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f(A) + f(B) > f(AUB) + f(ANB)
o ®a
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Logistics

Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige’s book.
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Class Road Map - EE563

L1(9/30): Motivation, Applications,
Definitions, Properties

L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory

L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
Matrix Rank, Properties

L4(10/12y

Last day of instruction, Fri. Dec 11th.

Prof. Jeff Bilmes

L11(11/4):
L12(11/9

L-(11/11):
L13(11/1

Veterans Day, Holiday

O — — —

: maximization.

Finals Week: Dec 12-18, 2020
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Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f : 2V — R is submodular if for any A, B C V, we have that:

f(A)+f(B) = f(AUB) + f(ANB) (3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2 — R is submodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = f(A) = fF(BU{v}) — f(B) (3.8)

e The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.

e Gain notation: Define f(v|A) = f(A +v) — f(A). Then function f is
submodular if f(v|A) > f(v|B) foral AC BCV\{v},veV.
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Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)
A function f:2Y — R is supermodular if for any A, B C V, we have that:

f(A) + f(B) < f(AUB) + f(AN B) (3.7)

Definition 3.2.2 (supermodular (improving returns))

A function f : 2V — R is supermodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = f(4) < f(BU{v}) — f(B) (3.8)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ Zaema) for some f (often ¢ = 0).
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Monge
[ NRNRN]

Monge Matrices

@ m x n matrices C' = [c;;];; are called Monge matrices if they satisfy the
Monge property, namely:

Cij + s < Cis + Crj (3]‘)

foralll<i<r<mandl1<j<s<n.
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Monge
[ NRNRN]

Monge Matrices

e m x n matrices C' = [c;;];; are called Monge matrices if they satisfy the
Monge property, namely:

Cij + Crs < Cis + Crj (3.1)
foralll<i<r<mandl<j<s<n.
@ Lined up indices
i <r (3.2
] <s
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Monge
[ NRNRN]

Monge Matrices

e m x n matrices C' = [c;;];; are called Monge matrices if they satisfy the
Monge property, namely:

Cij + Crs < Cis + Crj (3.1)
foralll<i<r<mandl<j<s<n.
@ Lined up indices
i< (3.2)
] <s
@ Equivalently, forall 1 <i,r <m, 1<s,j <mn,

Cmin(i,r),min(s,j) + Cmax(i,r),max(s,j) < Cis T Cryj (34)
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Monge
[LRRRNI

Monge Matrices Visuals

o Consider a non-negative matrix D = (d; ;) of order m x n and form
matrix C' = (¢; ;) with ¢; jthentry, 1 <i<m, 1 <j<mn:

m.oJ
Cij = Z Z dhg (3.5)

k=i (=1
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Monge

Monge Matrices Visuals

e Consider a non-negative matrix D = (d; j) of order m x n and form
matrix C' = (¢; ;) with ¢; jthentry, 1 <i<m, 1 <j<mn:

Cij = iZdhg (3.5)

k=i (=1

@ Consider four elements of the m x n matrix:

n ; n
[ . Cij Cis [ . Cij C;
m g m g
T Crj C I7 Crj Crs
k
J S 7 s

F7/62 (pg.10/211)
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Monge

Monge Matrices Visuals

e Consider a non-negative matrix D = (d; j) of order m x n and form
matrix C' = (¢; ;) with ¢; jthentry, 1 <i<m, 1 <j<mn:

Cij = iZdhg (3.5)

k=i (=1

o Consider four elements of the m x n matrix;

—— n N
‘{ . (vl.i Cis ‘{ . {‘1/ C;
mry m
w A
k
r A
Crj Crs I Crj Crs
‘ B k B D
: l :
J s J S

Cz‘j:A-i-B, CTS:B-FD, er:B, CZ‘S:A—FB-FC-FD.
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Monge

Monge Matrices Visuals

e Consider a non-negative matrix D = (d; j) of order m x n and form
matrix C' = (¢; ;) with ¢; jthentry, 1 <i<m, 1 <j<mn:

Cij = iZdhg (3.5)

k=i (=1

o Consider four elements of the m x n matrix;

—— n 1
m Cig Cis mr g Cij C;
A C
k
T T
I Crf Crs o= Crs
k B B D
J s J s

Cz‘j:A-i-B, CTS:B-FD, er:B, CZ‘S:A—FB-FC-FD.
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Monge
[LRRRNI

Monge Matrices Visuals

e Consider a non-negative matrix D = (d; j) of order m x n and form
matrix C' = (¢; ;) with ¢; jthentry, 1 <i<m, 1 <j<mn:

Cij = ide’g (3.5)

k=i (=1

o Consider four elements of the m x n matrix;

cij=A+B, cs=B+D ¢j=B cis=A+B+C+D.
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Monge
[LRRRNI

Monge Matrices Visuals

e Consider a non-negative matrix D = (d; j) of order m x n and form
matrix C' = (¢; ;) with ¢; jthentry, 1 <i<m, 1 <j<mn:

Cij = ide’g (3.5)

k=i (=1

o Consider four elements of the m x n matrix;

cij=A+B,¢,s=B+D,¢j=B,¢;s=A+B+C+D.
e Then, Cij + Crs <Cis+er.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F7/62 (pg.14/211)



Monge
[RLARN

Monge Matrices, where useful

@ Useful for speeding up transportation, dynamic programming, flow,
search, lot-sizing and many other problems.
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Monge
[RLARN

Monge Matrices, where useful

@ Useful for speeding up transportation, dynamic programming, flow,
search, lot-sizing and many other problems.

@ Example, Hitchcock transportation problem: Given m X n cost matrix
C = [c4j]i; , a non-negative supply vector a € R, a non-negative
demand vector b € R"} with 371, a(i) = >°7_; bj, we wish to
optimally solve the followmg linear program:

m|n|m|ze Z Zcijmij (36)
XGR’”’ n i j:1
m
subject to inj =b; Vj=1,...,n (3.7)
n
Zilfij =a; Yi=1,...,m (3.8)
j=1
2i; >0 Vi j (3.9)
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Monge
[RRL RN

Monge Matrices, Hitchcock transportation

a1 O|1T1]13]3
Producers,
Sources, (@9 4 7 110
or Supply
as O[4 ]9 |14
3 2 1 2
b1 by b3 b4
Consumers, Sinks, or

Demand

@ Solving the linear program can be done easily and optimally using the
“North-West Corner Rule” (a 2D greedy-like approach starting at
top-left and moving down or right) in only O(m + n) if the matrix C' is
Monge!
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Monge
[RRRA R}

Monge Matrices and Convex Polygons

o Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).
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Monge
[RRRA R}

Monge Matrices and Convex Polygons

e Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).
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Monge
[RRRA R}

Monge Matrices and Convex Polygons

e Can generate a Monge matrix from a convex polygon - delete two

segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

q1
q2 P1

D2

q3

qa
Pe Ps b
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Monge
[RRRA R}

Monge Matrices and Convex Polygons

e Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

P2
q3
P3
q4
d(gs, p2) + d(qa, p3) < d(qs,p2) + d(g3, p3) (3.10)

Transport unit quantities from locations ¢3 and ¢4 to locations py and p3; to
minimize total distance traveled, routes from g3 and g4 must not intersect.
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Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
f:{0,1}V - R
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Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as
f:{0,1}V - R

@ We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
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Monge
[RRARA |

Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as

f:{0,1}V - R
e We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
e We may define submodularity as: for all z,y € {0,1,..., K}V, we have
f@)+ fly) = flavy) + flzAy) (3.11)
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Monge
[RRARA |

Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as

f:{0,1}V - R
e We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
e We may define submodularity as: for all 2,y € {0,1,... ,K}V, we have
f@)+ fy) = flavy) + flzAy) (3.11)

@ x V y is the (join) element-wise max of each element, that is
(x Vy)(v) = max(z(v),y(v)) forve V.
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Monge
[RRARA |

Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as

f:{0,1}V - R
e We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
e We may define submodularity as: for all 2,y € {0,1,... ,K}V, we have
f@)+ fy) = flavy) + flzAy) (3.11)

e x V y is the (join) element-wise max of each element, that is
(x Vy)(v) = max(z(v),y(v)) forv e V.

@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = min(z(v),y(v)) for v e V.
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Monge
[RRARA |

Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as

f:{0,1}V - R
e We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
e We may define submodularity as: for all 2,y € {0,1,... ,K}V, we have
f@)+ fy) = flavy) + flzAy) (3.11)

e x V y is the (join) element-wise max of each element, that is
(x Vy)(v) = max(z(v),y(v)) forv e V.
@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = min(z(v),y(v)) for v € V.
o With K = 1, then this is the standard definition of submodularity.
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Monge
[RRARA |

Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as

f:{0,1}V - R
e We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
e We may define submodularity as: for all 2,y € {0,1,... ,K}V, we have
f@)+ fy) = flavy) + flzAy) (3.11)

e x V y is the (join) element-wise max of each element, that is
(x Vy)(v) = max(z(v),y(v)) forv e V.

@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = min(z(v),y(v)) for v € V.

o With K =1, then this is the standard definition of submodularity.

e With |[V| =2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).
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Monge
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Monge Matrices and Submodularity

@ A submodular function has the form: f: 2" — R which can be seen as

f:{0,1}V - R
e We can generalize this to f: {0,1,..., K}V — R for some constant
KeZ,.
e We may define submodularity as: for all 2,y € {0,1,... ,K}V, we have
f@)+ fy) = flavy) + flzAy) (3.11)

e x V y is the (join) element-wise max of each element, that is
(x Vy)(v) = max(z(v),y(v)) forv e V.

@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = min(z(v),y(v)) for v € V.

o With K =1, then this is the standard definition of submodularity.

e With |[V| =2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).

e Non square: f:{0,1,..., K1} x{0,1,..., K2} = R.
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More Def finitions
[ ARRRRRN]

Two Equivalent Submodular Definitions

Definition 3.4.1 (submodular concave)

A function f : 2V — R is submodular if for any A, B C V, we have that:

f(A)+f(B) = f(AUB) + f(ANB) (3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.4.2 (diminishing returns)

A function f : 2 — R is submodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = f(A) = fF(BU{v}) — f(B) (3.8)

e The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.

e Gain notation: Define f(v|A) = f(A +v) — f(A). Then function f is
submodular if f(v|A) > f(v|B) foral AC BCV\{v},veV.
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M,

The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.
Example: with |[V| =n =2, this is
easy:

10 1

00 01
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M,

The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.
Example: with |[V| =n =2, thisis  With |V| =n = 3, a bit harder.
easy:

@:

10 1

@

110 107
[
10

on

0
010

2
8

o
8
3
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We can test submodularity via values on vertices of hypercube.

Example: with |[V| =n =2, thisis  With |V| =n = 3, a bit harder.
easy: ®

How many inequalities of form
f(A)+f(B) = f(AUB)+ f(ANB)?
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We can test submodularity via values on vertices of hypercube.
Example: with |[V| =n =2, thisis  With |V| =n = 3, a bit harder.

easy:

How many inequalities of form
f(A)+f(B) > f(AUB)+ f(ANB)?
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Subadditive Definitions

Definition 3.4.1 (subadditive)
A function f :2¥V — R is subadditive if for any A, B C V, we have that:

f(A)+ f(B) =z f(AU B) (3.12)

This means that the “whole” is less than the sum of the parts.
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More Def finitions
[RRLRRNN]

Two Equivalent Supermodular Definitions

Definition 3.4.1 (supermodular)
A function f:2Y — R is supermodular if for any A, B C V, we have that:

f(A) + f(B) < f(AUB) + f(AN B) (3.7)

Definition 3.4.2 (supermodular (improving returns))

A function f : 2V — R is supermodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = f(4) < f(BU{v}) — f(B) (3.8)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ Zaema) for some f (often ¢ = 0).
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Superadditive Definitions

Definition 3.4.2 (superadditive)
A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.13)

@ This means that the “whole” is greater than the sum of the parts.
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Superadditive Definitions

Definition 3.4.2 (superadditive)
A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.13)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
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Superadditive Definitions

Definition 3.4.2 (superadditive)

A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.13)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

e Ex: Let 0 < k < |V, and consider f : 2" — R, where:

F(A) = {1 Tl <k (3.14)

0 else
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Superadditive Definitions

Definition 3.4.2 (superadditive)

A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.13)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

o Ex: Let 0 < k < |V, and consider f : 2" — R, where:

F(A) = {1 Al <k (3.14)

0 else

@ This function is subadditive but not submodular.
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M,
(RRN

Modular Definitions

Definition 3.4.3 (modular)

A function that is both submodular and supermodular is called modular

If fis a modular function, than for any A, B C V, we have
f(A)+ f(B)=f(ANnB)+ f(AU B) (3.15)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 3.4.4

If f is modular, it may be written as

F4) = 0+ Y (fdah) - F0) =c+ 3 f(@) (3.16)

a€A acA

which has only |V| + 1 parameters.

A
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Modular Definitions

Proof.
We inductively construct the value for A = {ay,as,...,a;}.
For k = 2,
fla1) + f(a2) = f(a1,a2) + f(0) (3.17)

implies f(a1,a2) = f(a1) — f(0) + f(a2) — £(0) + f(0) (3.18)

then for k£ = 3,

fla1,a2) + f(a3) = f(a1,az2,a3) + f(0) (3.19)
implies f(a1,a2,a3) = f(a1,a2) — f(0) + f(az) — f(0) + f(0) (3.20)




Complement function

Given a function f : 2V — R, we can find a complement function
f:2V = Ras f(A) = f(V\ A) for any A.

Proposition 3.4.5

f is submodular iff f is submodular.

—

Proof.

f(A)+ f(B) = f(AUB) + f(AN B) (3.22)
follows from
fFVNA)+ f(VAB) = f(VN(AUB))+ f(V\(ANB))  (3.23)

which is true because V'\ (AUB) = (V\ A)N(V \ B) and
VN(ANB)=(V\A) U(V\ B) (De Morgan's laws for sets). O
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Graph & Combinat;
[ RRRRRARARN]

Undirected Graphs

@ Let G = (V, E) be a graph with vertices V' = V(G) and edges
E=FE(G) CVxV,
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Graph & Combi Examples
[ARRRRARARRRRRRN

Undirected Graphs
o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=E(G) CVxV.
o If G is undirected, define

EX,Y)={{z,y} e E(G):z e X\Y,ye Y\ X} (3.24)
as the edges strictly between X and Y.
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Undirected Graphs
o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=EG) CVxV,
e If G is undirected, define

EX,Y)={{z,y} e E(G):z e X\Y,ye Y\ X} (3.24)

as the edges strictly between X and Y.
@ Nodes define cuts. Define the cut function §(X) = E(X,V \ X), set
of edges with exactly one vertex in X.
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Undirected Graphs
o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=E(G) CVxV.
e If G is undirected, define

EX,Y)={{z,y} e E(G):z e X\Y,ye Y\ X} (3.24)

as the edges strictly between X and Y.
o Nodes define cuts. Define the cut function §(X) = E(X,V \ X), set
of edges with exactly one vertex in X.

“~06(S)={{u,v}€e E:ueS,ve V\S}L
= {{ad}.{bd}.{be} {ce} {cf}

F21/62 (pg.47/211)
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Directed graphs, and cuts and flows
o If GG is directed, define

ET(X,Y)&{(v,y) €eE(G): 7€ X \Y,y e Y\ X} (3.25)
as the edges directed strictly from X towards Y.
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Directed graphs, and cuts and flows
o If G is directed, define

ET(X,Y) & {(v,y) e E(G): 7€ X \Y,y e Y\ X} (3.25)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

ST(X) &£ EN(X,V\X) (3.26)
and edges entering X (in-flow) as

ST(X)=EN(V\ X, X) (3.27)
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Directed graphs, and cuts and flows
o If G is directed, define

ET(X,Y) & {(v,y) e E(G): 7€ X \Y,y e Y\ X} (3.25)

as the edges directed strictly from X towards Y.
o Nodes define cuts and flows. Define edges leaving X (out-flow) as

§T(X) 2 BT (X, V\X) (3.26)
and edges entering X (in-flow) as
S (X)2 ET(V\ X, X) (3.27)

={(u,v) €E:ueS,veV\ShL
= {(be) .(c.H}
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The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as

NX)2{veV(G)\X:EBEX,{v})#0} (3.28)
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Graph & Combinatorial Examples

The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as

I'X)2{veV(G)\X:EX,{v})#0} (3.28)

@ Example:
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Directed Cut function: property

Lemma 3.5.1
For a digraph G = (V, E) and any X, Y C V: we have

|67 ()] + 57 (Y))]
= 6T (X NY)|+[0HX UY)|[+ |EHX, V)| + [EH(Y,X)|  (3.29)

and

167 (X)) + 16~ (V)]
=[07(XNY)|[+ [ (XUY)|+|E-(X,Y)|+ |[E~(Y,X)|  (3.30)
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Directed Cut function: proof of property

Proof.

We can prove Eq. (3.29) using a geometric counting argument (proof for
|0 (X)| case is similar)
X _ V\X X V\X

Yy (a) | > y

‘(9)
8 |55V
V\Y Ve > V\Y ¢/ ¢

X V\X X _ V\X
(a)
Y > Y b)
b
Prxnv) |e AN &’\wwuw
viy| Y VY ()E»
X V\X X V\X
Y Y
[EF(X, V) ) |EF(Y, X)|
V\Y © V\Y

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020

F25/62 (pg.54/211)



Directed cut/flow functions: submodular

For a digraph G = (V, E) and any X,Y C V: both functions |6 (X)| and
|0~ (X)| are submodular.

|E(X,Y)|>0and |[E~(X,Y)|>0.

More generally, in the non-negative weighted edge case, both in-flow and
out-flow are submodular on subsets of the vertices.
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Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.5.3

For an undirected graph G = (V, E) and any X,Y C V: we have that both
the undirected cut (or flow) function |6(X)| and the neighbor function
|T'(X)| are submodular. l.e.,

6(X)|+[6(Y)] =[60(XNY)|+[6(XUY)|+2|E(X,Y)] (3.31)
and

T+ [P = (X NY)[ +[T(XUY)| (3.32)

Proof.

e Eq. (3.31) follows from Eq. (3.29): we replace each undirected edge
{u,v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.
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Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.5.3

For an undirected graph G = (V, E) and any X,Y C V: we have that both
the undirected cut (or flow) function |6(X)| and the neighbor function
|T'(X)| are submodular. l.e.,

6(X)|+[6(Y)] =[60(XNY)|+[6(XUY)|+2|E(X,Y)] (3.31)
and

T+ [P = (X NY)[ +[T(XUY)| (3.32)

Proof.
e Eq. (3.31) follows from Eq. (3.29): we replace each undirected edge
{u,v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.

e Eq. (3.32) follows as shown in the following page.
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I'(X) = (a) + (¢) +(f) + (9) + (d) (3.33)
T(Y) = (b) + (c) + (e) + (h) + (d) (3.34)
T(XUY) = (a) + (b) + (c) + (d) (3.35)
T(XNY)=(c)+(9)+ (h) (3.36)

SO

~—

+(e) + () + (9) + (h)

PO+ P = (a) + () +2(c) +2(d
= [[(XUY)|+|0(X NY)| (3.37)

g




Undirected Neighbor functions

Therefore, the undirected cut function |6(A)| and the neighbor function
IT'(A)| of a graph G are both submodular.
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Undirected cut/flow is submodular: alternate proof
@ Another simple proof shows that |§(X)| is submodular.
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Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that [§(X)| is submodular.
@ Define a graph Gy, = ({u,v},{e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) € R.
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Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that [§(X)| is submodular.

o Define a graph Gy, = ({u,v},{e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.

@ Weighted cut function over those two nodes: w(d,,,(-)) has valuation:

wW(0yw(0)) = w(dy({u,v})) =0 (3.38)

and

w(duw({u})) = w(dus({v}) =w =0 (3.39)
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Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that [§(X)| is submodular.

o Define a graph Gy, = ({u,v},{e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.

o Weighted cut function over those two nodes: w(dy,,(-)) has valuation:

w(éu,v(m)) = w(0y,u({u,v})) =0 (3-38)

and
w(0up({u})) = wbuu({v})) =w =0 (3.39)
@ Thus, w(dy(+)) is submodular since w(e) > 0 and

w(buo({u}) + w(up({v}) = w(duo({u, v})) + w(du.(0)) (3.40)

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F30/62 (pg.63/211)




mpl
[NERRERRNE NRNARNI

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that [§(X)| is submodular.

o Define a graph Gy, = ({u,v},{e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.

o Weighted cut function over those two nodes: w(dy,,(-)) has valuation:

w(0uw(0)) = w(bup({u,v})) =0 (3.38)
and
w(duw({u})) = w(bup({v})) =w =0 (3.39)
@ Thus, w(8y(+)) is submodular since w(e) > 0 and
w(buw({u})) +w(u({v})) 2 wbuw({u, v})) +w(u.(0)) (3.40)
@ General non-negative weighted graph G = (V| E, w), define w(4(+)):
FX) =w6(X) = Y wu(XN{no})  (341)

(u,w)EE(G)
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Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that [§(X)| is submodular.

o Define a graph Gy, = ({u,v},{e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.

o Weighted cut function over those two nodes: w(dy,,(-)) has valuation:

w(0uw(0)) = w(bup({u,v})) =0 (3.38)
and
w(duw({u})) = w(bup({v})) =w =0 (3.39)
@ Thus, w(8y(+)) is submodular since w(e) > 0 and

w(buw({u})) +w(u({v})) 2 wbuw({u, v})) +w(u.(0)) (3.40)

@ General non-negative weighted graph G = (V, E, w), define w(4(+)):
FX)=w@E(X) = D wbuu(X N {u0})) (3.41)

(u,v)EE(G)

@ This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.
@ Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)]| (the vertex function) is submodular.
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.
o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)| (the vertex function) is submodular.
o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.
o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(S)| (the incidence function) is submodular.

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F31/62 (pg.68/211)



Graph & Combinatorial Examples
[NERRRRRRRL RNAAN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

@ Recall |§(.9)], is the number of edges with exactly one vertex in
S C V(G) is submodular (cut function). Thus, we have
I(S)=E(S)Ud(S) and E(S)Né(S) =0, and thus that
[1(S)] = [E(S)| +6(S)].
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)| (the vertex function) is submodular.

Let £(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

Let 1(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

Recall |§(S)], is the number of edges with exactly one vertex in

S C V(G) is submodular (cut function). Thus, we have

I(S) = E(S)Ud(S) and E(S)N4(S) =0, and thus that

[I(S)| = |E(S)| + |0(S)|. So we can get a submodular function by
summing a submodular and a supermodular function.
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

o Recall [6(5)], is the number of edges with exactly one vertex in
S C V(G) is submodular (cut function). Thus, we have
I(S) = E(S)Ud(S) and E(S)N4(S) =0, and thus that
I1(S)| = |E(S)| + [6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

o Recall [6(5)], is the number of edges with exactly one vertex in
S C V(G) is submodular (cut function). Thus, we have
I(S) = E(S)Ud(S) and E(S)N4(S) =0, and thus that
I1(S)| = |E(S)| + [6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

e Consider f(A) = |67 (A)| — [67(V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and

prove it.
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Number of connected components in a graph via edges

° R_ecall, f:2V — R is submodular, then so is f : 2" — R defined as

f(8)=f(V\S).
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Number of connected components in a graph via edges

° Fiecall, I 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(S)=f(V\S).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
g(8) = g(V'\ 9).
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Number of connected components in a graph via edges

° Fiecall, I 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(8) = f(V\9).

@ Hence, if g : 2¥ — R is supermodular, then so is g : 2" — R defined as
g(8) =g(V'\9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,. Thus, ¢(0) = |V], and ¢(E) > 1.
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Number of connected components in a graph via edges

° Fiecall, I 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(8) = f(V\S).

@ Hence, if g : 2¥ — R is supermodular, then so is g : 2" — R defined as
g(5) = g(V'\ 5).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,. Thus, ¢(0) = |V|, and ¢(E) > 1.

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .
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Number of connected components in a graph via edges

o Recall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(S)=f(V\S).

@ Hence, if g : 2¥ — R is supermodular, then so is g : 2" — R defined as
g(5) =g(V'\ 9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,. Thus, ¢(0) = |V|, and ¢(E) > 1.

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <c(B+a)—c(B) (3.42)

with A C B C E\ {a}.
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Number of connected components in a graph via edges

o Recall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(8) = f(V\9).

@ Hence, if g : 2¥ — R is supermodular, then so is g : 2" — R defined as
g(8) =g(V'\9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,. Thus, ¢(0) = |V|, and ¢(E) > 1.

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <c(B+a)—c(B) (3.42)

with AC BC E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.
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Number of connected components in a graph via edges

o Recall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(S)=f(V\S).

@ Hence, if g : 2¥ — R is supermodular, then so is g : 2" — R defined as
g(5) =g(V'\ 9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,. Thus, ¢(0) = |V|, and ¢(E) > 1.

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <c(B+a)—c(B) (3.42)
with AC BC E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of connected components) when
edge is added in a smaller context than when added in a larger context.

@ ¢(A) =c(E\ A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Graph Strength

@ So ¢(A) =c(FE\ A), the number of connected components in G when
we remove A, is supermodular.
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Graph Strength

@ So ¢(A) =c(E\ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
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Graph Strength

@ So ¢(A) =c(E\ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
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Graph Strength

@ So ¢(A) =c(E\ A), the number of connected components in G when
we remove A, is supermodular.
e Maximizing ¢(A) would be a goal for a network attacker — many

connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
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Graph & Combi
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Graph Strength

@ So ¢(A) =c(E\ A), the number of connected components in G when
we remove A, is supermodular.

Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V, E,w) with w : E— R+ be a weighted graph with
non-negative weights.
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Graph Strength

So ¢(A) = ¢(E \ A), the number of connected components in G when
we remove A, is supermodular.

Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V, E,w) with w : E — R+ be a weighted graph with
non-negative weights.

For (u,v) = e € E, let w(e) be a measure of the strength of the

connection between vertices u and v (strength meaning the difficulty of
cutting the edge ¢).

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F33/62 (pg.85/211)



Graph & Combi
[NNRRRRRE!

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (3.43)

eEA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
vertices S, E(G[S]) are the edges contained within this induced subgraph, and
w(E(G[S])) is the weight of these edges. w(E(G[S])) = 32, ;cgw(i,])-

Prof. Jeff Bilmes
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Graph Strength

@ Then w(A) for A C E is a modular function
w(A) = Zwe (3.43)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1
components —
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (3.43)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (3.43)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

strength(G,w) = min w(4)

7 3.44
ACE(G):e(A)>1 ¢(A) — 1 ( )

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F34/62 (pg.89/211)



Graph &
[NNRRRRRRRN]

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (3.43)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1

components — then w(A)/(¢(A) — 1) is like the “effort per

achieved/additional component” for a network attacker.
@ A form of graph strength can then be defined as the following:
w(A)

strength(Gi, w) = AQE(ICI})I:IEI(A)>1 c¢(A)—1

(3.44)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G, w).
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) " w, (3.43)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

w(A)

strength(Gi, w) = AQE(ICIJl)I:IEI(A)>1 c¢(A)—1

(3.44)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G, w).

@ Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.5.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)( (3.45)

is submodular iff the off-diagonal elements of M are non-positive.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.5.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)( (3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V| E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)| is supermodular.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.5.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)( (3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.
@ Non-negative modular weights w™ : E — Ry, w(F (X)) is also
supermodular, so —w(F(X)) is submodular.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.5.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)( (3.45)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.
@ Non-negative modular weights w™ : E — R, w(F(X)) is also
supermodular, so —w(F(X)) is submodular.

@ f is a modular function m™14 = m(A) added to a weighted
submodular function, hence f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.5.4 cont.

@ Conversely, suppose f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.5.4 cont.

@ Conversely, suppose f is submodular.

@ Then Vu,v € V, f({u}) + f({v}) > f({u,v}) + f(0) and f(0) = 0.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.5.4 cont.

@ Conversely, suppose f is submodular.

@ Then Vu,v € V, f({u}) + f({v}) > f({u,v}) + f(0) and f(0) = 0.

@ This requires:

0 < f({u}) + f({v}) - f({u,v}) (3.46)
=m(u) + %]\Imu + m(v) + %]\JW (3.47)
. (m(u) +m(v) + %MM + My, + %M) (3.48)

— _]\'{u,’u (349)

So that Yu,v € V, M,,, <0.
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Graph & Combinatorial Examples
(AN}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,Up,} of n subsets of U, so that U; C U and
U, Ui=U.
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Graph & Combinatorial Examples
(AN}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]£{1,...,n} such that J,., U, = U.
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Graph & Combinatorial Examples
(AN}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]={1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k <, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
\ Ule Uy, | is maximized.
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Graph & Combinatorial Examples
(AN}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]={1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {aj,as,...,ar} with a; € [n] such that
|UK_, U, | is maximized.

o f:2M 7., where for A C [n], f(A) = Uaea Ual is the set cover
function and is submodular.
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Graph & Combinatorial Examples
(AN}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]={1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {aj,as,...,ar} with a; € [n] such that
|UK_, U, | is maximized.

o f:2M 7., where for A C [n], f(A) = Uaea Ual is the set cover
function and is submodular.

o Weighted set cover: f(A) = w({U,c Ua) where w: U — R .

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F37/62 (pg.103/211)



Graph & Combinatorial Examples
(AN}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and

U, Ui=U.

The goal of minimum set cover is to choose the smallest subset
AC[n]={1,...,n} such that J,c, U, = U.

Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {aj,as,...,ar} with a; € [n] such that
|UK_, U, | is maximized.

f:2M - 7, where for A C [n], f(A) = | Uaea Ual is the set cover
function and is submodular.

Weighted set cover: f(A) = w(U,c Ua) where w : U — R,

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Graph & Combinatorial Examples
i

Vertex and Edge Covers

Also instances of submodular optimization

Definition 3.5.5 (vertex cover)

A vertex cover (a "vertex-based cover of edges”) in graph G = (V, E) is a
set S C V(G) of vertices such that every edge in G is incident to at least
one vertex in S.

o Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to I(S) = |E|.

Definition 3.5.6 (edge cover)

A edge cover (an “edge-based cover of vertices") in graph G = (V, E) is a
set ' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

o Let |V|(F) be the number of vertices incident to edge set F'. Then we
wish to find the smallest set F' C E subject to |V|(F) = |V].
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Graph & Combinatorial Examples
(N ]

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V' \ S.
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

@ Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that maximize the cut (set of edges) between S and V' \ S.

F39/62 (pg.107/211)
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that maximize the cut (set of edges) between S and V' \ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)= EX,V\X).
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.
(

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that maximize the cut (set of edges) between S and V' \ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)= EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.
(

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that maximize the cut (set of edges) between S and V' \ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)= EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).

@ Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Matrix Rank

Matrix Rank functions

@ Let V, with [V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m). Thus, Vv € V, 3z, € R™.
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Matrix Rank

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m). Thus, Vv € V, 3z, € R™.

e For a given set {v,v1,v9,..., v}, it might or might not be possible to
find ()i such that:

k
Ty = Z QG Ty, (3.50)

=1

If not, then x, is linearly independent of x,,, ..., zy,.

F40/62 (pg.112/211)

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020

Prof. Jeff Bilmes



Matrix Rank

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m). Thus, Vv € V, 3z, € R™.

e For a given set {v,v1,v9,..., v}, it might or might not be possible to
find (a;); such that:

k
Ty = Z QG Ty, (3.50)
i=1

If not, then x, is linearly independent of x,,, ..., xy,.

@ Let 7(S) for S C V be the rank of the set of vectors S. Then r(-) is a
submodular function, and in fact is called a matric matroid rank
function.
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Ma k
[LARRRNANY]

Example: Rank function of a matrix

e Given n x m matrix X = (z1, 22, ..., Zy) with z; € R" for all i. There
are m length-n column vectors {x;},
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Matrix Rank

Example: Rank function of a matrix

e Given n x m matrix X = (z1, 22, ..., Zy) with z; € R" for all i. There
are m length-n column vectors {z;},

o Let V ={1,2,...,m} be the set of column vector indices.
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Matrix Rank

Example: Rank function of a matrix

e Given n x m matrix X = (z1, 22, ..., Zy) with z; € R" for all i. There
are m length-n column vectors {z;},

o Let V ={1,2,...,m} be the set of column vector indices.

@ Forany A CV, let (A) be the rank of the column vectors indexed by
A.

Prof. Jeff Bilmes
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Matrix Rank

Example: Rank function of a matrix

Given n x m matrix X = (21, x9,...,2y) with z; € R” for all i. There
are m length-n column vectors {z;},

Let V. =1{1,2,...,m} be the set of column vector indices.

For any A C V, let r(A) be the rank of the column vectors indexed by
A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {Za},c4-
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Example: Rank function of a matrix

Given n x m matrix X = (21, x9,...,2y) with z; € R” for all i. There
are m length-n column vectors {z;},

Let V. =1{1,2,...,m} be the set of column vector indices.

For any A C V, let r(A) be the rank of the column vectors indexed by
A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {ZTa},c4-

Thus, 7(V) is the rank of the matrix X.
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Matrix Rank
(RLRRNNANY]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O o N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
b3 o
02 4|
0 0 5 X|1X|2X‘3X’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A={1,2,3}, B ={3,4,5}, C = {6,7}, 4, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

@ 6 6 6 o

1

N ©O O O

2

O O W N

3

O O O N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
1 3
0 s s L
005—><|1X|2X|3x’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A={1,2,3}, B=1{3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,)=4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

@ 6 6 6 o

1

N ©O O O

2

O O W N

3

O O O N

4

o O & W

5

o W o o

6 7 8

1 2 3 4
b3 R
02 4|
0 0 s X|1X|2X|3X|4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A=1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,)=4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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(RLRRNNANY]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O o N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
b3 o
02 4|
B X|1X|2X‘3X’4
0 0 5

5
|

X5

6 7 8
A

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,)=4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRNNANY]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

@ 6 6 6 o

1

N ©O O O

2

O O W N

3

o O o N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
b3 I
02 4|
0 0 s X|1X|2X‘3X’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, ={1}, B, ={5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,)=4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

@ 6 6 6 o

1

N ©O O O

2

O O W N

3

o O o N

4

o O b~ W

5

o W o o

6 7 8

1 2 3 4
b3 o
02 4|
0 0 s X|1X|2X‘3X’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,)=4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

®© ©6 6 o ¢

1

N ©O O O

2

O O W N

3

O O O N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
1 3
0 s s L
005—><|1X|2X|3x’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B)=3,r(C)=2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,71(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

®© ©6 6 o ¢

1

N ©O O O

2

O O W N

3

O O O N

4

o O & W

5

o W o o

6 7 8

1 2 3 4
b3 R
02 4|
0 0 s X|1X|2X|3X|4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, n(B) =3, r(C)=2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,71(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

®© ©6 6 o ¢

1

N ©O O O

2

O O W N

3

O O o N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
b3 o
02 4|
B X|1X|2X‘3X’4
0 0 5

5
|

X5

6 7 8
A

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, 71(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678
1 2 3 4 5 6 7 8
1/0 2 2301 3 " B
2030400 24|
— X4 X X
300003005 X|1X|2X|3’4|5X|6X|7|8
a\2 000000 5

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, rn(BUC) =

r(AUA,) =3, r(BUB,) =3, 71(AUB,) =4, r(BUA,) =
r(AuB)=4,r(ANB)=1<r(C)=2.

®© 6 6 o ¢
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

®© 6 6 o ¢

1

N ©O O O

2

O O W N

3

O O O N

4

o O & W

5

o W o o

6 7 8

1 2 3 4
b3 R
02 4|
B X|1X|2X|3X|4
0 0 5

5
|

X5

6 7 8
]

X6 X7 X8

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
rAUC) =3, n(BUC) =3,

r(AUA,) =3, r(BUB,)=3,71(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
1 3
0 s s L
005—><|1X|2X|3x’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, "(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O & W

5

o W o o

6 7 8

1 2 3 4
b3 R
02 4|
0 0 s X|1X|2X|3X|4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, rn(BUB,)=3, "(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O b~ W

5

o W o o

6 7 8

1 2 3 4
1 3
0 s s L
005—><|1X|2X|3x’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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(RLRRNNANY]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O & W

5

o W o o

6 7 8

1 2 3 4
1 3
0 s s IR
005—><|1X|2X|3X|4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AuB)=4,r(ANB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O & W

5

o W o o

6 7 8

1 2 3 4
1 3

I
02 4|
0 0 s X|1X|2X|3X|4
0 0 5

5
|

X5

6 7 8
.

X6 X7 Xg

Let A={1,2,3}, B={3,4,5}, C = {6,7}, 4, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC)=3,r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB) =4, r(ANnB)=1<r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4
b3 RN
02 4|
0 0 s X|1X|2X|3X’4
0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C = {6,7}, 4, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC)=3,r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB) =4, r(ANnB)=1 <r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N ©O O O

2

O O W N

3

O O o N

4

o O b~ W

5

0
0
3
0

6 7 8

1 2 3 4 5
Lo L
02 4|
00 5 X|1X|2X‘3X’4X|5
0 0 5

6 7 8
A

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C = {6,7}, 4, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA
r(AUB)=4,r(ANB)=1 <r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1/0 2 2 3 0 1 3
2losoaooaal (DD T LT
300003005 |78 e
4\2 0 0 0 0 0 0 5 | | | | | | | |

o let A={1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5},

@ Then r(4) =3, r(B) =3, r(C) = 2.

o r(AUC)=3, r(BUC)=3.

e r(AUA,) =3, r(BUB)—3,7“(AUBT):4,T(BUAT):

o

)
r(AUB) =4, r(ANB)=1 <r(C)=2.
6 = r(4) —i—r(B) =r(AUB)+r(C)>r(AUB)+r(ANB) =
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Rank function of a matrix

@ Let A, B C V be two subsets of column indices.
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Matrix Rank

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.
@ The rank of the two sets unioned together AU B is no more than the
sum of the two individual ranks.
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Matrix Rank

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.
@ The rank of the two sets unioned together AU B is no more than the

sum of the two individual ranks.
@ In a Venn diagram, let area correspond to dimensions spanned by

vectors indexed by a set. Hence, 7(A) can be viewed as an area.

F43/62 (pg.140/211)
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Matrix Rank
INRE RRNANT

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, 7(A) can be viewed as an area.

r(A) + r(B) >  r(AUB)

arity - Lecture 3 - Oct 7th, 2020 F43/62 (pg.141/211)
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Matrix Rank
INRE RRNANT

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, 7(A) can be viewed as an area.

r(A) + r(B) >  r(AUB)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in r(A) 4+ r(B), so the inequality will be strict.

arity - Lecture 3 - Oct 7th, 2020 F43/62 (pg.142/211)
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Matrix Rank

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together AU B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, 7(A) can be viewed as an area.

r(A) + r(B) >  r(AUB)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in 7(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A,B C V' is
called subadditive.

F43/62 (pg.143/211)
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Matrix Rank

Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.
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Matrix Rank

Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.
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Matrix Rank

Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.

@ Let A, index vectors spanning dimensions spanned by A but not B.
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Matrix Rank

Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.

@ Let A, index vectors spanning dimensions spanned by A but not B.

@ Let B, index vectors spanning dimensions spanned by B but not A.
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Matrix Rank

Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.

Let A, index vectors spanning dimensions spanned by A but not B.

Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(A,)
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Matrix Rank

Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(Ay)

Similarly, 7(B) = r(C) + r(B,).
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Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(Ay)

Similarly, r(B) = r(C) + r(B,).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =1r(Ay) +2r(C) + r(B,). (3.51)
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Rank functions of a matrix

@ Vector sets A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common indices.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(Ay)

Similarly, r(B) = r(C) + r(B,).

Then r(A) 4+ r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =r(A;) +2r(C) 4+ r(B,). (3.51)
@ But (A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(4,)+r(C)+r(B) (3.52)
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Rank functions of a matrix
@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) =r(A;) +2r(C) +
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B)=r(A;) +2r(C)+r(B,)

e But r(A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,) +r(C)+ r(B,)




M
INERRE NRNT

Rank functions of a matrix
@ Then r(A) 4 r(B) counts the dimensions spanned by C twice, i.e.,

r(A)+r(B)=r(A;) +2r(C)+r(B,)

e But r(A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,) +r(C)+ r(B,)

@ Thus, we have subadditivity: 7(A) 4+ r(B) > r(AU B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
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Matrix Rank
INERRNY RNT

Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
@ Common span (blue) is “more” (no less) than span of common index
(magenta).
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Matrix Rank
INERRNY RNT

Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
@ Common span (blue) is “more” (no less) than span of common index
(magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

N N T = " HEN
r(A)+r(B) 2 r(AUB) -+ r(AﬂB)

+2r

C)+r(B) AﬂB

@ @




Matrix Rank
IRERRRRRN N

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ Foreach X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

F48/62 (pg.160/211)
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

@ Then, defining f : 2° — R as follows,

F(X) = r(Usex Xs) (3.53)

we have that f is submodular, and is known to be a polymatroid rank
function.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

@ Then, defining f : 2% — R, as follows,

J(X) = r(Usex Xs) (3.53)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are submodular,
normalized f({)) = 0, and monotone non-decreasing (f(A4) < f(B)
whenever A C B).
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

For each X C S, let f(X) denote the dimensionality of the linear

subspace spanned by the subspaces in X.

We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

Then, defining f : 25 — R, as follows,

J(X) = r(Usex Xs) (3.53)

we have that f is submodular, and is known to be a polymatroid rank
function.

In general (as we will see) polymatroid rank functions are submodular,
normalized f()) = 0, and monotone non-decreasing (f(A) < f(B)
whenever A C B).

We use the term non-decreasing rather than increasing, the latter of
which is strict (also so that a constant function isn't “increasing”).
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Matrix Rank

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S5) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the graph induced by edges S.
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Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the graph induced by edges S.

e Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S ={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of .5).
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Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the graph induced by edges S.

e Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. §={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of .5).

@ Then 7(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F49/62 (pg.167/211)



Examples and Properties

Summing Submodular Functions

Given E, let fi, f> : 2 — R be two submodular functions. Then
f:2F 5 Rwith f(A) = fi(A) + f2(A) (3.58)

is submodular.
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Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (3.58)

is submodular. This follows easily since

f(A) + f(B) = fi(A) + f2(A) + f1(B) + f2(B) (3.59)
> L(AUB) + f2(AUB) + fi(AN B) + (AN B) (3.60)
— f(AUB) + f(AN B). (3.61)

l.e., it holds for each component of f in each term in the inequality.
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Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (3.58)

is submodular.This follows easily since

f(A)+ f(B) = fi(A) + f2(A) + f1(B) + f2(B) (3.59)
> fi(AUB) + fa(AUB) + fi(AN B) + f2(AN B) (3.60)
= f(AuB)+ f(ANB). (3.61)

l.e., it holds for each component of f in each term in the inequality. In fact,
any conic combination (i.e., non-negative linear combination) of submodular
functions is submodular, as in f(A) = a1 fi1(A) + aafa(A) for ay, ay > 0.
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Summing Submodular and Modular Functions

Given E, let f1,m : 2P — R be a submodular and a modular function.
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Ex:
(L ERRRRRNRNN

Summing Submodular and Modular Functions

Given FE, let fi,m : 2P — R be a submodular and a modular function. Then
f:28 5 R with f(A) = f1(A) — m(A) (3.62)

is submodular (as is f(A) = f1(A) + m(A)).
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Summing Submodular and Modular Functions

Given E, let fi,m : 2P — R be a submodular and a modular function. Then
f:2F 5 Rwith f(A) = fi(A) —m(A) (3.62)

is submodular (as is f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A) = m(A) + f1(B) — m(B) (3.63)
> f1(AUB) —m(AUB)+ fi(AnB) —m(AN B) (3.64)
= f(AUB)+ f(AN B). (3.65)
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Summing Submodular and Modular Functions

Given E, let fi,m : 2P — R be a submodular and a modular function. Then
f:2F 5 Rwith f(A) = fi(A) —m(A) (3.62)

is submodular (as is f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A) —m(A) + f1(B) — m(B) (3.63)
> fi(AUB) —m(AUB) + fi(ANB) —m(AN B) (3.64)
= f(AuB)+ f(ANB). (3.65)

That is, the modular component with
m(A) +m(B) = m(AU B) + m(AN B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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Examples and Properties
(RLNRRNRNRNN

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

2P 5 Rwith f/(A) 2 f(ANS) (3.66)

is submodular.
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Examples and Properties
(RLNRRNRNRNN

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (3.66)
is submodular.
Proof.

D |
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Examples and Properties
(RLNRRNRNRNN

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (3.66)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+v)NS)—f(ANS)> f(B+v)NS)—f(BNS) (3.67)
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Examples and Properties
(RLNRRNRNRNN

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (3.66)
is submodular.
Proof.
Given A C B C E'\ v, consider

f(A+v)NS)—f(ANS)> f(B+v)NS)—f(BNS) (3.67)

If v ¢ S, then both differences on each size are zero.
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Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (3.66)
is submodular.

Proof.
Given A C B C E'\ v, consider

f(A+v)NS)—f(ANS)> f(B+v)NS)—f(BNS) (3.67)

If v ¢ S, then both differences on each size are zero. If v € S, then we can
consider this

f(A +v) = f(A) > f(B"+v) - f(B) (3.68)

with A’ = ANS and B’ =BNS. Since A’ C B’, this holds due to
submodularity of f. OJ
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Examples and Properties

Summing Restricted Submodular Functions

Given V, let fi, fo : 2 — R be two submodular functions and let
51,59 C V be two arbitrary fixed sets. Then

f:2V = Rwith f(A) = fi(ANSL) + fo(AN Sy) (3.69)

is submodular. This follows easily from the preceding two results.

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F54/62 (pg.180/211)



Examples and Properties
(L RRNRNRNN

Summing Restricted Submodular Functions

Given V, let f1, fo : 2V — R be two submodular functions and let
51,52 C V be two arbitrary fixed sets. Then

f: 2V - R with f(A) = fi(ANS1) + f2(ANSy) (3.69)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C1,C4,...,Cy} be a set of subsets of V', and for each
C €C, let fc : 2V — R be a submodular function. Then

f:2V 5 Rwith f(A) =) fo(AnC) (3.70)
ceC

is submodular.
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Ex:
(L RRNRNRNN

Summing Restricted Submodular Functions

Given V, let f1, fo : 2V — R be two submodular functions and let
51,52 C V be two arbitrary fixed sets. Then

f: 2V - R with f(A) = fi(ANS1) + f2(ANSy) (3.69)

is submodular. This follows easily from the preceding two results.

Given V, let C = {C1,Cy,...,Ck} be a set of subsets of V, and for each
C €C, let fc : 2V — R be a submodular function. Then

f:2V 5 Rwith f(A) =) fo(ANC) (3.70)
ceC

is submodular. This property is critical for image processing and graphical
models. For example, let C be all pairs of the form {{u,v} : u,v € V'}, or
let it be all pairs corresponding to the edges of some undirected graphical

model.
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Exampl
[RRRLENE

Max - normalized

Given V, let ¢ € RY be a given fixed vector. Then f:2"V — R, where
f(A) = max c; (3.71)

is submodular and normalized (we take f(0)) = 0).

Consider
maxc; + maxc; > max ¢j + max ¢; (3.72)
jeA jeB jeAUB JjEANB

which follows since we have that

: ) = : 3.73
max(r;gleaj( o i ) e @ (3.73)
and
min(I}le%i( cj, E{leaéc cj) > jgjlélach c; (3.74)
L]
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Exampl
[RRRRL NN

Given V, let c € RY be a given fixed vector (not necessarily non-negative).
Then f : 2V 5 R, where

f(A) = maxe; (3.75)

is submodular, where we take f(()) < min;c; (so the function need not be
normalized).

The proof is identical to the normalized case. Ol
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Examples and Properties
(RERRRE ANRNN

Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

o Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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@ Core problem in operations research, early motivation for submodularity.

o Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

o Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

facility locations
@ We can model this with a weighted

bipartite graph G = (F, S, E, ¢) i
where F' is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possibility pairs, and ¢: E — R is
the benefit of a given pair.

facility 4.

o Facility location function has form:

A =3 ey (379 -

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020

Benefit of having
site 2 serviced by

sites
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

@ Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.
e S=1{1,...,s} is a set of sites (e.g., cities, clients) needing service.
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢j; be the “benefit” or “value” (e.g., 1/¢;; is the cost) of servicing
site 7 with facility location j.
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢j; be the “benefit” or “value” (e.g., 1/¢;; is the cost) of servicing
site ¢ with facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location ;.

F58/62 (pg.191/211)
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢j; be the “benefit” or “value” (e.g., 1/¢;; is the cost) of servicing
site ¢ with facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

S ={1,...,s} is a set of sites (e.g., cities, clients) needing service.

Let ¢;; be the "benefit” or “value” (e.g., 1/c;; is the cost) of servicing
site ¢ with facility location j.

Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F are to be constructed.
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Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

Let F ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

S ={1,...,s} is a set of sites (e.g., cities, clients) needing service.
Let ¢;; be the "benefit” or “value” (e.g., 1/c;; is the cost) of servicing
site ¢ with facility location j.

Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F are to be constructed.

We can define the (uncapacitated) facility location function

f(A) = Z mj + Z 1}?} Cij- (3.77)

jeEA €S

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F58/62 (pg.194/211)



Examples and

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢j; be the “benefit” or “value” (e.g., 1/¢;; is the cost) of servicing
site ¢ with facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

o Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F are to be constructed.

@ We can define the (uncapacitated) facility location function

FA) =Y my Y maxey (377)
jEA ies 7€
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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Facility Location

Given V, E, let ¢ € RV*E be a given |V| x |E| matrix. Then

f:28 5 R, where f(A E max cij (3.78)
JEA
eV

is submodular.

We can write f(A) as f( ) = > icv fi(A) where f;(A) = max;c cj; is
submodular (max of a it" row vector), so f can be written as a sum of
submodular functions. O

Thus, the facility location function (which only adds a modular function to
the above) is submodular.
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Examples and Properties

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let V = {1,2,...,n} = [n]
be an index set, and for A C V, let X4 be the (square) submatrix of
obtained by including only entries in the rows/columns given by A.
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Examples and Properties

Log Determinant

o Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let ¥4 be the (square) submatrix of 3
obtained by including only entries in the rows/columns given by A.

@ We have that:

f(A) =logdet(X,) is submodular. (3.79)

F60/62 (pg.198/211)
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Examples and Properties

Log Determinant

o Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let ¥4 be the (square) submatrix of 3
obtained by including only entries in the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.79)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).
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Ex:
(RERRRNANE NN

Log Determinant

o Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let X4 be the (square) submatrix of
obtained by including only entries in the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.79)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.
Suppose X € R" is multivariate Gaussian random variable, that is

o (5w T e-n)  (E80)

2

rEPITr) = —6€
p(x) Bi5>] p

F60/62 (pg.200/211)
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Examples and Properties
(RERRRNRNEY N

Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

h(X) =log+/|2meX| = log / (2me)" | X| (3.81)

and in particular, for a variable subset A,

F(A) = h(X ) = log y/ (2me) 4|2 4 (3.82)

Entropy is submodular (further conditioning reduces entropy), and moreover

F(4) = h(Xa) = m(4) + 3 log|Sl (3.83)

where m(A) is a modular function. O

Note: still submodular in the semi-definite case as well.
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Examples and Properties

Summary: Properties so far

e SCCM is submodular f(A) = >, cpy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.
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Examples an

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a

non-negative modular and ¢, is concave.
@ max is submodular f(A) = maxjea c;j, as is facility location

f(A) - ZueU maxegcA Sa,u-
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Examples an

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a

non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
f(A) =3 e maXaea Sa,u-

@ Log determinant f(A) = log det(X 4) submodular for p.d. 3.
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Examples an

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a

non-negative modular and ¢, is concave.
@ max is submodular f(A) = max;c4 ¢j, as is facility location
f(A) =3 e maXaea Sa,u-
o Log determinant f(A) = logdet(X 4) submodular for p.d. X.
@ Matrix rank function is submodular.
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Examples and Properties

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
F(A) = ¥ ey m3Xac 4 S0

o Log determinant f(A) = logdet(X 4) submodular for p.d. X.

@ Matrix rank function is submodular.

@ Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.
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Examples an

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
F(A) = 3 ey MaXaca Sa.

o Log determinant f(A) = logdet(X 4) submodular for p.d. X.

@ Matrix rank function is submodular.

e Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.

@ Number of connected components in induced graph, and interior edge
function, is supermodular.

EES563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020 F62/62 (pg.207/211)



Examples and Properties

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
F(A) = 3 ey MaXaca Sa.

o Log determinant f(A) = logdet(X 4) submodular for p.d. X.

@ Matrix rank function is submodular.

e Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.

@ Number of connected components in induced graph, and interior edge
function, is supermodular.

@ Submodular plus modular is submodular, f(A) = f'(A) + m(A).
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Examples and Properties

Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
F(A) = 3 ey MaXaca Sa.

o Log determinant f(A) = logdet(X 4) submodular for p.d. X.

@ Matrix rank function is submodular.

e Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.

@ Number of connected components in induced graph, and interior edge
function, is supermodular.

e Submodular plus modular is submodular, f(A) = f'(A) + m(A).

e Complementation: f'(A) = f(V \ A) is submodular if f is submodular
and m is modular. (supermodular) if f is submodular (supermodular).
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Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
F(A) = 3 ey MaXaca Sa.

o Log determinant f(A) = logdet(X 4) submodular for p.d. X.

@ Matrix rank function is submodular.

e Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.

@ Number of connected components in induced graph, and interior edge
function, is supermodular.

e Submodular plus modular is submodular, f(A) = f'(A) + m(A).

e Complementation: f/(A) = f(V \ A) is submodular if f is submodular
and m is modular. (supermodular) if f is submodular (supermodular).

e Summing: if o > 0 and f; : 2¥ — R is submodular, then so is doiifi
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Summary: Properties so far

o SCCM is submodular f(A) =", ciy du(mu(A)) where m,, is a
non-negative modular and ¢, is concave.

@ max is submodular f(A) = max;c4 ¢j, as is facility location
F(A) = ¥ ey m3Xac 4 S0

o Log determinant f(A) = logdet(X 4) submodular for p.d. X.

@ Matrix rank function is submodular.

e Graph cut, set cover, and incidence functions, and quadratics with
non-positive off-diagonals, are all submodular.

@ Number of connected components in induced graph, and interior edge
function, is supermodular.

e Submodular plus modular is submodular, f(A) = f'(A) + m(A).

e Complementation: f/(A) = f(V \ A) is submodular if f is submodular
and m is modular. (supermodular) if f is submodular (supermodular).

e Summing: if o > 0 and f; : 2¥ — R is submodular, then so is >oiaifi
@ Restrictions preserve submodularity: f/(A) = f(ANS)
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