Submodular Functions, Optimization, and Applications to Machine Learning
— Fall Quarter, Lecture 5 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes
University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Oct 14th, 2020

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \]

\[-f(A_r) + 2f(C) + f(B_r) \]

\[-f(A_r) + f(C) + f(B_r) \]

\[-f(A \cap B) \]
Announcements, Assignments, and Reminders

- Homework 1 is out, due Monday, 10/19/2020 at 11:59pm.
Class Road Map - EE563

L1(9/30): Motivation, Applications, Definitions, Properties
L2(10/5): Sums concave(modular), uses (diversity/costs, feature selection), information theory
L3(10/7): Monge, More Definitions, Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial Examples, Matrix Rank, Properties, Other Defs, Independence
L5(10/14): Independence, Matroids, Matroid Examples, Matroid Rank, More on Partition Matroid
L6(10/19):
L7(10/21):
L8(10/26):
L9(10/28):
L10(11/2):

L11(11/4):
L12(11/9):
L–(11/11): Veterans Day, Holiday
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
Summary: Properties so far

- Cover functions $f(A) = w(\bigcup_{a \in A} U_a)$ are submodular.
- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Matrix rank function is submodular.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ.
- Matrix rank $r(A)$, dim. of space spanned by the vector set $\{x_a\}_{a \in A}$.
- Graph cut, set cover, and incidence functions, quadratics with non-positive off-diagonals $f(X) = m^T 1_X + \frac{1}{2} 1_X^T M 1_X$.
- Number connected components in induced graph $c(A)$, and interior edge function $E(S)$, is supermodular.
- Submodular plus modular is submodular, $f(A) = f'(A) + m(A)$.
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular (same for supermodular, modular).
- Conix mixture: $\alpha_i \geq 0$, $f_i : 2^V \to \mathbb{R}$ submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions preserve submodularity: $f'(A) = f(A \cap S')$.
Let $m \in \mathbb{R}^E_+$ be a non-negative modular function, and ϕ a concave function over \mathbb{R}. Define $f : 2^E \rightarrow \mathbb{R}$ as

$$f(A) = \phi(m(A))$$ \hspace{1cm} (5.1)$$

then f is submodular.
Let \(m \in \mathbb{R}_+^E \) be a non-negative modular function, and \(\phi \) a concave function over \(\mathbb{R} \). Define \(f : 2^E \to \mathbb{R} \) as

\[
f(A) = \phi(m(A))
\]

then \(f \) is submodular.

Proof.

Given \(A \subseteq B \subseteq E \setminus v \), we have \(0 \leq a = m(A) \leq b = m(B) \), and \(0 \leq c = m(v) \). For \(g \) concave, we have \(\phi(a + c) - \phi(a) \geq \phi(b + c) - \phi(b) \), and thus

\[
\phi(m(A) + m(v)) - \phi(m(A)) \geq \phi(m(B) + m(v)) - \phi(m(B))
\]

A form of converse is true as well.
Theorem 5.3.1

Given a ground set \(V \). The following two are equivalent:

1. For all modular functions \(m : 2^V \to \mathbb{R}_+ \), then \(f : 2^V \to \mathbb{R} \) defined as \(f(A) = \phi(m(A)) \) is submodular.
2. \(\phi : \mathbb{R}_+ \to \mathbb{R} \) is concave.

- If \(\phi \) is non-decreasing concave & \(\phi(0) = 0 \), then \(f \) is polymatroidal.
Theorem 5.3.1

Given a ground set V. The following two are equivalent:

1. For all modular functions $m : 2^V \rightarrow \mathbb{R}_+$, then $f : 2^V \rightarrow \mathbb{R}$ defined as $f(A) = \phi(m(A))$ is submodular

2. $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}$ is concave.

- If ϕ is non-decreasing concave & $\phi(0) = 0$, then f is polymatroidal.
- Sums of concave over modular functions are submodular

\[
f(A) = \sum_{i=1}^{K} \phi_i(m_i(A))
\] (5.3)
Theorem 5.3.1

Given a ground set V. The following two are equivalent:

1. For all modular functions $m : 2^V \rightarrow \mathbb{R}_+$, then $f : 2^V \rightarrow \mathbb{R}$ defined as $f(A) = \phi(m(A))$ is submodular
2. $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}$ is concave.

- If ϕ is non-decreasing concave & $\phi(0) = 0$, then f is polymatroidal.
- Sums of concave over modular functions are submodular
 \[
 f(A) = \sum_{i=1}^{K} \phi_i(m_i(A))
 \] \hspace{1cm} (5.3)

- Very large class of functions, including graph cut, bipartite neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based submodular functions” (Wei, Iyer, & Bilmes 2014).
Theorem 5.3.1

Given a ground set \(V \). The following two are equivalent:

1. For all modular functions \(m : 2^V \rightarrow \mathbb{R}_+ \), then \(f : 2^V \rightarrow \mathbb{R} \) defined as
 \[
 f(A) = \phi(m(A))
 \]
 is submodular

2. \(\phi : \mathbb{R}_+ \rightarrow \mathbb{R} \) is concave.

- If \(\phi \) is non-decreasing concave & \(\phi(0) = 0 \), then \(f \) is polymatroidal.
- Sums of concave over modular functions are submodular

\[
 f(A) = \sum_{i=1}^{K} \phi_i(m_i(A))
\]

Very large class of functions, including graph cut, bipartite neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based submodular functions” (Wei, Iyer, & Bilmes 2014).

However, Vondrak showed that a graphic matroid rank function over \(K_4 \) (we’ll define this after we define matroids) are not members.
Monotonicity

Definition 5.3.2

A function $f : 2^V \rightarrow \mathbb{R}$ is monotone nondecreasing (resp. monotone increasing) if for all $A \subseteq B$, we have $f(A) \leq f(B)$ (resp. $f(A) < f(B)$).
Monotonicity

Definition 5.3.2
A function $f : 2^V \rightarrow \mathbb{R}$ is monotone nondecreasing (resp. monotone increasing) if for all $A \subseteq B$, we have $f(A) \leq f(B)$ (resp. $f(A) < f(B)$).

Definition 5.3.3
A function $f : 2^V \rightarrow \mathbb{R}$ is monotone nonincreasing (resp. monotone decreasing) if for all $A \subseteq B$, we have $f(A) \geq f(B)$ (resp. $f(A) > f(B)$).
Composition of non-decreasing submodular and non-decreasing concave

Theorem 5.3.4

Given two functions, one defined on sets

\[f : 2^V \rightarrow \mathbb{R} \quad (5.4) \]

and another continuous valued one:

\[\phi : \mathbb{R} \rightarrow \mathbb{R} \]

\[\phi(x) = \min (x, y) \quad (5.5) \]

the composition formed as \(h = \phi \circ f : 2^V \rightarrow \mathbb{R} \) (defined as \(h(S) = \phi(f(S)) \)) is nondecreasing submodular, if \(\phi \) is non-decreasing concave and \(f \) is nondecreasing submodular.

Annotations:

- Truncation: \(\max \) to \(\min \)
- \(f(A) \) polymatroid function

\[h(A) = \min \left(f(A), x \right) : \quad h \text{ is polymatroid function too.} \]
Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let $(f - g)(\cdot)$ be either monotone non-decreasing or monotone non-increasing. Then $h : 2^V \to \mathbb{R}$ defined by

$$h(A) = \min(f(A), g(A)) \quad (5.6)$$

is submodular.

Proof.

If h agrees with f on both X and Y (or g on both X and Y), and since

$$h(X) + h(Y) = f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y) \quad (5.7)$$

or

$$h(X) + h(Y) = g(X) + g(Y) \geq g(X \cup Y) + g(X \cap Y), \quad (5.8)$$

the result (Equation 5.6 being submodular) follows since

$$f(X) + f(Y) \geq \min(f(X \cup Y), g(X \cup Y)) + \min(f(X \cap Y), g(X \cap Y))$$

$$= h(X \cup Y) + h(X \cap Y) \quad (5.9)$$

...
Otherwise, w.l.o.g., $h(X) = f(X)$ and $h(Y) = g(Y)$, giving

$$h(X) + h(Y) = f(X) + g(Y) \geq f(X \cup Y) + f(X \cap Y) + g(Y) - f(Y)$$

(5.10)

$$f(x_1 + f(x)) \geq f(x \cup y) + f(x \cup y)$$

$$f(x) \geq f(x \cup y) + f(x \cup y) - f(x)$$
Examples and Properties

Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., \(h(X) = f(X) \) and \(h(Y) = g(Y) \), giving

\[
h(X) + h(Y) = f(X) + g(Y) \geq f(X \cup Y) + f(X \cap Y) + g(Y) - f(Y)
\]

\[
f(X \cup Y) - g(X \cup Y) \geq f(Y) - g(Y)
\]

Assume the case where \(f - g \) is monotone non-decreasing. Hence,

\[
f(X \cup Y) + g(Y) - f(Y) \geq g(X \cup Y)
\]

\[\text{giving} \]

\[
h(X) + h(Y) \geq g(X \cup Y) + f(X \cap Y) \geq h(X \cup Y) + h(X \cap Y)
\]

(5.11)

What is an easy way to prove the case where \(f - g \) is monotone non-increasing?
Saturation via the $\min(\cdot)$ function

Let $f : 2^V \rightarrow \mathbb{R}$ be a monotone non-decreasing or non-increasing submodular function and let α be a constant. Then the function $h : 2^V \rightarrow \mathbb{R}$ defined by

$$h(A) = \min(\alpha, f(A))$$

is submodular.
Saturation via the $\min(\cdot)$ function

Let $f : 2^V \to \mathbb{R}$ be a monotone non-decreasing or non-increasing submodular function and let α be a constant. Then the function $h : 2^V \to \mathbb{R}$ defined by

$$h(A) = \min(\alpha, f(A))$$

(5.12)

is submodular.

Proof.

For constant k, we have that $(f - k)$ is non-decreasing (or non-increasing) so this follows from the previous result.
Saturation via the $\min(\cdot)$ function

Let $f : 2^V \rightarrow \mathbb{R}$ be a monotone non-decreasing or non-increasing submodular function and let α be a constant. Then the function $h : 2^V \rightarrow \mathbb{R}$ defined by

$$h(A) = \min(\alpha, f(A))$$

is submodular.

Proof.

For constant k, we have that $(f - k)$ is non-decreasing (or non-increasing) so this follows from the previous result.

Note also, $g(a) = \min(k, a)$ for constant k is a non-decreasing concave function, so when f is monotone nondecreasing submodular, we can use the earlier result about composing a monotone concave function with a monotone submodular function to get a version of this.
minimax facility location is similar to the following maximin function (a form of “robust facility location”): $h(A) = \min_{v \in V} \max_{a \in A} s(v, a)$ and the goal is to maximize this $\max_{A \subseteq V: |A| \leq k} h(A)$. h therefore is the min of a set of submodular functions.
More on Min - the saturate trick

- minimax facility location is similar to the following maximin function (a form of “robust facility location”): \(h(A) = \min_{v \in V} \max_{a \in A} s(i, a) \) and the goal is to maximize this \(\max_{A \subseteq V: |A| \leq k} h(A) \). \(h \) therefore is the min of a set of submodular functions.

- In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).
minimax facility location is similar to the following maximin function (a form of “robust facility location”): \(h(A) = \min_{v \in V} \max_{a \in A} s(i, a) \) and the goal is to maximize this \(\max_{A \subseteq V : |A| \leq k} h(A) \). \(h \) therefore is the min of a set of submodular functions.

In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).

However, when wishing to maximize two monotone non-decreasing submodular functions \(f, g \), we can define function \(h_\alpha : 2^V \rightarrow \mathbb{R} \) as

\[
h_\alpha(A) = \frac{1}{2} \left(\min(\alpha, f(A)) + \min(\alpha, g(A)) \right) \quad (5.13)
\]

then \(h_\alpha \) is submodular, and \(h_\alpha(A) \geq \alpha \) if and only if both \(f(A) \geq \alpha \) and \(g(A) \geq \alpha \), for constant \(\alpha \in \mathbb{R} \).
minimax facility location is similar to the following maximin function (a form of “robust facility location”): \(h(A) = \min_{v \in V} \max_{a \in A} s(i, a) \) and the goal is to maximize this \(\max_{A \subseteq V : |A| \leq k} h(A) \). \(h \) therefore is the min of a set of submodular functions.

In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).

However, when wishing to maximize two monotone non-decreasing submodular functions \(f, g \), we can define function \(h_\alpha : 2^V \to \mathbb{R} \) as

\[
 h_\alpha(A) = \frac{1}{2} \left(\min(\alpha, f(A)) + \min(\alpha, g(A)) \right)
\]

(5.13)

then \(h_\alpha \) is submodular, and \(h_\alpha(A) \geq \alpha \) if and only if both \(f(A) \geq \alpha \) and \(g(A) \geq \alpha \), for constant \(\alpha \in \mathbb{R} \).

Useful in applications. Like DS functions, another instance of a submodular surrogate (where we take a non-submodular problem and find a submodular one that can tell us something about it).
Theorem 5.3.5

Given an arbitrary set function \(h \), it can be expressed as a difference between two submodular functions (i.e., \(\forall h \in 2^V \rightarrow \mathbb{R}, \exists f, g \text{ s.t. } \forall A, h(A) = f(A) - g(A) \) where both \(f \) and \(g \) are submodular).

Proof.

Let \(h \) be given and arbitrary, and define:

\[
\alpha \triangleq \min_{X,Y: X \not\subseteq Y, Y \not\subseteq X} \left(h(X) + h(Y) - h(X \cup Y) - h(X \cap Y) \right) \tag{5.14}
\]

If \(\alpha \geq 0 \) then \(h \) is submodular, so by assumption \(\alpha < 0 \).
Arbitrary functions: difference between submodular funcs.

Theorem 5.3.5

Given an arbitrary set function h, it can be expressed as a difference between two submodular functions (i.e., $\forall h \in 2^V \rightarrow \mathbb{R}$, $\exists f, g$ s.t. $\forall A, h(A) = f(A) - g(A)$ where both f and g are submodular).

Proof.

Let h be given and arbitrary, and define:

$$
\alpha \triangleq \min_{X,Y: X \not\subseteq Y, Y \not\subseteq X} \left(h(X) + h(Y) - h(X \cup Y) - h(X \cap Y) \right)
$$

(5.14)

If $\alpha \geq 0$ then h is submodular, so by assumption $\alpha < 0$. Now let f be an arbitrary strict submodular function and define

$$
\beta \triangleq \min_{X,Y: X \not\subseteq Y, Y \not\subseteq X} \left(f(X) + f(Y) - f(X \cup Y) - f(X \cap Y) \right).
$$

(5.15)

Strict means that $\beta > 0$.

...
Arbitrary functions as difference between submodular funcs.

\[
\frac{f(A)}{\beta} = f'(A) \Rightarrow \beta \leq 1
\]

...cont.

Define \(h' : 2^V \to \mathbb{R} \) as

\[
h'(A) = h(A) + \frac{|\alpha|}{\beta} f(A)
\]

(5.16)

Then \(h' \) is submodular (why?), and \(h = h'(A) - \frac{|\alpha|}{\beta} f(A) \), a difference between two submodular functions as desired.
Gain

- We often wish to express the gain of an item \(j \in V \) in context \(A \), namely \(f(A \cup \{j\}) - f(A) \).
Gain

- We often wish to express the gain of an item \(j \in V \) in context \(A \), namely \(f(A \cup \{j\}) - f(A) \).
- This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

\[
\begin{align*}
f(A \cup \{j\}) - f(A) & \triangleq \rho_j(A) \\
& \triangleq \rho_A(j) \\
& \triangleq \nabla_j f(A) \\
& \triangleq f(\{j\} | A) \\
& \triangleq f(j | A)
\end{align*}
\]

(5.17) (5.18) (5.19) (5.20) (5.21)
Gain

- We often wish to express the gain of an item \(j \in V \) in context \(A \), namely \(f(A \cup \{j\}) - f(A) \).
- This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

\[
\begin{align*}
f(A \cup \{j\}) - f(A) & \triangleq \rho_j(A) \quad (5.17) \\
\Delta & \triangleq \rho_A(j) \quad (5.18) \\
\Delta & \triangleq \nabla_j f(A) \quad (5.19) \\
\Delta & \triangleq f(\{j\}|A) \quad (5.20) \\
\Delta & \triangleq f(j|A) \quad (5.21)
\end{align*}
\]

- We’ll use \(f(j|A) \).

(Also \(\nabla_j f(A) \))
We often wish to express the gain of an item $j \in V$ in context A, namely $f(A \cup \{j\}) - f(A)$.

This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

$$f(A \cup \{j\}) - f(A) \equiv \rho_j(A) \quad (5.17)$$

$$\equiv \rho_A(j) \quad (5.18)$$

$$\equiv \nabla_j f(A) \quad (5.19)$$

$$\equiv f(\{j\}|A) \quad (5.20)$$

$$\equiv f(j|A) \quad (5.21)$$

We’ll use $f(j|A)$.

diminishing returns can be stated as saying that $f(j|A)$ is a monotone non-increasing function of A, since $f(j|A) \geq f(j|B)$ whenever $A \subseteq B$ (i.e., further conditioning reduces valuation).
Gain Notation

It will also be useful to extend this to sets. Let A, B be any two sets. Then

$$f(A|B) \triangleq f(A \cup B) - f(B)$$

So when j is any singleton

$$f(j|B) = f(\{j\}|B) = f(\{j\} \cup B) - f(B)$$

$$f(A|A) = f(A \cup A) - f(A) = f(A) - f(A) = 0$$
Gain Notation

It will also be useful to extend this to sets. Let A, B be any two sets. Then

$$f(A|B) \triangleq f(A \cup B) - f(B)$$ \hspace{1cm} (5.22)

So when j is any singleton

$$f(j|B) = f\{j\}|B) = f\{j\} \cup B) - f(B)$$ \hspace{1cm} (5.23)

Inspired from information theory notation and the notation used for conditional entropy $H(X_A|X_B) = H(X_A, X_B) - H(X_B)$.
Examples and Properties

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid \bar{g} (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.

$$g(A) = \bar{g}(A) + m_g(A)$$

Equation (5.24)
Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.
- E.g., $g(A) = [g(A) + \alpha |A|] - \alpha |A|$, $\alpha \geq |\min_{v,A \subseteq V \setminus v} g(v|A)|$.

$$\bar{g}(v|A) = \underbrace{\bar{g}(v|A)}_{\text{normalized}} + \alpha \geq 0 \quad \forall v, A$$
Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.

- E.g., $g(A) = [g(A) + \alpha |A|] - \alpha |A|$, $\alpha \geq |\min_{v, A \subseteq V \setminus v} f(v|A)|$.

- More interestingly, given arbitrary normalized submodular $g : 2^V \rightarrow \mathbb{R}$, construct a function $\bar{g} : 2^V \rightarrow \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A) \quad (5.24)$$

where $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$ is a modular function.
Examples and Properties

Other Submodular Defs.

Independence

Matroids

Matroid Examples

Matroid Rank

More on Partition Matroid

Totally normalized functions

Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.

E.g., $g(A) = [g(A) + \alpha |A|] - \alpha |A|$, $\alpha \geq \min_{v,A \subseteq V \setminus v} f(v|A)$.

More interestingly, given arbitrary normalized submodular $g : 2^V \rightarrow \mathbb{R}$, construct a function $\bar{g} : 2^V \rightarrow \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A) \quad (5.24)$$

where $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$ is a modular function.

\bar{g} is normalized since $\bar{g}(\emptyset) = 0$.

Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.

E.g., $g(A) = [g(A) + \alpha |A|] - \alpha |A|$, $\alpha \geq |\min_{v,A \subseteq V \setminus v} f(v|A)|$.

More interestingly, given arbitrary normalized submodular $g : 2^V \rightarrow \mathbb{R}$, construct a function $\bar{g} : 2^V \rightarrow \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A) \quad (5.24)$$

where $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$ is a modular function.

\bar{g} is normalized since $\bar{g}(\emptyset) = 0$.

\bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

$$\bar{g}(v|A) = g(v|A) - g(v|V \setminus \{v\}) \geq 0 \quad (5.25)$$
Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.
- E.g., $g(A) = [g(A) + \alpha|A|] - \alpha|A|$, $\alpha \geq \min_{v,A \subseteq V \setminus v} f(v|A)$.
- More interestingly, given arbitrary normalized submodular $g : 2^V \to \mathbb{R}$, construct a function $\bar{g} : 2^V \to \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A)$$

(5.24)

where $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$ is a modular function.
- \bar{g} is normalized since $\bar{g}(\emptyset) = 0$.
- \bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

$$\bar{g}(v|A) = g(v|A) - g(v|V \setminus \{v\}) \geq 0$$

(5.25)

\bar{g} is called the totally normalized version of g.

$$\bar{g}(v|v \setminus v) = g(v|v \setminus v) - 2(v|v \setminus v) = 0$$
Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g.

- E.g., $g(A) = [g(A) + \alpha|A|] - \alpha|A|$, $\alpha \geq \min_{v, A \subseteq V \setminus v} f(v|A)$.

- More interestingly, given arbitrary normalized submodular $g : 2^V \to \mathbb{R}$, construct a function $\bar{g} : 2^V \to \mathbb{R}$ as follows:

 $$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A) \quad (5.24)$$

 where $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$ is a modular function.

- \bar{g} is normalized since $\bar{g}(\emptyset) = 0$.

- \bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

 $$\bar{g}(v|A) = g(v|A) - g(v|V \setminus \{v\}) \geq 0 \quad (5.25)$$

- \bar{g} is called the totally normalized version of g.

- Then $g(A) = \bar{g}(A) + m_g(A)$.
Arbitrary function as difference between two polymatroids

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
Arbitrary function as difference between two polymatroids

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.

- Given submodular f and g, let \bar{f} and \bar{g} be them totally normalized.
Arbitrary function as difference between two polymatroids

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular f and g, let \bar{f} and \bar{g} be them totally normalized.
- Given arbitrary $h = f - g$ where f and g are normalized submodular,

$$h = f - g = \bar{f} + m_f - (\bar{g} + m_g)$$ \hspace{1cm} (5.26)

$$= \bar{f} - \bar{g} + (m_f - m_g)$$ \hspace{1cm} (5.27)

$$= \bar{f} - \bar{g} + m_{f-h}$$ \hspace{1cm} (5.28)

$$= \bar{f} + m_{f-g}^+ - (\bar{g} + (-m_{f-g})^+)$$ \hspace{1cm} (5.29)

where m^+ is the positive part of modular function m. That is, $m^+(A) = \sum_{a \in A} m(a)1(m(a) > 0)$.

$$m = m^+ - (-m)^+$$

Prof. Jeff Bilmes
Arbitrary function as difference between two polymatroids

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.

- Given submodular f and g, let \bar{f} and \bar{g} be them totally normalized.

- Given arbitrary $h = f - g$ where f and g are normalized submodular,

\[
h = f - g = \bar{f} + m_f - (\bar{g} + m_g) \tag{5.26}
\]
\[
= \bar{f} - \bar{g} + (m_f - m_g) \tag{5.27}
\]
\[
= \bar{f} - \bar{g} + m_{f-h} \tag{5.28}
\]
\[
= \bar{f} + m^+_{f-g} - (\bar{g} + (-m_{f-g})^+) \tag{5.29}
\]

where m^+ is the positive part of modular function m. That is, $m^+(A) = \sum_{a \in A} m(a)1(m(a) > 0)$.

- Both $\bar{f} + m^+_{f-g}$ and $\bar{g} + (-m_{f-g})^+$ are polymatroid functions!
Arbitrary function as difference between two polymatroids

- Any normalized function \(h \) (i.e., \(h(\emptyset) = 0 \)) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular \(f \) and \(g \), let \(\bar{f} \) and \(\bar{g} \) be them totally normalized.
- Given arbitrary \(h = f - g \) where \(f \) and \(g \) are normalized submodular,

\[
h = f - g = \bar{f} + m_f - (\bar{g} + m_g) \quad (5.26)
\]
\[
= \bar{f} - \bar{g} + (m_f - m_g) \quad (5.27)
\]
\[
= \bar{f} - \bar{g} + m_{f-h} \quad (5.28)
\]
\[
= \bar{f} + m^+_{f-g} - (\bar{g} + (-m_{f-g})^+) \quad (5.29)
\]

where \(m^+ \) is the positive part of modular function \(m \). That is,
\[
m^+(A) = \sum_{a \in A} m(a) 1(m(a) > 0).
\]
- Both \(\bar{f} + m^+_{f-g} \) and \(\bar{g} + (-m_{f-g})^+ \) are polymatroid functions!
- Thus, any function can be expressed as a difference between two, not only submodular (DS), but polymatroid functions.
Two Equivalent **Submodular** Definitions

Definition 5.4.1 (submodular concave)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B)
\]
(5.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 5.4.2 (diminishing returns)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular if for any \(A \subseteq B \subseteq V \), and \(v \in V \setminus B \), we have that:

\[
f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B)
\]
(5.8)

- The incremental “value”, “gain”, or “cost” of \(v \) decreases (diminishes) as the context in which \(v \) is considered grows from \(A \) to \(B \).
- Gain notation: Define \(f(v|A) \triangleq f(A + v) - f(A) \). Then function \(f \) is submodular if \(f(v|A) \geq f(v|B) \) for all \(A \subseteq B \subseteq V \setminus \{v\}, \ v \in V \).
An alternate and equivalent definition is:

Definition 5.4.1 (group diminishing returns)

A function $f : 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subseteq V$, and $C \subseteq V \setminus B$, we have that:

$$f(A \cup C) - f(A) \geq f(B \cup C) - f(B)$$ \hspace{1cm} (5.30)

This means that the incremental “value” or “gain” of set C decreases as the context in which C is considered grows from A to B (diminishing returns)
We want to show that **Submodular Concave** (Definition 5.4.1), **Diminishing Returns** (Definition 5.4.2), and **Group Diminishing Returns** (Definition 5.4.1) are identical.
We want to show that Submodular Concave (Definition 5.4.1), Diminishing Returns (Definition 5.4.2), and Group Diminishing Returns (Definition 5.4.1) are identical. We will show that:

- Submodular Concave \Rightarrow Diminishing Returns
- Diminishing Returns \Rightarrow Group Diminishing Returns
- Group Diminishing Returns \Rightarrow Submodular Concave
Submodular Concave \Rightarrow Diminishing Returns

Assume Submodular concave, so $\forall S, T$ we have $f(S) + f(T) \geq f(S \cup T) + f(S \cap T)$. Thus $f(v|A) \geq f(v|B)$, $A \subseteq B \subseteq V \setminus v$.

$$f(S) + f(T) \geq f(S \cup T) + f(S \cap T) \Rightarrow f(v|A) \geq f(v|B), A \subseteq B \subseteq V \setminus v.$$
Submodular Concave \implies Diminishing Returns

\[f(S) + f(T) \geq f(S \cup T) + f(S \cap T) \Rightarrow f(v|A) \geq f(v|B), A \subseteq B \subseteq V \setminus \{v\}. \]

- Assume Submodular concave, so \(\forall S, T \) we have
 \[f(S) + f(T) \geq f(S \cup T) + f(S \cap T). \]

- Given \(A, B \) and \(v \in V \) such that: \(A \subseteq B \subseteq V \setminus \{v\} \), we have from submodular concave that:

\[f(A + v) + f(B) \geq f(B + v) + f(A) \quad (5.31) \]
Submodular Concave \Rightarrow Diminishing Returns

$f(S) + f(T) \geq f(S \cup T) + f(S \cap T) \Rightarrow f(v|A) \geq f(v|B), \ A \subseteq B \subseteq V \setminus v.$

- Assume Submodular concave, so $\forall S, T$ we have
 $f(S) + f(T) \geq f(S \cup T) + f(S \cap T)$.

- Given A, B and $v \in V$ such that: $A \subseteq B \subseteq V \setminus \{v\}$, we have from submodular concave that:

$$f(A + v) + f(B) \geq f(B + v) + f(A) \tag{5.31}$$

- Rearranging, we have

$$f(A + v) - f(A) \geq f(B + v) - f(B) \tag{5.32}$$
Diminishing Returns \implies \text{Group Diminishing Returns}

\(f(v|S) \geq f(v|T), S \subseteq T \subseteq V \setminus v \Rightarrow f(C|A) \geq f(C|B), A \subseteq B \subseteq V \setminus C. \)

Let \(C = \{c_1, c_2, \ldots, c_k\} \). Then \text{diminishing returns implies}

\[
 f(A \cup C) - f(A) = f(A \cup C) - \sum_{i=1}^{k-1} \left(f(A \cup \{c_1, \ldots, c_i\}) - f(A \cup \{c_1, \ldots, c_i\}) \right) - f(A) \tag{5.33}
\]

\[
 = \sum_{i=1}^{k} \left(f(A \cup \{c_1 \ldots c_i\}) - f(A \cup \{c_1 \ldots c_{i-1}\}) \right) - \sum_{i=1}^{k} f(c_i|A \cup \{c_1 \ldots c_{i-1}\}) \tag{5.34}
\]

\[
 \geq \sum_{i=1}^{k} f(c_i|B \cup \{c_1 \ldots c_{i-1}\}) = \sum_{i=1}^{k} \left(f(B \cup \{c_1 \ldots c_i\}) - f(B \cup \{c_1 \ldots c_{i-1}\}) \right) \tag{5.35}
\]

\[
 = f(B \cup C) - \sum_{i=1}^{k-1} \left(f(B \cup \{c_1, \ldots, c_i\}) - f(B \cup \{c_1, \ldots, c_i\}) \right) - f(B) \tag{5.36}
\]

\[
 = f(B \cup C) - f(B) \tag{5.37}
\]
Group Diminishing Returns \(\implies\) Submodular Concave

\[
f(U|S) \geq f(U|T), S \subseteq T \subseteq V \setminus U \implies f(A) + f(B) \geq f(A \cup B) + f(A \cap B).
\]

Assume group diminishing returns. Assume \(A \neq B\) otherwise trivial. Define \(A' = A \cap B\), \(C = A \setminus B\), and \(B' = B\). Then since \(A' \subseteq B'\),

\[
f(A' + C) - f(A') \geq f(B' + C) - f(B') \tag{5.39}
\]

giving

\[
f(A' + C) + f(B') \geq f(B' + C) + f(A') \tag{5.40}
\]
or

\[
f(A \cap B + A \setminus B) + f(B) \geq f(B + A \setminus B) + f(A \cap B) \tag{5.41}
\]

which is the same as the submodular concave condition

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \tag{5.42}
\]
Submodular Definition: Four Points

Theorem 5.4.2 (“singleton”, or “four points”)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular iff for any \(A \subset V \), and any \(a, b \in V \setminus A \), we have that:

\[
f(A \cup \{a\}) + f(A \cup \{b\}) \geq f(A \cup \{a, b\}) + f(A)
\]

(5.43)
Theorem 5.4.2 (“singleton”, or “four points”)

A function $f : 2^V \to \mathbb{R}$ is submodular iff for any $A \subset V$, and any $a, b \in V \setminus A$, we have that:

$$f(A \cup \{a\}) + f(A \cup \{b\}) \geq f(A \cup \{a, b\}) + f(A)$$ \hspace{1cm} (5.43)

Only If: This follows immediately from diminishing returns.
Submodular Definition: Four Points

Theorem 5.4.2 ("singleton", or "four points")

A function $f : 2^V \rightarrow \mathbb{R}$ is submodular iff for any $A \subset V$, and any $a, b \in V \setminus A$, we have that:

$$f(A \cup \{a\}) + f(A \cup \{b\}) \geq f(A \cup \{a, b\}) + f(A)$$ \hspace{1cm} (5.43)

Only If: This follows immediately from diminishing returns. If: To achieve diminishing returns, assume $A \subset B$ with $B \setminus A = \{b_1, b_2, \ldots, b_k\}$. Then

$$f(A + a) - f(A) \geq f(A + b_1 + a) - f(A + b_1)$$ \hspace{1cm} (5.44)

$$\geq f(A + b_1 + b_2 + a) - f(A + b_1 + b_2)$$ \hspace{1cm} (5.45)

$$\geq \ldots$$ \hspace{1cm} (5.46)

$$\geq f(A + b_1 + \cdots + b_k + a) - f(A + b_1 + \cdots + b_k)$$ \hspace{1cm} (5.47)

$$= f(B + a) - f(B)$$ \hspace{1cm} (5.48)
The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.

Example: with $|V| = n = 2$, this is easy:

$$f(A) + f(B) \leq 2f(A \cup B) + \ell(A \cap B)$$

With $|V| = n = 3$, a bit harder.

How many inequalities of form $f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$?
Submodular Concave ≡ Diminishing Returns, in one slide.

Theorem 5.4.3

Given function $f : 2^V \to \mathbb{R}$, then

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \text{ for all } A, B \subseteq V$$

if and only if

$$f(v|X) \geq f(v|Y) \text{ for all } X \subseteq Y \subseteq V \text{ and } v \notin Y$$

Proof.

(SC)⇒(DR): Set $A \leftarrow X \cup \{v\}$, $B \leftarrow Y$. Then $A \cup B = Y \cup \{v\}$ and $A \cap B = X$ and $f(A) - f(A \cap B) \geq f(A \cup B) - f(B)$ implies (DR).

(DR)⇒(SC): Order $A \setminus B = \{v_1, v_2, \ldots, v_r\}$ arbitrarily. For $i \in 1 : r$,

$$f(v_i|(A \cap B) \cup \{v_1, v_2, \ldots, v_{i-1}\}) \geq f(v_i|B \cup \{v_1, v_2, \ldots, v_{i-1}\}).$$

Applying telescoping summation to both sides, we get:

$$\sum_{i=1}^{r} f(v_i|(A \cap B) \cup \{v_1, v_2, \ldots, v_{i-1}\}) \geq \sum_{i=1}^{r} f(v_i|B \cup \{v_1, v_2, \ldots, v_{i-1}\})$$

⇒

$$f(A) - f(A \cap B) \geq f(A \cup B) - f(B)$$
Many (Equivalent) Definitions of Submodularity

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V$$

(5.54)
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V \] \hspace{1cm} (5.54)

\[f(j|S) \geq f(j|T), \ \forall S \subseteq T \subseteq V, \ \text{with } j \in V \setminus T \] \hspace{1cm} (5.55)
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V \] \hfill (5.54)

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T \] \hfill (5.55)

\[f(C|S) \geq f(C|T), \quad \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T \] \hfill (5.56)
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V \quad (5.54) \]

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T \quad (5.55) \]

\[f(C|S) \geq f(C|T), \quad \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T \quad (5.56) \]

\[f(j|S) \geq f(j|S \cup \{k\}), \quad \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\}) \quad (5.57) \]
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V \] \hspace{1cm} (5.54)

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T \] \hspace{1cm} (5.55)

\[f(C|S) \geq f(C|T), \quad \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T \] \hspace{1cm} (5.56)

\[f(j|S) \geq f(j|S \cup \{k\}), \quad \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\}) \] \hspace{1cm} (5.57)

\[f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \quad \forall A, B \subseteq V \] \hspace{1cm} (5.58)
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V \] \hspace{1cm} (5.54)

\[f(j|S) \geq f(j|T), \ \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T \] \hspace{1cm} (5.55)

\[f(C|S) \geq f(C|T), \ \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T \] \hspace{1cm} (5.56)

\[f(j|S) \geq f(j|S \cup \{k\}), \ \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\}) \] \hspace{1cm} (5.57)

\[f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V \] \hspace{1cm} (5.58)

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T \setminus \{j\}), \ \forall S, T \subseteq V \] \hspace{1cm} (5.59)
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V \quad (5.54) \]

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq V, \quad \text{with } j \in V \setminus T \quad (5.55) \]

\[f(C|S) \geq f(C|T), \quad \forall S \subseteq T \subseteq V, \quad \text{with } C \subseteq V \setminus T \quad (5.56) \]

\[f(j|S) \geq f(j|S \cup \{k\}), \quad \forall S \subseteq V \quad \text{with } j \in V \setminus (S \cup \{k\}) \quad (5.57) \]

\[f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \quad \forall A, B \subseteq V \quad (5.58) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \quad \forall S, T \subseteq V \quad (5.59) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \quad \forall S \subseteq T \subseteq V \quad (5.60) \]

\[(5.59) \Rightarrow (5.60)\]
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V \] \hspace{1cm} (5.54)

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T \] \hspace{1cm} (5.55)

\[f(C|S) \geq f(C|T), \quad \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T \] \hspace{1cm} (5.56)

\[f(j|S) \geq f(j|S \cup \{k\}), \quad \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\}) \] \hspace{1cm} (5.57)

\[f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \quad \forall A, B \subseteq V \] \hspace{1cm} (5.58)

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \quad \forall S, T \subseteq V \] \hspace{1cm} (5.59)

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \quad \forall S \subseteq T \subseteq V \] \hspace{1cm} (5.60)

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T), \quad \forall S, T \subseteq V \] \hspace{1cm} (5.61)
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V \] \hspace{1cm} (5.54)

\[f(j|S) \geq f(j|T), \ \forall S \subseteq T \subseteq V, \ \text{with } j \in V \setminus T \] \hspace{1cm} (5.55)

\[f(C|S) \geq f(C|T), \ \forall S \subseteq T \subseteq V, \ \text{with } C \subseteq V \setminus T \] \hspace{1cm} (5.56)

\[f(j|S) \geq f(j|S \cup \{k\}), \ \forall S \subseteq V \ \text{with } j \in V \setminus (S \cup \{k\}) \] \hspace{1cm} (5.57)

\[f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V \] \hspace{1cm} (5.58)

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V \] \hspace{1cm} (5.59)

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \ \forall S \subseteq T \subseteq V \] \hspace{1cm} (5.60)

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V \] \hspace{1cm} (5.61)

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}), \ \forall T \subseteq S \subseteq V \] \hspace{1cm} (5.62)
Equivalent Definitions of Submodularity

\[
f(A \cup B | A \cap B) - f(A \cap B) \\
= f(A_1 \cup B \cap A \cap B) - f(A \cap B) \\
= f(A_1 \cup B) - f(A) - f(B) \\
\leq f(A | A \cap B) = f(B).
\]

We’ve already seen that Eq. 5.54 \equiv Eq. 5.55 \equiv Eq. 5.56 \equiv Eq. 5.57 \equiv Eq. 5.58.
We’ve already seen that Eq. 5.54 \equiv Eq. 5.55 \equiv Eq. 5.56 \equiv Eq. 5.57 \equiv Eq. 5.58.

We next show that Eq. 5.57 \Rightarrow Eq. 5.59 \Rightarrow Eq. 5.60 \Rightarrow Eq. 5.57.
To show these next results, we essentially first use:

$$f(S \cup T) = f(S) + f(T|S) \leq f(S) + \text{upper-bound}$$ \hspace{1cm} (5.63)

and

$$f(T) + \text{lower-bound} \leq f(T) + f(S|T) = f(S \cup T)$$ \hspace{1cm} (5.64)

$$f(j|S) \geq f(j|S \cup \{k\}), \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$$ \hspace{1cm} (5.57)

$$f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \forall A, B \subseteq V$$ \hspace{1cm} (5.58)

$$f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T \setminus \{j\}), \forall S, T \subseteq V$$ \hspace{1cm} (5.59)

$$f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \forall S \subseteq T \subseteq V$$ \hspace{1cm} (5.60)
Approach

To show these next results, we essentially first use:

\[f(S \cup T) = f(S) + f(T|S) \leq f(S) + \text{upper-bound} \quad (5.63) \]

and

\[f(T) + \text{lower-bound} \leq f(T) + f(S|T) = f(S \cup T) \quad (5.64) \]

leading to

\[f(T) + \text{lower-bound} \leq f(S) + \text{upper-bound} \quad (5.65) \]

or

\[f(T) \leq f(S) + \text{upper-bound} - \text{lower-bound} \quad (5.66) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \quad \forall S, T \subseteq V \]
Let \(T \setminus S = \{j_1, \ldots, j_r\} \) and \(S \setminus T = \{k_1, \ldots, k_q\} \).

First, we upper bound the gain of \(T \) in the context of \(S \):

\[
\sum_{t=1}^{r} \left(f(S \cup \{j_1, \ldots, j_t\}) - f(S \cup \{j_1, \ldots, j_{t-1}\}) \right) \]

(5.67)

\[
= \sum_{t=1}^{r} f(j_t | S \cup \{j_1, \ldots, j_{t-1}\}) \leq \sum_{t=1}^{r} f(j_t | S) \]

(5.68)

\[
= \sum_{j \in T \setminus S} f(j | S) \]

(5.69)

or

\[
f(T | S) \leq \sum_{j \in T \setminus S} f(j | S) \]

(5.70)
Let $T \setminus S = \{j_1, \ldots, j_r\}$ and $S \setminus T = \{k_1, \ldots, k_q\}$.

Next, lower bound S in the context of T:

$$f(S \cup T) - f(T) = \sum_{t=1}^{q} \left[f(T \cup \{k_1, \ldots, k_t\}) - f(T \cup \{k_1, \ldots, k_{t-1}\}) \right]$$

$$= \sum_{t=1}^{q} f(k_t | T \cup \{k_1, \ldots, k_t\} \setminus \{k_t\}) \geq \sum_{t=1}^{q} f(k_t | T \cup S \setminus \{k_t\})$$

$$= \sum_{j \in S \setminus T} f(j | S \cup T \setminus \{j\})$$
Eq. 5.57 ⇒ Eq. 5.59

Let \(T \setminus S = \{j_1, \ldots, j_r\} \) and \(S \setminus T = \{k_1, \ldots, k_q\} \). So we have the upper bound

\[
f(T|S) = f(S \cup T) - f(S) \leq \sum_{j \in T \setminus S} f(j|S) \tag{5.74}
\]

and the lower bound

\[
f(S|T) = f(S \cup T) - f(T) \geq \sum_{j \in S \setminus T} f(j|S \cup T \setminus \{j\}) \tag{5.75}
\]

This gives upper and lower bounds of the form

\[
f(T) + \text{lower bound} \leq f(S \cup T) \leq f(S) + \text{upper bound}, \tag{5.76}
\]

and combining directly the left and right hand side gives the desired inequality.
This follows immediately since if \(S \subseteq T \), then \(S \setminus T = \emptyset \), and the last term of Eq. 5.59 vanishes.
Many (Equivalent) Definitions of Submodularity

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V \quad (5.54) \]

\[f(j|S) \geq f(j|T), \quad \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T \quad (5.55) \]

\[f(C|S) \geq f(C|T), \quad \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T \quad (5.56) \]

\[f(j|S) \geq f(j|S \cup \{k\}), \quad \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\}) \quad (5.57) \]

\[f(A \cup B|A \cap B) \leq f(A|A \cap B) + f(B|A \cap B), \quad \forall A, B \subseteq V \quad (5.58) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \quad \forall S, T \subseteq V \quad (5.59) \]

\[f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \quad \forall S \subseteq T \subseteq V \quad (5.60) \]

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T), \quad \forall S, T \subseteq V \quad (5.61) \]

\[f(T) \leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}), \quad \forall T \subseteq S \subseteq V \quad (5.62) \]
Here, we set \(T = S \cup \{j, k\}, j \notin S \cup \{k\} \) into Eq. 5.60 to obtain

\[
\begin{align*}
\text{Eq. } 5.60 & \implies \text{Eq. } 5.57 \\
\end{align*}
\]

\[
f(S \cup \{j, k\}) & \leq f(S) + f(j|S) + f(k|S) \\
& = f(S) + f(S + \{j\}) - f(S) + f(S + \{k\}) - f(S) \\
& = f(S + \{j\}) + f(S + \{k\}) - f(S) \\
& = f(j|S) + f(S + \{k\}) \\
\]

(5.77)

(5.78)

(5.79)

(5.80)

giving

\[
f(j|S \cup \{k\}) = f(S \cup \{j, k\}) - f(S \cup \{k\}) \\
\leq f(j|S) \\
\]

(5.81)

(5.82)

\[
f(j|S \cup \{k\}) \geq f(j|S \cup \{k\}), \forall S \subseteq V \text{ with } j \notin V \setminus (S \cup \{k\}) \\
f(A \cup B) + f(A \cap B) \leq f(A) + f(B), \forall A, B \subseteq V \\
f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \cap T} f(j|S \cup T - \{j\}), \forall S, T \subseteq V \\
f(T) \leq f(S) + \sum_{j \in T \setminus S} f(j|S), \forall S \subseteq T \subseteq V
\]

(5.57)

(5.58)

(5.59)

(5.60)
Submodular Concave

- Why do we call the $f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$ definition of submodularity, submodular concave?
Submodular Concave

- Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular **concave**?

- A continuous twice differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is concave iff \(\nabla^2 f \leq 0 \) (the Hessian matrix is nonpositive definite).
Submodular Concave

- Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular concave?
- A continuous twice differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is concave iff \(\nabla^2 f \preceq 0 \) (the Hessian matrix is nonpositive definite).
- Define a “discrete derivative” or difference operator defined on discrete functions \(f : 2^V \rightarrow \mathbb{R} \) as follows:

\[
(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B|(A \setminus B))
\]

read as: the derivative of \(f \) at \(A \) in the direction \(B \).

\[
(\nabla_{\epsilon, \delta} f)(A) = f(\delta | A \setminus \epsilon) = f(A + \epsilon) - f(A)
\]
Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular **concave**?

A continuous twice differentiable function \(f : \mathbb{R}^n \to \mathbb{R} \) is concave iff \(\nabla^2 f \leq 0 \) (the Hessian matrix is nonpositive definite).

Define a “discrete derivative” or difference operator defined on discrete functions \(f : 2^V \to \mathbb{R} \) as follows:

\[
(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B|(A \setminus B)) \tag{5.83}
\]

read as: the derivative of \(f \) at \(A \) in the direction \(B \).

Hence, if \(A \cap B = \emptyset \), then \((\nabla_B f)(A) = f(B|A) \).
Submodular Concave

- Why do we call the \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \) definition of submodularity, submodular **concave**?

- A continuous twice differentiable function \(f : \mathbb{R}^n \to \mathbb{R} \) is concave iff \(\nabla^2 f \leq 0 \) (the Hessian matrix is nonpositive definite).

- Define a “discrete derivative” or difference operator defined on discrete functions \(f : 2^V \to \mathbb{R} \) as follows:

\[
(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B | (A \setminus B)) \tag{5.83}
\]

read as: the derivative of \(f \) at \(A \) in the direction \(B \).

- Hence, if \(A \cap B = \emptyset \), then \((\nabla_B f)(A) = f(B | A) \).

- Consider a form of second derivative or 2nd difference:

\[
(\nabla_C f)(A) \hspace{1cm} (\nabla_B \nabla_C f)(A) = \nabla_B \left[\frac{f(A \cup C) - f(A \setminus C)}{2} \right]
\]

\[
= (\nabla_B f)(A \cup C) - (\nabla_B f)(A \setminus C) \tag{5.84}
\]

\[
= f(A \cup B \cup C) - f((A \cup C) \setminus B)
- f((A \setminus C) \cup B) + f((A \setminus C) \setminus B) \tag{5.85}
\]
Submodular Concave

- If the second difference operator everywhere nonpositive:

\[
\begin{align*}
 f(A \cup B \cup C) - f((A \cup C) \setminus B) \\
 &\quad - f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0
\end{align*}
\] (5.87)
Submodular Concave

If the second difference operator everywhere nonpositive:

\[
\begin{align*}
&f(A \cup B \cup C) - f((A \cup C) \setminus B) \\
&\quad - f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0
\end{align*}
\] (5.87)

then we have the equation:

\[
\begin{align*}
f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \geq f(A \cup B \cup C) + f(A \setminus C \setminus B)
\end{align*}
\] (5.88)
Submodular Concave

- If the second difference operator everywhere nonpositive:

\[
 f(A \cup B \cup C) - f((A \cup C) \setminus B) \\
- f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \leq 0
\]

(5.87)

then we have the equation:

\[
 f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \geq f(A \cup B \cup C) + f(A \setminus C \setminus B)
\]

(5.88)

- Define \(A' = (A \cup C) \setminus B \) and \(B' = (A \setminus C) \cup B \). Then the above implies:

\[
 f(A') + f(B') \geq f(A' \cup B') + f(A' \cap B')
\]

(5.89)

and note that \(A' \) and \(B' \) so defined can be arbitrary.
Examples and Properties

Other Submodular Defs.

Independence

Matroids

Matroid Examples

Matroid Rank

More on Partition Matroid

Submodular Concave

- If the second difference operator everywhere nonpositive:

\[
\begin{align*}
f(A \cup B \cup C) - f((A \cup C) \setminus B) \\
- f((A \setminus C) \cup B) + f(A \setminus C \setminus B) & \leq 0
\end{align*}
\] (5.87)

then we have the equation:

\[
\begin{align*}
f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \geq f(A \cup B \cup C) + f(A \setminus C \setminus B)
\end{align*}
\] (5.88)

- Define \(A' = (A \cup C) \setminus B \) and \(B' = (A \setminus C) \cup B \). Then the above implies:

\[
\begin{align*}
f(A') + f(B') \geq f(A' \cup B') + f(A' \cap B')
\end{align*}
\] (5.89)

and note that \(A' \) and \(B' \) so defined can be arbitrary.

- One sense in which submodular functions are like concave functions.
Figure: A figure showing $A' \cup B' = A \cup B \cup C$ and $A' \cap B' = A \setminus C \setminus B$.
Submodular Concave

(a) $A' = (A \cup C) \setminus B$

(b) $B' = (A \setminus C) \cup B$

Figure: A figure showing $A' \cup B' = A \cup B \cup C$ and $A' \cap B' = A \setminus C \setminus B$.
This submodular/concave relationship is more simply done with singletons.
Submodularity and Concave

- This submodular/concave relationship is more simply done with singletons.
- Recall four points definition: A function is submodular if for all $X \subseteq V$ and $j, k \in V \setminus X$

$$f(X + j) + f(X + k) \geq f(X + j + k) + f(X) \quad (5.90)$$
This submodular/concave relationship is more simply done with singletons.

Recall four points definition: A function is submodular if for all $X \subseteq V$ and $j, k \in V \setminus X$

$$f(X + j) + f(X + k) \geq f(X + j + k) + f(X)$$ \hspace{1cm} (5.90)

This gives us a simpler notion corresponding to concavity.
This submodular/concave relationship is more simply done with singletons.

Recall four points definition: A function is submodular if for all $X \subseteq V$ and $j, k \in V \setminus X$

$$f(X + j) + f(X + k) \geq f(X + j + k) + f(X) \quad (5.90)$$

This gives us a simpler notion corresponding to concavity.

Define gain as $\nabla_j(X) = f(X + j) - f(X)$, a form of discrete gradient.
This submodular/concave relationship is more simply done with singletons.

Recall four points definition: A function is submodular if for all $X \subseteq V$ and $j, k \in V \setminus X$

$$f(X + j) + f(X + k) \geq f(X + j + k) + f(X) \quad (5.90)$$

This gives us a simpler notion corresponding to concavity.

Define gain as $\nabla_j(X) = f(X + j) - f(X)$, a form of discrete gradient.

Trivially becomes a second-order condition, akin to concave functions: A function is submodular if for all $X \subseteq V$ and $j, k \in V$, we have:

$$\nabla_j \nabla_k f(X) \leq 0 \quad (5.91)$$
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mid & \mid \\
\mid & \mid \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
\mid & \mid
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
- $6 = r(A) + r(B) = r(A \cup B) + r(C) > r(A \cup B) + r(A \cap B) = 5$.
On Rank

Let rank : \(2^V \to \mathbb{Z}_+\) be the rank function.
On Rank

- Let \(\text{rank} : 2^V \rightarrow \mathbb{Z}_+ \) be the rank function.
- In general, \(\text{rank}(A) \leq |A| \), and vectors in \(A \) are linearly independent if and only if \(\text{rank}(A) = |A| \).

\[
A = \{ 2, 3, 7, 10 \}
\]
Let \(\text{rank} : 2^V \rightarrow \mathbb{Z}_+ \) be the rank function.

In general, \(\text{rank}(A) \leq |A| \), and vectors in \(A \) are linearly independent if and only if \(\text{rank}(A) = |A| \).

If \(A, B \) are such that \(\text{rank}(A) = |A| \) and \(\text{rank}(B) = |B| \), with \(|A| < |B| \), then the space spanned by \(B \) is greater, and we can find a vector in \(B \) that is linearly independent of the space spanned by vectors in \(A \).
Let rank : $2^V \to \mathbb{Z}_+$ be the rank function.

In general, $\text{rank}(A) \leq |A|$, and vectors in A are linearly independent if and only if $\text{rank}(A) = |A|$.

If A, B are such that $\text{rank}(A) = |A|$ and $\text{rank}(B) = |B|$, with $|A| < |B|$, then the space spanned by B is greater, and we can find a vector in B that is linearly independent of the space spanned by vectors in A.

To stress this point, note that the above condition is $|A| < |B|$, not $A \subseteq B$ which is sufficient (to be able to find an independent vector) but not required.
Let \(\text{rank} : 2^V \rightarrow \mathbb{Z}_+ \) be the rank function.

In general, \(\text{rank}(A) \leq |A| \), and vectors in \(A \) are linearly independent if and only if \(\text{rank}(A) = |A| \).

If \(A, B \) are such that \(\text{rank}(A) = |A| \) and \(\text{rank}(B) = |B| \), with \(|A| < |B| \), then the space spanned by \(B \) is greater, and we can find a vector in \(B \) that is linearly independent of the space spanned by vectors in \(A \).

To stress this point, note that the above condition is \(|A| < |B| \), not \(A \subseteq B \) which is sufficient (to be able to find an independent vector) but not required.

In other words, given \(A, B \) with \(\text{rank}(A) = |A| \) & \(\text{rank}(B) = |B| \), then \(|A| < |B| \) \iff \(\exists \) an \(b \in B \) such that \(\text{rank}(A \cup \{b\}) = |A| + 1 \).
Spanning trees/forests

- We are given a graph $G = (V, E)$, and consider the edges $E = E(G)$ as an index set.
- Consider the $|V| \times |E|$ incidence matrix of undirected graph G, which is the matrix $X_G = (x_{v,e})_{v \in V(G), e \in E(G)}$ where

$$x_{v,e} = \begin{cases} 1 & \text{if } v \in e \\ 0 & \text{if } v \notin e \end{cases} \quad (5.92)$$

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
7 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{pmatrix}
\quad (5.93)$$
We are given a graph $G = (V, E)$, we can arbitrarily orient the graph (make it directed) consider again the edges $E = E(G)$ as an index set.

Consider instead the $|V| \times |E|$ incidence matrix of directed graph G, which is the matrix $X_G = (x_{v,e})_{v \in V(G), e \in E(G)}$ where

$$x_{v,e} = \begin{cases} 1 & \text{if } v \in e^+ \\ -1 & \text{if } v \in e^- \\ 0 & \text{if } v \notin e \end{cases} \quad (5.94)$$

and where e^+ is the tail and e^- is the head of (now) directed edge e.
Spanning trees/forests & incidence matrices

- A directed version of the graph (right) and its adjacency matrix (below).
- Orientation can be arbitrary.
- Note, rank of this matrix is 7.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 \\
7 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
\end{pmatrix}
\]
Spanning trees

- We can consider edge-induced subgraphs and the corresponding matrix columns.

Here, $\text{rank}(\{x_1\}) = 1$.

\[
\begin{pmatrix}
1 \\
-1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\] (5.95)
Spanning trees

- We can consider edge-induced subgraphs and the corresponding matrix columns.

Here, rank($\{x_1, x_2\}$) = 2.
Spanning trees

- We can consider edge-induced subgraphs and the corresponding matrix columns.

Here, \(\text{rank}(\{x_1, x_2, x_3\}) = 3 \).
We can consider edge-induced subgraphs and the corresponding matrix columns.

Here, \(\text{rank}(\{x_1, x_2, x_3, x_5\}) = 4. \)
We can consider edge-induced subgraphs and the corresponding matrix columns.

Here, $\text{rank}(\{x_1, x_2, x_3, x_4, x_5\}) = 4$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & -1 & 1 & 0 & 0 & 0 \\
2 & 1 & 0 & -1 & 0 & 1 \\
3 & 0 & -1 & 0 & 1 & 0 \\
4 & 0 & 0 & 1 & -1 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & -1 \\
8 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
Spanning trees

- We can consider edge-induced subgraphs and the corresponding matrix columns.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & -1 & 1 & 0 & 0 \\
2 & 1 & 0 & -1 & 0 \\
3 & 0 & -1 & 0 & 1 \\
4 & 0 & 0 & 1 & -1 \\
5 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

(5.95)

Here, \(\text{rank}(\{x_1, x_2, x_3, x_4\}) = 3 \) since \(x_4 = -x_1 - x_2 - x_3 \).
In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
Spanning trees, rank, and connected components

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
Spanning trees, rank, and connected components

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a “rank” function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
Spanning trees, rank, and connected components

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a “rank” function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
Spanning trees, rank, and connected components

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a “rank” function defined as follows: given a set of edges $A \subseteq E(G)$, the $\text{rank}(A)$ is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
- The rank of the graph is $\text{rank}(E(G)) = |V| - k$ where k is the number of connected components of G.
Spanning trees, rank, and connected components

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a “rank” function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
- The rank of the graph is rank($E(G)$) = $|V| - k$ where k is the number of connected components of G.
- For $A \subseteq E(G)$, define $k_G(A)$ as the number of connected components of the edge-induced spanning subgraph $(V(G), A)$. Recall, $k_G(A)$ is supermodular, so $|V(G)| - k_G(A)$ is submodular.
Spanning trees, rank, and connected components

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a “rank” function defined as follows: given a set of edges $A \subseteq E(G)$, the $\text{rank}(A)$ is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
- The rank of the graph is $\text{rank}(E(G)) = |V| - k$ where k is the number of connected components of G.
- For $A \subseteq E(G)$, define $k_G(A)$ as the number of connected components of the edge-induced spanning subgraph $(V(G), A)$. Recall, $k_G(A)$ is supermodular, so $|V(G)| - k_G(A)$ is submodular.
- We have $\text{rank}(A) = |V(G)| - k_G(A)$. \(\therefore \) is submodular.
Spanning Tree Algorithms

- We are now given a positive edge-weighted connected graph $G = (V, E, w)$ where $w : E \to \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.

- Given a tree T, the cost of the tree is $\text{cost}(T) = \sum_{e \in T} w(e)$, the sum of the weights of the edges.

- There are several algorithms for MST:

Algorithm 1: Kruskal’s Algorithm

1. Sort the edges so that $w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m)$;
2. $T \leftarrow (V(G), \emptyset) = (V, \emptyset)$;
3. for $i = 1$ to m do
 4. if $E(T) \cup \{e_i\}$ does not create a cycle in T then
 5. $E(T) \leftarrow E(T) \cup \{e_i\}$;
We are now given a positive edge-weighted connected graph \(G = (V, E, w) \) where \(w : E \to \mathbb{R}_+ \) is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.

Given a tree \(T \), the cost of the tree is \(\text{cost}(T) = \sum_{e \in T} w(e) \), the sum of the weights of the edges.

There are several algorithms for MST:

Algorithm 2: Jarník/Prim/Dijkstra Algorithm

1. \(T \leftarrow \emptyset \);
2. **while** \(T \) is not a spanning tree **do**
3. \(T \leftarrow T \cup \{e\} \) for \(e = \) the minimum weight edge extending the tree \(T \) to a not-yet connected vertex;
Spanning Tree Algorithms

- We are now given a positive edge-weighted connected graph $G = (V, E, w)$ where $w : E \rightarrow \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.

- Given a tree T, the cost of the tree is $\text{cost}(T) = \sum_{e \in T} w(e)$, the sum of the weights of the edges.

- There are several algorithms for MST:

 Algorithm 3: Borůvka’s Algorithm

 1. $F \leftarrow \emptyset$ /* We build up the edges of a forest in F */
 2. while $G(V, F)$ is disconnected do
 3. forall components C_i of F do
 4. $F \leftarrow F \cup \{e_i\}$ for $e_i =$ the min weight-index edge in C_i;
Spanning Tree Algorithms

- We are now given a positive edge-weighted connected graph \(G = (V, E, w) \) where \(w : E \rightarrow \mathbb{R}_+ \) is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree \(T \), the cost of the tree is \(\text{cost}(T) = \sum_{e \in T} w(e) \), the sum of the weights of the edges.
- There are several algorithms for MST:
- These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
Spanning Tree Algorithms

- We are now given a positive edge-weighted connected graph $G = (V, E, w)$ where $w : E \to \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is $\text{cost}(T) = \sum_{e \in T} w(e)$, the sum of the weights of the edges.
- There are several algorithms for MST:
- These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
- These algorithms are all related to the “greedy” algorithm. I.e., “add next whatever looks best”.

Spanning Tree Algorithms

- We are now given a positive edge-weighted connected graph $G = (V, E, w)$ where $w : E \to \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is $\text{cost}(T) = \sum_{e \in T} w(e)$, the sum of the weights of the edges.
- There are several algorithms for MST:
 - These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
 - These algorithms are all related to the “greedy” algorithm. I.e., “add next whatever looks best”.
 - These algorithms will also always find a basis (a set of linearly independent vectors that span the underlying space) in the matrix example we saw earlier.
Spanning Tree Algorithms

- We are now given a positive edge-weighted connected graph \(G = (V, E, w) \) where \(w : E \rightarrow \mathbb{R}_+ \) is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree \(T \), the cost of the tree is \(\text{cost}(T) = \sum_{e \in T} w(e) \), the sum of the weights of the edges.
- There are several algorithms for MST:
 - These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
 - These algorithms are all related to the “greedy” algorithm. I.e., “add next whatever looks best”.
 - These algorithms will also always find a basis (a set of linearly independent vectors that span the underlying space) in the matrix example we saw earlier.
- The above are all examples of a matroid, which is the fundamental reason why the greedy algorithms work.
So V is set of column vector indices of a matrix.
So V is set of column vector indices of a matrix.

Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
From Matrix Rank → Matroid

- So V is set of column vector indices of a matrix.
- Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent.
From Matrix Rank → Matroid

- So V is set of column vector indices of a matrix.
- Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or “subclusive”, under subsets.
From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.

Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.

Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \quad (5.96)$$
From Matrix Rank → Matroid

- So V is set of column vector indices of a matrix.
- Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \quad (5.96)$$

- **maxInd**: Inclusionwise maximal independent subsets (i.e., the set of bases of) of any set $B \subseteq V$ defined as:

$$\text{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\} \quad (5.97)$$
From Matrix Rank → Matroid

- So V is set of column vector indices of a matrix.
- Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or “subclusive”, under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \tag{5.96}$$

- **maxInd**: Inclusionwise maximal independent subsets (i.e., the set of bases of) of any set $B \subseteq V$ defined as:

$$\text{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\} \tag{5.97}$$

- Given any set $B \subseteq V$ of vectors, all maximal (by set inclusion) subsets of linearly independent vectors are the same size. That is, for all $B \subseteq V$,

$$\forall A_1, A_2 \in \text{maxInd}(B), \ |A_1| = |A_2| = \text{rank}(B) \tag{5.98}$$
Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be the set of sets as described above.
• Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be the set of sets as described above.
• Thus, for all $I \in \mathcal{I}$, the matrix rank function has the property

$$r(I) = |I|$$ \hspace{1cm} (5.99)

and for any $B \notin \mathcal{I}$,

$$r(B) = \max \{|A| : A \subseteq B \text{ and } A \in \mathcal{I}\} < |B|$$ \hspace{1cm} (5.100)

Since all maximally independent subsets of a set are the same size, the rank function is well defined.
Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.
Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V), and a collection of subsets $\mathcal{I} = \{I_1, I_2, \ldots\}$ of E that correspond to independent elements.
Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V), and a collection of subsets $\mathcal{I} = \{I_1, I_2, \ldots\}$ of E that correspond to independent elements.

There are many definitions of matroids that are mathematically equivalent, we’ll see some of them here.
Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V), and a collection of subsets $\mathcal{I} = \{I_1, I_2, \ldots\}$ of E that correspond to independent elements.

There are many definitions of matroids that are mathematically equivalent, we’ll see some of them here.

“If a theorem about graphs can be expressed in terms of edges and circuits only, it probably exemplifies a more general theorem about matroids.” – Tutte
Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, $\emptyset \neq \mathcal{I} \subseteq 2^E$ is called a set system, notated (E, \mathcal{I}).

- Set systems can be arbitrarily complex since, as stated, there is no systematic method (besides exponential-cost exhaustive search) to determine if a given set $S \subseteq E$ has $S \in \mathcal{I}$.
Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, $\emptyset \neq \mathcal{I} \subseteq 2^E$ is called a set system, notated (E, \mathcal{I}).

- Set systems can be arbitrarily complex since, as stated, there is no systematic method (besides exponential-cost exhaustive search) to determine if a given set $S \subseteq E$ has $S \in \mathcal{I}$.

- One useful property is “heredity.” Namely, a set system is a hereditary set system if for any $A \subset B \in \mathcal{I}$, we have that $A \in \mathcal{I}$.
Definition 5.6.2 (independence (or hereditary) system)

A set system \((V, \mathcal{I})\) is an independence system if

\[\emptyset \in \mathcal{I} \quad \text{(emptyset containing)} \] (I1)

and

\[\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \quad \text{(subclusive)} \] (I2)

- Property (I2) called “down monotone,” “down closed,” or “subclusive”
Definition 5.6.2 (independence (or hereditary) system)

A set system \((V, \mathcal{I})\) is an independence system if

\[
\emptyset \in \mathcal{I} \quad \text{(emptyset containing)} \quad (I1)
\]

and

\[
\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \quad \text{(subclusive)} \quad (I2)
\]

- Property \((I2)\) called “down monotone,” “down closed,” or “subclusive”
- Example: \(E = \{1, 2, 3, 4\}\). With \(\mathcal{I} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}\).
Definition 5.6.2 (independence (or hereditary) system)

A set system \((V, \mathcal{I})\) is an independence system if

\[\emptyset \in \mathcal{I} \quad \text{(emptyset containing)} \quad (I1) \]

and

\[\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \quad \text{(subclusive)} \quad (I2) \]

- Property (I2) called “down monotone,” “down closed,” or “subclusive”
- Example: \(E = \{1, 2, 3, 4\}\). With \(\mathcal{I} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}\).
- Then \((E, \mathcal{I})\) is a set system, but not an independence system since it is not down closed (e.g., we have \(\{1, 2\} \in \mathcal{I}\) but not \(\{2\} \in \mathcal{I}\)).
Definition 5.6.2 (independence (or hereditary) system)

A set system (V,I) is an independence system if

\[\emptyset \in I \quad \text{(emptyset containing)} \] \hspace{1cm} (I1)

and

\[\forall I \in I, J \subset I \Rightarrow J \in I \quad \text{(subclusive)} \] \hspace{1cm} (I2)

- Property (I2) called “down monotone,” “down closed,” or “subclusive”
- Example: $E = \{1, 2, 3, 4\}$. With $I = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}$.
- Then (E, I) is a set system, but not an independence system since it is not down closed (e.g., we have $\{1, 2\} \in I$ but not $\{2\} \in I$).
- With $I = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, then (E, I) is now an independence (hereditary) system.
Independence System

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 0 & 1 & 1 & 2 & 1 & 3 & 1 \\
2 & 0 & 1 & 1 & 0 & 2 & 0 & 2 & 4 \\
3 & 1 & 1 & 1 & 0 & 0 & 3 & 1 & 5
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{pmatrix}
\]

Given any set of linearly independent vectors \(A \), any subset \(B \subset A \) will also be linearly independent.
Given any set of linearly independent vectors A, any subset $B \subset A$ will also be linearly independent.

Given any forest G_f that is an edge-induced sub-graph of a graph G, any sub-graph of G_f is also a forest.
Examples and Properties Other Submodular Defs. Independence Matroids Matroid Examples Matroid Rank More on Partition Matroid

Independence System

\[1 \begin{pmatrix} 0 & 0 & 1 & 1 & 2 & 1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} \]
\[2 \begin{pmatrix} 0 & 1 & 1 & 0 & 2 & 0 & 2 & 4 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \end{pmatrix} \]
\[3 \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} _ & _ & _ & _ & _ & _ & _ & _ \end{pmatrix} \]

(5.101)

- Given any set of linearly independent vectors \(A \), any subset \(B \subset A \) will also be linearly independent.
- Given any forest \(G_f \) that is an edge-induced sub-graph of a graph \(G \), any sub-graph of \(G_f \) is also a forest.
- So these both constitute independence systems.
Independent set definition of a matroid is perhaps most natural. Note, if \(J \in \mathcal{I} \), then \(J \) is said to be an **independent set**.

Definition 5.6.3 (Matroid)

A set system \((E, \mathcal{I})\) is a **Matroid** if

(L1) \(\emptyset \in \mathcal{I} \)

(L2) \(\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \) (down-closed or subclusive)

(L3) \(\forall I, J \in \mathcal{I}, \text{ with } |I| = |J| + 1, \text{ then there exists } x \in I \setminus J \text{ such that } J \cup \{x\} \in \mathcal{I} \).

Why is (L1) is not redundant given (L2)?
Independent set definition of a matroid is perhaps most natural. Note, if \(J \in \mathcal{I} \), then \(J \) is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system \((E, \mathcal{I})\) is a **Matroid** if

1. \(\emptyset \in \mathcal{I} \)
2. \(\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \) (down-closed or subclusive)
3. \(\forall I, J \in \mathcal{I}, \text{ with } |I| = |J| + 1, \text{ then there exists } x \in I \setminus J \text{ such that } J \cup \{x\} \in \mathcal{I} \).

Why is (I1) is not redundant given (I2)? Because without (I1) could have a non-matroid where \(\mathcal{I} = \{ \emptyset \} \).
On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
Examples and Properties

On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
On Matroid History

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
- Matroid independent sets (i.e., A s.t. $r(A) = |A|$) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.
Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

Matroid independent sets (i.e., A s.t. $r(A) = |A|$) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.

Crapo & Rota preferred the term “combinatorial geometry”, or more specifically a “pregeometry” and said that pregeometries are “often described by the ineffably cacaphonic term ‘matroid’, which we prefer to avoid in favor of the term ‘pregeometry’.”
Slight modification (non unit increment) that is equivalent.

Definition 5.6.4 (Matroid-II)

A set system \((E, \mathcal{I})\) is a **Matroid** if

1. \((\text{l1}')\) \(\emptyset \in \mathcal{I}\)
2. \((\text{l2}')\) \(\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}\) (down-closed or subclusive)
3. \((\text{l3}')\) \(\forall I, J \in \mathcal{I}, \text{ with } |I| > |J|, \text{ then there exists } x \in I \setminus J \text{ such that } J \cup \{x\} \in \mathcal{I}\)

Note \((\text{l1})=(\text{l1}')\), \((\text{l2})=(\text{l2}')\), and we get \((\text{l3})\equiv(\text{l3}')\) using induction.
Independent sets: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
Matroids, independent sets, and bases

- **Independent sets**: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called **independent** if $A \in \mathcal{I}$ and otherwise A is called **dependent**.

- **A base of $U \subseteq E$**: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.
Matroids, independent sets, and bases

- **Independent sets:** Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.

- **A base of $U \subseteq E$:** For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

- **A base of a matroid:** If $U = E$, then a “base of E” is just called a base of the matroid M (this corresponds to a basis in a linear space, or a spanning forest in a graph, or a spanning tree in a connected graph).
Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.
Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
Proposition 5.6.5

In a matroid \(M = (E, \mathcal{I}) \), for any \(U \subseteq E(M) \), any two bases of \(U \) have the same size.

- In matrix terms, given a set of vectors \(U \), all sets of independent vectors that span the space spanned by \(U \) have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.
Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if
Proposition 5.6.5

In a matroid $M = (E, I)$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, I) is a Matroid if

(I1') $\emptyset \in I$ (emptyset containing)
Proposition 5.6.5

In a matroid \(M = (E, \mathcal{I}) \), for any \(U \subseteq E(M) \), any two bases of \(U \) have the same size.

- In matrix terms, given a set of vectors \(U \), all sets of independent vectors that span the space spanned by \(U \) have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system \((V, \mathcal{I}) \) is a Matroid if

(\text{I1}') \(\emptyset \in \mathcal{I} \) (emptyset containing)

(\text{I2}') \(\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \) (down-closed or subclusive)
Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, \mathcal{I}) is a **Matroid** if

(I1') $\emptyset \in \mathcal{I}$ (emptyset containing)

(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)

(I3') $\forall X \subseteq V$, and $I_1, I_2 \in \text{maxInd}(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).
Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
Matroids - rank

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.

- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
Matroids - rank

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E) = r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
Matroids - rank

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.

- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.

- $r(E) = r(E, \mathcal{I})$ is the rank of the matroid, and is the common size of all the bases of the matroid.

- We can a bit more formally define the rank function this way.
Matroids - rank

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E) = r(E, \mathcal{I})$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function $r : 2^E \rightarrow \mathbb{Z}_+$ defined by

$$r(A) = \max \{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$ \hspace{1cm} (5.102)
Matroids - rank

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E) = r(E, \mathcal{I})$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function $r : 2^E \rightarrow \mathbb{Z}_+$ defined by

$$r(A) = \max \{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$ \hspace{1cm} (5.102)

- From the above, we immediately see that $r(A) \leq |A|$.

Examples and Properties

- Other Submodular Defs.
- Independence
- Matroids
- Matroid Examples
- Matroid Rank
- More on Partition Matroid

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 5 - Oct 14th, 2020
F61/85 (pg.171/276)
Matroids - rank

- Thus, in any matroid \(M = (E, \mathcal{I}) \), \(\forall U \subseteq E(M) \), any two bases of \(U \) have the same size.
- The common size of all the bases of \(U \) is called the rank of \(U \), denoted \(r_M(U) \) or just \(r(U) \) when the matroid in equation is unambiguous.
- \(r(E) = r(E, \mathcal{I}) \) is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function \(r : 2^E \rightarrow \mathbb{Z}_+ \) defined by

\[
r(A) = \max \{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X| \tag{5.102}
\]

- From the above, we immediately see that \(r(A) \leq |A| \).
- Moreover, if \(r(A) = |A| \), then \(A \in \mathcal{I} \), meaning \(A \) is independent (in this case, \(A \) is a self base).
Definition 5.6.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank $r(M) - 1$.
Matroids, other definitions using matroid rank $r : 2^V \rightarrow \mathbb{Z}_+$

Definition 5.6.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank $r(M) - 1$.

Definition 5.6.9 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\text{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}$.
Definition 5.6.8 (closed/flat/subspace)

A subset \(A \subseteq E \) is closed (equivalently, a flat or a subspace) of matroid \(M \) if for all \(x \in E \setminus A \), \(r(A \cup \{x\}) = r(A) + 1 \).

Definition: A hyperplane is a flat of rank \(r(M) - 1 \).

Definition 5.6.9 (closure)

Given \(A \subseteq E \), the closure (or span) of \(A \), is defined by
\[
\text{span}(A) = \{ b \in E : r(A \cup \{b\}) = r(A) \}.
\]

Therefore, a closed set \(A \) has \(\text{span}(A) = A \).
Definition 5.6.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank $r(M) - 1$.

Definition 5.6.9 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\text{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}$.

Therefore, a closed set A has $\text{span}(A) = A$.

Definition 5.6.10 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the following are equivalent.

1. B is the collection of bases of a matroid;
2. if $B, B' \in B$, and $x \in B' \setminus B$, then $B' - x + y \in B$ for some $y \in B \setminus B'$.
3. if $B, B' \in B$, and $x \in B' \setminus B$, then $B - y + x \in B$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called “exchange properties.”
In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

1. \mathcal{B} is the collection of bases of a matroid;
2. if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' - x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
3. If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B - y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.
A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 5.6.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the following three properties:

1. **(C1):** $\emptyset \notin C$
2. **(C2):** if $C_1, C_2 \in C$ and $C_1 \subseteq C_2$, then $C_1 = C_2$.
3. **(C3):** if $C_1, C_2 \in C$ with $C_1 \neq C_2$, and $e \in C_1 \cap C_2$, then there exists a $C_3 \in C$ such that $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.
Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

1. C is the collection of circuits of a matroid;
2. if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
3. if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;
Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

1. C is the collection of circuits of a matroid;
2. if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
3. if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.
Uniform Matroid

Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k.
 That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k.
 That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.

Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases}$$

Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
Uniform Matroid

Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.

Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.

Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.

Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases}$$ (5.103)
Uniform Matroid

Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.

Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.

Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.

Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases} \quad (5.103)$$

Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{ A \subseteq E : |A| \leq k \}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I + j| \leq k$ and so $I + j \in \mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \leq k \\ k & \text{if } |A| > k \end{cases} \quad (5.103)$$

- Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$\text{span}(A) = \begin{cases} A & \text{if } |A| < k, \\ E & \text{if } |A| \geq k, \end{cases} \quad (5.104)$$
Uniform Matroid

- Given \(E \), consider \(\mathcal{I} \) to be all subsets of \(E \) that are at most size \(k \).
 That is \(\mathcal{I} = \{ A \subseteq E : |A| \leq k \} \).
- Then \((E, \mathcal{I})\) is a matroid called a \(k \)-uniform matroid.
- Note, if \(I, J \in \mathcal{I} \), and \(|I| < |J| \leq k\), and \(j \in J \) such that \(j \notin I \), then \(j \) is such that \(|I + j| \leq k\) and so \(I + j \in \mathcal{I} \).
- Rank function

\[
r(A) = \begin{cases}
|A| & \text{if } |A| \leq k \\
 k & \text{if } |A| > k
\end{cases} \tag{5.103}
\]

- Note, this function is submodular. Not surprising since \(r(A) = \min(|A|, k) \) which is a non-decreasing concave function applied to a modular function.
- Closure function

\[
\text{span}(A) = \begin{cases}
A & \text{if } |A| < k, \\
E & \text{if } |A| \geq k
\end{cases} \tag{5.104}
\]

- A “free” matroid sets \(k = |E| \), so everything is independent.
Linear (or Matric) Matroid

- Let \mathbf{X} be an $n \times m$ matrix and $E = \{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \ldots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \ldots, x_{a_k}$ are linearly independent.
- The rank function is just the rank of the space spanned by the corresponding set of vectors.
- Rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).
- Called both linear matroids and matric matroids.
Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
Cycle Matroid of a graph: Graphic Matroids

- Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

- Then $M = (E, \mathcal{I})$ is a matroid.
Let $G = (V, E)$ be a graph. Consider (E, I) where the edges of the graph E are the ground set and $A \in I$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Then $M = (E, I)$ is a matroid.

I contains all forests.
Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Then $M = (E, \mathcal{I})$ is a matroid.

\mathcal{I} contains all forests.

Bases are spanning forests (spanning trees if G is connected).
Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Then $M = (E, \mathcal{I})$ is a matroid.

I contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.
Cycle Matroid of a graph: Graphic Matroids

- Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- \mathcal{I} contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.
- Recall from earlier, $r(A) = |V(G)| - k_G(A)$, where for $A \subseteq E(G)$, we define $k_G(A)$ as the number of connected components of the edge-induced spanning subgraph $(V(G), A)$, and that $k_G(A)$ is supermodular, so $|V(G)| - k_G(A)$ is submodular.
Cycle Matroid of a graph: Graphic Matroids

- Let $G = (V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- \mathcal{I} contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.
- Recall from earlier, $r(A) = |V(G)| - k_G(A)$, where for $A \subseteq E(G)$, we define $k_G(A)$ as the number of connected components of the edge-induced spanning subgraph $(V(G), A)$, and that $k_G(A)$ is supermodular, so $|V(G)| - k_G(A)$ is submodular.
- Closure function adds all edges between the vertices adjacent to any edge in A. Closure of a spanning forest is G.
Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.
Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.
Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.
Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.
A graph defines a matroid on edge sets, independent sets are those without a cycle.
Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.
Partition Matroid

Let V be our ground set.
Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$
\mathcal{I} = \{X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell\}.
$$

(5.105)

where k_1, \ldots, k_ℓ are fixed “limit” parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.
Let V be our ground set.

Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell \}. \quad (5.105)$$

where k_1, \ldots, k_ℓ are fixed “limit” parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.

Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell\}. \quad (5.105)$$

where k_1, \ldots, k_ℓ are fixed “limit” parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.
- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.
- Parameters associated with a partition matroid: ℓ and k_1, k_2, \ldots, k_ℓ although often the k_i’s are all the same.
Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell \}. \quad (5.105)$$

where k_1, \ldots, k_ℓ are fixed “limit” parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.
- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.
- Parameters associated with a partition matroid: ℓ and k_1, k_2, \ldots, k_ℓ although often the k_i’s are all the same.
- We’ll show that property (I3’) in Def 5.6.4 holds. First note, for any $X \subseteq V$, $|X| = \sum_{i=1}^{\ell} |X \cap V_i|$ since $\{V_1, V_2, \ldots, V_\ell\}$ is a partition.
Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$I = \{ X \subseteq V : \left| X \cap V_i \right| \leq k_i \text{ for all } i = 1, \ldots, \ell \}.$$ \hfill (5.105)

where k_1, \ldots, k_ℓ are fixed “limit” parameters, $k_i \geq 0$. Then $M = (V, I)$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.

- Parameters associated with a partition matroid: ℓ and k_1, k_2, \ldots, k_ℓ although often the k_i’s are all the same.

- We’ll show that property (I3’) in Def 5.6.4 holds. First note, for any $X \subseteq V$, $|X| = \sum_{i=1}^{\ell} |X \cap V_i|$ since $\{V_1, V_2, \ldots, V_\ell\}$ is a partition.

- If $X, Y \in I$ with $|Y| > |X|$, then there must be at least one i with $|Y \cap V_i| > |X \cap V_i|$. Therefore, adding one element $e \in V_i \cap (Y \setminus X)$ to X won’t break independence.
Partition Matroid

Ground set of objects, $V = \{ \}$
Partition Matroid

Partition of V into six blocks, V_1, V_2, \ldots, V_6
Partition Matroid

Limit associated with each block, \(\{k_1, k_2, \ldots, k_6\} \)
Partition Matroid

Independent subset but not maximally independent.
Partition Matroid

Maximally independent subset, what is called a base.
Partition Matroid

Not independent since over limit in set six.
Lemma 5.8.1

The rank function $r : 2^E \rightarrow \mathbb{Z}_+$ of a matroid is submodular, that is

$$r(A) + r(B) \geq r(A \cup B) + r(A \cap B)$$
Lemma 5.8.1

The rank function \(r : 2^E \to \mathbb{Z}_+ \) of a matroid is submodular, that is

\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \)
Lemma 5.8.1

The rank function $r : 2^E \rightarrow \mathbb{Z}_+$ of a matroid is submodular, that is

$$r(A) + r(B) \geq r(A \cup B) + r(A \cap B)$$

Proof.

1. Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
2. Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$. We can find such a $Y \supseteq X$ because the following. Let $Y' \in \mathcal{I}$ be any inclusionwise maximal set with $Y' \subseteq A \cup B$, which might not have $X \subseteq Y'$. Starting from $Y \leftarrow X \subseteq A \cup B$, since $|Y'| \geq |X|$, there exists a $y \in Y' \setminus X \subseteq A \cup B$ such that $X + y \in \mathcal{I}$ but since $y \in A \cup B$, also $X + y \in A \cup B$ — we then add y to Y. We can keep doing this while $|Y'| > |X|$ since this is a matroid. We end up with an inclusionwise maximal set Y with $Y \in \mathcal{I}$ and $X \subseteq Y$.

Prof. Jeff Bilmes
Lemma 5.8.1

The rank function \(r : 2^E \to \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(r(A \cap B) = r(X) = |X| \), and \(r(A \cup B) = r(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(r(A) \geq |A \cap U| \).
Lemma 5.8.1

The rank function $r : 2^E \rightarrow \mathbb{Z}_+$ of a matroid is submodular, that is
\[r(A) + r(B) \geq r(A \cup B) + r(A \cap B) \]

Proof.

1. Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$.
2. Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
3. Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \geq |A \cap U|$.
4. Then we have (since $X \subseteq A \cap B$, $X \subseteq Y$, and $Y \subseteq A \cup B$),

\[r(A) + r(B) \geq r(A \cup B) + r(A \cap B) \]

(5.106)
Lemma 5.8.1

The rank function \(r : 2^E \rightarrow \mathbb{Z}_+ \) of a matroid is submodular, that is

\[
r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(r(A \cap B) = r(X) = |X| \), and \(r(A \cup B) = r(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(r(A) \geq |A \cap U| \).
4. Then we have (since \(X \subseteq A \cap B \), \(X \subseteq Y \), and \(Y \subseteq A \cup B \)),

\[
r(A) + r(B) \geq |Y \cap A| + |Y \cap B|
\]

(5.106)
Lemma 5.8.1

The rank function \(r : 2^E \rightarrow \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
 r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(r(A \cap B) = r(X) = |X| \), and \(r(A \cup B) = r(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(r(A) \geq |A \cap U| \).
4. Then we have (since \(X \subseteq A \cap B \), \(X \subseteq Y \), and \(Y \subseteq A \cup B \)),
\[
 r(A) + r(B) \geq |Y \cap A| + |Y \cap B| \tag{5.106}
\]
\[
 = |Y \cap (A \cap B)| + |Y \cap (A \cup B)| \tag{5.107}
\]
Matroids - rank function is submodular

Lemma 5.8.1

The rank function \(r : 2^E \to \mathbb{Z}_+ \) of a matroid is submodular, that is
\[
 r(A) + r(B) \geq r(A \cup B) + r(A \cap B)
\]

Proof.

1. Let \(X \in \mathcal{I} \) be an inclusionwise maximal set with \(X \subseteq A \cap B \).
2. Let \(Y \in \mathcal{I} \) be inclusionwise maximal set with \(X \subseteq Y \subseteq A \cup B \).
3. Since \(M \) is a matroid, we know that \(r(A \cap B) = r(X) = |X| \), and \(r(A \cup B) = r(Y) = |Y| \). Also, for any \(U \in \mathcal{I} \), \(r(A) \geq |A \cap U| \).
4. Then we have (since \(X \subseteq A \cap B \), \(X \subseteq Y \), and \(Y \subseteq A \cup B \)),

\[
 r(A) + r(B) \geq |Y \cap A| + |Y \cap B| \quad (5.106)
\]
\[
 = |Y \cap (A \cap B)| + |Y \cap (A \cup B)| \quad (5.107)
\]
\[
 \geq |X| + |Y| = r(A \cap B) + r(A \cup B) \quad (5.108)
\]
A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let $r : 2^E \rightarrow \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

\begin{align*}
(R1) \quad & \forall A \subseteq E \quad 0 \leq r(A) \leq |A| \quad (\text{non-negative cardinality bounded}) \\
(R2) \quad & r(A) \leq r(B) \text{ whenever } A \subseteq B \subseteq E \quad (\text{monotone non-decreasing}) \\
(R3) \quad & r(A \cup B) + r(A \cap B) \leq r(A) + r(B) \text{ for all } A, B \subseteq E \quad (\text{submodular})
\end{align*}

- From above, $r(\emptyset) = 0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \leq r(A \cup \{v\}) \leq r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$, namely $r(A)$ or $r(A) + 1$.

A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let $r : 2^E \rightarrow \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

(R1) $\forall A \subseteq E \quad 0 \leq r(A) \leq |A|$ (non-negative cardinality bounded)

(R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)

(R3) $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)

- From above, $r(\emptyset) = 0$. Let $v \not\in A$, then by monotonicity and submodularity, $r(A) \leq r(A \cup \{v\}) \leq r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$, namely $r(A)$ or $r(A) + 1$.

- Hence, unit increment (if $r(A) = k$, then either $r(A \cup \{v\}) = k$ or $r(A \cup \{v\}) = k + 1$) holds.
A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let E be a set and let $r : 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

(R1) $\forall A \subseteq E \quad 0 \leq r(A) \leq |A|$ (non-negative cardinality bounded)

(R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)

(R3) $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)

- From above, $r(\emptyset) = 0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \leq r(A \cup \{v\}) \leq r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$, namely $r(A)$ or $r(A) + 1$.

- Hence, unit increment (if $r(A) = k$, then either $r(A \cup \{v\}) = k$ or $r(A \cup \{v\}) = k + 1$) holds.

- Thus, submodularity, non-negative monotone non-decreasing, and unit increment of rank is necessary and sufficient to define a matroid.
A matroid is defined from its rank function

Theorem 5.8.2 (Matroid from rank)

Let \(E \) be a set and let \(r : 2^E \rightarrow \mathbb{Z}_+ \) be a function. Then \(r(\cdot) \) defines a matroid with \(r \) being its rank function if and only if for all \(A, B \subseteq E \):

1. **(R1)** \(\forall A \subseteq E \ 0 \leq r(A) \leq |A| \) (non-negative cardinality bounded)
2. **(R2)** \(r(A) \leq r(B) \) whenever \(A \subseteq B \subseteq E \) (monotone non-decreasing)
3. **(R3)** \(r(A \cup B) + r(A \cap B) \leq r(A) + r(B) \) for all \(A, B \subseteq E \) (submodular)

- From above, \(r(\emptyset) = 0 \). Let \(v \notin A \), then by monotonicity and submodularity, \(r(A) \leq r(A \cup \{v\}) \leq r(A) + r(\{v\}) \) which gives only two possible values to \(r(A \cup \{v\}) \), namely \(r(A) \) or \(r(A) + 1 \).
- Hence, unit increment (if \(r(A) = k \), then either \(r(A \cup \{v\}) = k \) or \(r(A \cup \{v\}) = k + 1 \) holds.
- Thus, submodularity, non-negative monotone non-decreasing, and unit increment of rank is necessary and sufficient to define a matroid.
- Can refer to matroid as \((E, r) \), \(E \) is ground set, \(r \) is rank function.
Proof of Theorem 5.8.2 (matroid from rank).

Given a matroid $M = (E, I)$, we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.
Proof of Theorem 5.8.2 (matroid from rank).

Given a matroid $M = (E, I)$, we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

Next, assume we have (R1), (R2), and (R3). Define $I = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, I) is a matroid.
Proof of Theorem 5.8.2 (matroid from rank).

- Given a matroid \(M = (E, \mathcal{I}) \), we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define \(\mathcal{I} = \{ X \subseteq E : r(X) = \lvert X \rvert \} \). We will show that \((E, \mathcal{I}) \) is a matroid.
- First, \(\emptyset \in \mathcal{I} \).
Proof of Theorem 5.8.2 (matroid from rank).

Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

Next, assume we have (R1), (R2), and (R3). Define
$$\mathcal{I} = \{X \subseteq E : r(X) = |X|\}.$$ We will show that (E, \mathcal{I}) is a matroid.

First, $\emptyset \in \mathcal{I}$.

Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,
Proof of Theorem 5.8.2 (matroid from rank).

Given a matroid \(M = (E, \mathcal{I}) \), we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

Next, assume we have (R1), (R2), and (R3). Define \(\mathcal{I} = \{ X \subseteq E : r(X) = |X| \} \). We will show that \((E, \mathcal{I})\) is a matroid.

First, \(\emptyset \in \mathcal{I} \).

Also, if \(Y \in \mathcal{I} \) and \(X \subseteq Y \) then by submodularity,

\[
r(X) \geq r(Y) - r(Y \setminus X)
\]

(5.109)
Proof of Theorem 5.8.2 (matroid from rank).

- Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.

- First, $\emptyset \in \mathcal{I}$.

- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

 \[r(X) \geq r(Y) - r(Y \setminus X) + r(\emptyset) \quad (5.109) \]
Proof of Theorem 5.8.2 (matroid from rank).

Given a matroid \(M = (E, I) \), we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

Next, assume we have (R1), (R2), and (R3). Define \(I = \{ X \subseteq E : r(X) = |X| \} \). We will show that \((E, I) \) is a matroid.

First, \(\emptyset \in I \).

Also, if \(Y \in I \) and \(X \subseteq Y \) then by submodularity,

\[
 r(X) \geq r(Y) - r(Y \setminus X) + r(\emptyset)
\]

\[
 \geq |Y| - |Y \setminus X|
\]

(5.109) (5.110)
Proof of Theorem 5.8.2 (matroid from rank).

- Given a matroid $M = (E, I)$, we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $I = \{ X \subseteq E : r(X) = |X| \}$. We will show that (E, I) is a matroid.

- First, $\emptyset \in I$.

- Also, if $Y \in I$ and $X \subseteq Y$ then by submodularity,

$$r(X) \geq r(Y) - r(Y \setminus X) + r(\emptyset)$$ \hspace{1cm} (5.109)

$$\geq |Y| - |Y \setminus X|$$ \hspace{1cm} (5.110)

$$= |X|$$ \hspace{1cm} (5.111)

...
Proof of Theorem 5.8.2 (matroid from rank).

- Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 5.102 satisfies (R1), (R2), and, as we saw in Lemma 5.8.1, (R3) too.

- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.

- First, $\emptyset \in \mathcal{I}$.

- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \geq r(Y) - r(Y \setminus X) + r(\emptyset)$$

$$\geq |Y| - |Y \setminus X|$$

$$= |X|$$

implying $r(X) = |X|$, and thus $X \in \mathcal{I}$.

...
Proof of Theorem 5.8.2 (matroid from rank) cont.

Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A| < |A| + 1$. Then
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A| < |A| + 1$. Then

$$r(B) \leq r(A \cup B)$$ \hspace{1cm} (5.112)
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let \(A, B \in \mathcal{I} \), with \(|A| < |B|\), so \(r(A) = |A| < r(B) = |B| \). Let \(B \setminus A = \{b_1, b_2, \ldots, b_k\} \) (note \(1 \leq k \leq |B| \)).

- Suppose, to the contrary, that \(\forall b \in B \setminus A, A + b \notin \mathcal{I} \), which means for all such \(b \), \(r(A + b) = r(A) = |A| < |A| + 1 \). Then

\[
\begin{align*}
r(B) & \leq r(A \cup B) \\
& \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)
\end{align*}
\] (5.112) (5.113)
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A| < |A| + 1$. Then

\[
\begin{align*}
 r(B) &\leq r(A \cup B) \\
 &\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \\
 &= r(A \cup (B \setminus \{b_1\}))
\end{align*}
\]
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A| < |A| + 1$. Then

\[
\begin{align*}
 r(B) &\leq r(A \cup B) \quad \text{(5.112)} \\
 &\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \quad \text{(5.113)} \\
 &= r(A \cup (B \setminus \{b_1\})) \quad \text{(5.114)} \\
 &\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A) \quad \text{(5.115)}
\end{align*}
\]
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).

- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A| < |A| + 1$. Then

\[
r(B) \leq r(A \cup B) \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) = r(A \cup (B \setminus \{b_1\})) \leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A) = r(A \cup (B \setminus \{b_1, b_2\}))
\]
Proof of Theorem 5.8.2 (matroid from rank) cont.

Let \(A, B \in I \), with \(|A| < |B|\), so \(r(A) = |A| < r(B) = |B| \). Let \(B \setminus A = \{b_1, b_2, \ldots, b_k\} \) (note \(1 \leq k \leq |B| \)).

Suppose, to the contrary, that \(\forall b \in B \setminus A, A + b \notin I \), which means for all such \(b \), \(r(A + b) = r(A) = |A| < |A| + 1 \). Then

\[
\begin{align*}
 r(B) &\leq r(A \cup B) \tag{5.112} \\
 &\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \tag{5.113} \\
 &= r(A \cup (B \setminus \{b_1\})) \tag{5.114} \\
 &\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A) \tag{5.115} \\
 &= r(A \cup (B \setminus \{b_1, b_2\})) \tag{5.116} \\
 &\leq \ldots \leq r(A) = |A| < |B| \tag{5.117}
\end{align*}
\]
Proof of Theorem 5.8.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A| < |B|$, so $r(A) = |A| < r(B) = |B|$. Let $B \setminus A = \{b_1, b_2, \ldots, b_k\}$ (note $1 \leq k \leq |B|$).

- Suppose, to the contrary, that $\forall b \in B \setminus A, A + b \notin \mathcal{I}$, which means for all such b, $r(A + b) = r(A) = |A| < |A| + 1$. Then

\[
\begin{align*}
 r(B) & \leq r(A \cup B) \\
 & \leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \\
 & = r(A \cup (B \setminus \{b_1\})) \\
 & \leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A) \\
 & = r(A \cup (B \setminus \{b_1, b_2\})) \\
 & \leq \ldots \leq r(A) = |A| < |B|
\end{align*}
\]

giving a contradiction since $B \in \mathcal{I}$.
Another way of using function r to define a matroid.

Theorem 5.8.3 (Matroid from rank II)

Let E be a finite set and let $r : 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $X \subseteq E$, and $x, y \in E$:

(R1') $r(\emptyset) = 0$;

(R2') $r(X) \leq r(X \cup \{y\}) \leq r(X) + 1$;

(R3') If $r(X \cup \{x\}) = r(X \cup \{y\}) = r(X)$, then $r(X \cup \{x, y\}) = r(X)$.
Theorem 5.8.4 (Matroid by submodular functions)

Let $f : 2^E \to \mathbb{Z}$ be an integer valued monotone non-decreasing submodular function. Define a set of sets as follows:

$$C(f) = \left\{ C \subseteq E : \begin{array}{l}
C \text{ is non-empty,} \\
\text{is inclusionwise-minimal,} \\
\text{and has } f(C) < |C| \end{array} \right\}$$

Then $C(f)$ is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if $C \in C(f)$, then there exists no $C' \subset C$ with $C' \in C(f)$ (i.e., $C' \subset C$ would either be empty or have $f(C') \geq |C'|$). Also, recall inclusionwise-minimal in Definition 5.6.10, the definition of a circuit.
Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn’t see this, but it is possible)
Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn’t see this, but it is possible)
- Rank axioms (normalized, monotone, cardinality bounded, non-negative integral, submodular)
Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn’t see this, but it is possible)
- Rank axioms (normalized, monotone, cardinality bounded, non-negative integral, submodular)
- Matroids by integral submodular functions.
Maximization problems for matroids

- Given a matroid $M = (E, I)$ and a modular value function $c : E \rightarrow \mathbb{R}$, the task is to find an $X \in I$ such that $c(X) = \sum_{x \in X} c(x)$ is maximum.
- This seems remarkably similar to the max spanning tree problem.
Given a matroid $M = (E, I)$ and a modular cost function $c : E \to \mathbb{R}$, the task is to find a basis $B \in \mathcal{B}$ such that $c(B)$ is minimized.

This sounds like a set cover problem (find the minimum cost covering set of sets).
What is the partition matroid’s rank function?

A partition matroid's rank function:

\[r(A) = \sum_{i=1}^{k} \min(|A \setminus V_i|, k_i) \] (5.119)

which we also immediately see is submodular using properties we spoke about last week. That is:

1. \(|A \setminus V_i| \) is submodular (in fact modular) in \(A \).
2. \(\min(\text{submodular}(A), k_i) \) is submodular in \(A \) since \(|A \setminus V_i| \) is monotone.
3. sums of submodular functions are submodular.

\(r(A) \) is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).
What is the partition matroid’s rank function?

A partition matroids rank function:

\[r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i) \]
(5.119)

which we also immediately see is submodular using properties we spoke about last week. That is:
Partition Matroid

- What is the partition matroid’s rank function?

A partition matroids rank function:

\[r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i) \]

which we also immediately see is submodular using properties we spoke about last week. That is:

1. \(|A \cap V_i|\) is submodular (in fact modular) in \(A\)
What is the partition matroid’s rank function?

A partition matroids rank function:

\[r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i) \]

which we also immediately see is submodular using properties we spoke about last week. That is:

1. \(|A \cap V_i|\) is submodular (in fact modular) in \(A\)
2. \(\min(\text{submodular}(A), k_i)\) is submodular in \(A\) since \(|A \cap V_i|\) is monotone.
What is the partition matroid’s rank function?

A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$ \hspace{1cm} (5.119)

which we also immediately see is submodular using properties we spoke about last week. That is:

1. $|A \cap V_i|$ is submodular (in fact modular) in A
2. $\min(\text{submodular}(A), k_i)$ is submodular in A since $|A \cap V_i|$ is monotone.
3. Sums of submodular functions are submodular.
What is the partition matroid’s rank function?

A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$ \hspace{1cm} (5.119)

which we also immediately see is submodular using properties we spoke about last week. That is:

1. $|A \cap V_i|$ is submodular (in fact modular) in A
2. $\min(\text{submodular}(A), k_i)$ is submodular in A since $|A \cap V_i|$ is monotone.
3. Sums of submodular functions are submodular.

$r(A)$ is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).
From 2-partition matroid rank to truncated matroid rank

Example: 2-partition matroid rank function: Given natural numbers \(a, b \in \mathbb{Z}_+ \) with \(a < b \), and any set \(R \subseteq V \) with \(|R| = b \).
From 2-partition matroid rank to truncated matroid rank

- Example: 2-partition matroid rank function: Given natural numbers \(a, b \in \mathbb{Z}_+ \) with \(a < b \), and any set \(R \subseteq V \) with \(|R| = b \).

- Create two-block partition \(V = (R, \bar{R}) \), where \(\bar{R} = V \setminus R \) so \(|\bar{R}| = |V| - b \). Gives 2-partition matroid rank function as follows:

\[
r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|) \\
= \min(|A \cap R|, a) + |A \cap \bar{R}| \tag{5.120}
\]

\[
= \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + a) \tag{5.121}
\]

\[
= \min(|A|, |A \cap \bar{R}| + a) \tag{5.122}
\]
Example: 2-partition matroid rank function: Given natural numbers $a, b \in \mathbb{Z}_+$ with $a < b$, and any set $R \subseteq V$ with $|R| = b$.

Create two-block partition $V = (R, \bar{R})$, where $\bar{R} = V \setminus R$ so $|\bar{R}| = |V| - b$. Gives 2-partition matroid rank function as follows:

$$r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|)$$ \hspace{1cm} (5.120)

$$= \min(|A \cap R|, a) + |A \cap \bar{R}|$$ \hspace{1cm} (5.121)

$$= \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + a)$$ \hspace{1cm} (5.122)

$$= \min(|A|, |A \cap \bar{R}| + a)$$ \hspace{1cm} (5.123)

Figure showing partition blocks and partition matroid limits.

Since $|\bar{R}| = |V| - b$

the limit on \bar{R} is vacuous.

$a < |R| = b$
Example: 2-partition matroid rank function: Given natural numbers $a, b \in \mathbb{Z}_+ \text{ with } a < b$, and any set $R \subseteq V$ with $|R| = b$.

Create two-block partition $V = (R, \bar{R})$, where $\bar{R} = V \setminus R$ so $|\bar{R}| = |V| - b$. Gives 2-partition matroid rank function as follows:

$$r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|) \quad (5.120)$$

$$= \min(|A \cap R|, a) + |A \cap \bar{R}| \quad (5.121)$$

$$= \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + a) \quad (5.122)$$

$$= \min(|A|, |A \cap \bar{R}| + a) \quad (5.123)$$

Figure showing partition blocks and partition matroid limits.

Since $|\bar{R}| = |V| - b$ the limit on \bar{R} is vacuous.

$a < |R| = b$
Define **truncated matroid rank** function. Start with 2-partition matroid rank \(r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|) \), \(a < b \). Define:

\[
f_R(A) = \min \left\{ r(A), b \right\}
\]

\[
= \min \left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\}
\]

\[
= \min \left\{ |A|, a + |A \cap \bar{R}|, b \right\}
\]
Define **truncated matroid rank** function. Start with 2-partition matroid rank $r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|)$, $a < b$. Define:

$$ f_R(A) = \min \left\{ r(A), b \right\} $$

$$ = \min \left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\} $$

$$ = \min \left\{ |A|, a + |A \cap \bar{R}|, b \right\} $$

Defines a matroid $M = (V, f_R) = (V, \mathcal{I})$ (Goemans et. al.) with

\[\mathcal{I} = \{ I \subseteq V : |I| \leq b \text{ and } |I \cap R| \leq a \}, \]
Define truncated \textit{matroid rank} function. Start with 2-partition matroid rank \(r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|) \), \(a < b \). Define:

\[
f_R(A) = \min \left\{ r(A), b \right\}
\]

\[
= \min \left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\}
\]

\[(5.124), (5.125), (5.126)\]

- Defines a matroid \(M = (V, f_R) = (V, \mathcal{I}) \) (Goemans et. al.) with

\[
\mathcal{I} = \{ I \subseteq V : |I| \leq b \text{ and } |I \cap R| \leq a \},
\]

\[(5.127)\]

Useful for showing hardness of constrained submodular minimization.

Consider sets \(B \subseteq V \) with \(|B| = b \). Recall \(R \) fixed, and \(|R| = b \).
Define truncated matroid rank function. Start with 2-partition matroid rank \(r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|), a < b \). Define:

\[
f_R(A) = \min \left\{ r(A), b \right\}
\]

\[
= \min \left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\}
\]

\[
= \min \left\{ |A|, a + |A \cap \bar{R}|, b \right\}
\]

Defines a matroid \(M = (V, f_R) = (V, \mathcal{I}) \) (Goemans et. al.) with

\[
\mathcal{I} = \{ I \subseteq V : |I| \leq b \text{ and } |I \cap R| \leq a \},
\]

Useful for showing hardness of constrained submodular minimization.

Consider sets \(B \subseteq V \) with \(|B| = b \). Recall \(R \) fixed, and \(|R| = b \).

For \(R \), we have \(f_R(R) = \min(b, a, b) = a < b \).
Define **truncated matroid rank** function. Start with 2-partition matroid rank $r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|)$, $a < b$. Define:

$$f_R(A) = \min \left\{ r(A), b \right\}$$

$$= \min \left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\}$$

$$= \min \left\{ |A|, a + |A \cap \bar{R}|, b \right\}$$

Defines a matroid $M = (V, f_R) = (V, \mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \leq b \text{ and } |I \cap R| \leq a \},$$

Useful for showing hardness of constrained submodular minimization.

Consider sets $B \subseteq V$ with $|B| = b$. Recall R fixed, and $|R| = b$.

- For R, we have $f_R(R) = \min(b, a, b) = a < b$.
- For any B with $|B \cap R| \leq a$, $f_R(B) = b$.
Define **truncated matroid rank** function. Start with 2-partition matroid rank \(r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|), \ a < b \). Define:

\[
\begin{align*}
 f_R(A) &= \min \left\{ r(A), b \right\} \\
 &= \min \left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\} \\
 &= \min \left\{ |A|, a + |A \cap \bar{R}|, b \right\}
\end{align*}
\] (5.124) (5.125) (5.126)

- Defines a matroid \(M = (V, f_R) = (V, \mathcal{I}) \) (Goemans et. al.) with

\[
\mathcal{I} = \{ I \subseteq V : |I| \leq b \text{ and } |I \cap R| \leq a \}, \quad (5.127)
\]

Useful for showing hardness of constrained submodular minimization.

Consider sets \(B \subseteq V \) with \(|B| = b\). Recall \(R \) fixed, and \(|R| = b\).

- For \(R \), we have \(f_R(R) = \min(b, a, b) = a < b \).
- For any \(B \) with \(|B \cap R| \leq a\), \(f_R(B) = b \).
- For any \(B \) with \(|B \cap R| = \ell\), with \(a \leq \ell \leq b\), \(f_R(B) = a + b - \ell \).
Define truncated matroid rank function. Start with 2-partition matroid rank \(r(A) = \min(|A \cap R|, a) + \min(|A \cap \overline{R}|, |\overline{R}|) \), \(a < b \). Define:

\[
f_R(A) = \min \left\{ r(A), b \right\}
\]

(5.124)

\[
= \min \left\{ \min(|A|, |A \cap \overline{R}| + a), b \right\}
\]

(5.125)

\[
= \min \left\{ |A|, a + |A \cap \overline{R}|, b \right\}
\]

(5.126)

Defines a matroid \(M = (V, f_R) = (V, \mathcal{I}) \) (Goemans et. al.) with

\[
\mathcal{I} = \{ I \subseteq V : |I| \leq b \text{ and } |I \cap R| \leq a \},
\]

(5.127)

Useful for showing hardness of constrained submodular minimization.

Consider sets \(B \subseteq V \) with \(|B| = b \). Recall \(R \) fixed, and \(|R| = b \).

- For \(R \), we have \(f_R(R) = \min(b, a, b) = a < b \).
- For any \(B \) with \(|B \cap R| \leq a \), \(f_R(B) = b \).
- For any \(B \) with \(|B \cap R| = \ell \), with \(a \leq \ell \leq b \), \(f_R(B) = a + b - \ell \).
- \(R \), the set with minimum valuation amongst size-\(b \) sets, is hidden within an exponentially larger set of size-\(b \) sets with larger valuation.
A partition matroid can be viewed using a bipartite graph.

Letting V denote the ground set, and V_1, V_2, \ldots the partition, the bipartite graph is $G = (V, I, E)$ where V is the ground set, I is a set of “indices”, and E is the set of edges.

$I = (I_1, I_2, \ldots, I_{\ell})$ is a set of $k = \sum_{i=1}^{\ell} k_i$ nodes, grouped into ℓ clusters, where there are k_i nodes in the i^{th} group I_i, and $|I_i| = k_i$.

$(v, i) \in E(G)$ iff $v \in V_j$ and $i \in I_j$.
Example where $\ell = 5$,

$$(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3).$$
Example where \(\ell = 5 \),
\[
(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3).
\]

Recall, \(\Gamma : 2^V \rightarrow \mathbb{R} \) as the neighbor function in a bipartite graph, the neighbors of \(X \) is defined as \(\Gamma(X) = \{ v \in V(G) \setminus X : E(X, \{v}\} \neq \emptyset \} \), and recall that \(|\Gamma(X)| \) is submodular.
Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.

Recall, $\Gamma : 2^V \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}$.
Example where \(\ell = 5 \),

\[(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3) \].

Recall, \(\Gamma : 2^V \to \mathbb{R} \) as the neighbor function in a bipartite graph, the neighbors of \(X \) is defined as \(\Gamma(X) = \{ v \in V(G) \setminus X : E(X, \{ v \}) \neq \emptyset \} \), and recall that \(|\Gamma(X)| \) is submodular.

Here, for \(X \subseteq V \), we have \(\Gamma(X) = \{ i \in I : (v, i) \in E(G) \text{ and } v \in X \} \).

For such a constructed bipartite graph, the rank function of a partition matroid is \(r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) \) = the maximum matching involving \(X \).