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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Class Road Map - EE563
L1(9/30): Motivation, Applications,
Definitions, Properties
L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory
L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
Matrix Rank, Properties
L4(10/12):
L5(10/14):
L6(10/19):
L7(10/21):
L8(10/26):
L9(10/28):
L10(11/2):

L11(11/4):
L12(11/9):
L–(11/11): Veterans Day, Holiday
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Logistics Review

Two Equivalent Submodular Definitions
Definition 3.2.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.8)

• The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
• Gain notation: Define f(v|A) , f(A+ v)− f(A). Then function f is
submodular if f(v|A) ≥ f(v|B) for all A ⊆ B ⊆ V \ {v}, v ∈ V .
Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F4/62 (pg.4/211)



Logistics Review

Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (3.7)

Definition 3.2.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (3.8)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f̄(a) for some f̄ (often c = 0).
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Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Monge Matrices

m× n matrices C = [cij ]ij are called Monge matrices if they satisfy the
Monge property, namely:

cij + crs ≤ cis + crj (3.1)

for all 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n.

Lined up indices

i < r (3.2)
j < s (3.3)

Equivalently, for all 1 ≤ i, r ≤ m, 1 ≤ s, j ≤ n,

cmin(i,r),min(s,j) + cmax(i,r),max(s,j) ≤ cis + crj (3.4)
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Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Monge Matrices Visuals

Consider a non-negative matrix D = (di,j) of order m× n and form
matrix C = (ci,j) with ci,jth entry, 1 ≤ i ≤ m, 1 ≤ j ≤ n:

cij =

m∑

k=i

j∑

`=1

dk,` (3.5)

Consider four elements of the m× n matrix:
Then, cij + crs < cis + crj .
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cij = A+B, crs = B +D, crj = B, cis = A+B + C +D.

Then, cij + crs < cis + crj .
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Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Monge Matrices, where useful

Useful for speeding up transportation, dynamic programming, flow,
search, lot-sizing and many other problems.

Example, Hitchcock transportation problem: Given m× n cost matrix
C = [cij ]ij , a non-negative supply vector a ∈ Rm

+ , a non-negative
demand vector b ∈ Rn

+ with
∑m

i=1 a(i) =
∑n

j=1 bj , we wish to
optimally solve the following linear program:

minimize
X∈Rm×n

m∑

i=1

n∑

j=1

cijxij (3.6)

subject to
m∑

i=1

xij = bj ∀j = 1, . . . , n (3.7)

n∑

j=1

xij = ai ∀i = 1, . . . ,m (3.8)

xi,j ≥ 0 ∀i, j (3.9)
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Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Monge Matrices, Hitchcock transportation

a1

a2

a3

b1 b2 b3 b4

C

0 1 3 3
10

14940

1 4 7
2

1
5

3 2 1 2

Producers,
Sources,

or Supply

Consumers, Sinks, or
Demand

Solving the linear program can be done easily and optimally using the
“North-West Corner Rule” (a 2D greedy-like approach starting at
top-left and moving down or right) in only O(m+ n) if the matrix C is
Monge!
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Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Monge Matrices and Convex Polygons
Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances cij
satisfy Monge property (or quadrangle inequality).

d(q3, p2) + d(q4, p3) ≤ d(q4, p2) + d(q3, p3) (3.10)

Transport unit quantities from locations q3 and q4 to locations p2 and p3; to
minimize total distance traveled, routes from q3 and q4 must not intersect.
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Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Monge Matrices and Submodularity

A submodular function has the form: f : 2V → R which can be seen as
f : {0, 1}V → R

We can generalize this to f : {0, 1, . . . ,K}V → R for some constant
K ∈ Z+.
We may define submodularity as: for all x, y ∈ {0, 1, . . . ,K}V , we have

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (3.11)

x ∨ y is the (join) element-wise max of each element, that is
(x ∨ y)(v) = max(x(v), y(v)) for v ∈ V .
x ∧ y is the (meet) element-wise min of each element, that is,
(x ∧ y)(v) = min(x(v), y(v)) for v ∈ V .
With K = 1, then this is the standard definition of submodularity.
With |V | = 2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).
Non square: f : {0, 1, . . . ,K1} × {0, 1, . . . ,K2} → R.
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Two Equivalent Submodular Definitions
Definition 3.4.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.4.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.8)

• The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
• Gain notation: Define f(v|A) , f(A+ v)− f(A). Then function f is
submodular if f(v|A) ≥ f(v|B) for all A ⊆ B ⊆ V \ {v}, v ∈ V .
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The Submodular Square, and Hypercube Vertices
We can test submodularity via values on vertices of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities of form
f(A)+f(B) ≥ f(A∪B)+f(A∩B)?

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F14/62 (pg.31/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

The Submodular Square, and Hypercube Vertices
We can test submodularity via values on vertices of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities of form
f(A)+f(B) ≥ f(A∪B)+f(A∩B)?

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F14/62 (pg.32/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

The Submodular Square, and Hypercube Vertices
We can test submodularity via values on vertices of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities of form
f(A)+f(B) ≥ f(A∪B)+f(A∩B)?

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F14/62 (pg.33/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

The Submodular Square, and Hypercube Vertices
We can test submodularity via values on vertices of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities of form
f(A)+f(B) ≥ f(A∪B)+f(A∩B)?

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F14/62 (pg.34/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Subadditive Definitions

Definition 3.4.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (3.12)

This means that the “whole” is less than the sum of the parts.
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Two Equivalent Supermodular Definitions

Definition 3.4.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (3.7)

Definition 3.4.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (3.8)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f̄(a) for some f̄ (often c = 0).
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Superadditive Definitions

Definition 3.4.2 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) (3.13)

This means that the “whole” is greater than the sum of the parts.

In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
Ex: Let 0 < k < |V |, and consider f : 2V → R+ where:

f(A) =

{
1 if |A| ≤ k
0 else

(3.14)

This function is subadditive but not submodular.
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Modular Definitions

Definition 3.4.3 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (3.15)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 3.4.4
If f is modular, it may be written as

f(A) = f(∅) +
∑

a∈A

(
f({a})− f(∅)

)
= c+

∑

a∈A
f ′(a) (3.16)

which has only |V |+ 1 parameters.
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Modular Definitions

Proof.
We inductively construct the value for A = {a1, a2, . . . , ak}.
For k = 2,

f(a1) + f(a2) = f(a1, a2) + f(∅) (3.17)
implies f(a1, a2) = f(a1)− f(∅) + f(a2)− f(∅) + f(∅) (3.18)

then for k = 3,

f(a1, a2) + f(a3) = f(a1, a2, a3) + f(∅) (3.19)
implies f(a1, a2, a3) = f(a1, a2)− f(∅) + f(a3)− f(∅) + f(∅) (3.20)

= f(∅) +

3∑

i=1

(
f(ai)− f(∅)

)
(3.21)

and so on . . .
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 3.4.5

f̄ is submodular iff f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (3.22)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (3.23)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B) (De Morgan’s laws for sets).
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Undirected Graphs
Let G = (V,E) be a graph with vertices V = V (G) and edges
E = E(G) ⊆ V × V .

If G is undirected, define

E(X,Y ) = {{x, y} ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (3.24)

as the edges strictly between X and Y .
Nodes define cuts. Define the cut function δ(X) = E(X,V \X), set
of edges with exactly one vertex in X.

G = (V ,E )

S={a,b,c} δG (S) = {{u, v}∈ E : u ∈ S , v ∈ V \ S}.

a

b

c

e
f

h

g

d

 = {{a,d},{b,d},{b,e},{c,e},{c,f}}
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Directed graphs, and cuts and flows
If G is directed, define

E+(X,Y ) , {(x, y) ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (3.25)

as the edges directed strictly from X towards Y .

Nodes define cuts and flows. Define edges leaving X (out-flow) as

δ+(X) , E+(X,V \X) (3.26)

and edges entering X (in-flow) as

δ−(X) , E+(V \X,X) (3.27)

S={a,b,c}

a

b

c

e
f

h

g

d

δG (S) = {(u, v ) ∈ E : u ∈ S , v ∈ V \ S}.
 = {(b,e) ,(c,f)}

+

 = {(d,a) ,(d,b) ,(e,c)}
δG (S) = {(v , u) ∈ E : u ∈ S , v ∈ V \ S}.-
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The Neighbor function in undirected graphs

Given a set X ⊆ V , the neighbor function of X is defined as

Γ(X) , {v ∈ V (G) \X : E(X, {v}) 6= ∅} (3.28)

Example:

a

b

c

e
f

h

g

d

G = (V,E)

S = {a, b, c}

Γ(S) = {d, e, f}
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Directed Cut function: property

Lemma 3.5.1
For a digraph G = (V,E) and any X,Y ⊆ V : we have

|δ+(X)|+ |δ+(Y )|
= |δ+(X ∩ Y )|+ |δ+(X ∪ Y )|+ |E+(X,Y )|+ |E+(Y,X)| (3.29)

and

|δ−(X)|+ |δ−(Y )|
= |δ−(X ∩ Y )|+ |δ−(X ∪ Y )|+ |E−(X,Y )|+ |E−(Y,X)| (3.30)
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Directed Cut function: proof of property
Proof.
We can prove Eq. (3.29) using a geometric counting argument (proof for
|δ−(X)| case is similar)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

(e)

(e)

(b)
(a)

(a)

(b)

(b)
(b)

(c)

(c)

(f )

(f )

(g)

(g)

(d)

(d)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

|δ+(X )| |δ+(Y )|

|δ+(X ∩ Y )| |δ+(X ∪ Y )|

|E+(X ,Y )| |E+(Y ,X )|

Q:Why is (c) = |E+(X,Y )|?
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Directed cut/flow functions: submodular

Lemma 3.5.2

For a digraph G = (V,E) and any X,Y ⊆ V : both functions |δ+(X)| and
|δ−(X)| are submodular.

Proof.

|E+(X,Y )| ≥ 0 and |E−(X,Y )| ≥ 0.

More generally, in the non-negative weighted edge case, both in-flow and
out-flow are submodular on subsets of the vertices.
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Undirected Cut/Flow & the Neighbor function: submodular
Lemma 3.5.3
For an undirected graph G = (V,E) and any X,Y ⊆ V : we have that both
the undirected cut (or flow) function |δ(X)| and the neighbor function
|Γ(X)| are submodular. I.e.,

|δ(X)|+ |δ(Y )| = |δ(X ∩ Y )|+ |δ(X ∪ Y )|+ 2|E(X,Y )| (3.31)

and

|Γ(X)|+ |Γ(Y )| ≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )| (3.32)

Proof.
Eq. (3.31) follows from Eq. (3.29): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.

Eq. (3.32) follows as shown in the following page.

. . .
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Undirected Neighbor function
cont.

X Y(a) (b)

(c)

(f )

(g)

(h)
(e)

(d)

Graphically, we can count and see that

Γ(X) = (a) + (c) + (f) + (g) + (d) (3.33)
Γ(Y ) = (b) + (c) + (e) + (h) + (d) (3.34)
Γ(X ∪ Y ) = (a) + (b) + (c) + (d) (3.35)

Γ(X ∩ Y ) = (c) + (g) + (h) (3.36)

so

|Γ(X)|+ |Γ(Y )| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h)

≥ (a) + (b) + 2(c) + (d) + (g) + (h) = |Γ(X ∪ Y )|+ |Γ(X ∩ Y )| (3.37)
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Undirected Neighbor functions

Therefore, the undirected cut function |δ(A)| and the neighbor function
|Γ(A)| of a graph G are both submodular.
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Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.

Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Weighted cut function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.38)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.39)

Thus, w(δu,v(·)) is submodular since w(e) ≥ 0 and

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.40)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.41)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.

Weighted cut function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.38)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.39)

Thus, w(δu,v(·)) is submodular since w(e) ≥ 0 and

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.40)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.41)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Weighted cut function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.38)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.39)

Thus, w(δu,v(·)) is submodular since w(e) ≥ 0 and

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.40)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.41)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F30/62 (pg.62/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Weighted cut function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.38)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.39)

Thus, w(δu,v(·)) is submodular since w(e) ≥ 0 and

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.40)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.41)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Weighted cut function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.38)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.39)

Thus, w(δu,v(·)) is submodular since w(e) ≥ 0 and

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.40)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.41)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Weighted cut function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.38)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.39)

Thus, w(δu,v(·)) is submodular since w(e) ≥ 0 and

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.40)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.41)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.

Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.

Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.

Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function.

If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the number of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).

Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.

c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .

Then c(A) is supermodular, i.e.,
c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)

with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)
with A ⊆ B ⊆ E \ {a}.

Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.

c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+. Thus, c(∅) = |V |, and c(E) ≥ 1.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.42)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Graph Strength

So c̄(A) = c(E \A), the number of connected components in G when
we remove A, is supermodular.

Maximizing c̄(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

So c̄(A) = c(E \A), the number of connected components in G when
we remove A, is supermodular.
Maximizing c̄(A) would be a goal for a network attacker — many
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Graph Strength

Then w(A) for A ⊆ E is a modular function

w(A) =
∑

e∈A
we (3.43)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
vertices S, E(G[S]) are the edges contained within this induced subgraph, and
w(E(G[S])) is the weight of these edges. w(E(G[S])) =

∑
i,j∈S w(i, j).

Suppose removing A shatters G into a graph with c̄(A) > 1
components —

then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.

A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.44)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.5.4

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀ
XM1X (3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.
Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) is submodular.
f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular.

. . .
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.5.4 cont.
Conversely, suppose f is submodular.

Then ∀u, v ∈ V , f({u}) + f({v}) ≥ f({u, v}) + f(∅) and f(∅) = 0.
This requires:

0 ≤ f({u}) + f({v})− f({u, v}) (3.46)

= m(u) +
1

2
Mu,u +m(v) +

1

2
Mv,v (3.47)

−
(
m(u) +m(v) +

1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(3.48)

= −Mu,v (3.49)

So that ∀u, v ∈ V , Mu,v ≤ 0.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃

i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Ua| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Ua) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Vertex and Edge Covers
Also instances of submodular optimization

Definition 3.5.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is a
set S ⊆ V (G) of vertices such that every edge in G is incident to at least
one vertex in S.

Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S ⊆ V subject to I(S) = |E|.

Definition 3.5.6 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is a
set F ⊆ E(G) of edges such that every vertex in G is incident to at least
one edge in F .

Let |V |(F ) be the number of vertices incident to edge set F . Then we
wish to find the smallest set F ⊆ E subject to |V |(F ) = |V |.
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Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.

Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that maximize the cut (set of edges) between S and V \ S.
Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).
Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).
Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Matrix Rank functions

Let V , with |V | = m be an index set of a set of vectors in Rn for some
n (unrelated to m). Thus, ∀v ∈ V , ∃xv ∈ Rn.

For a given set {v, v1, v2, . . . , vk}, it might or might not be possible to
find (αi)i such that:

xv =

k∑

i=1

αixvi (3.50)

If not, then xv is linearly independent of xv1 , . . . , xvk .
Let r(S) for S ⊆ V be the rank of the set of vectors S. Then r(·) is a
submodular function, and in fact is called a matric matroid rank
function.
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Example: Rank function of a matrix

Given n×m matrix X = (x1, x2, . . . , xm) with xi ∈ Rn for all i. There
are m length-n column vectors {xi}i

Let V = {1, 2, . . . ,m} be the set of column vector indices.
For any A ⊆ V , let r(A) be the rank of the column vectors indexed by
A.
r(A) is the dimensionality of the vector space spanned by the set of
vectors {xa}a∈A.
Thus, r(V ) is the rank of the matrix X.

Skip matrix rank example
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.
r(A ∪ C) = 3, r(B ∪ C) = 3.
r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.
r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) = r(A ∪B) + r(C) > r(A ∪B) + r(A ∩B) = 5
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Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.

The rank of the two sets unioned together A ∪B is no more than the
sum of the two individual ranks.
In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.
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Rank functions of a matrix

Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call A ∩B the common indices.
Let Ar index vectors spanning dimensions spanned by A but not B.
Let Br index vectors spanning dimensions spanned by B but not A.
Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).
Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.51)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.52)
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Rank functions of a matrix
Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br )

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) +r(C ) + r(Br )

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Rank functions of a matrix
Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br )

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) +r(C ) + r(Br )

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪B). Can we add
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Rank function of a matrix

Note, r(A ∩B) ≤ r(C). Why? Vectors indexed by A ∩B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C )

In short:

Common span (blue) is “more” (no less) than span of common index
(magenta).
More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F46/62 (pg.155/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Rank function of a matrix

Note, r(A ∩B) ≤ r(C). Why? Vectors indexed by A ∩B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C )

In short:
Common span (blue) is “more” (no less) than span of common index
(magenta).

More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F46/62 (pg.156/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

Rank function of a matrix

Note, r(A ∩B) ≤ r(C). Why? Vectors indexed by A ∩B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C )

In short:
Common span (blue) is “more” (no less) than span of common index
(magenta).
More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F46/62 (pg.157/211)



Monge More Definitions Graph & Combinatorial Examples Matrix Rank Examples and Properties

The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar ) +r(C ) + r(Br )

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar ) + 2r(C ) + r(Br )

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Polymatroid rank function

Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a
subspace of dimension ≥ 1).

For each X ⊆ S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
We can think of S as a set of sets of vectors from the matrix rank
example, and for each s ∈ S, let Xs being a set of vector indices.
Then, defining f : 2S → R+ as follows,

f(X) = r(∪s∈XXs) (3.53)

we have that f is submodular, and is known to be a polymatroid rank
function.
In general (as we will see) polymatroid rank functions are submodular,
normalized f(∅) = 0, and monotone non-decreasing (f(A) ≤ f(B)
whenever A ⊆ B).
We use the term non-decreasing rather than increasing, the latter of
which is strict (also so that a constant function isn’t “increasing”).
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For each X ⊆ S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
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example, and for each s ∈ S, let Xs being a set of vector indices.
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function.
In general (as we will see) polymatroid rank functions are submodular,
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Spanning trees

Let E be a set of edges of some graph G = (V,E), and let r(S) for
S ⊆ E be the maximum size (in terms of number of edges) spanning
forest in the graph induced by edges S.

Example: Given G = (V,E), V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {1, 2, . . . , 12}. S = {1, 2, 3, 4, 5, 8, 9} ⊂ E. Two spanning trees
have the same edge count (the rank of S).
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Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Summing Submodular Functions

Given E, let f1, f2 : 2E → R be two submodular functions. Then

f : 2E → R with f(A) = f1(A) + f2(A) (3.58)

is submodular.

This follows easily since

f(A) + f(B) = f1(A) + f2(A) + f1(B) + f2(B) (3.59)
≥ f1(A ∪B) + f2(A ∪B) + f1(A ∩B) + f2(A ∩B) (3.60)
= f(A ∪B) + f(A ∩B). (3.61)

I.e., it holds for each component of f in each term in the inequality. In fact,
any conic combination (i.e., non-negative linear combination) of submodular
functions is submodular, as in f(A) = α1f1(A) + α2f2(A) for α1, α2 ≥ 0.
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Summing Submodular and Modular Functions

Given E, let f1,m : 2E → R be a submodular and a modular function.

Then

f : 2E → R with f(A) = f1(A)−m(A) (3.62)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A)−m(A) + f1(B)−m(B) (3.63)
≥ f1(A ∪B)−m(A ∪B) + f1(A ∩B)−m(A ∩B) (3.64)
= f(A ∪B) + f(A ∩B). (3.65)

That is, the modular component with
m(A) +m(B) = m(A ∪B) +m(A ∩B) never destroys the inequality.
Note of course that if m is modular than so is −m.
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Restricting Submodular functions

Given E, let f : 2E → R be a submodular functions. And let S ⊆ E be an
arbitrary fixed set. Then

f ′ : 2E → R with f ′(A) , f(A ∩ S) (3.66)

is submodular.

Proof.

Given A ⊆ B ⊆ E \ v, consider

f((A+ v) ∩ S)− f(A ∩ S) ≥ f((B + v) ∩ S)− f(B ∩ S) (3.67)

If v /∈ S, then both differences on each size are zero. If v ∈ S, then we can
consider this

f(A′ + v)− f(A′) ≥ f(B′ + v)− f(B′) (3.68)

with A′ = A ∩ S and B′ = B ∩ S. Since A′ ⊆ B′, this holds due to
submodularity of f .
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Summing Restricted Submodular Functions

Given V , let f1, f2 : 2V → R be two submodular functions and let
S1, S2 ⊆ V be two arbitrary fixed sets. Then

f : 2V → R with f(A) = f1(A ∩ S1) + f2(A ∩ S2) (3.69)

is submodular. This follows easily from the preceding two results.

Given V , let C = {C1, C2, . . . , Ck} be a set of subsets of V , and for each
C ∈ C, let fC : 2V → R be a submodular function. Then

f : 2V → R with f(A) =
∑

C∈C
fC(A ∩ C) (3.70)

is submodular. This property is critical for image processing and graphical
models. For example, let C be all pairs of the form {{u, v} : u, v ∈ V }, or
let it be all pairs corresponding to the edges of some undirected graphical
model.
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Max - normalized

Given V , let c ∈ RV
+ be a given fixed vector. Then f : 2V → R+, where

f(A) = max
j∈A

cj (3.71)

is submodular and normalized (we take f(∅) = 0).

Proof.
Consider

max
j∈A

cj + max
j∈B

cj ≥ max
j∈A∪B

cj + max
j∈A∩B

cj (3.72)

which follows since we have that

max(max
j∈A

cj ,max
j∈B

cj) = max
j∈A∪B

cj (3.73)

and

min(max
j∈A

cj ,max
j∈B

cj) ≥ max
j∈A∩B

cj (3.74)
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Max

Given V , let c ∈ RV be a given fixed vector (not necessarily non-negative).
Then f : 2V → R, where

f(A) = max
j∈A

cj (3.75)

is submodular, where we take f(∅) ≤ minj cj (so the function need not be
normalized).

Proof.
The proof is identical to the normalized case.
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Facility/Plant Location (uncapacitated)

Core problem in operations research, early motivation for submodularity.
Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted
bipartite graph G = (F, S,E, c)
where F is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possibility pairs, and c : E → R+ is
the benefit of a given pair.
Facility location function has form:

f(A) =
∑

i∈S
max
j∈A

cij . (3.76)
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Facility/Plant Location (uncapacitated) w. plant benefits

Let F = {1, . . . , f} be a set of possible factory/plant locations for
facilities to be built.

S = {1, . . . , s} is a set of sites (e.g., cities, clients) needing service.
Let cij be the “benefit” or “value” (e.g., 1/cij is the cost) of servicing
site i with facility location j.
Let mj be the benefit (e.g., either 1/mj is the cost or −mj is the cost)
to build a plant at location j.
Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A ⊆ F are to be constructed.
We can define the (uncapacitated) facility location function

f(A) =
∑

j∈A
mj +

∑

i∈S
max
j∈A

cij . (3.77)

Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| ≤ k).
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Facility Location

Given V,E, let c ∈ RV×E be a given |V | × |E| matrix. Then

f : 2E → R, where f(A) =
∑

i∈V
max
j∈A

cij (3.78)

is submodular.

Proof.
We can write f(A) as f(A) =

∑
i∈V fi(A) where fi(A) = maxj∈A cij is

submodular (max of a ith row vector), so f can be written as a sum of
submodular functions.

Thus, the facility location function (which only adds a modular function to
the above) is submodular.
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Log Determinant

Let Σ be an n×n positive definite matrix. Let V = {1, 2, . . . , n} ≡ [n]
be an index set, and for A ⊆ V , let ΣA be the (square) submatrix of Σ
obtained by including only entries in the rows/columns given by A.

We have that:

f(A) = log det(ΣA) is submodular. (3.79)

The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.
Suppose X ∈ Rn is multivariate Gaussian random variable, that is

x ∈ p(x) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.80)

. . .
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Log Determinant

...cont.
Then the (differential) entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (3.81)

and in particular, for a variable subset A,

f(A) = h(XA) = log
√

(2πe)|A||ΣA| (3.82)

Entropy is submodular (further conditioning reduces entropy), and moreover

f(A) = h(XA) = m(A) +
1

2
log |ΣA| (3.83)

where m(A) is a modular function.

Note: still submodular in the semi-definite case as well.
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Summary: Properties so far

SCCM is submodular f(A) =
∑

u∈U φu(mu(A)) where mu is a
non-negative modular and φu is concave.

max is submodular f(A) = maxj∈A cj , as is facility location
f(A) =

∑
u∈U maxa∈A sa,u.

Log determinant f(A) = log det(ΣA) submodular for p.d. Σ.
Matrix rank function is submodular.
Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.
Number of connected components in induced graph, and interior edge
function, is supermodular.
Submodular plus modular is submodular, f(A) = f ′(A) +m(A).
Complementation: f ′(A) = f(V \A) is submodular if f is submodular
and m is modular. (supermodular) if f is submodular (supermodular).
Summing: if αi ≥ 0 and fi : 2V → R is submodular, then so is

∑
i αifi.

Restrictions preserve submodularity: f ′(A) = f(A ∩ S)
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max is submodular f(A) = maxj∈A cj , as is facility location
f(A) =

∑
u∈U maxa∈A sa,u.

Log determinant f(A) = log det(ΣA) submodular for p.d. Σ.
Matrix rank function is submodular.
Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.

Number of connected components in induced graph, and interior edge
function, is supermodular.
Submodular plus modular is submodular, f(A) = f ′(A) +m(A).
Complementation: f ′(A) = f(V \A) is submodular if f is submodular
and m is modular. (supermodular) if f is submodular (supermodular).
Summing: if αi ≥ 0 and fi : 2V → R is submodular, then so is

∑
i αifi.

Restrictions preserve submodularity: f ′(A) = f(A ∩ S)
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