sets. Then

f(A|B) , f(A [B)� f(B) (5.22)

So when j is any singleton

f(j|B) = f({j}|B) = f({j} [B)� f(B) (5.23)

Inspired from information theory notation and the notation used for
conditional entropy H(XA|XB) = H(XA, XB)�H(XB).
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Totally normalized functions

Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function ḡ and a modular function mg.

E.g., g(A) = [g(A) + ↵|A|]� ↵|A|, ↵ � |minv,A✓V \v f(v|A)|.
More interestingly, given arbitrary normalized submodular g : 2V ! R,
construct a function ḡ : 2V ! R as follows:

ḡ(A) = g(A)�
X

a2A
g(a|V \ {a}) = g(A)�mg(A) (5.24)

where mg(A) , P
a2A g(a|V \ {a}) is a modular function.

ḡ is normalized since ḡ(;) = 0.
ḡ is monotone non-decreasing since for v /2 A ✓ V :

ḡ(v|A) = g(v|A)� g(v|V \ {v}) � 0 (5.25)

ḡ is called the totally normalized version of g.
Then g(A) = ḡ(A) +mg(A).
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construct a function ḡ : 2V ! R as follows:
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Totally normalized functions
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E.g., g(A) = [g(A) + ↵|A|]� ↵|A|, ↵ � |minv,A✓V \v f(v|A)|.
More interestingly, given arbitrary normalized submodular g : 2V ! R,
construct a function ḡ : 2V ! R as follows:
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Arbitrary function as difference between two polymatroids

Any normalized function h (i.e., h(;) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

Given submodular f and g, let f̄ and ḡ be them totally normalized.
Given arbitrary h = f � g where f and g are normalized submodular,

h = f � g = f̄ +mf � (ḡ +mg) (5.26)
= f̄ � ḡ + (mf �mg) (5.27)
= f̄ � ḡ +mf�h (5.28)
= f̄ +m

+
f�g � (ḡ + (�mf�g)

+) (5.29)

where m
+ is the positive part of modular function m. That is,

m
+(A) =

P
a2Am(a)1(m(a) > 0).

Both f̄ +m
+
f�g and ḡ + (�mf�g)+ are polymatroid functions!

Thus, any function can be expressed as a difference between two, not only
submodular (DS), but polymatroid functions.
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Two Equivalent Submodular Definitions
Definition 5.4.1 (submodular concave)

A function f : 2V ! R is submodular if for any A,B ✓ V , we have that:

f(A) + f(B) � f(A [B) + f(A \B) (5.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 5.4.2 (diminishing returns)

A function f : 2V ! R is submodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [ {v})� f(A) � f(B [ {v})� f(B) (5.8)

• The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
• Gain notation: Define f(v|A) , f(A+ v)� f(A). Then function f is
submodular if f(v|A) � f(v|B) for all A ✓ B ✓ V \ {v}, v 2 V .
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Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 5.4.1 (group diminishing returns)

A function f : 2V ! R is submodular if for any A ✓ B ⇢ V , and
C ✓ V \B, we have that:

f(A [ C)� f(A) � f(B [ C)� f(B) (5.30)

This means that the incremental “value” or “gain” of set C decreases as the
context in which C is considered grows from A to B (diminishing returns)
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing
Returns (Definition 5.4.2), and Group Diminishing Returns
(Definition 5.4.1) are identical.

We will show that:
Submodular Concave ) Diminishing Returns
Diminishing Returns ) Group Diminishing Returns
Group Diminishing Returns ) Submodular Concave
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Submodular Concave ) Diminishing Returns

f(S) + f(T ) � f(S [ T ) + f(S \ T )) f(v|A) � f(v|B), A ✓ B ✓ V \ v.
Assume Submodular concave, so 8S, T we have
f(S) + f(T ) � f(S [ T ) + f(S \ T ).

Given A,B and v 2 V such that: A ✓ B ✓ V \ {v}, we have from
submodular concave that:

f(A+ v) + f(B) � f(B + v) + f(A) (5.31)

Rearranging, we have

f(A+ v)� f(A) � f(B + v)� f(B) (5.32)
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Diminishing Returns ) Group Diminishing Returns

f(v|S) � f(v|T ), S ✓ T ✓ V \ v ) f(C|A) � f(C|B), A ✓ B ✓ V \ C.
Let C = {c1, c2, . . . , ck}. Then diminishing returns implies

f(A [ C) � f(A) (5.33)

= f(A [ C) �
k�1X

i=1

⇣
f(A [ {c1, . . . , ci}) � f(A [ {c1, . . . , ci})

⌘
� f(A) (5.34)

=
kX

i=1

⇣
f(A [ {c1 . . . ci}) � f(A [ {c1 . . . ci�1})

⌘
=

kX

i=1

f(ci|A [ {c1 . . . ci�1}) (5.35)

�
kX

i=1

f(ci|B [ {c1 . . . ci�1}) =
kX

i=1

⇣
f(B [ {c1 . . . ci}) � f(B [ {c1 . . . ci�1})

⌘
(5.36)

= f(B [ C) �
k�1X

i=1

⇣
f(B [ {c1, . . . , ci}) � f(B [ {c1, . . . , ci})

⌘
� f(B) (5.37)

= f(B [ C) � f(B) (5.38)
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Group Diminishing Returns ) Submodular Concave
f(U |S) � f(U |T ), S ✓ T ✓ V \U ) f(A)+f(B) � f(A[B)+f(A\B).
Assume group diminishing returns. Assume A 6= B otherwise trivial. Define
A

0 = A \B, C = A \B, and B
0 = B. Then since A

0 ✓ B
0,

f(A0 + C)� f(A0) � f(B0 + C)� f(B0) (5.39)

giving

f(A0 + C) + f(B0) � f(B0 + C) + f(A0) (5.40)

or

f(A \B +A \B) + f(B) � f(B +A \B) + f(A \B) (5.41)

which is the same as the submodular concave condition

f(A) + f(B) � f(A [B) + f(A \B) (5.42)
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Submodular Definition: Four Points

Theorem 5.4.2 (“singleton”, or “four points”)

A function f : 2V ! R is submodular if‌f for any A ⇢ V , and any
a, b 2 V \A, we have that:

f(A [ {a}) + f(A [ {b}) � f(A [ {a, b}) + f(A) (5.43)

Only If: This follows immediately from diminishing returns. If: To achieve
diminishing returns, assume A ⇢ B with B \A = {b1, b2, . . . , bk}. Then

f(A+ a)� f(A) � f(A+ b1 + a)� f(A+ b1) (5.44)
� f(A+ b1 + b2 + a)� f(A+ b1 + b2) (5.45)
� . . . (5.46)
� f(A+ b1 + · · ·+ bk + a)� f(A+ b1 + · · ·+ bk)

(5.47)

= f(B + a)� f(B) (5.48)
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Submodular Definition: Four Points

Theorem 5.4.2 (“singleton”, or “four points”)

A function f : 2V ! R is submodular if‌f for any A ⇢ V , and any
a, b 2 V \A, we have that:

f(A [ {a}) + f(A [ {b}) � f(A [ {a, b}) + f(A) (5.43)

Only If: This follows immediately from diminishing returns.

If: To achieve
diminishing returns, assume A ⇢ B with B \A = {b1, b2, . . . , bk}. Then

f(A+ a)� f(A) � f(A+ b1 + a)� f(A+ b1) (5.44)
� f(A+ b1 + b2 + a)� f(A+ b1 + b2) (5.45)
� . . . (5.46)
� f(A+ b1 + · · ·+ bk + a)� f(A+ b1 + · · ·+ bk)

(5.47)

= f(B + a)� f(B) (5.48)
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Submodular Definition: Four Points

Theorem 5.4.2 (“singleton”, or “four points”)

A function f : 2V ! R is submodular if‌f for any A ⇢ V , and any
a, b 2 V \A, we have that:

f(A [ {a}) + f(A [ {b}) � f(A [ {a, b}) + f(A) (5.43)

Only If: This follows immediately from diminishing returns. If: To achieve
diminishing returns, assume A ⇢ B with B \A = {b1, b2, . . . , bk}. Then

f(A+ a)� f(A) � f(A+ b1 + a)� f(A+ b1) (5.44)
� f(A+ b1 + b2 + a)� f(A+ b1 + b2) (5.45)
� . . . (5.46)
� f(A+ b1 + · · ·+ bk + a)� f(A+ b1 + · · ·+ bk)

(5.47)

= f(B + a)� f(B) (5.48)
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The Submodular Square, and Hypercube Vertices
We can test submodularity via values on vertices of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities of form
f(A)+f(B) � f(A[B)+f(A\B)?
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Submodular Concave ⌘ Diminishing Returns, in one slide.
Theorem 5.4.3
Given function f : 2V ! R, then

f(A) + f(B) � f(A [B) + f(A \B) for all A,B ✓ V (SC)
if and only if

f(v|X) � f(v|Y ) for all X ✓ Y ✓ V and v /2 Y (DR)

Proof.
(SC))(DR): Set A X [ {v}, B  Y . Then A [B = Y [ {v} and
A \B = X and f(A)� f(A \B) � f(A [B)� f(B) implies (DR).

(DR))(SC): Order A \B = {v1, v2, . . . , vr} arbitrarily. For i 2 1 : r,
f(vi|(A \B) [ {v1, v2, . . . , vi�1}) � f(vi|B [ {v1, v2, . . . , vi�1}).

Applying telescoping summation to both sides, we get:
rX

i=1

f(vi|(A \B) [ {v1, v2, . . . , vi�1}) �
rX

i=1

f(vi|B [ {v1, v2, . . . , vi�1})

) f(A)� f(A \B) � f(A [B)� f(B)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)

f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)

f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)
f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F29/85 (pg.65/276)

5⑤ 597 ⇒ ( 5.ro)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Equivalent Definitions of Submodularity

We’ve already seen that Eq. 5.54 ⌘ Eq. 5.55 ⌘ Eq. 5.56 ⌘ Eq. 5.57 ⌘
Eq. 5.58.

We next show that Eq. 5.57 ) Eq. 5.59 ) Eq. 5.60 ) Eq. 5.57.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F30/85 (pg.68/276)

f- ( Aub
) And

= f-(
AfD)

u
(Aro
) ) - f-

(And

=
f-(Aub

)
-7*53

f- (
Alarm

=
f-CA

)
-
flans)

¥ f.cry
And

=
HB
) ?t#D



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Equivalent Definitions of Submodularity

We’ve already seen that Eq. 5.54 ⌘ Eq. 5.55 ⌘ Eq. 5.56 ⌘ Eq. 5.57 ⌘
Eq. 5.58.
We next show that Eq. 5.57 ) Eq. 5.59 ) Eq. 5.60 ) Eq. 5.57.
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Approach

To show these next results, we essentially first use:

f(S [ T ) = f(S) + f(T |S)  f(S) + upper-bound (5.63)

and

f(T ) + lower-bound  f(T ) + f(S|T ) = f(S [ T ) (5.64)

leading to

f(T ) + lower-bound  f(S) + upper-bound (5.65)

or

f(T )  f(S) + upper-bound� lower-bound (5.66)
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Approach

To show these next results, we essentially first use:

f(S [ T ) = f(S) + f(T |S)  f(S) + upper-bound (5.63)

and

f(T ) + lower-bound  f(T ) + f(S|T ) = f(S [ T ) (5.64)

leading to

f(T ) + lower-bound  f(S) + upper-bound (5.65)

or

f(T )  f(S) + upper-bound� lower-bound (5.66)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F31/85 (pg.71/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Eq. 5.57 ) Eq. 5.59

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
First, we upper bound the gain of T in the context of S:

f(S [ T )� f(S) =
rX

t=1

⇣
f(S [ {j1, . . . , jt})� f(S [ {j1, . . . , jt�1})

⌘

(5.67)

=
rX

t=1

f(jt|S [ {j1, . . . , jt�1}) 
rX

t=1

f(jt|S) (5.68)

=
X

j2T\S

f(j|S) (5.69)

or

f(T |S) 
X

j2T\S

f(j|S) (5.70)
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Eq. 5.57 ) Eq. 5.59

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
Next, lower bound S in the context of T :

f(S [ T )� f(T ) =
qX

t=1

[f(T [ {k1, . . . , kt})� f(T [ {k1, . . . , kt�1})]

(5.71)

=
qX

t=1

f(kt|T [ {k1, . . . , kt} \ {kt}) �
qX

t=1

f(kt|T [ S \ {kt})

(5.72)

=
X

j2S\T

f(j|S [ T \ {j}) (5.73)
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Eq. 5.57 ) Eq. 5.59

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
So we have the upper bound

f(T |S) = f(S [ T )� f(S) 
X

j2T\S

f(j|S) (5.74)

and the lower bound

f(S|T ) = f(S [ T )� f(T ) �
X

j2S\T

f(j|S [ T \ {j}) (5.75)

This gives upper and lower bounds of the form

f(T ) + lower bound  f(S [ T )  f(S) + upper bound, (5.76)

and combining directly the left and right hand side gives the desired
inequality.
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Eq. 5.59 ) Eq. 5.60

This follows immediately since if S ✓ T , then S \ T = ;, and the last term
of Eq. 5.59 vanishes.
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Many (Equivalent) Definitions of Submodularity
f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (5.54)

f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (5.55)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (5.56)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (5.57)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (5.58)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(5.59)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (5.60)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(5.61)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (5.62)
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Eq. 5.60 ) Eq. 5.57

Here, we set T = S [ {j, k}, j /2 S [ {k} into Eq. 5.60 to obtain

f(S [ {j, k})  f(S) + f(j|S) + f(k|S) (5.77)
= f(S) + f(S + {j})� f(S) + f(S + {k})� f(S) (5.78)
= f(S + {j}) + f(S + {k})� f(S) (5.79)
= f(j|S) + f(S + {k}) (5.80)

giving

f(j|S [ {k}) = f(S [ {j, k})� f(S [ {k}) (5.81)
 f(j|S) (5.82)
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Submodular Concave
Why do we call the f(A) + f(B) � f(A [B) + f(A \B) definition of
submodularity, submodular concave?

A continuous twice differentiable function f : Rn ! R is concave if‌f
r2

f � 0 (the Hessian matrix is nonpositive definite).
Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V ! R as follows:

(rBf)(A) , f(A [B)� f(A \B) = f
�
B|(A \B)

�
(5.83)

read as: the derivative of f at A in the direction B.
Hence, if A \B = ;, then (rBf)(A) = f(B|A).
Consider a form of second derivative or 2nd difference:

(rBrCf)(A) = rB[

(rCf)(A)z }| {
f(A [ C)� f(A \ C) ] (5.84)

= (rBf)(A [ C)� (rBf)(A \ C) (5.85)
= f(A [B [ C)� f((A [ C) \B)

� f((A \ C) [B) + f((A \ C) \B) (5.86)
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Submodular Concave
Why do we call the f(A) + f(B) � f(A [B) + f(A \B) definition of
submodularity, submodular concave?
A continuous twice differentiable function f : Rn ! R is concave if‌f
r2
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Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V ! R as follows:
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�
(5.83)
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Hence, if A \B = ;, then (rBf)(A) = f(B|A).
Consider a form of second derivative or 2nd difference:
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(rCf)(A)z }| {
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Submodular Concave
Why do we call the f(A) + f(B) � f(A [B) + f(A \B) definition of
submodularity, submodular concave?
A continuous twice differentiable function f : Rn ! R is concave if‌f
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Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V ! R as follows:
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B|(A \B)

�
(5.83)

read as: the derivative of f at A in the direction B.

Hence, if A \B = ;, then (rBf)(A) = f(B|A).
Consider a form of second derivative or 2nd difference:

(rBrCf)(A) = rB[

(rCf)(A)z }| {
f(A [ C)� f(A \ C) ] (5.84)

= (rBf)(A [ C)� (rBf)(A \ C) (5.85)
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Submodular Concave
Why do we call the f(A) + f(B) � f(A [B) + f(A \B) definition of
submodularity, submodular concave?
A continuous twice differentiable function f : Rn ! R is concave if‌f
r2

f � 0 (the Hessian matrix is nonpositive definite).
Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V ! R as follows:

(rBf)(A) , f(A [B)� f(A \B) = f
�
B|(A \B)

�
(5.83)

read as: the derivative of f at A in the direction B.
Hence, if A \B = ;, then (rBf)(A) = f(B|A).

Consider a form of second derivative or 2nd difference:

(rBrCf)(A) = rB[

(rCf)(A)z }| {
f(A [ C)� f(A \ C) ] (5.84)
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Submodular Concave
Why do we call the f(A) + f(B) � f(A [B) + f(A \B) definition of
submodularity, submodular concave?
A continuous twice differentiable function f : Rn ! R is concave if‌f
r2

f � 0 (the Hessian matrix is nonpositive definite).
Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V ! R as follows:

(rBf)(A) , f(A [B)� f(A \B) = f
�
B|(A \B)

�
(5.83)

read as: the derivative of f at A in the direction B.
Hence, if A \B = ;, then (rBf)(A) = f(B|A).
Consider a form of second derivative or 2nd difference:

(rBrCf)(A) = rB[

(rCf)(A)z }| {
f(A [ C)� f(A \ C) ] (5.84)

= (rBf)(A [ C)� (rBf)(A \ C) (5.85)
= f(A [B [ C)� f((A [ C) \B)

� f((A \ C) [B) + f((A \ C) \B) (5.86)
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Submodular Concave

If the second difference operator everywhere nonpositive:

f(A [B [ C)� f((A [ C) \B)

� f((A \ C) [B) + f(A \ C \B)  0 (5.87)

then we have the equation:

f((A [ C) \B) + f((A \ C) [B) � f(A [B [ C) + f(A \ C \B)
(5.88)

Define A
0 = (A [ C) \B and B

0 = (A \ C) [B. Then the above
implies:

f(A0) + f(B0) � f(A0 [B
0) + f(A0 \B

0) (5.89)

and note that A0 and B
0 so defined can be arbitrary.

One sense in which submodular functions are like concave functions.
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Submodular Concave

If the second difference operator everywhere nonpositive:

f(A [B [ C)� f((A [ C) \B)

� f((A \ C) [B) + f(A \ C \B)  0 (5.87)

then we have the equation:

f((A [ C) \B) + f((A \ C) [B) � f(A [B [ C) + f(A \ C \B)
(5.88)

Define A
0 = (A [ C) \B and B

0 = (A \ C) [B. Then the above
implies:

f(A0) + f(B0) � f(A0 [B
0) + f(A0 \B

0) (5.89)

and note that A0 and B
0 so defined can be arbitrary.

One sense in which submodular functions are like concave functions.
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Submodular Concave

If the second difference operator everywhere nonpositive:

f(A [B [ C)� f((A [ C) \B)

� f((A \ C) [B) + f(A \ C \B)  0 (5.87)

then we have the equation:

f((A [ C) \B) + f((A \ C) [B) � f(A [B [ C) + f(A \ C \B)
(5.88)

Define A
0 = (A [ C) \B and B

0 = (A \ C) [B. Then the above
implies:

f(A0) + f(B0) � f(A0 [B
0) + f(A0 \B

0) (5.89)

and note that A0 and B
0 so defined can be arbitrary.

One sense in which submodular functions are like concave functions.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F39/85 (pg.85/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Submodular Concave

If the second difference operator everywhere nonpositive:

f(A [B [ C)� f((A [ C) \B)

� f((A \ C) [B) + f(A \ C \B)  0 (5.87)

then we have the equation:

f((A [ C) \B) + f((A \ C) [B) � f(A [B [ C) + f(A \ C \B)
(5.88)

Define A
0 = (A [ C) \B and B

0 = (A \ C) [B. Then the above
implies:

f(A0) + f(B0) � f(A0 [B
0) + f(A0 \B

0) (5.89)

and note that A0 and B
0 so defined can be arbitrary.

One sense in which submodular functions are like concave functions.
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Submodular Concave

A

C

B
(a) A0 = (A [ C) \ B

A

C

B
(b) B0 = (A \ C) [ B

Figure: A figure showing A
0 [B

0 = A [B [ C and A
0 \B

0 = A \ C \B.
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Submodular Concave

A

C

B
(a) A0 = (A [ C) \ B

A

C

B
(b) B0 = (A \ C) [ B

Figure: A figure showing A
0 [B

0 = A [B [ C and A
0 \B

0 = A \ C \B.
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.

Recall four points definition: A function is submodular if for all X ✓ V

and j, k 2 V \X

f(X + j) + f(X + k) � f(X + j + k) + f(X) (5.90)

This gives us a simpler notion corresponding to concavity.
Define gain as rj(X) = f(X + j)� f(X), a form of discrete gradient.
Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X ✓ V and j, k 2 V , we have:

rjrkf(X)  0 (5.91)
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.
Recall four points definition: A function is submodular if for all X ✓ V

and j, k 2 V \X

f(X + j) + f(X + k) � f(X + j + k) + f(X) (5.90)

This gives us a simpler notion corresponding to concavity.
Define gain as rj(X) = f(X + j)� f(X), a form of discrete gradient.
Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X ✓ V and j, k 2 V , we have:

rjrkf(X)  0 (5.91)
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.
Recall four points definition: A function is submodular if for all X ✓ V

and j, k 2 V \X

f(X + j) + f(X + k) � f(X + j + k) + f(X) (5.90)

This gives us a simpler notion corresponding to concavity.

Define gain as rj(X) = f(X + j)� f(X), a form of discrete gradient.
Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X ✓ V and j, k 2 V , we have:

rjrkf(X)  0 (5.91)
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.
Recall four points definition: A function is submodular if for all X ✓ V

and j, k 2 V \X

f(X + j) + f(X + k) � f(X + j + k) + f(X) (5.90)

This gives us a simpler notion corresponding to concavity.
Define gain as rj(X) = f(X + j)� f(X), a form of discrete gradient.

Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X ✓ V and j, k 2 V , we have:

rjrkf(X)  0 (5.91)
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.
Recall four points definition: A function is submodular if for all X ✓ V

and j, k 2 V \X

f(X + j) + f(X + k) � f(X + j + k) + f(X) (5.90)

This gives us a simpler notion corresponding to concavity.
Define gain as rj(X) = f(X + j)� f(X), a form of discrete gradient.
Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X ✓ V and j, k 2 V , we have:

rjrkf(X)  0 (5.91)
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Example: Rank function of a matrix

Consider the following 4⇥ 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.
r(A [ C) = 3, r(B [ C) = 3.
r(A [Ar) = 3, r(B [Br) = 3, r(A [Br) = 4, r(B [Ar) = 4.
r(A [B) = 4, r(A \B) = 1 < r(C) = 2.

6 = r(A) + r(B) = r(A [B) + r(C) > r(A [B) + r(A \B) = 5
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On Rank

Let rank : 2V ! Z+ be the rank function.

In general, rank(A)  |A|, and vectors in A are linearly independent if
and only if rank(A) = |A|.
If A,B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by vectors
in A.
To stress this point, note that the above condition is |A| < |B|, not
A ✓ B which is sufficient (to be able to find an independent vector)
but not required.
In other words, given A,B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| , 9 an b 2 B such that rank(A [ {b}) = |A|+ 1.
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|A| < |B| , 9 an b 2 B such that rank(A [ {b}) = |A|+ 1.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F43/85 (pg.98/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

On Rank

Let rank : 2V ! Z+ be the rank function.
In general, rank(A)  |A|, and vectors in A are linearly independent if
and only if rank(A) = |A|.
If A,B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by vectors
in A.
To stress this point, note that the above condition is |A| < |B|, not
A ✓ B which is sufficient (to be able to find an independent vector)
but not required.
In other words, given A,B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| , 9 an b 2 B such that rank(A [ {b}) = |A|+ 1.
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Spanning trees/forests

We are given a graph G = (V,E), and consider the edges E = E(G)
as an index set.
Consider the |V |⇥ |E| incidence matrix of undirected graph G, which
is the matrix XG = (xv,e)v2V (G),e2E(G) where

xv,e =

(
1 if v 2 e

0 if v /2 e
(5.92)
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0

BBBBBBBBBB@

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 0 0 0 0 0 0
3 0 1 0 1 0 1 0 0 0 0 0 0
4 0 0 1 1 0 0 1 1 0 0 0 0
5 0 0 0 0 0 1 1 0 0 1 0 0
6 0 0 0 0 0 0 0 1 1 0 1 0
7 0 0 0 0 1 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 1 1 1

1

CCCCCCCCCCA

(5.93)
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Spanning trees/forests & incidence matrices

We are given a graph G = (V,E), we can arbitrarily orient the graph
(make it directed) consider again the edges E = E(G) as an index set.
Consider instead the |V |⇥ |E| incidence matrix of directed graph G,
which is the matrix XG = (xv,e)v2V (G),e2E(G) where

xv,e =

8
><

>:

1 if v 2 e
+

�1 if v 2 e
�

0 if v /2 e

(5.94)

and where e
+ is the tail and e

� is the head of (now) directed edge e.
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Spanning trees/forests & incidence matrices

A directed version of the graph
(right) and its adjacency matrix
(below).
Orientation can be arbitrary.
Note, rank of this matrix is 7.
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0
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1 2 3 4 5 6 7 8 9 10 11 12

1 �1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 �1 0 1 0 0 0 0 0 0 0
3 0 �1 0 1 0 �1 0 0 0 0 0 0
4 0 0 1 �1 0 0 1 �1 0 0 0 0
5 0 0 0 0 0 1 �1 0 0 1 0 0
6 0 0 0 0 0 0 0 1 �1 0 �1 0
7 0 0 0 0 �1 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 �1 1 �1

1

CCCCCCCCCCA
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Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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1 �1
2 1
3 0
4 0
5 0
6 0
7 0
8 0

1

CCCCCCCCCCA

(5.95)

Here, rank({x1}) = 1.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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1 2

1 �1 1
2 1 0
3 0 �1
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

1

CCCCCCCCCCA

(5.95)

Here, rank({x1, x2}) = 2.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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1 �1 1 0
2 1 0 �1
3 0 �1 0
4 0 0 1
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0

1

CCCCCCCCCCA

(5.95)

Here, rank({x1, x2, x3}) = 3.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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1 �1 1 0 0
2 1 0 �1 1
3 0 �1 0 0
4 0 0 1 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 �1
8 0 0 0 0

1

CCCCCCCCCCA

(5.95)

Here, rank({x1, x2, x3, x5}) = 4.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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1 �1 1 0 0 0
2 1 0 �1 0 1
3 0 �1 0 1 0
4 0 0 1 �1 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 �1
8 0 0 0 0 0

1

CCCCCCCCCCA

(5.95)

Here, rank({x1, x2, x3, x4, x5}) = 4.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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1 2 3 4

1 �1 1 0 0
2 1 0 �1 0
3 0 �1 0 1
4 0 0 1 �1
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0

1

CCCCCCCCCCA

(5.95)

Here, rank({x1, x2, x3, x4}) = 3 since x4 = �x1 � x2 � x3.
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.
For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
We have rank(A) = |V (G)|� kG(A).
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.
For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
We have rank(A) = |V (G)|� kG(A).
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.
For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
We have rank(A) = |V (G)|� kG(A).
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).

The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.
For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
We have rank(A) = |V (G)|� kG(A).
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.

For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
We have rank(A) = |V (G)|� kG(A).
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.
For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.

We have rank(A) = |V (G)|� kG(A).
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Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ✓ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V |� k where k is the number
of connected components of G.
For A ✓ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
We have rank(A) = |V (G)|� kG(A).
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
Algorithm 1: Kruskal’s Algorithm

1 Sort the edges so that w(e1)  w(e2)  · · ·  w(em) ;
2 T  (V (G), ;) = (V, ;) ;
3 for i = 1 to m do
4 if E(T ) [ {ei} does not create a cycle in T then
5 E(T ) E(T ) [ {ei} ;
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
Algorithm 2: Jarník/Prim/Dijkstra Algorithm

1 T  ; ;
2 while T is not a spanning tree do
3 T  T [ {e} for e = the minimum weight edge extending

the tree T to a not-yet connected vertex ;
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
Algorithm 3: Borůvka’s Algorithm

1 F  ; /* We build up the edges of a forest in F */
2 while G(V, F ) is disconnected do
3 forall components Ci of F do
4 F  F [ {ei} for ei = the min weight-index edge in Ci;
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.

These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E ! R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

P
e2T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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From Matrix Rank ! Matroid

So V is set of column vector indices of a matrix.

Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I 2 I,
the vectors indexed by I are linearly independent.
Given a set B 2 I of linearly independent vectors, then any subset A ✓ B

is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ✓ B and B 2 I ) A 2 I (5.96)

maxInd: Inclusionwise maximal independent subsets (i.e., the set of bases
of) of any set B ✓ V defined as:

maxInd(B) , {A ✓ B : A 2 I and 8v 2 B \A,A [ {v} /2 I} (5.97)

Given any set B ⇢ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ✓ V ,

8A1, A2 2 maxInd(B), |A1| = |A2| = rank(B) (5.98)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F50/85 (pg.123/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

From Matrix Rank ! Matroid

So V is set of column vector indices of a matrix.
Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I 2 I,
the vectors indexed by I are linearly independent.

Given a set B 2 I of linearly independent vectors, then any subset A ✓ B

is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ✓ B and B 2 I ) A 2 I (5.96)

maxInd: Inclusionwise maximal independent subsets (i.e., the set of bases
of) of any set B ✓ V defined as:

maxInd(B) , {A ✓ B : A 2 I and 8v 2 B \A,A [ {v} /2 I} (5.97)

Given any set B ⇢ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ✓ V ,

8A1, A2 2 maxInd(B), |A1| = |A2| = rank(B) (5.98)
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From Matrix Rank ! Matroid

So V is set of column vector indices of a matrix.
Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I 2 I,
the vectors indexed by I are linearly independent.
Given a set B 2 I of linearly independent vectors, then any subset A ✓ B

is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ✓ B and B 2 I ) A 2 I (5.96)

maxInd: Inclusionwise maximal independent subsets (i.e., the set of bases
of) of any set B ✓ V defined as:

maxInd(B) , {A ✓ B : A 2 I and 8v 2 B \A,A [ {v} /2 I} (5.97)

Given any set B ⇢ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ✓ V ,

8A1, A2 2 maxInd(B), |A1| = |A2| = rank(B) (5.98)
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From Matrix Rank ! Matroid

Let I = {I1, I2, . . .} be the set of sets as described above.

Thus, for all I 2 I, the matrix rank function has the property

r(I) = |I| (5.99)

and for any B /2 I,

r(B) = max {|A| : A ✓ B and A 2 I} < |B| (5.100)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Matroids

Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V ), and a
collection of subsets I = {I1, I2, . . .} of E that correspond to
independent elements.
There are many definitions of matroids that are mathematically
equivalent, we’ll see some of them here.
“If a theorem about graphs can be expressed in terms of edges and
circuits only, it probably exemplifies a more general theorem about
matroids.” – Tutte
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Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, ; 6= I ✓ 2E is called a set
system, notated (E, I).

Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S ✓ E has S 2 I.

One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A ⇢ B 2 I, we have that A 2 I.
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A (finite) ground set E and a set of subsets of E, ; 6= I ✓ 2E is called a set
system, notated (E, I).

Set systems can be arbitrarily complex since, as stated, there is no
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Independence System

Definition 5.6.2 (independence (or hereditary) system)
A set system (V, I) is an independence system if

; 2 I (emptyset containing) (I1)

and

8I 2 I, J ⇢ I ) J 2 I (subclusive) (I2)

Property (I2) called “down monotone,” “down closed,” or “subclusive”

Example: E = {1, 2, 3, 4}. With I = {;, {1}, {1, 2}, {1, 2, 4}}.
Then (E, I) is a set system, but not an independence system since it is
not down closed (e.g., we have {1, 2} 2 I but not {2} 2 I).
With I = {;, {1}, {2}, {1, 2}}, then (E, I) is now an independence
(hereditary) system.
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Independence System

0

B@

1 2 3 4 5 6 7 8

1 0 0 1 1 2 1 3 1

2 0 1 1 0 2 0 2 4

3 1 1 1 0 0 3 1 5

1

CA =

0

B@

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

1

CA

(5.101)

Given any set of linearly independent vectors A, any subset B ⇢ A will
also be linearly independent.

Given any forest Gf that is an edge-induced sub-graph of a graph G,
any sub-graph of Gf is also a forest.
So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J 2 I, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (E, I) is a Matroid if
(I1) ; 2 I
(I2) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)
(I3) 8I, J 2 I, with |I| = |J |+ 1, then there exists x 2 I \ J such that

J [ {x} 2 I.

Why is (I1) is not redundant given (I2)?

Because without (I1) could have a
non-matroid where I = {}.
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On Matroid History

Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.
Forgotten for 20 years until mid 1950s.
Matroids are powerful and flexible combinatorial objects.
The rank function of a matroid is already a very powerful submodular
function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic term ’matroid’, which we prefer
to avoid in favor of the term ’pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.6.4 (Matroid-II)

A set system (E, I) is a Matroid if
(I1’) ; 2 I
(I2’) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)
(I3’) 8I, J 2 I, with |I| > |J |, then there exists x 2 I \ J such that

J [ {x} 2 I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)⌘(I3’) using induction.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ✓ E is
called independent if A 2 I and otherwise A is called dependent.

A base of U ✓ E: For U ✓ E, a subset B ✓ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B 2 I
and there is no Z 2 I with B ⇢ Z ✓ U .
A base of a matroid: If U = E, then a “base of E” is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 5.6.5
In a matroid M = (E, I), for any U ✓ E(M), any two bases of U have the
same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ; 2 I (emptyset containing)

(I2’) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)

(I3’) 8X ✓ V , and I1, I2 2 maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank
Thus, in any matroid M = (E, I), 8U ✓ E(M), any two bases of U
have the same size.

The common size of all the bases of U is called the rank of U , denoted
rM (U) or just r(U) when the matroid in equation is unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of all
the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function r : 2E ! Z+ defined by

r(A) = max {|X| : X ✓ A,X 2 I} = max
X2I

|A \X| (5.102)

From the above, we immediately see that r(A)  |A|.
Moreover, if r(A) = |A|, then A 2 I, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V ! Z+

Definition 5.6.8 (closed/flat/subspace)
A subset A ✓ E is closed (equivalently, a flat or a subspace) of matroid M

if for all x 2 E \A, r(A [ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)� 1.

Definition 5.6.9 (closure)
Given A ✓ E, the closure (or span) of A, is defined by
span(A) = {b 2 E : r(A [ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 5.6.10 (circuit)

A subset A ✓ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a 2 A, r(A \ {a}) = |A|� 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))
Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B

0 2 B, and x 2 B
0 \B, then B

0�x+ y 2 B for some y 2 B \B0.
3 If B,B

0 2 B, and x 2 B
0 \B, then B� y+ x 2 B for some y 2 B \B0.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 5.6.12 (Matroid by circuits)
Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ; /2 C
2 (C2): if C1, C2 2 C and C1 ✓ C2, then C1 = C2.
3 (C3): if C1, C2 2 C with C1 6= C2, and e 2 C1 \C2, then there exists a

C3 2 C such that C3 ✓ (C1 [ C2) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)
Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;
2 if C,C 0 2 C, and x 2 C \ C

0, then (C [ C
0) \ {x} contains a set in C;

3 if C,C 0 2 C, and x 2 C \ C
0, and y 2 C \ C 0, then (C [ C

0) \ {x}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F65/85 (pg.180/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)
Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;
2 if C,C 0 2 C, and x 2 C \ C

0, then (C [ C
0) \ {x} contains a set in C;

3 if C,C 0 2 C, and x 2 C \ C
0, and y 2 C \ C 0, then (C [ C

0) \ {x}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F65/85 (pg.181/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Uniform Matroid
Given E, consider I to be all subsets of E that are at most size k.
That is I = {A ✓ E : |A|  k}.

Then (E, I) is a matroid called a k-uniform matroid.
Note, if I, J 2 I, and |I| < |J |  k, and j 2 J such that j 62 I, then j

is such that |I + j|  k and so I + j 2 I.
Rank function

r(A) =

(
|A| if |A|  k

k if |A| > k
(5.103)

Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.
Closure function

span(A) =

(
A if |A| < k,

E if |A| � k,
(5.104)

A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

Let X be an n⇥m matrix and E = {1, . . . ,m}
Let I consists of subsets of E such that if A 2 I, and
A = {a1, a2, . . . , ak} then the vectors xa1 , xa2 , . . . , xak are linearly
independent.
the rank function is just the rank of the space spanned by the
corresponding set of vectors.
rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).
Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V,E) be a graph. Consider (E, I) where the edges of the
graph E are the ground set and A 2 I if the edge-induced graph
G(V,A) by A does not contain any cycle.

Then M = (E, I) is a matroid.
I contains all forests.
Bases are spanning forests (spanning trees if G is connected).
Rank function r(A) is the size of the largest spanning forest contained
in G(V,A).
Recall from earlier, r(A) = |V (G)|� kG(A), where for A ✓ E(G), we
define kG(A) as the number of connected components of the
edge-induced spanning subgraph (V (G), A), and that kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

Let V be our ground set.

Let V = V1 [ V2 [ · · · [ V` be a partition of V into ` blocks (i.e.,
disjoint sets). Define a set of subsets of V as

I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}. (5.105)

where k1, . . . , k` are fixed “limit” parameters, ki � 0. Then M = (V, I)
is a matroid.
Note that a k-uniform matroid is a trivial example of a partition
matroid with ` = 1, V1 = V , and k1 = k.
Parameters associated with a partition matroid: ` and k1, k2, . . . , k`

although often the ki’s are all the same.
We’ll show that property (I3’) in Def 5.6.4 holds. First note, for any
X ✓ V , |X| =

P`
i=1 |X \ Vi| since {V1, V2, . . . , V`} is a partition.

If X,Y 2 I with |Y | > |X|, then there must be at least one i with
|Y \ Vi| > |X \ Vi|. Therefore, adding one element e 2 Vi \ (Y \X)
to X won’t break independence.
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Partition Matroid

Ground set of objects, V =

⇢

�
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Partition Matroid
Partition of V into six blocks, V1, V2, . . . , V6
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Partition Matroid
Limit associated with each block, {k1, k2, . . . , k6}
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Partition Matroid
Independent subset but not maximally independent.
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Partition Matroid
Maximally independent subset, what is called a base.
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Partition Matroid
Not independent since over limit in set six.
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.

1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(5.106)

= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(5.106)

= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B. We
can find such a Y ◆ X because the following. Let Y 0 2 I be any inclusionwise
maximal set with Y 0 ✓ A [B, which might not have X ✓ Y 0. Starting from
Y  X ✓ A [B, since |Y 0| � |X|, there exists a y 2 Y 0 \ X ✓ A [B such that
X + y 2 I but since y 2 A [B, also X + y 2 A [B — we then add y to Y . We
can keep doing this while |Y 0| > |X| since this is a matroid. We end up with an
inclusionwise maximal set Y with Y 2 I and X ✓ Y .

3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and
r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.

4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(5.106)

= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.

4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(5.106)

= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(5.106)

= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B) � |Y \A|+ |Y \B| (5.106)

= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B) � |Y \A|+ |Y \B| (5.106)
= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)

� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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Matroids - rank function is submodular
Lemma 5.8.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B) � |Y \A|+ |Y \B| (5.106)
= |Y \ (A \B)|+ |Y \ (A [B)| (5.107)
� |X|+ |Y | = r(A \B) + r(A [B) (5.108)
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A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
(R2) r(A)  r(B) whenever A ✓ B ✓ E (monotone non-decreasing)
(R3) r(A [B) + r(A \B)  r(A) + r(B) for all A,B ✓ E (submodular)

From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}), namely r(A) or r(A) + 1.

Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
(R2) r(A)  r(B) whenever A ✓ B ✓ E (monotone non-decreasing)
(R3) r(A [B) + r(A \B)  r(A) + r(B) for all A,B ✓ E (submodular)

From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}), namely r(A) or r(A) + 1.
Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.

Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
(R2) r(A)  r(B) whenever A ✓ B ✓ E (monotone non-decreasing)
(R3) r(A [B) + r(A \B)  r(A) + r(B) for all A,B ✓ E (submodular)

From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}), namely r(A) or r(A) + 1.
Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.

Can refer to matroid as (E, r), E is ground set, r is rank function.
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A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
(R2) r(A)  r(B) whenever A ✓ B ✓ E (monotone non-decreasing)
(R3) r(A [B) + r(A \B)  r(A) + r(B) for all A,B ✓ E (submodular)

From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}), namely r(A) or r(A) + 1.
Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(5.109)
� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(5.109)
� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.

Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(5.109)
� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(5.109)
� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(5.109)

� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X) + r(;) (5.109)

� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X) + r(;) (5.109)
� |Y |� |Y \X| (5.110)

= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X) + r(;) (5.109)
� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3)
too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X) + r(;) (5.109)
� |Y |� |Y \X| (5.110)
= |X| (5.111)

implying r(X) = |X|, and thus X 2 I. . . .
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Matroids from rank

Proof of Theorem 5.8.2 (matroid from rank) cont.
Let A,B 2 I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note 1  k  |B|).

Suppose, to the contrary, that 8b 2 B \A, A+ b /2 I, which means for
all such b, r(A+ b) = r(A) = |A| < |A|+ 1. Then

r(B)  r(A [B) (5.112)
 r(A [ (B \ {b1})) + r(A [ {b1})� r(A) (5.113)
= r(A [ (B \ {b1}) (5.114)
 r(A [ (B \ {b1, b2})) + r(A [ {b2})� r(A) (5.115)
= r(A [ (B \ {b1, b2})) (5.116)
 . . .  r(A) = |A| < |B| (5.117)

giving a contradiction since B 2 I.
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Matroids from rank II

Another way of using function r to define a matroid.

Theorem 5.8.3 (Matroid from rank II)

Let E be a finite set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all X ✓ E, and
x, y 2 E:

(R1’) r(;) = 0;
(R2’) r(X)  r(X [ {y})  r(X) + 1;
(R3’) If r(X [ {x}) = r(X [ {y}) = r(X), then r(X [ {x, y}) = r(X).
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Matroids by submodular functions

Theorem 5.8.4 (Matroid by submodular functions)

Let f : 2E ! Z be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f) =
n
C ✓ E : C is non-empty,

is inclusionwise-minimal,

and has f(C) < |C|
o

(5.118)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C 2 C(f), then there exists
no C

0 ⇢ C with C
0 2 C(f) (i.e., C 0 ⇢ C would either be empty or have

f(C 0) � |C 0|). Also, recall inclusionwise-minimal in Definition 5.6.10, the
definition of a circuit.
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Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

Independence (define the independent sets).

Base axioms (exchangeability)
Circuit axioms
Closure axioms (we didn’t see this, but it is possible)
Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)
Matroids by integral submodular functions.
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Maximization problems for matroids

Given a matroid M = (E, I) and a modular value function c : E ! R,
the task is to find an X 2 I such that c(X) =

P
x2X c(x) is maximum.

This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

Given a matroid M = (E, I) and a modular cost function c : E ! R,
the task is to find a basis B 2 B such that c(B) is minimized.
This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

What is the partition matroid’s rank function?

A partition matroids rank function:

r(A) =
X̀

i=1

min(|A \ Vi|, ki) (5.119)

which we also immediately see is submodular using properties we spoke
about last week. That is:

1 |A \ Vi| is submodular (in fact modular) in A

2 min(submodular(A), ki) is submodular in A since |A \ Vi| is monotone.
3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid

What is the partition matroid’s rank function?
A partition matroids rank function:

r(A) =
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min(|A \ Vi|, ki) (5.119)

which we also immediately see is submodular using properties we spoke
about last week. That is:

1 |A \ Vi| is submodular (in fact modular) in A

2 min(submodular(A), ki) is submodular in A since |A \ Vi| is monotone.
3 sums of submodular functions are submodular.
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defines a matroid (the partition matroid).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020 F81/85 (pg.260/276)



Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

From 2-partition matroid rank to truncated matroid rank
Example: 2-partition matroid rank function: Given natural numbers
a, b 2 Z+ with a < b, and any set R ✓ V with |R| = b.

Create two-block partition V = (R, R̄), where R̄ = V \R so
|R̄| = |V |� b. Gives 2-partition matroid rank function as follows:

r(A) = min(|A \R|, a) + min(|A \ R̄|, |R̄|) (5.120)
= min(|A \R|, a) + |A \ R̄| (5.121)
= min(|A \ R̄|+ |A \R|, |A \ R̄|+ a) (5.122)
= min(|A|, |A \ R̄|+ a) (5.123)

Figure showing partition blocks and partition matroid limits.
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Example: 2-partition matroid rank function: Given natural numbers
a, b 2 Z+ with a < b, and any set R ✓ V with |R| = b.
Create two-block partition V = (R, R̄), where R̄ = V \R so
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= min(|A|, |A \ R̄|+ a) (5.123)

Figure showing partition blocks and partition matroid limits.
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From 2-partition matroid rank to truncated matroid rank
Example: 2-partition matroid rank function: Given natural numbers
a, b 2 Z+ with a < b, and any set R ✓ V with |R| = b.
Create two-block partition V = (R, R̄), where R̄ = V \R so
|R̄| = |V |� b. Gives 2-partition matroid rank function as follows:

r(A) = min(|A \R|, a) + min(|A \ R̄|, |R̄|) (5.120)
= min(|A \R|, a) + |A \ R̄| (5.121)
= min(|A \ R̄|+ |A \R|, |A \ R̄|+ a) (5.122)
= min(|A|, |A \ R̄|+ a) (5.123)

Figure showing partition blocks and partition matroid limits.

V

R̄

R a < |R| = b

a

|V | b�
Since |R̄| = |V |� b

the limit on R̄ is vacuous.
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a
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Since |R̄| = |V |� b
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A
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Truncated Matroid Rank Function
Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A \R|, a) + min(|A \ R̄|, |R̄|), a < b. Define:

fR(A) = min
n
r(A) , b

o
(5.124)

= min
n
min(|A|, |A \ R̄|+ a) , b

o
(5.125)

= min
�
|A|, a+ |A \ R̄|, b

 
(5.126)

Defines a matroid M = (V, fR) = (V, I) (Goemans et. al.) with
I = {I ✓ V : |I|  b and |I \R|  a}, (5.127)

Useful for showing hardness of constrained submodular minimization.
Consider sets B ✓ V with |B| = b. Recall R fixed, and |R| = b.

For R, we have fR(R) = min(b, a, b) = a < b.
For any B with |B \R|  a, fR(B) = b.
For any B with |B \R| = `, with a  `  b, fR(B) = a+ b� `.
R, the set with minimum valuation amongst size-b sets, is hidden
within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.
Letting V denote the ground set, and V1, V2, . . . the partition, the
bipartite graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.
I = (I1, I2, . . . , I`) is a set of k =

P`
i=1 ki nodes, grouped into `

clusters, where there are ki nodes in the i
th group Ii, and |Ii| = ki.

(v, i) 2 E(G) if‌f v 2 Vj and i 2 Ij .
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Partition Matroid, rank as matching

Example where ` = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I

Recall, � : 2V ! R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as �(X) =
{v 2 V (G) \X : E(X, {v}) 6= ;}, and
recall that |�(X)| is submodular.
Here, for X ✓ V , we have �(X) =
{i 2 I : (v, i) 2 E(G) and v 2 X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

P`
i=1min(|X \ Vi|, ki) = the

maximum matching involving X.
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