Submodular Functions, Optimization, and Applications to Machine Learning — Fall Quarter, Lecture 3 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Oct 7th, 2020

• Read chapter 1 from Fujishige's book.

Logistics

Class Road Map - EE563

- L1(9/30): Motivation, Applications, Definitions, Properties
- L2(10/5): Sums concave(modular), uses (diversity/costs, feature selection), information theory
- L3(10/7): Monge, More Definitions, Graph and Combinatorial Examples, Matrix Rank, Properties
- L4(10/12):
- L5(10/14):
- L6(10/19):
- L7(10/21):
- L8(10/26):
- L9(10/28):
- L10(11/2):

- L11(11/4):
- L12(11/9):
- L–(11/11): Veterans Day, Holiday
- L13(11/16):
- L14(11/18):
- L15(11/23):
- L16(11/25):
- L17(11/30):
- L18(12/2):
- L19(12/7):
- L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(3.8)

• The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

• Gain notation: Define $f(v|A) \triangleq f(A+v) - f(A)$. Then function f is submodular if $f(v|A) \ge f(v|B)$ for all $A \subseteq B \subseteq V \setminus \{v\}$, $v \in V$.

Prof. Jeff Bilmes

Definition 3.2.1 (supermodular)

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) + f(A \cap B)$$
(3.7)

Definition 3.2.2 (supermodular (improving returns))

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \le f(B \cup \{v\}) - f(B)$$
(3.8)

- Incremental "value", "gain", or "cost" of v increases (improves) as the context in which v is considered grows from A to B.
- A function f is submodular iff -f is supermodular.
- If f both submodular and supermodular, then f is said to be modular, and $f(A) = c + \sum_{a \in A} \overline{\overline{f}(a)}$ for some \overline{f} (often c = 0).

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Mong	e Matrices			

• $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

$$c_{ij} + c_{rs} \le c_{is} + c_{rj} \tag{3.1}$$

for all $1 \le i < r \le m$ and $1 \le j < s \le n$.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Mana	Natrices			

Monge Matrices

• $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

$$c_{ij} + c_{rs} \le c_{is} + c_{rj} \tag{3.1}$$

for all $1 \le i < r \le m$ and $1 \le j < s \le n$.

• Lined up indices

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
N A .				

Monge Matrices

• $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

$$c_{ij} + c_{rs} \le c_{is} + c_{rj} \tag{3.1}$$

for all $1 \le i < r \le m$ and $1 \le j < s \le n$.

• Lined up indices

$$i < r$$
 (3.2)
 $j < s$ (3.3)

• Equivalently, for all $1 \le i, r \le m$, $1 \le s, j \le n$,

$$c_{\min(i,r),\min(s,j)} + c_{\max(i,r),\max(s,j)} \le c_{is} + c_{rj}$$
 (3.4)

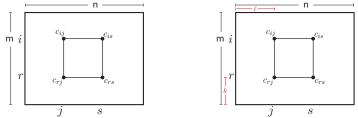
• Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$ th entry, $1 \le i \le m$, $1 \le j \le n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$
(3.5)

Monge

• Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$ th entry, $1 \le i \le m$, $1 \le j \le n$:

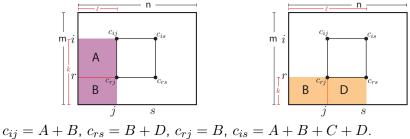
$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$
(3.5)



Monge

• Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$ th entry, $1 \le i \le m$, $1 \le j \le n$:

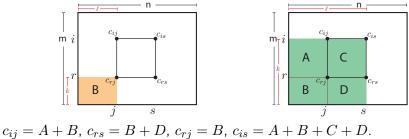
$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$
(3.5)



Monge

• Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$ th entry, $1 \le i \le m$, $1 \le j \le n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$
(3.5)

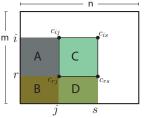


Monge

• Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$ th entry, $1 \le i \le m$, $1 \le j \le n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$
(3.5)

• Consider four elements of the $m \times n$ matrix:

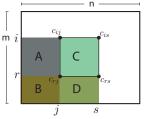


 $c_{ij} = A + B$, $c_{rs} = B + D$, $c_{rj} = B$, $c_{is} = A + B + C + D$.

Monge

• Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$ th entry, $1 \le i \le m$, $1 \le j \le n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$
(3.5)



$$c_{ij}=A+B,\ c_{rs}=B+D,\ c_{rj}=B,\ c_{is}=A+B+C+D.$$

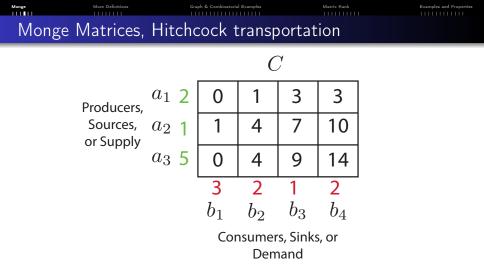
• Then, $c_{ij}+c_{rs}< c_{is}+c_{rj}.$

• Useful for speeding up transportation, dynamic programming, flow, search, lot-sizing and many other problems.

Morge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Monge Matrices, where useful

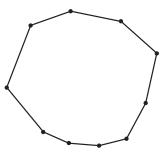
- Useful for speeding up transportation, dynamic programming, flow, search, lot-sizing and many other problems.
- Example, Hitchcock transportation problem: Given $m \times n$ cost matrix $C = [c_{ij}]_{ij}$, a non-negative supply vector $a \in \mathbb{R}^m_+$, a non-negative demand vector $b \in \mathbb{R}^n_+$ with $\sum_{i=1}^m a(i) = \sum_{j=1}^n b_j$, we wish to optimally solve the following linear program:

$$\begin{array}{ll} \underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} & (3.6) \\ \text{subject to} & \sum_{i=1}^{m} x_{ij} = b_j \ \forall j = 1, \dots, n & (3.7) \\ & \sum_{j=1}^{n} x_{ij} = a_i \ \forall i = 1, \dots, m & (3.8) \\ & x_{i,j} \ge 0 \ \forall i, j & (3.9) \end{array}$$



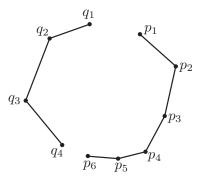
• Solving the linear program can be done easily and optimally using the "North-West Corner Rule" (a 2D greedy-like approach starting at top-left and moving down or right) in only O(m+n) if the matrix C is Monge!

• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).

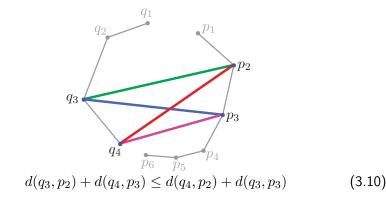


• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).

• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).



• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).



Transport unit quantities from locations q_3 and q_4 to locations p_2 and p_3 ; to minimize total distance traveled, routes from q_3 and q_4 must not intersect.

• A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$

More More Continuous Graph & Continuous Examples Music Rank Examples and Property Monge Matrices and Submodularity

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f : \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \dots, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.11)

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \dots, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.11)

• $x \lor y$ is the (join) element-wise max of each element, that is $(x \lor y)(v) = \max(x(v), y(v))$ for $v \in V$.

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \dots, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.11)

- $x \vee y$ is the (join) element-wise max of each element, that is $(x \vee y)(v) = \max(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \min(x(v), y(v))$ for $v \in V$.

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \dots, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.11)

- $x \vee y$ is the (join) element-wise max of each element, that is $(x \vee y)(v) = \max(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \min(x(v), y(v))$ for $v \in V$.
- With K = 1, then this is the standard definition of submodularity.

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \dots, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.11)

- $x \vee y$ is the (join) element-wise max of each element, that is $(x \vee y)(v) = \max(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \min(x(v), y(v))$ for $v \in V$.
- With K = 1, then this is the standard definition of submodularity.
- With |V| = 2, and K + 1 the side-dimension of the matrix, we get a Monge property (on square matrices).

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, 1, \dots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \dots, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.11)

- $x \vee y$ is the (join) element-wise max of each element, that is $(x \vee y)(v) = \max(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \min(x(v), y(v))$ for $v \in V$.
- With K = 1, then this is the standard definition of submodularity.
- With |V| = 2, and K + 1 the side-dimension of the matrix, we get a Monge property (on square matrices).
- Non square: $f: \{0, 1, \dots, K_1\} \times \{0, 1, \dots, K_2\} \rightarrow \mathbb{R}.$

 More Definition
 Graph & Graph & Graph & Graph & Marris Rank

 Two Equivalent Submodular Definitions

Definition 3.4.1 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.4.2 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(3.8)

• The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

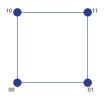
• Gain notation: Define $f(v|A) \triangleq f(A+v) - f(A)$. Then function f is submodular if $f(v|A) \ge f(v|B)$ for all $A \subseteq B \subseteq V \setminus \{v\}$, $v \in V$.

Prof. Jeff Bilmes

We can test submodularity via values on vertices of hypercube.

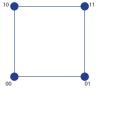
Example: with |V| = n = 2, this is

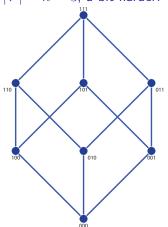
easy:



We can test submodularity via values on vertices of hypercube.

Example: with |V| = n = 2, this is With |V| = n = 3, a bit harder. easy:





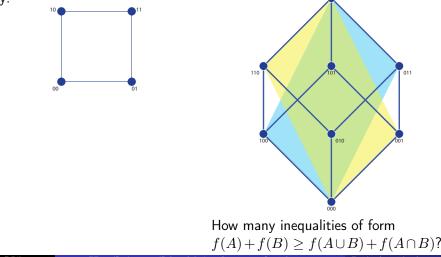
We can test submodularity via values on vertices of hypercube.

Example: with |V| = n = 2, this is With |V| = n = 3, a bit harder. easy:



We can test submodularity via values on vertices of hypercube.

Example: with |V| = n = 2, this is With |V| = n = 3, a bit harder. easy:



Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111				
Sub	additive Definit	tions		

Definition 3.4.1 (subadditive)

A function $f: 2^V \to \mathbb{R}$ is subadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) \tag{3.12}$$

This means that the "whole" is less than the sum of the parts.

Definition 3.4.1 (supermodular)

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) + f(A \cap B)$$
(3.7)

Definition 3.4.2 (supermodular (improving returns))

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \le f(B \cup \{v\}) - f(B)$$
(3.8)

- Incremental "value", "gain", or "cost" of v increases (improves) as the context in which v is considered grows from A to B.
- A function f is submodular iff -f is supermodular.
- If f both submodular and supermodular, then f is said to be modular, and $f(A) = c + \sum_{a \in A} \overline{\overline{f}(a)}$ for some \overline{f} (often c = 0).

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Super	radditive Defi			

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.13}$$

• This means that the "whole" is greater than the sum of the parts.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111			
Superadditive Definitions				

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.13}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	1111			
Super	additive Defi	nitions		

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.13}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let 0 < k < |V|, and consider $f : 2^V \to \mathbb{R}_+$ where:

$$f(A) = \begin{cases} 1 & \text{if } |A| \le k \\ 0 & \text{else} \end{cases}$$
(3.14)

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111				
Supe	radditiva Dafi	nitions		

JUILIVE DEIIII

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.13}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let 0 < k < |V|, and consider $f : 2^V \to \mathbb{R}_+$ where:

$$f(A) = \begin{cases} 1 & \text{if } |A| \le k \\ 0 & \text{else} \end{cases}$$
(3.14)

• This function is subadditive but not submodular.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111				
Mod	ular Definitions			

Definition 3.4.3 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any $A,B\subseteq V,$ we have

$$f(A) + f(B) = f(A \cap B) + f(A \cup B)$$
 (3.15)

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 3.4.4

If f is modular, it may be written as

$$f(A) = f(\emptyset) + \sum_{a \in A} \left(f(\{a\}) - f(\emptyset) \right) = c + \sum_{a \in A} f'(a)$$
(3.16)

which has only |V| + 1 parameters.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
N 4 1				
NIOdu	Ilar Definitions			

Proof.

We inductively construct the value for $A = \{a_1, a_2, \ldots, a_k\}$. For k = 2,

$$f(a_1) + f(a_2) = f(a_1, a_2) + f(\emptyset)$$
(3.17)

implies
$$f(a_1, a_2) = f(a_1) - f(\emptyset) + f(a_2) - f(\emptyset) + f(\emptyset)$$
 (3.18)

then for k = 3,

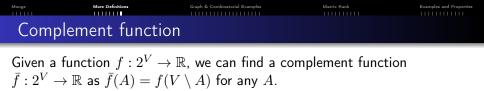
$$f(a_1, a_2) + f(a_3) = f(a_1, a_2, a_3) + f(\emptyset)$$
(3.19)

implies $f(a_1, a_2, a_3) = f(a_1, a_2) - f(\emptyset) + f(a_3) - f(\emptyset) + f(\emptyset)$ (3.20)

$$= f(\emptyset) + \sum_{i=1}^{3} (f(a_i) - f(\emptyset))$$
 (3.21)

and so on . . .

Prof. Jeff Bilmes



Proposition 3.4.5

 \overline{f} is submodular iff f is submodular.

Proof.

$$\bar{f}(A) + \bar{f}(B) \ge \bar{f}(A \cup B) + \bar{f}(A \cap B)$$
(3.22)

follows from

$$f(V \setminus A) + f(V \setminus B) \ge f(V \setminus (A \cup B)) + f(V \setminus (A \cap B))$$
(3.23)

which is true because $V \setminus (A \cup B) = (V \setminus A) \cap (V \setminus B)$ and $V \setminus (A \cap B) = (V \setminus A) \cup (V \setminus B)$ (De Morgan's laws for sets).

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	
	ected Graphs				
• Let $G = (V, E)$ be a graph with vertices $V = V(G)$ and edges					

Prof. Jeff Bilmes

 $E = E(G) \subseteq V \times V.$

- Let G = (V, E) be a graph with vertices V = V(G) and edges $E = E(G) \subseteq V \times V$.
- If G is undirected, define

 $E(X,Y) = \{\{x,y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$ (3.24)

as the edges strictly between X and Y.

Undirected Graphs

• Let G = (V, E) be a graph with vertices V = V(G) and edges $E = E(G) \subseteq V \times V$.

& Combinatorial Eva

• If G is undirected, define

 $E(X,Y) = \{\{x,y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$ (3.24)

as the edges strictly between X and Y.

• Nodes define cuts. Define the cut function $\delta(X) = E(X, V \setminus X)$, set of edges with exactly one vertex in X.

Undirected Graphs

• Let G = (V, E) be a graph with vertices V = V(G) and edges $E = E(G) \subseteq V \times V$.

& Combinatorial Exc

• If G is undirected, define

 $E(X,Y) = \{\{x,y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$ (3.24)

as the edges strictly between X and Y.

• Nodes define cuts. Define the cut function $\delta(X) = E(X, V \setminus X)$, set of edges with exactly one vertex in X.

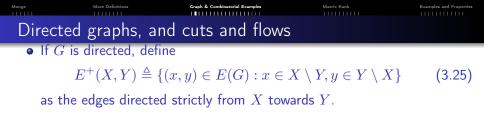
$$G = (V, E)$$

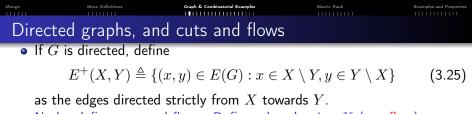
$$G = (V, E)$$

$$G = (V, E)$$

$$G = \{a, b, c\}$$

$$G = \{$$



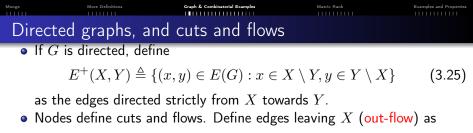


• Nodes define cuts and flows. Define edges leaving X (out-flow) as

$$\delta^+(X) \triangleq E^+(X, V \setminus X) \tag{3.26}$$

and edges entering X (in-flow) as

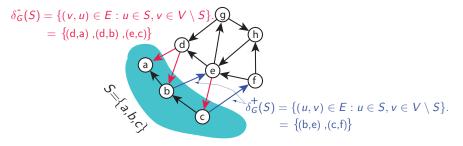
$$\delta^{-}(X) \triangleq E^{+}(V \setminus X, X)$$
(3.27)



$$\delta^+(X) \triangleq E^+(X, V \setminus X) \tag{3.26}$$

and edges entering X (in-flow) as

$$\delta^{-}(X) \triangleq E^{+}(V \setminus X, X)$$
(3.27)

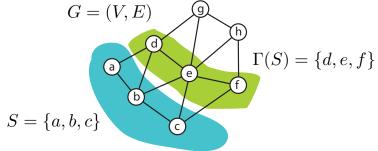


• Given a set $X \subseteq V$, the neighbor function of X is defined as

 $\Gamma(X) \triangleq \{ v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset \}$ (3.28)

 $\bullet\,$ Given a set $X\subseteq V,$ the neighbor function of X is defined as

$$\Gamma(X) \triangleq \{ v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset \}$$
(3.28)



Examples and Properties

Directed Cut function: property

More Definitions

Lemma 3.5.1

For a digraph G=(V,E) and any $X,Y\subseteq V\colon$ we have

$$\begin{aligned} |\delta^+(X)| + |\delta^+(Y)| \\ &= |\delta^+(X \cap Y)| + |\delta^+(X \cup Y)| + |E^+(X,Y)| + |E^+(Y,X)| \end{aligned} (3.29)$$

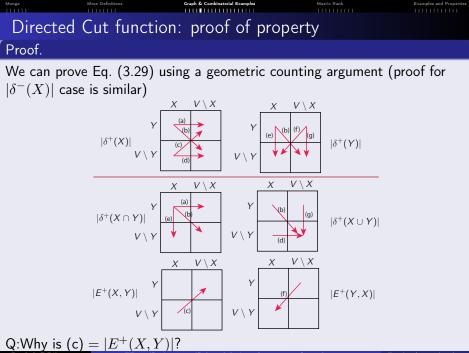
Graph & Combinatorial Examples

Matrix Rank

and

Monge

$$\begin{aligned} |\delta^{-}(X)| + |\delta^{-}(Y)| \\ &= |\delta^{-}(X \cap Y)| + |\delta^{-}(X \cup Y)| + |E^{-}(X,Y)| + |E^{-}(Y,X)| \end{aligned}$$
(3.30)



Prof. Jeff Bilmes

E563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020

F25/62 (pg.54/211)

 Mange
 More Definitions
 Graph & Combinatorial Examples
 Marcic Rank

 Directed
 cut/flow
 functions:
 submodular

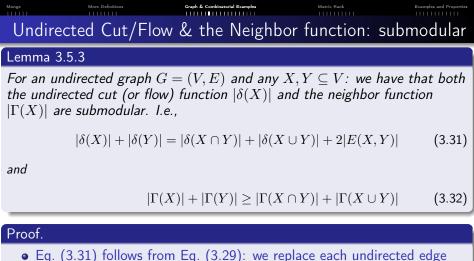
Lemma 3.5.2

For a digraph G = (V, E) and any $X, Y \subseteq V$: both functions $|\delta^+(X)|$ and $|\delta^-(X)|$ are submodular.

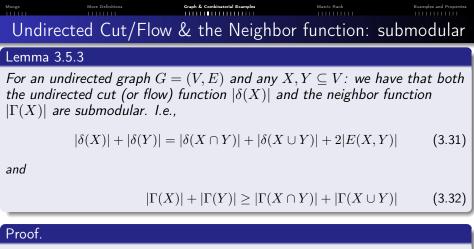
Proof.

$$|E^+(X,Y)| \ge 0$$
 and $|E^-(X,Y)| \ge 0$.

More generally, in the non-negative weighted edge case, both in-flow and out-flow are submodular on subsets of the vertices.

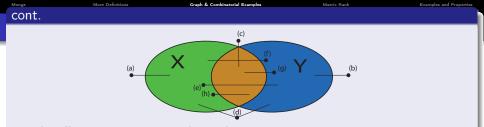


 $\{u, v\}$ with two oppositely-directed directed edges (u, v) and (v, u). Then we use same counting argument.



- Eq. (3.31) follows from Eq. (3.29): we replace each undirected edge $\{u, v\}$ with two oppositely-directed directed edges (u, v) and (v, u). Then we use same counting argument.
- Eq. (3.32) follows as shown in the following page.

. . .



Graphically, we can count and see that

$$\Gamma(X) = (a) + (c) + (f) + (g) + (d)$$
(3.33)

$$\Gamma(Y) = (b) + (c) + (e) + (h) + (d)$$
(3.34)

$$\Gamma(X \cup Y) = (a) + (b) + (c) + (d)$$
(3.35)

$$\Gamma(X \cap Y) = (c) + (g) + (h)$$
(3.36)

SO

$$\Gamma(X)| + |\Gamma(Y)| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h) \geq (a) + (b) + 2(c) + (d) + (g) + (h) = |\Gamma(X \cup Y)| + |\Gamma(X \cap Y)|$$
 (3.37)

Therefore, the undirected cut function $|\delta(A)|$ and the neighbor function $|\Gamma(A)|$ of a graph G are both submodular.

• Another simple proof shows that $|\delta(X)|$ is submodular.

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
 (3.38)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.39)

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
 (3.38)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.39)

• Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(e) \ge 0$ and $w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \ge w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$ (3.40)

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
 (3.38)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.39)

 $\bullet~{\rm Thus},~w(\delta_{u,v}(\cdot))~{\rm is~submodular~since}~w(e)\geq 0~{\rm and}$

 $w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \ge w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$ (3.40)

• General non-negative weighted graph G = (V, E, w), define $w(\delta(\cdot))$:

$$f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u,v\}))$$
(3.41)

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
 (3.38)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.39)

 $\bullet\,$ Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(e)\geq 0$ and

 $w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \ge w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$ (3.40)

• General non-negative weighted graph G = (V, E, w), define $w(\delta(\cdot))$:

$$f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u,v\}))$$
(3.41)

• This is easily shown to be submodular using properties we will soon see (namely, submodularity closed under summation and restriction).

These come from Narayanan's book 1997. Let G be an undirected graph.

• Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.

More performance Graph & Combinational Examples Match Rank Examples and Properties Other graph functions that are submodular/supermodular

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.

More performance Graph & Combinational Examples Matrix Rank Examples and Properties Other graph functions that are submodular/supermodular

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$.

Mage Mere Definitions Graph & Centributerial Examples Matrix Rank Examples and Properties Other graph functions that are submodular/supermodular

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function.

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?

More performance Graph & Combinational Examples Match Rank Examples and Properties Other graph functions that are submodular/supermodular

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A) = |\delta^+(A)| |\delta^+(V \setminus A)|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{g}: 2^V \to \mathbb{R}$ defined as $\overline{g}(S) = g(V \setminus S)$.

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{g}: 2^V \to \mathbb{R}$ defined as $\overline{g}(S) = g(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \ge 1$.

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{g}: 2^V \to \mathbb{R}$ defined as $\overline{g}(S) = g(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \ge 1$.
- $\bullet \ c(A)$ is monotone non-increasing, $c(A+a)-c(A)\leq 0$.

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{g}: 2^V \to \mathbb{R}$ defined as $\overline{g}(S) = g(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \ge 1$.
- c(A) is monotone non-increasing, $c(A+a)-c(A)\leq 0$.
- Then c(A) is supermodular, i.e.,

$$c(A+a) - c(A) \le c(B+a) - c(B)$$

$$a \le B \le E \setminus \{a\}.$$
(3.42)

with

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{g}: 2^V \to \mathbb{R}$ defined as $\overline{g}(S) = g(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \ge 1$.
- c(A) is monotone non-increasing, $c(A+a)-c(A)\leq 0$.
- Then c(A) is supermodular, i.e.,

$$c(A+a) - c(A) \le c(B+a) - c(B)$$
 (3.42)

with $A \subseteq B \subseteq E \setminus \{a\}$.

• Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of connected components) when edge is added in a smaller context than when added in a larger context.

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{g}: 2^V \to \mathbb{R}$ defined as $\overline{g}(S) = g(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \ge 1$.
- c(A) is monotone non-increasing, $c(A+a)-c(A)\leq 0$.
- Then c(A) is supermodular, i.e.,

$$c(A+a) - c(A) \le c(B+a) - c(B)$$
 (3.42)

with $A \subseteq B \subseteq E \setminus \{a\}$.

- Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of connected components) when edge is added in a smaller context than when added in a larger context.
- $\bar{c}(A) = c(E \setminus A)$ is number of connected components in G when we remove A; supermodular monotone non-decreasing but not normalized.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111			
Graph	Strength			

• So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111			
Grap	n Strength			

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111			
Grap	n Strength			

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\overline{c}(A)$ would be a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Graph	Strength			

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Graph	Strength			

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let G = (V, E, w) with $w : E \to \mathbb{R}+$ be a weighted graph with non-negative weights.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Graph	n Strength			

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\overline{c}(A)$ would be a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let G = (V, E, w) with $w : E \to \mathbb{R}+$ be a weighted graph with non-negative weights.
- For $(u, v) = e \in E$, let w(e) be a measure of the strength of the connection between vertices u and v (strength meaning the difficulty of cutting the edge e).

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	~ .			
Granh	Strength			

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.43}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S. Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by vertices S, E(G[S]) are the edges contained within this induced subgraph, and w(E(G[S])) is the weight of these edges. $w(E(G[S])) = \sum_{i,j \in S} w(i,j)$.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	11111111			
Graph S	Strength			

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.43}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

• Suppose removing A shatters G into a graph with $\bar{c}(A)>1$ components —

More More Definitions Graph & Combinatorial Examples Matrix Bank Examples and Properties Graph Strength Interface Interface Interface Interface

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.43}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

• Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A) - 1)$ is like the "effort per achieved/additional component" for a network attacker.

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.43}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components then $w(A)/(\bar{c}(A)-1)$ is like the "effort per achieved/additional component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}$$
(3.44)

More More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Graph Strength

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.43}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components then $w(A)/(\bar{c}(A) 1)$ is like the "effort per achieved/additional component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \overline{c}(A) > 1} \frac{w(A)}{\overline{c}(A) - 1}$$
(3.44)

• Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength(G, w).

Moregy More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Graph Strength International Examples Internationa Examples Internatexing Examples <

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.43}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components then $w(A)/(\bar{c}(A) 1)$ is like the "effort per achieved/additional component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \overline{c}(A) > 1} \frac{w(A)}{\overline{c}(A) - 1}$$
(3.44)

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength(G, w).
- Since submodularity, problems have strongly-poly-time solutions.

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

• Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.
- Non-negative modular weights $w^+ : E \to \mathbb{R}_+$, w(E(X)) is also supermodular, so -w(E(X)) is submodular.

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.
- Non-negative modular weights $w^+: E \to \mathbb{R}_+$, w(E(X)) is also supermodular, so -w(E(X)) is submodular.
- f is a modular function $m^{\intercal} \mathbf{1}_A = m(A)$ added to a weighted submodular function, hence f is submodular.

 Marge
 Marge Contributions
 Craph & Continuental Examples
 Marke Reak
 Examples and Properties

 Submodularity, Quadratic Structures, and Cuts

 <

Proof of Lemma 3.5.4 cont.

• Conversely, suppose *f* is submodular.

Proof of Lemma 3.5.4 cont.

- Conversely, suppose *f* is submodular.
- Then $\forall u, v \in V$, $f(\{u\}) + f(\{v\}) \ge f(\{u, v\}) + f(\emptyset)$ and $f(\emptyset) = 0$.

Proof of Lemma 3.5.4 cont.

- Conversely, suppose *f* is submodular.
- Then $\forall u, v \in V$, $f(\{u\}) + f(\{v\}) \ge f(\{u, v\}) + f(\emptyset)$ and $f(\emptyset) = 0$.
- This requires:

$$0 \le f(\{u\}) + f(\{v\}) - f(\{u, v\})$$
(3.46)

$$= m(u) + \frac{1}{2}M_{u,u} + m(v) + \frac{1}{2}M_{v,v}$$
(3.47)

$$-\left(m(u) + m(v) + \frac{1}{2}M_{u,u} + M_{u,v} + \frac{1}{2}M_{v,v}\right)$$
(3.48)
= $-M_{u,v}$ (3.49)

So that $\forall u, v \in V$, $M_{u,v} \leq 0$.

 More period
 Graph & Combinatorial Examples
 Matrix Rank
 Examples and Properties

 Set Cover and Maximum Coverage
 just Special cases of Submodular Optimization
 Examples and Properties

• We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.

More Definitions Graph & Combinatoral Examples Matrix Rank Examples and Properties Set Cover and Maximum Coverage just Special cases of Submodular Optimization Examples and Properties Examples and Properties

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.

Marce Marce Definitions Graph & Combinatoral Examples Marce Reak Examples and Properties Set Cover and Maximum Coverage just Special cases of Submodular Optimization Examples and Properties Examples and Properties

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.

Marge Marge Definitions Craph & Combinatorial Examples Margin Reak Examples and Properties Set Cover and Maximum Coverage just Special cases of Submodular Optimization Examples and Properties Examples and Properties

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.
- $f: 2^{[n]} \to \mathbb{Z}_+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the set cover function and is submodular.

Marge Marge Definitions Craph & Combinatorial Examples Margin Reak Examples and Properties Set Cover and Maximum Coverage just Special cases of Submodular Optimization Examples and Properties Examples and Properties

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.
- $f: 2^{[n]} \to \mathbb{Z}_+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the set cover function and is submodular.
- Weighted set cover: $f(A) = w(\bigcup_{a \in A} U_a)$ where $w : U \to \mathbb{R}_+$.

Manage Marco Particular Craph & Combinatoral Examples Marco Reak Examples and Properties Set Cover and Maximum Coverage just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \dots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.
- $f: 2^{[n]} \to \mathbb{Z}_+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the set cover function and is submodular.
- Weighted set cover: $f(A) = w(\bigcup_{a \in A} U_a)$ where $w : U \to \mathbb{R}_+$.
- Both Set cover and maximum coverage are well known to be NP-hard, but have a fast greedy approximation algorithm, and hence are instances of submodular optimization.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111			
Vertex a	and Edge C	overs		

Also instances of submodular optimization

Definition 3.5.5 (vertex cover)

A vertex cover (a "vertex-based cover of edges") in graph G = (V, E) is a set $S \subseteq V(G)$ of vertices such that every edge in G is incident to at least one vertex in S.

• Let I(S) be the number of edges incident to vertex set S. Then we wish to find the smallest set $S \subseteq V$ subject to I(S) = |E|.

Definition 3.5.6 (edge cover)

A edge cover (an "edge-based cover of vertices") in graph G = (V, E) is a set $F \subseteq E(G)$ of edges such that every vertex in G is incident to at least one edge in F.

• Let |V|(F) be the number of vertices incident to edge set F. Then we wish to find the smallest set $F \subseteq E$ subject to |V|(F) = |V|.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111			
Graph	Cut Problen	ns		
Also subi	modular optimizatio	on		

• Minimum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	1111111			
Graph	Cut Problem	าร		
Also sub	modular optimizatio	on		

- Minimum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Maximum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	1111111			
Graph	Cut Problem	IS		
Also sub	modular optimizatio	n		

- Minimum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Maximum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.
- Let $\delta: 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, $|\delta(X)|$ measures the number of edges between nodes X and $V \setminus X$ i.e., $\delta(x) = E(X, V \setminus X)$.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	111111			
Graph	Cut Problem	IS		
Also sub	modular optimizatio	n		

- Minimum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Maximum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.
- Let $\delta: 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, $|\delta(X)|$ measures the number of edges between nodes X and $V \setminus X$ i.e., $\delta(x) = E(X, V \setminus X)$.
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X) = w(\delta(X))$.

- Minimum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Maximum cut: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.
- Let $\delta: 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, $|\delta(X)|$ measures the number of edges between nodes X and $V \setminus X$ i.e., $\delta(x) = E(X, V \setminus X)$.
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X) = w(\delta(X))$.
- Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Matrix Rank functions				

• Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m). Thus, $\forall v \in V$, $\exists x_v \in \mathbb{R}^n$.

- Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m). Thus, $\forall v \in V$, $\exists x_v \in \mathbb{R}^n$.
- For a given set $\{v, v_1, v_2, \dots, v_k\}$, it might or might not be possible to find $(\alpha_i)_i$ such that:

$$x_v = \sum_{i=1}^k \alpha_i x_{v_i} \tag{3.50}$$

If not, then x_v is linearly independent of x_{v_1}, \ldots, x_{v_k} .

- Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m). Thus, $\forall v \in V$, $\exists x_v \in \mathbb{R}^n$.
- For a given set $\{v, v_1, v_2, \dots, v_k\}$, it might or might not be possible to find $(\alpha_i)_i$ such that:

$$x_v = \sum_{i=1}^k \alpha_i x_{v_i} \tag{3.50}$$

If not, then x_v is linearly independent of x_{v_1}, \ldots, x_{v_k} .

• Let r(S) for $S \subseteq V$ be the rank of the set of vectors S. Then $r(\cdot)$ is a submodular function, and in fact is called a matric matroid rank function.

• Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V = \{1, 2, \dots, m\}$ be the set of column vector indices.

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V=\{1,2,\ldots,m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let r(A) be the rank of the column vectors indexed by A.

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V=\{1,2,\ldots,m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let r(A) be the rank of the column vectors indexed by A.
- r(A) is the dimensionality of the vector space spanned by the set of vectors {x_a}_{a∈A}.

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V=\{1,2,\ldots,m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let r(A) be the rank of the column vectors indexed by A.
- r(A) is the dimensionality of the vector space spanned by the set of vectors {x_a}_{a∈A}.
- Thus, r(V) is the rank of the matrix \mathbf{X} .

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Rank

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

• Let $A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$ • Then r(A) = 3, r(B) = 3, r(C) = 2.• $r(A \cup C) = 3, r(B \cup C) = 3.$ • $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$ • $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.
• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Rank

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.
• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.
• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Mately Doub

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matvix Dan

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.

• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matvix Dan

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Mately Doub

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Mately Doub

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

•
$$r(A \cup B) = 4$$
, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Matrix Ran

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Mately Doub

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then $r(A) = 3, r(B) = 3, r(C) = 2.$
• $r(A \cup C) = 3, r(B \cup C) = 3.$
• $r(A \cup A_r) = 3, r(B \cup B_r) = 3, r(A \cup B_r) = 4, r(B \cup A_r) = 4.$
• $r(A \cup B) = 4, r(A \cap B) = 1 < r(C) = 2.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

• Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$. • Then r(A) = 3, r(B) = 3, r(C) = 2.

• $r(A \cup C) = 3, r(B \cup C) = 3.$

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

• $6 = r(A) + r(B) = r(A \cup B) + r(C) > r(A \cup B) + r(A \cap B) = 5$

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Rank	function of a	matrix		

• Let $A, B \subseteq V$ be two subsets of column indices.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Rank	function of a	matrix		
• Let	$A,B\subseteq V$ be tw	vo subsets of column i	ndices.	

• The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.

March Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

Marge Marce Rank Examples and Properties Rank function of a matrix Image: Marce Rank Image: Marce Rank

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

 $r(A) + r(B) \geq r(A \cup B)$

More Definitions Graph & Combinatoral Examples Marrix Roak Examples and Properties Rank function of a matrix Interview I

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

 $r(A) + r(B) \geq r(A \cup B)$

• If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if $\exists \text{ common span}$), then that area is counted twice in r(A) + r(B), so the inequality will be strict.

More the Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Rank function of a matrix Interview Interview

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- $\bullet\,$ In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

 $r(A) + r(B) \geq r(A \cup B)$

- If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if \exists common span), then that area is counted twice in r(A) + r(B), so the inequality will be strict.
- Any function where the above inequality is true for all $A, B \subseteq V$ is called subadditive.

• Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.

Marge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.

More More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.

Mage Mare Definitions Graph & Combinatorial Examples Mareix Rank Examples and Propert Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$

Mage Marci Rank Examples Marci Rank Examples and Properties Rank functions of a matrix <

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.

Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.
- Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$
 (3.51)

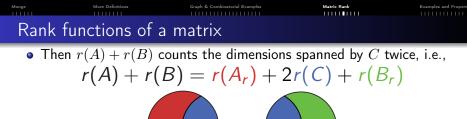
Morge More Definitions Graph & Combinatorial Examples Matrix Rack Examples Rank functions of a matrix

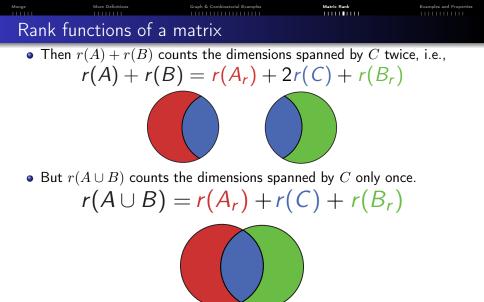
- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.
- Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

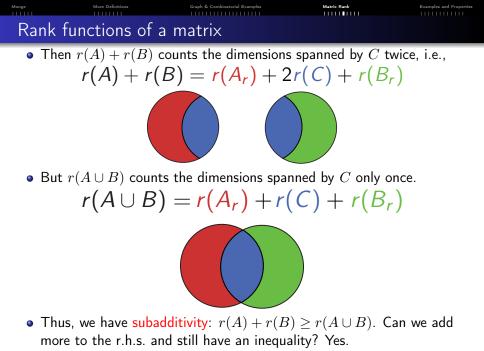
$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$
(3.51)

• But $r(A \cup B)$ counts the dimensions spanned by C only once.

$$r(A \cup B) = r(A_r) + r(C) + r(B_r)$$
 (3.52)



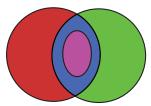




More Perforitions Graph & Combinatorial Examples Marie Rank Examples and Properties Rank function of a matrix

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

$$r(C) \geq r(A \cap B)$$

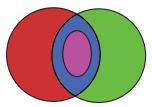


In short:

More More Definitions Graph & Combinatorial Examples Mutric Rank Examples and Properties Rank function of a matrix

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

 $r(C) \geq r(A \cap B)$

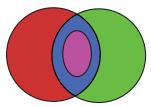


In short:

• Common span (blue) is "more" (no less) than span of common index (magenta).

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

 $r(C) \geq r(A \cap B)$

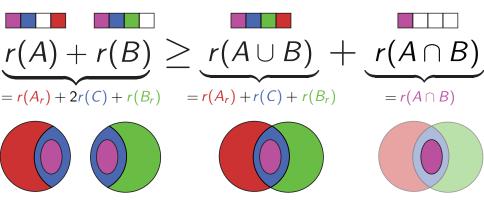


In short:

- Common span (blue) is "more" (no less) than span of common index (magenta).
- More generally, common information (blue) is "more" (no less) than information within common index (magenta).

Monge More Definitions Graph & Combinatorial Examples Marcia Rack Examples and Properties

The Venn and Art of Submodularity



• Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).

More More Definitions Graph & Combinatorial Examples Marie Rank Examples and Properties Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f: 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\bigcup_{s \in X} X_s) \tag{3.53}$$

we have that f is submodular, and is known to be a polymatroid rank function.

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f: 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\bigcup_{s \in X} X_s) \tag{3.53}$$

we have that f is submodular, and is known to be a polymatroid rank function.

• In general (as we will see) polymatroid rank functions are submodular, normalized $f(\emptyset) = 0$, and monotone non-decreasing $(f(A) \le f(B))$ whenever $A \subseteq B$).

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f: 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\bigcup_{s \in X} X_s) \tag{3.53}$$

we have that f is submodular, and is known to be a polymatroid rank function.

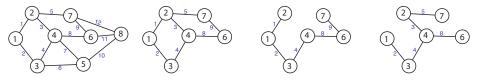
- In general (as we will see) polymatroid rank functions are submodular, normalized $f(\emptyset) = 0$, and monotone non-decreasing $(f(A) \le f(B))$ whenever $A \subseteq B$).
- We use the term non-decreasing rather than increasing, the latter of which is strict (also so that a constant function isn't "increasing").

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Spanr	ning trees			

• Let E be a set of edges of some graph G = (V, E), and let r(S) for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the graph induced by edges S.

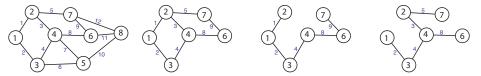
Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111		111111111	
C	ing trees			
Snann	ing trees			

- Let E be a set of edges of some graph G = (V, E), and let r(S) for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the graph induced by edges S.
- Example: Given G = (V, E), $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $E = \{1, 2, \dots, 12\}$. $S = \{1, 2, 3, 4, 5, 8, 9\} \subset E$. Two spanning trees have the same edge count (the rank of S).



Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111	1111111			
C	ning trees			
Spanr	ling trees			

- Let E be a set of edges of some graph G = (V, E), and let r(S) for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the graph induced by edges S.
- Example: Given G = (V, E), $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $E = \{1, 2, \dots, 12\}$. $S = \{1, 2, 3, 4, 5, 8, 9\} \subset E$. Two spanning trees have the same edge count (the rank of S).



• Then r(S) is submodular, and is another matrix rank function corresponding to the incidence matrix of the graph.

Given E, let $f_1, f_2: 2^E \to \mathbb{R}$ be two submodular functions. Then

$$f: 2^E \to \mathbb{R}$$
 with $f(A) = f_1(A) + f_2(A)$ (3.58)

is submodular.

Marge Marge Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Summing Submodular Functions Summing Summing Summing Summing Functions Summing Summing Summing Functions Summing Summing Functions Summ

Given E, let $f_1, f_2: 2^E \to \mathbb{R}$ be two submodular functions. Then

$$f: 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) + f_2(A)$$
 (3.58)

is submodular. This follows easily since

$$f(A) + f(B) = f_1(A) + f_2(A) + f_1(B) + f_2(B)$$

$$\geq f_1(A \cup B) + f_2(A \cup B) + f_1(A \cap B) + f_2(A \cap B)$$

$$= f(A \cup B) + f(A \cap B).$$
(3.61)

I.e., it holds for each component of f in each term in the inequality.

Manage Marke Definitions Graph & Combinatorial Examples Marke Definitions Examples and Properties Summing Submodular Functions Functions Functions Functions

Given E, let $f_1, f_2: 2^E \to \mathbb{R}$ be two submodular functions. Then

$$f: 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) + f_2(A)$$
 (3.58)

is submodular. This follows easily since

$$f(A) + f(B) = f_1(A) + f_2(A) + f_1(B) + f_2(B)$$

$$\geq f_1(A \cup B) + f_2(A \cup B) + f_1(A \cap B) + f_2(A \cap B)$$

$$= f(A \cup B) + f(A \cap B).$$
(3.61)

I.e., it holds for each component of f in each term in the inequality. In fact, any conic combination (i.e., non-negative linear combination) of submodular functions is submodular, as in $f(A) = \alpha_1 f_1(A) + \alpha_2 f_2(A)$ for $\alpha_1, \alpha_2 \ge 0$.

Given E, let $f_1, m: 2^E \to \mathbb{R}$ be a submodular and a modular function.

Given E, let $f_1, m: 2^E \to \mathbb{R}$ be a submodular and a modular function. Then

$$f: 2^E \to \mathbb{R}$$
 with $f(A) = f_1(A) - m(A)$ (3.62)

is submodular (as is $f(A) = f_1(A) + m(A)$).

Given E, let $f_1,m:2^E\to\mathbb{R}$ be a submodular and a modular function. Then

$$f: 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) - m(A)$$
 (3.62)

is submodular (as is $f(A) = f_1(A) + m(A)$). This follows easily since

$$f(A) + f(B) = f_1(A) - m(A) + f_1(B) - m(B)$$

$$\geq f_1(A \cup B) - m(A \cup B) + f_1(A \cap B) - m(A \cap B)$$

$$= f(A \cup B) + f(A \cap B).$$
(3.65)

Given E, let $f_1, m: 2^E \to \mathbb{R}$ be a submodular and a modular function. Then

$$f: 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) - m(A)$$
 (3.62)

is submodular (as is $f(A) = f_1(A) + m(A)$). This follows easily since

$$f(A) + f(B) = f_1(A) - m(A) + f_1(B) - m(B)$$

$$\geq f_1(A \cup B) - m(A \cup B) + f_1(A \cap B) - m(A \cap B)$$

$$= f(A \cup B) + f(A \cap B).$$
(3.65)

That is, the modular component with $m(A) + m(B) = m(A \cup B) + m(A \cap B)$ never destroys the inequality. Note of course that if m is modular than so is -m.

Restricting Submodular functions

Given E, let $f: 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f': 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$
 (3.66)

is submodular.

Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Restricting Submodular functions

Given E, let $f: 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f': 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$
 (3.66)

is submodular.

Proof.

Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Restricting Submodular functions

Given E, let $f: 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f': 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$
 (3.66)

is submodular.

Proof. Given $A \subseteq B \subseteq E \setminus v$, consider $f((A + v) \cap S) - f(A \cap S) \ge f((B + v) \cap S) - f(B \cap S)$ (3.67)

Mange Mare Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Restricting Submodular functions

Given E, let $f: 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f': 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$
 (3.66)

is submodular.

Proof.

Given $A \subseteq B \subseteq E \setminus v$, consider

 $f((A+v) \cap S) - f(A \cap S) \ge f((B+v) \cap S) - f(B \cap S)$ (3.67)

If $v \notin S$, then both differences on each size are zero.

Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Restricting Submodular functions

Given E, let $f:2^E\to\mathbb{R}$ be a submodular functions. And let $S\subseteq E$ be an arbitrary fixed set. Then

$$f': 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$
 (3.66)

is submodular.

Proof.

Given $A \subseteq B \subseteq E \setminus v$, consider

$$f((A+v) \cap S) - f(A \cap S) \ge f((B+v) \cap S) - f(B \cap S)$$
(3.67)

If $v \notin S$, then both differences on each size are zero. If $v \in S$, then we can consider this

$$f(A'+v) - f(A') \ge f(B'+v) - f(B')$$
(3.68)

with $A' = A \cap S$ and $B' = B \cap S$. Since $A' \subseteq B'$, this holds due to submodularity of f.

Prof. Jeff Bilmes

Given V, let $f_1, f_2 : 2^V \to \mathbb{R}$ be two submodular functions and let $S_1, S_2 \subseteq V$ be two arbitrary fixed sets. Then

 $f: 2^V \to \mathbb{R}$ with $f(A) = f_1(A \cap S_1) + f_2(A \cap S_2)$ (3.69)

is submodular. This follows easily from the preceding two results.

Summing Restricted Submodular Functions

Given V, let $f_1, f_2 : 2^V \to \mathbb{R}$ be two submodular functions and let $S_1, S_2 \subseteq V$ be two arbitrary fixed sets. Then

$$f: 2^V \to \mathbb{R} \text{ with } f(A) = f_1(A \cap S_1) + f_2(A \cap S_2)$$
 (3.69)

is submodular. This follows easily from the preceding two results. Given V, let $C = \{C_1, C_2, \ldots, C_k\}$ be a set of subsets of V, and for each $C \in C$, let $f_C : 2^V \to \mathbb{R}$ be a submodular function. Then

$$f: 2^V \to \mathbb{R} \text{ with } f(A) = \sum_{C \in \mathcal{C}} f_C(A \cap C)$$
 (3.70)

is submodular.

Summing Restricted Submodular Functions

Given V, let $f_1, f_2 : 2^V \to \mathbb{R}$ be two submodular functions and let $S_1, S_2 \subseteq V$ be two arbitrary fixed sets. Then

$$f: 2^V \to \mathbb{R} \text{ with } f(A) = f_1(A \cap S_1) + f_2(A \cap S_2)$$
 (3.69)

is submodular. This follows easily from the preceding two results. Given V, let $C = \{C_1, C_2, \ldots, C_k\}$ be a set of subsets of V, and for each $C \in C$, let $f_C : 2^V \to \mathbb{R}$ be a submodular function. Then

$$f: 2^V \to \mathbb{R} \text{ with } f(A) = \sum_{C \in \mathcal{C}} f_C(A \cap C)$$
 (3.70)

is submodular. This property is critical for image processing and graphical models. For example, let C be all pairs of the form $\{\{u, v\} : u, v \in V\}$, or let it be all pairs corresponding to the edges of some undirected graphical model.

More More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Poperties

Max - normalized

Given V, let $c \in \mathbb{R}^V_+$ be a given fixed vector. Then $f : 2^V \to \mathbb{R}_+$, where $f(A) = \max_{j \in A} c_j$ (3.71)

is submodular and normalized (we take $f(\emptyset) = 0$).

Proof. Consider $\max_{j \in A} c_j + \max_{j \in B} c_j \ge \max_{j \in A \cup B} c_j + \max_{j \in A \cap B} c_j$ (3.72)which follows since we have that $\max(\max_{j \in A} c_j, \max_{j \in B} c_j) = \max_{j \in A \cup B} c_j$ (3.73)and $\min(\max_{j \in A} c_j, \max_{j \in B} c_j) \ge \max_{j \in A \cap B} c_j$ (3.74)

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
Max				

Given V, let $c \in \mathbb{R}^V$ be a given fixed vector (not necessarily non-negative). Then $f: 2^V \to \mathbb{R}$, where

$$f(A) = \max_{j \in A} c_j \tag{3.75}$$

is submodular, where we take $f(\emptyset) \leq \min_j c_j$ (so the function need not be normalized).

Proof.

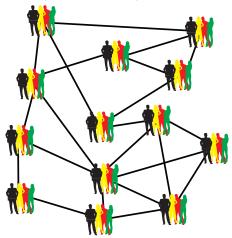
The proof is identical to the normalized case.

Monge More Definitions Graph & Combinatorial Examples Matrix Rank

Examples and Properties

Facility/Plant Location (uncapacitated)

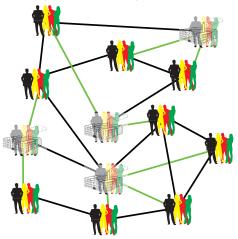
- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.



Mongs More Definitions Graph & Cembinatorial Examples Matrix Rank

Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.

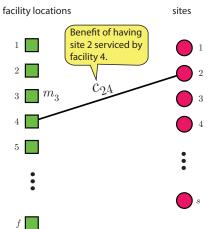


Examples and Properties

Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.
- We can model this with a weighted bipartite graph G = (F, S, E, c) where F is set of possible factory/plant locations, S is set of sites needing service, E are edges indicating (factory,site) service possibility pairs, and c : E → ℝ₊ is the benefit of a given pair.
- Facility location function has form:

$$f(A) = \sum_{i \in S} \max_{j \in A} c_{ij}.$$
 (3.76)



• Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.

More More Definitions Graph & Combinated Examples Mattic Rank Examples and Properties Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" or "value" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.

More More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" or "value" (e.g., $1/c_{ij}$ is the cost) of servicing site *i* with facility location *j*.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.

More More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" or "value" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" or "value" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.

Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" or "value" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$f(A) = \sum_{j \in A} m_j + \sum_{i \in S} \max_{j \in A} c_{ij}.$$
 (3.77)

Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" or "value" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$f(A) = \sum_{j \in A} m_j + \sum_{i \in S} \max_{j \in A} c_{ij}.$$
 (3.77)

• Goal is to find a set A that maximizes f(A) (the benefit) placing a bound on the number of plants A (e.g., $|A| \le k$).

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
11111				
Facilit	y Location			

Given V, E, let $c \in \mathbb{R}^{V \times E}$ be a given $|V| \times |E|$ matrix. Then

$$f: 2^E \to \mathbb{R}, \text{ where } f(A) = \sum_{i \in V} \max_{j \in A} c_{ij}$$
 (3.78)

is submodular.

Proof.

We can write f(A) as $f(A) = \sum_{i \in V} f_i(A)$ where $f_i(A) = \max_{j \in A} c_{ij}$ is submodular (max of a *i*th row vector), so f can be written as a sum of submodular functions.

Thus, the facility location function (which only adds a modular function to the above) is submodular.

Examples and Properties

Log Determinant

• Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, ..., n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties

Log Determinant

- Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, ..., n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.
- We have that:

 $f(A) = \log \det(\Sigma_A)$ is submodular. (3.79)

Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Log Determinant

- Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, ..., n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.
- We have that:

$$f(A) = \log \det(\mathbf{\Sigma}_A)$$
 is submodular. (3.79)

• The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).

Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Log Determinant

- Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, ..., n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.
- We have that:

$$f(A) = \log \det(\mathbf{\Sigma}_A)$$
 is submodular. (3.79)

• The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose $X \in \mathbf{R}^n$ is multivariate Gaussian random variable, that is

$$x \in p(x) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$
(3.80)

. . .

Monge	More Definitions	Graph & Combinatorial Examples	Matrix Rank	Examples and Properties
	111111			
	Determinant			
LOVEL	Jelenninani			

...cont.

Then the (differential) entropy of the r.v. X is given by

$$h(X) = \log \sqrt{|2\pi e \boldsymbol{\Sigma}|} = \log \sqrt{(2\pi e)^n |\boldsymbol{\Sigma}|}$$
(3.81)

and in particular, for a variable subset A,

$$f(A) = h(X_A) = \log \sqrt{(2\pi e)^{|A|} |\Sigma_A|}$$
 (3.82)

Entropy is submodular (further conditioning reduces entropy), and moreover

$$f(A) = h(X_A) = m(A) + \frac{1}{2}\log|\Sigma_A|$$
 (3.83)

where m(A) is a modular function.

Note: still submodular in the semi-definite case as well.

Prof. Jeff Bilmes

• SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, f(A) = f'(A) + m(A).

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, f(A) = f'(A) + m(A).
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular and m is modular. (supermodular) if f is submodular (supermodular).

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, f(A) = f'(A) + m(A).
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular and m is modular. (supermodular) if f is submodular (supermodular).
- Summing: if $\alpha_i \ge 0$ and $f_i : 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ .
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, f(A) = f'(A) + m(A).
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular and m is modular. (supermodular) if f is submodular (supermodular).
- Summing: if $\alpha_i \ge 0$ and $f_i : 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions preserve submodularity: $f'(A) = f(A \cap S)$