Submodular Functions, Optimization, and Applications to Machine Learning
— Fall Quarter, Lecture 3 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Oct 7th, 2020

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \]

Clockwise from top left:
- László Lovász
- Jack Edmonds
- Satoru Fujishige
- George Nemhauser
- Laurence Wolsey
- András Frank
- Lloyd Shapley
- H. Narayanan
- Robert Bixby
- William Cunningham
- William Tutte
- Richard Rado
- Alexander Schrijver
- Garrett Birkhoff
- Hassler Whitney
- Richard Dedekind

f (A) + f (B)
 f (A ∪ B) + f (A ∩ B)
 f (A) + 2 f (C) + f (B)
 f (A) + f (C) + f (B)
 ≥
 ≥
 = f (A ∩ B)
Read chapter 1 from Fujishige’s book.
Class Road Map - EE563

L1(9/30): Motivation, Applications, Definitions, Properties

L2(10/5): Sums concave(modular), uses (diversity/costs, feature selection), information theory

L3(10/7): Monge, More Definitions, Graph and Combinatorial Examples, Matrix Rank, Properties

L4(10/12):
L5(10/14):
L6(10/19):
L7(10/21):
L8(10/26):
L9(10/28):
L10(11/2):

L11(11/4):
L12(11/9):
L–(11/11): Veterans Day, Holiday
L13(11/16):
L14(11/18):
L15(11/23):
L16(11/25):
L17(11/30):
L18(12/2):
L19(12/7):
L20(12/9): maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
Two Equivalent **Submodular** Definitions

Definition 3.2.1 (submodular concave)

A function $f : 2^V \to \mathbb{R}$ is **submodular** if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \quad (3.7)$$

Definition 3.2.2 (diminishing returns)

A function $f : 2^V \to \mathbb{R}$ is **submodular** if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B) \quad (3.8)$$

- The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the context in which v is considered grows from A to B.
- Gain notation: Define $f(v|A) \triangleq f(A + v) - f(A)$. Then function f is submodular if $f(v|A) \geq f(v|B)$ for all $A \subseteq B \subseteq V \setminus \{v\}, v \in V$.

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020
F4/62 (pg.4/211)
Two Equivalent **Supermodular** Definitions

Definition 3.2.1 (supermodular)

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \leq f(A \cup B) + f(A \cap B)
\]

(3.7)

Definition 3.2.2 (supermodular (improving returns))

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A \subseteq B \subset V \), and \(v \in V \setminus B \), we have that:

\[
f(A \cup \{v\}) - f(A) \leq f(B \cup \{v\}) - f(B)
\]

(3.8)

- Incremental “value”, “gain”, or “cost” of \(v \) increases (improves) as the context in which \(v \) is considered grows from \(A \) to \(B \).
- A function \(f \) is submodular iff \(-f\) is supermodular.
- If \(f \) both submodular and supermodular, then \(f \) is said to be **modular**, and \(f(A) = c + \sum_{a \in A} \overline{f}(a) \) for some \(\overline{f} \) (often \(c = 0 \)).
Monge Matrices

$m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

$$c_{ij} + c_{rs} \leq c_{is} + c_{rj}$$

(3.1)

for all $1 \leq i < r \leq m$ and $1 \leq j < s \leq n$.
Monge Matrices

- $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

$$c_{ij} + c_{rs} \leq c_{is} + c_{rj} \quad (3.1)$$

for all $1 \leq i < r \leq m$ and $1 \leq j < s \leq n$.

- Lined up indices

$$i < r \quad (3.2)$$

$$j < s \quad (3.3)$$
Monge Matrices

- $m \times n$ matrices $C = [c_{ij}]_{i,j}$ are called Monge matrices if they satisfy the Monge property, namely:

\[
c_{ij} + c_{rs} \leq c_{is} + c_{rj} \tag{3.1}
\]

for all $1 \leq i < r \leq m$ and $1 \leq j < s \leq n$.

- Lined up indices

\[
i < r \tag{3.2}
\]
\[
j < s \tag{3.3}
\]

- Equivalently, for all $1 \leq i, r \leq m$, $1 \leq s, j \leq n$,

\[
c_{\min(i,r),\min(s,j)} + c_{\max(i,r),\max(s,j)} \leq c_{is} + c_{rj} \tag{3.4}
\]
Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$th entry, $1 \leq i \leq m$, $1 \leq j \leq n$:

\[c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell} \]

(3.5)
Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$th entry, $1 \leq i \leq m$, $1 \leq j \leq n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell} \quad (3.5)$$

Consider four elements of the $m \times n$ matrix:

\[\begin{array}{ccc}
\text{m} & \text{i} & \text{n} \\
\text{r} & c_{ij} & c_{is} \\
\text{j} & c_{rj} & c_{rs} \\
\text{s} & & \\
\end{array}\]
Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$th entry, $1 \leq i \leq m$, $1 \leq j \leq n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell} \quad (3.5)$$

Consider four elements of the $m \times n$ matrix:

$$c_{ij} = A + B, \quad c_{rs} = B + D, \quad c_{rj} = B, \quad c_{is} = A + B + C + D.$$
Monge Matrices Visuals

- Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$th entry, $1 \leq i \leq m$, $1 \leq j \leq n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell} \quad \text{(3.5)}$$

- Consider four elements of the $m \times n$ matrix:

$$c_{ij} = A + B, \quad c_{rs} = B + D, \quad c_{rj} = B, \quad c_{is} = A + B + C + D.$$
Consider a non-negative matrix $D = (d_{i,j})$ of order $m \times n$ and form matrix $C = (c_{i,j})$ with $c_{i,j}$th entry, $1 \leq i \leq m$, $1 \leq j \leq n$:

$$c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}$$ \hfill (3.5)

Consider four elements of the $m \times n$ matrix:

$$c_{ij} = A + B, \quad c_{rs} = B + D, \quad c_{rj} = B, \quad c_{is} = A + B + C + D.$$
Consider a non-negative matrix \(D = (d_{i,j}) \) of order \(m \times n \) and form matrix \(C = (c_{i,j}) \) with \(c_{i,j} \)th entry, \(1 \leq i \leq m, 1 \leq j \leq n \):

\[
c_{ij} = \sum_{k=i}^{m} \sum_{\ell=1}^{j} d_{k,\ell}
\]

(3.5)

Consider four elements of the \(m \times n \) matrix:

\[
c_{ij} = A + B, \quad c_{rs} = B + D, \quad c_{rj} = B, \quad c_{is} = A + B + C + D.
\]

Then, \(c_{ij} + c_{rs} < c_{is} + c_{rj} \).
Monge Matrices, where useful

- Useful for speeding up transportation, dynamic programming, flow, search, lot-sizing and many other problems.
Monge Matrices, where useful

- Useful for speeding up transportation, dynamic programming, flow, search, lot-sizing and many other problems.

- Example, Hitchcock transportation problem: Given $m \times n$ cost matrix $C = [c_{ij}]_{ij}$, a non-negative supply vector $a \in \mathbb{R}^m_+$, a non-negative demand vector $b \in \mathbb{R}^n_+$ with $\sum_{i=1}^m a(i) = \sum_{j=1}^n b_j$, we wish to optimally solve the following linear program:

$$\begin{align*}
\text{minimize} & \quad \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\
\text{subject to} & \quad \sum_{i=1}^m x_{ij} = b_j \quad \forall j = 1, \ldots, n \quad (3.7) \\
& \quad \sum_{j=1}^n x_{ij} = a_i \quad \forall i = 1, \ldots, m \quad (3.8) \\
& \quad x_{i,j} \geq 0 \quad \forall i, j \quad (3.9)
\end{align*}$$
Solving the linear program can be done easily and optimally using the “North-West Corner Rule” (a 2D greedy-like approach starting at top-left and moving down or right) in only $O(m + n)$ if the matrix C is Monge!
Monge Matrices and Convex Polygons

- Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).
Monge Matrices and Convex Polygons

Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).
Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances $c_{i,j}$ satisfy Monge property (or quadrangle inequality).
Monge Matrices and Convex Polygons

Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).

\[d(q_3, p_2) + d(q_4, p_3) \leq d(q_4, p_2) + d(q_3, p_3) \]

(3.10)

Transport unit quantities from locations q_3 and q_4 to locations p_2 and p_3; to minimize total distance traveled, routes from q_3 and q_4 must not intersect.
A submodular function has the form: \(f : 2^V \rightarrow \mathbb{R} \) which can be seen as \(f : \{0, 1\}^V \rightarrow \mathbb{R} \).
A submodular function has the form: $f : 2^V \rightarrow \mathbb{R}$ which can be seen as $f : \{0, 1\}^V \rightarrow \mathbb{R}$.

We can generalize this to $f : \{0, 1, \ldots, K\}^V \rightarrow \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.

We may define submodularity as: for all $x, y \in \{0, 1, \ldots, K\}^V$, we have

$$f(x) + f(y) \geq f(x \lor y) + f(x \land y) \tag{3.11}$$

$x \lor y$ is the (join) element-wise max of each element, that is

$$(x \lor y)(v) = \max(x(v), y(v))$$

for $v \in V$.

$x \land y$ is the (meet) element-wise min of each element, that is,

$$(x \land y)(v) = \min(x(v), y(v))$$

for $v \in V$.

With $K = 1$, then this is the standard definition of submodularity.

With $|V| = 2$ and $K + 1$ the side-dimension of the matrix, we get a Monge property (on square matrices).

Non square: $f : \{0, 1, \ldots, K_1\} \times \{0, 1, \ldots, K_2\} \rightarrow \mathbb{R}$.

Monge Matrices and Submodularity
A submodular function has the form: $f : 2^V \rightarrow \mathbb{R}$ which can be seen as $f : \{0, 1\}^V \rightarrow \mathbb{R}$.

We can generalize this to $f : \{0, 1, \ldots, K\}^V \rightarrow \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.

We may define submodularity as: for all $x, y \in \{0, 1, \ldots, K\}^V$, we have

$$f(x) + f(y) \geq f(x \vee y) + f(x \wedge y) \quad (3.11)$$
A submodular function has the form: $f : 2^V \rightarrow \mathbb{R}$ which can be seen as $f : \{0, 1\}^V \rightarrow \mathbb{R}$.

We can generalize this to $f : \{0, 1, \ldots, K\}^V \rightarrow \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.

We may define submodularity as: for all $x, y \in \{0, 1, \ldots, K\}^V$, we have

$$f(x) + f(y) \geq f(x \lor y) + f(x \land y) \quad (3.11)$$

$x \lor y$ is the (join) element-wise max of each element, that is $(x \lor y)(v) = \max(x(v), y(v))$ for $v \in V$.

$x \land y$ is the (meet) element-wise min of each element, that is, $(x \land y)(v) = \min(x(v), y(v))$ for $v \in V$.

With $K = 1$, then this is the standard definition of submodularity.

With $|V| = 2$ and $K+1$ the side-dimension of the matrix, we get a Monge property (on square matrices).

Non square: $f : \{0, 1, \ldots, K_1\} \times \{0, 1, \ldots, K_2\} \rightarrow \mathbb{R}$.
Monge Matrices and Submodularity

- A submodular function has the form: \(f : 2^V \rightarrow \mathbb{R} \) which can be seen as \(f : \{0, 1\}^V \rightarrow \mathbb{R} \).

- We can generalize this to \(f : \{0, 1, \ldots, K\}^V \rightarrow \mathbb{R} \) for some constant \(K \in \mathbb{Z}_+ \).

- We may define submodularity as: for all \(x, y \in \{0, 1, \ldots, K\}^V \), we have

 \[
 f(x) + f(y) \geq f(x \lor y) + f(x \land y)
 \]

 \((3.11) \)

- \(x \lor y \) is the (join) element-wise max of each element, that is

 \((x \lor y)(v) = \max(x(v), y(v)) \) for \(v \in V \).

- \(x \land y \) is the (meet) element-wise min of each element, that is,

 \((x \land y)(v) = \min(x(v), y(v)) \) for \(v \in V \).
Monge Matrices and Submodularity

- A submodular function has the form: $f : 2^V \rightarrow \mathbb{R}$ which can be seen as $f : \{0, 1\}^V \rightarrow \mathbb{R}$
- We can generalize this to $f : \{0, 1, \ldots, K\}^V \rightarrow \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \ldots, K\}^V$, we have
 \[
 f(x) + f(y) \geq f(x \lor y) + f(x \land y) \quad (3.11)
 \]
 - $x \lor y$ is the (join) element-wise max of each element, that is $(x \lor y)(v) = \max(x(v), y(v))$ for $v \in V$.
 - $x \land y$ is the (meet) element-wise min of each element, that is $(x \land y)(v) = \min(x(v), y(v))$ for $v \in V$.
 - With $K = 1$, then this is the standard definition of submodularity.
Monge Matrices and Submodularity

- A submodular function has the form: $f : 2^V \to \mathbb{R}$ which can be seen as $f : \{0, 1\}^V \to \mathbb{R}$.
- We can generalize this to $f : \{0, 1, \ldots, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, 1, \ldots, K\}^V$, we have
 \[
 f(x) + f(y) \geq f(x \lor y) + f(x \land y)
 \] (3.11)
- $x \lor y$ is the (join) element-wise max of each element, that is $(x \lor y)(v) = \max(x(v), y(v))$ for $v \in V$.
- $x \land y$ is the (meet) element-wise min of each element, that is $(x \land y)(v) = \min(x(v), y(v))$ for $v \in V$.
- With $K = 1$, then this is the standard definition of submodularity.
- With $|V| = 2$, and $K + 1$ the side-dimension of the matrix, we get a Monge property (on square matrices).
Monge Matrices and Submodularity

- A submodular function has the form: \(f : 2^V \rightarrow \mathbb{R} \) which can be seen as \(f : \{0, 1\}^V \rightarrow \mathbb{R} \).
- We can generalize this to \(f : \{0, 1, \ldots, K\}^V \rightarrow \mathbb{R} \) for some constant \(K \in \mathbb{Z}_+ \).
- We may define submodularity as: for all \(x, y \in \{0, 1, \ldots, K\}^V \), we have
 \[
 f(x) + f(y) \geq f(x \vee y) + f(x \wedge y) \tag{3.11}
 \]
 \(x \vee y \) is the (join) element-wise max of each element, that is
 \[
 (x \vee y)(v) = \max(x(v), y(v)) \text{ for } v \in V.
 \]
 \(x \wedge y \) is the (meet) element-wise min of each element, that is,
 \[
 (x \wedge y)(v) = \min(x(v), y(v)) \text{ for } v \in V.
 \]
- With \(K = 1 \), then this is the standard definition of submodularity.
- With \(|V| = 2 \), and \(K + 1 \) the side-dimension of the matrix, we get a Monge property (on square matrices).
- Non square: \(f : \{0, 1, \ldots, K_1\} \times \{0, 1, \ldots, K_2\} \rightarrow \mathbb{R} \).
Two Equivalent Submodular Definitions

Definition 3.4.1 (submodular concave)

A function $f : 2^V \rightarrow \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$$ \hfill (3.7)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.4.2 (diminishing returns)

A function $f : 2^V \rightarrow \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B)$$ \hfill (3.8)

- The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the context in which v is considered grows from A to B.
- Gain notation: Define $f(v|A) \triangleq f(A + v) - f(A)$. Then function f is submodular if $f(v|A) \geq f(v|B)$ for all $A \subseteq B \subseteq V \setminus \{v\}$, $v \in V$.

The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.

Example: with $|V| = n = 2$, this is easy:
The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.

Example: with $|V| = n = 2$, this is easy:

With $|V| = n = 3$, a bit harder.
The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.

Example: with $|V| = n = 2$, this is easy:

With $|V| = n = 3$, a bit harder.

How many inequalities of form

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$$
The Submodular Square, and Hypercube Vertices

We can test submodularity via values on vertices of hypercube.

Example: with $|V| = n = 2$, this is easy:

With $|V| = n = 3$, a bit harder.

How many inequalities of form $f(A) + f(B) \geq f(A \cup B) + f(A \cap B)$?
Definition 3.4.1 (subadditive)

A function $f : 2^V \rightarrow \mathbb{R}$ is subadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \geq f(A \cup B)$$ \hspace{1cm} (3.12)

This means that the “whole” is less than the sum of the parts.
Two Equivalent Supermodular Definitions

Definition 3.4.1 (supermodular)

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A, B \subseteq V \), we have that:

\[
 f(A) + f(B) \leq f(A \cup B) + f(A \cap B)
\]

(3.7)

Definition 3.4.2 (supermodular (improving returns))

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A \subseteq B \subset V \), and \(v \in V \setminus B \), we have that:

\[
 f(A \cup \{v\}) - f(A) \leq f(B \cup \{v\}) - f(B)
\]

(3.8)

- Incremental “value”, “gain”, or “cost” of \(v \) increases (improves) as the context in which \(v \) is considered grows from \(A \) to \(B \).
- A function \(f \) is submodular iff \(-f\) is supermodular.
- If \(f \) both submodular and supermodular, then \(f \) is said to be **modular**, and
 \[
 f(A) = c + \sum_{a \in A} \bar{f}(a) \text{ for some } \bar{f} \text{ (often } c = 0).\]
Definition 3.4.2 (superadditive)

A function $f : 2^V \rightarrow \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \leq f(A \cup B) \quad (3.13)$$

- This means that the “whole” is greater than the sum of the parts.
Definition 3.4.2 (superadditive)

A function $f : 2^V \rightarrow \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \leq f(A \cup B) \quad (3.13)$$

- This means that the “whole” is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
Superadditive Definitions

Definition 3.4.2 (superadditive)

A function $f : 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \leq f(A \cup B) \quad (3.13)$$

- This means that the “whole” is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let $0 < k < |V|$, and consider $f : 2^V \to \mathbb{R}_+$ where:

$$f(A) = \begin{cases}
1 & \text{if } |A| \leq k \\
0 & \text{else}
\end{cases} \quad (3.14)$$
Definition 3.4.2 (superadditive)

A function \(f : 2^V \rightarrow \mathbb{R} \) is superadditive if for any \(A, B \subseteq V \), we have that:

\[
 f(A) + f(B) \leq f(A \cup B) \tag{3.13}
\]

- This means that the “whole” is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let \(0 < k < |V| \), and consider \(f : 2^V \rightarrow \mathbb{R}_+ \) where:

\[
 f(A) = \begin{cases}
 1 & \text{if } |A| \leq k \\
 0 & \text{else}
\end{cases} \tag{3.14}
\]

- This function is subadditive but not submodular.
Definition 3.4.3 (modular)

A function that is both submodular and supermodular is called **modular**

If \(f \) is a modular function, then for any \(A, B \subseteq V \), we have

\[
f(A) + f(B) = f(A \cap B) + f(A \cup B)
\]

(3.15)

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 3.4.4

If \(f \) is modular, it may be written as

\[
f(A) = f(\emptyset) + \sum_{a \in A} \left(f(\{a\}) - f(\emptyset) \right) = c + \sum_{a \in A} f'(a)
\]

(3.16)

which has only \(|V| + 1\) parameters.
Proof.

We inductively construct the value for $A = \{a_1, a_2, \ldots, a_k\}$.

For $k = 2$,

$$f(a_1) + f(a_2) = f(a_1, a_2) + f(\emptyset) \quad (3.17)$$

implies

$$f(a_1, a_2) = f(a_1) - f(\emptyset) + f(a_2) - f(\emptyset) + f(\emptyset) \quad (3.18)$$

then for $k = 3$,

$$f(a_1, a_2) + f(a_3) = f(a_1, a_2, a_3) + f(\emptyset) \quad (3.19)$$

implies

$$f(a_1, a_2, a_3) = f(a_1, a_2) - f(\emptyset) + f(a_3) - f(\emptyset) + f(\emptyset) \quad (3.20)$$

$$= f(\emptyset) + \sum_{i=1}^{3} (f(a_i) - f(\emptyset)) \quad (3.21)$$

and so on ...
Complement function

Given a function $f : 2^V \rightarrow \mathbb{R}$, we can find a complement function $\bar{f} : 2^V \rightarrow \mathbb{R}$ as $\bar{f}(A) = f(V \setminus A)$ for any A.

Proposition 3.4.5

\bar{f} is submodular iff f is submodular.

Proof.

\[
\bar{f}(A) + \bar{f}(B) \geq \bar{f}(A \cup B) + \bar{f}(A \cap B) \tag{3.22}
\]

follows from

\[
f(V \setminus A) + f(V \setminus B) \geq f(V \setminus (A \cup B)) + f(V \setminus (A \cap B)) \tag{3.23}
\]

which is true because $V \setminus (A \cup B) = (V \setminus A) \cap (V \setminus B)$ and $V \setminus (A \cap B) = (V \setminus A) \cup (V \setminus B)$ (De Morgan’s laws for sets).
Undirected Graphs

Let $G = (V, E)$ be a graph with vertices $V = V(G)$ and edges $E = E(G) \subseteq V \times V$.

\[S = \{a, b, c\} \]

\[\phi_G(S) = \{\{u, v\} \in E : u \in S, v \in V \cap S\} \]

\[= \{\{a, d\}, \{b, d\}, \{b, e\}, \{c, e\}, \{c, f\}\} \]
Undirected Graphs

- Let $G = (V, E)$ be a graph with vertices $V = V(G)$ and edges $E = E(G) \subseteq V \times V$.

- If G is undirected, define

 $$E(X, Y) = \{\{x, y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$$

 as the edges strictly between X and Y.

 (3.24)
Undirected Graphs

- Let $G = (V, E)$ be a graph with vertices $V = V(G)$ and edges $E = E(G) \subseteq V \times V$.
- If G is undirected, define

$$E(X, Y) = \{\{x, y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$$

as the edges strictly between X and Y.
- Nodes define cuts. Define the cut function $\delta(X) = E(X, V \setminus X)$, set of edges with exactly one vertex in X.

$G = (V, E) = \{(a,b,c) \phi G(S) = \{\{u, v\} \in E : u \in S, v \in V \cap S\}$

- $E = \{\{a,d\}, \{b,d\}, \{b,e\}, \{c,e\}, \{c,f\}\}$
Undirected Graphs

- Let $G = (V, E)$ be a graph with vertices $V = V(G)$ and edges $E = E(G) \subseteq V \times V$.
- If G is undirected, define
 \[
 E(X, Y) = \{\{x, y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\} \tag{3.24}
 \]
as the edges strictly between X and Y.
- Nodes define cuts. Define the cut function $\delta(X) = E(X, V \setminus X)$, set of edges with exactly one vertex in X.

$G = (V, E)$

$S = \{a, b, c\}$

$\delta_G(S) = \{\{u, v\} \in E : u \in S, v \in V \setminus S\} = \{\{a, d\}, \{b, d\}, \{b, e\}, \{c, e\}, \{c, f\}\}$
Directed graphs, and cuts and flows

- If G is directed, define

$$E^+(X, Y) \triangleq \{(x, y) \in E(G) : x \in X \setminus Y, y \in Y \setminus X\} \quad (3.25)$$

as the edges directed strictly from X towards Y.

Nodes define cuts and flows. Define edges leaving X (out-flow) as

$$\delta^+(X) \triangleq E^+(X, V \setminus X) \quad (3.26)$$

and edges entering X (in-flow) as

$$\delta^-(X) \triangleq E^+(V \setminus X, X) \quad (3.27)$$
Directed graphs, and cuts and flows

If G is directed, define

$$E^+(X,Y) \triangleq \{(x,y) \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$$

(3.25)

as the edges directed strictly from X towards Y.

Nodes define cuts and flows. Define edges leaving X (out-flow) as

$$\delta^+(X) \triangleq E^+(X,V \setminus X)$$

(3.26)

and edges entering X (in-flow) as

$$\delta^-(X) \triangleq E^+(V \setminus X,X)$$

(3.27)
Directed graphs, and cuts and flows

- If G is directed, define

$$E^+(X, Y) \triangleq \{(x, y) \in E(G) : x \in X \setminus Y, y \in Y \setminus X\} \quad (3.25)$$

as the edges directed strictly from X towards Y.

- Nodes define cuts and flows. Define edges leaving X (out-flow) as

$$\delta^+(X) \triangleq E^+(X, V \setminus X) \quad (3.26)$$

and edges entering X (in-flow) as

$$\delta^-(X) \triangleq E^+(V \setminus X, X) \quad (3.27)$$

$$\delta_G(S) = \{(v, u) \in E : u \in S, v \in V \setminus S\}.$$

$$= \{(d,a),(d,b),(e,c)\}$$

$$\delta^+_G(S) = \{(u, v) \in E : u \in S, v \in V \setminus S\}.$$

$$= \{(b,e),(c,f)\}$$
The Neighbor function in undirected graphs

Given a set $X \subseteq V$, the neighbor function of X is defined as

$$\Gamma(X) \triangleq \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\} \quad (3.28)$$
Given a set $X \subseteq V$, the neighbor function of X is defined as

$$\Gamma(X) \triangleq \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$$ (3.28)

Example:

$$G = (V, E)$$

$$\Gamma(S) = \{d, e, f\}$$

$$S = \{a, b, c\}$$
Directed Cut function: property

Lemma 3.5.1

For a digraph $G = (V, E)$ and any $X, Y \subseteq V$: we have

$$|\delta^+(X)| + |\delta^+(Y)| = |\delta^+(X \cap Y)| + |\delta^+(X \cup Y)| + |E^+(X, Y)| + |E^+(Y, X)| \quad (3.29)$$

and

$$|\delta^-(X)| + |\delta^-(Y)| = |\delta^-(X \cap Y)| + |\delta^-(X \cup Y)| + |E^-(X, Y)| + |E^-(Y, X)| \quad (3.30)$$
Directed Cut function: proof of property

Proof.

We can prove Eq. (3.29) using a geometric counting argument (proof for $|\delta^{-}(X)|$ case is similar)

Q: Why is $(c) = |E^{+}(X, Y)|$?
Directed cut/flow functions: submodular

Lemma 3.5.2

For a digraph $G = (V, E)$ and any $X, Y \subseteq V$: both functions $|\delta^+(X)|$ and $|\delta^-(X)|$ are submodular.

Proof.

$|E^+(X, Y)| \geq 0$ and $|E^-(X, Y)| \geq 0$.

More generally, in the non-negative weighted edge case, both in-flow and out-flow are submodular on subsets of the vertices.
Lemma 3.5.3

For an undirected graph \(G = (V, E) \) and any \(X, Y \subseteq V \): we have that both the undirected cut (or flow) function \(|\delta(X)| \) and the neighbor function \(|\Gamma(X)| \) are submodular. I.e.,

\[
|\delta(X)| + |\delta(Y)| = |\delta(X \cap Y)| + |\delta(X \cup Y)| + 2|E(X, Y)| \tag{3.31}
\]

and

\[
|\Gamma(X)| + |\Gamma(Y)| \geq |\Gamma(X \cap Y)| + |\Gamma(X \cup Y)| \tag{3.32}
\]

Proof.

- Eq. (3.31) follows from Eq. (3.29): we replace each undirected edge \(\{u, v\} \) with two oppositely-directed directed edges \((u, v) \) and \((v, u) \). Then we use same counting argument.
Lemma 3.5.3

For an undirected graph \(G = (V, E) \) and any \(X, Y \subseteq V \): we have that both the undirected cut (or flow) function \(|\delta(X)| \) and the neighbor function \(|\Gamma(X)| \) are submodular. I.e.,

\[
|\delta(X)| + |\delta(Y)| = |\delta(X \cap Y)| + |\delta(X \cup Y)| + 2|E(X, Y)| \quad (3.31)
\]

and

\[
|\Gamma(X)| + |\Gamma(Y)| \geq |\Gamma(X \cap Y)| + |\Gamma(X \cup Y)| \quad (3.32)
\]

Proof.

- Eq. (3.31) follows from Eq. (3.29): we replace each undirected edge \(\{u, v\} \) with two oppositely-directed directed edges \((u, v)\) and \((v, u)\). Then we use same counting argument.

- Eq. (3.32) follows as shown in the following page.
Graphically, we can count and see that

\[
\Gamma(X) = (a) + (c) + (f) + (g) + (d)
\] (3.33)

\[
\Gamma(Y) = (b) + (c) + (e) + (h) + (d)
\] (3.34)

\[
\Gamma(X \cup Y) = (a) + (b) + (c) + (d)
\] (3.35)

\[
\Gamma(X \cap Y) = (c) + (g) + (h)
\] (3.36)

\[
|\Gamma(X)| + |\Gamma(Y)| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h)
\]

\[
\geq (a) + (b) + 2(c) + (d) + (g) + (h) = |\Gamma(X \cup Y)| + |\Gamma(X \cap Y)|
\] (3.37)
Therefore, the undirected cut function $|\delta(A)|$ and the neighbor function $|\Gamma(A)|$ of a graph G are both submodular.
Another simple proof shows that $|\delta(X)|$ is submodular.
Undirected cut/flow is submodular: alternate proof

- Another simple proof shows that \(|\delta(X)|\) is submodular.
- Define a graph \(G_{uv} = (\{u, v\}, \{e\}, w)\) with two nodes \(u, v\) and one edge \(e = \{u, v\}\) with non-negative weight \(w(e) \in \mathbb{R}_+\).
Undirected cut/flow is submodular: alternate proof

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:
 \[
 w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u, v\})) = 0 \tag{3.38}
 \]
 and
 \[
 w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \geq 0 \tag{3.39}
 \]
Undirected cut/flow is submodular: alternate proof

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:
 \[w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u, v\})) = 0 \quad (3.38) \]
 and
 \[w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \geq 0 \quad (3.39) \]
- Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(e) \geq 0$ and
 \[w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \geq w(\delta_{u,v}(\{u, v\})) + w(\delta_{u,v}(\emptyset)) \quad (3.40) \]
Undirected cut/flow is submodular: alternate proof

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

 $$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u, v\})) = 0$$ \hspace{1cm} (3.38)

 and

 $$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \geq 0$$ \hspace{1cm} (3.39)

- Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(e) \geq 0$ and

 $$w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \geq w(\delta_{u,v}(\{u, v\})) + w(\delta_{u,v}(\emptyset))$$ \hspace{1cm} (3.40)

- General non-negative weighted graph $G = (V, E, w)$, define $w(\delta(\cdot))$:

 $$f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u, v\}))$$ \hspace{1cm} (3.41)
Another simple proof shows that $|\delta(X)|$ is submodular.

Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.

Weighted cut function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u, v\})) = 0 \quad (3.38)$$

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \geq 0 \quad (3.39)$$

Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(e) \geq 0$ and

$$w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \geq w(\delta_{u,v}(\{u, v\})) + w(\delta_{u,v}(\emptyset)) \quad (3.40)$$

General non-negative weighted graph $G = (V, E, w)$, define $w(\delta(\cdot))$:

$$f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u, v\})) \quad (3.41)$$

This is easily shown to be submodular using properties we will soon see (namely, submodularity closed under summation and restriction).
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$.
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function.
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the number of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A) = |\delta^+(A)| - |\delta^+(V \setminus A)|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.
Number of connected components in a graph via edges

- Recall, $f : 2^V \rightarrow \mathbb{R}$ is submodular, then so is $\bar{f} : 2^V \rightarrow \mathbb{R}$ defined as $\bar{f}(S) = f(V \setminus S)$.
Number of connected components in a graph via edges

- Recall, $f : 2^V \to \mathbb{R}$ is submodular, then so is $\bar{f} : 2^V \to \mathbb{R}$ defined as $\bar{f}(S) = f(V \setminus S)$.
- Hence, if $g : 2^V \to \mathbb{R}$ is supermodular, then so is $\bar{g} : 2^V \to \mathbb{R}$ defined as $\bar{g}(S) = g(V \setminus S)$.
Number of connected components in a graph via edges

- Recall, $f : 2^V \to \mathbb{R}$ is submodular, then so is $\bar{f} : 2^V \to \mathbb{R}$ defined as $\bar{f}(S) = f(V \setminus S)$.
- Hence, if $g : 2^V \to \mathbb{R}$ is supermodular, then so is $\bar{g} : 2^V \to \mathbb{R}$ defined as $\bar{g}(S) = g(V \setminus S)$.
- Given a graph $G = (V, E)$, for each $A \subseteq E(G)$, let $c(A)$ denote the number of connected components of the (spanning) subgraph $(V(G), A)$, with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \geq 1$.

Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of connected components) when edge is added in a smaller context than when added in a larger context.
Number of connected components in a graph via edges

- Recall, $f : 2^V \to \mathbb{R}$ is submodular, then so is $\bar{f} : 2^V \to \mathbb{R}$ defined as $\bar{f}(S) = f(V \setminus S)$.
- Hence, if $g : 2^V \to \mathbb{R}$ is supermodular, then so is $\bar{g} : 2^V \to \mathbb{R}$ defined as $\bar{g}(S) = g(V \setminus S)$.
- Given a graph $G = (V, E)$, for each $A \subseteq E(G)$, let $c(A)$ denote the number of connected components of the (spanning) subgraph $(V(G), A)$, with $c : 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \geq 1$.
- $c(A)$ is monotone non-increasing, $c(A + a) - c(A) \leq 0$.
Number of connected components in a graph via edges

- Recall, \(f : 2^V \to \mathbb{R} \) is submodular, then so is \(\bar{f} : 2^V \to \mathbb{R} \) defined as \(\bar{f}(S) = f(V \setminus S) \).
- Hence, if \(g : 2^V \to \mathbb{R} \) is supermodular, then so is \(\bar{g} : 2^V \to \mathbb{R} \) defined as \(\bar{g}(S) = g(V \setminus S) \).
- Given a graph \(G = (V, E) \), for each \(A \subseteq E(G) \), let \(c(A) \) denote the number of connected components of the (spanning) subgraph \((V(G), A)\), with \(c : 2^E \to \mathbb{R}_+ \). Thus, \(c(\emptyset) = |V| \), and \(c(E) \geq 1 \).
- \(c(A) \) is monotone non-increasing, \(c(A + a) - c(A) \leq 0 \).
- Then \(c(A) \) is supermodular, i.e.,

\[
 c(A + a) - c(A) \leq c(B + a) - c(B) \tag{3.42}
\]

with \(A \subseteq B \subseteq E \setminus \{a\} \).
Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\bar{f}: 2^V \to \mathbb{R}$ defined as $\bar{f}(S) = f(V \setminus S)$.
- Hence, if $g: 2^V \to \mathbb{R}$ is supermodular, then so is $\bar{g}: 2^V \to \mathbb{R}$ defined as $\bar{g}(S) = g(V \setminus S)$.
- Given a graph $G = (V, E)$, for each $A \subseteq E(G)$, let $c(A)$ denote the number of connected components of the (spanning) subgraph $(V(G), A)$, with $c: 2^E \to \mathbb{R}_+$. Thus, $c(\emptyset) = |V|$, and $c(E) \geq 1$.
- $c(A)$ is monotone non-increasing, $c(A + a) - c(A) \leq 0$.
- Then $c(A)$ is supermodular, i.e.,
 \[c(A + a) - c(A) \leq c(B + a) - c(B) \quad (3.42) \]
 with $A \subseteq B \subseteq E \setminus \{a\}$.
- Intuition: an edge is “more” (no less) able to bridge separate components (and reduce the number of connected components) when edge is added in a smaller context than when added in a larger context.
Number of connected components in a graph via edges

- Recall, \(f : 2^V \rightarrow \mathbb{R} \) is submodular, then so is \(\bar{f} : 2^V \rightarrow \mathbb{R} \) defined as \(\bar{f}(S) = f(V \setminus S) \).
- Hence, if \(g : 2^V \rightarrow \mathbb{R} \) is supermodular, then so is \(\bar{g} : 2^V \rightarrow \mathbb{R} \) defined as \(\bar{g}(S) = g(V \setminus S) \).
- Given a graph \(G = (V, E) \), for each \(A \subseteq E(G) \), let \(c(A) \) denote the number of connected components of the (spanning) subgraph \((V(G), A) \), with \(c : 2^E \rightarrow \mathbb{R}_+ \). Thus, \(c(\emptyset) = |V| \), and \(c(E) \geq 1 \).
- \(c(A) \) is monotone non-increasing, \(c(A + a) - c(A) \leq 0 \).
- Then \(c(A) \) is supermodular, i.e.,
 \[c(A + a) - c(A) \leq c(B + a) - c(B) \]
 with \(A \subseteq B \subseteq E \setminus \{a\} \).
- Intuition: an edge is “more” (no less) able to bridge separate components (and reduce the number of connected components) when edge is added in a smaller context than when added in a larger context.
- \(\bar{c}(A) = c(E \setminus A) \) is number of connected components in \(G \) when we remove \(A \); supermodular monotone non-decreasing but not normalized.
Graph Strength

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
Graph Strength

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker — many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
Graph Strength

- So \(\overline{c}(A) = c(E \setminus A) \), the number of connected components in \(G \) when we remove \(A \), is supermodular.

- Maximizing \(\overline{c}(A) \) would be a goal for a network attacker — many connected components means that many points in the network have lost connectivity to many other points (unprotected network).

- If we can remove a small set \(A \) and shatter the graph into many connected components, then the graph is weak.
Graph Strength

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker — many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
Graph Strength

- So $\bar{c}(A) = c(E \setminus A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker — many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let $G = (V, E, w)$ with $w : E \to \mathbb{R}^+$ be a weighted graph with non-negative weights.
Graph Strength

- So \(\overline{c}(A) = c(E \setminus A) \), the number of connected components in \(G \) when we remove \(A \), is supermodular.
- Maximizing \(\overline{c}(A) \) would be a goal for a network attacker — many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set \(A \) and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let \(G = (V, E, w) \) with \(w : E \to \mathbb{R}^+ \) be a weighted graph with non-negative weights.
- For \((u, v) = e \in E \), let \(w(e) \) be a measure of the strength of the connection between vertices \(u \) and \(v \) (strength meaning the difficulty of cutting the edge \(e \)).
Graph Strength

Then $w(A)$ for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e$$

(3.43)

so that $w(E(G[S]))$ is the “internal strength” of the vertex set S.

Notation: S is a set of nodes, $G[S]$ is the vertex-induced subgraph of G induced by vertices S, $E(G[S])$ are the edges contained within this induced subgraph, and $w(E(G[S]))$ is the weight of these edges. $w(E(G[S])) = \sum_{i,j \in S} w(i,j)$.
Graph Strength

Then \(w(A) \) for \(A \subseteq E \) is a modular function

\[
 w(A) = \sum_{e \in A} w_e
\]

so that \(w(E(G[S])) \) is the "internal strength" of the vertex set \(S \).

Suppose removing \(A \) shatters \(G \) into a graph with \(\bar{c}(A) > 1 \) components —
Graph Strength

- Then \(w(A) \) for \(A \subseteq E \) is a modular function

 \[w(A) = \sum_{e \in A} w_e \]

 (3.43)

 so that \(w(E(G[S])) \) is the “internal strength” of the vertex set \(S \).

- Suppose removing \(A \) shatters \(G \) into a graph with \(\bar{c}(A) > 1 \) components — then \(w(A)/(\bar{c}(A) - 1) \) is like the “effort per achieved/additional component” for a network attacker.
Graph Strength

- Then \(w(A) \) for \(A \subseteq E \) is a modular function
 \[
 w(A) = \sum_{e \in A} w_e
 \] (3.43)
 so that \(w(E(G[S])) \) is the “internal strength” of the vertex set \(S \).

- Suppose removing \(A \) shatters \(G \) into a graph with \(\bar{c}(A) > 1 \) components — then \(w(A)/(\bar{c}(A) - 1) \) is like the “effort per achieved/additional component” for a network attacker.

- A form of graph strength can then be defined as the following:
 \[
 \text{strength}(G, w) = \min_{A \subseteq E(G): \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}
 \] (3.44)
Graph Strength

- Then $w(A)$ for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e$$ \hspace{1cm} (3.43)

so that $w(E(G[S]))$ is the “internal strength” of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/ (\bar{c}(A) - 1)$ is like the “effort per achieved/additional component” for a network attacker.

- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}$$ \hspace{1cm} (3.44)

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, $strength(G, w)$.
Graph Strength

- Then $w(A)$ for $A \subseteq E$ is a modular function
 \[w(A) = \sum_{e \in A} w_e \]
 (3.43)
 so that $w(E(G[S]))$ is the “internal strength” of the vertex set S.
- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A) - 1)$ is like the “effort per achieved/additional component” for a network attacker.
- A form of graph strength can then be defined as the following:
 \[\text{strength}(G, w) = \min_{A \subseteq E(G) : \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1} \]
 (3.44)
 Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, $\text{strength}(G, w)$.
- Since submodularity, problems have strongly-poly-time solutions.
Lemma 3.5.4

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $\mathbf{m} \in \mathbb{R}^n$ be a vector. Then $f : 2^V \rightarrow \mathbb{R}$ defined as

$$f(X) = \mathbf{m}^\top \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^\top \mathbf{M} \mathbf{1}_X$$

(3.45)

is submodular iff the off-diagonal elements of \mathbf{M} are non-positive.

Proof.
Lemma 3.5.4

Let \(M \in \mathbb{R}^{n \times n} \) be a symmetric matrix and \(m \in \mathbb{R}^n \) be a vector. Then \(f : 2^V \to \mathbb{R} \) defined as

\[
f(X) = m^T 1_X + \frac{1}{2} 1_X^T M 1_X
\]

(3.45)

is submodular iff the off-diagonal elements of \(M \) are non-positive.

Proof.

- Given a complete graph \(G = (V, E) \), recall that \(E(X) \) is the edge set with both vertices in \(X \subseteq V(G) \), and that \(|E(X)| \) is supermodular.
Lemma 3.5.4

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f : 2^V \rightarrow \mathbb{R}$ defined as

$$f(X) = m^T 1_X + \frac{1}{2} 1_X^T M 1_X$$

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph $G = (V, E)$, recall that $E(X)$ is the edge set with both vertices in $X \subseteq V(G)$, and that $|E(X)|$ is supermodular.
- Non-negative modular weights $w^+ : E \rightarrow \mathbb{R}_+$, $w(E(X))$ is also supermodular, so $-w(E(X))$ is submodular.
Lemma 3.5.4

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f : 2^V \to \mathbb{R}$ defined as

$$f(X) = m^T 1_X + \frac{1}{2} 1_X^T M 1_X$$

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph $G = (V, E)$, recall that $E(X)$ is the edge set with both vertices in $X \subseteq V(G)$, and that $|E(X)|$ is supermodular.

- Non-negative modular weights $w^+ : E \to \mathbb{R}_+$, $w(E(X))$ is also supermodular, so $-w(E(X))$ is submodular.

- f is a modular function $m^T 1_A = m(A)$ added to a weighted submodular function, hence f is submodular.
Conversely, suppose f is submodular.
Proof of Lemma 3.5.4 cont.

- Conversely, suppose f is submodular.
- Then $\forall u, v \in V$, $f(\{u\}) + f(\{v\}) \geq f(\{u, v\}) + f(\emptyset)$ and $f(\emptyset) = 0$.
Conversely, suppose f is submodular.

Then $\forall u, v \in V$, $f(\{u\}) + f(\{v\}) \geq f(\{u, v\}) + f(\emptyset)$ and $f(\emptyset) = 0$.

This requires:

$$0 \leq f(\{u\}) + f(\{v\}) - f(\{u, v\}) \quad (3.46)$$

$$= m(u) + \frac{1}{2} M_{u,u} + m(v) + \frac{1}{2} M_{v,v} \quad (3.47)$$

$$- \left(m(u) + m(v) + \frac{1}{2} M_{u,u} + M_{u,v} + \frac{1}{2} M_{v,v} \right) \quad (3.48)$$

$$= - M_{u,v} \quad (3.49)$$

So that $\forall u, v \in V$, $M_{u,v} \leq 0.$
Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $U = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.

- The goal of **minimum set cover** is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.

 $f: 2^{[n]} \rightarrow \mathbb{Z}^+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the set cover function and is submodular.

 Weighted set cover: $f(A) = w(\bigcup_{a \in A} U_a)$ where $w: U \rightarrow \mathbb{R}^+$.

Both Set cover and maximum coverage are well known to be NP-hard, but have a fast greedy approximation algorithm, and hence are instances of submodular optimization.
Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.
Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.

- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.

- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.

- $f : 2^{[n]} \rightarrow \mathbb{Z}_+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the set cover function and is submodular.
Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.

- The goal of **minimum set cover** is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.

- **Maximum k cover:** The goal in **maximum coverage** is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.

- $f : 2^{[n]} \rightarrow \mathbb{Z}_+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the **set cover function** and is submodular.

- **Weighted set cover:** $f(A) = w(\bigcup_{a \in A} U_a)$ where $w : U \rightarrow \mathbb{R}_+$.
Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $\mathcal{U} = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.

- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.

- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^{k} U_{a_i}|$ is maximized.

- $f : 2^{[n]} \rightarrow \mathbb{Z}_+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} U_a|$ is the set cover function and is submodular.

- Weighted set cover: $f(A) = w(\bigcup_{a \in A} U_a)$ where $w : U \rightarrow \mathbb{R}_+$.

- Both Set cover and maximum coverage are well known to be NP-hard, but have a fast greedy approximation algorithm, and hence are instances of submodular optimization.
Definition 3.5.5 (vertex cover)

A vertex cover (a "vertex-based cover of edges") in graph $G = (V, E)$ is a set $S \subseteq V(G)$ of vertices such that every edge in G is incident to at least one vertex in S.

- Let $I(S)$ be the number of edges incident to vertex set S. Then we wish to find the smallest set $S \subseteq V$ subject to $I(S) = |E|$.

Definition 3.5.6 (edge cover)

A edge cover (an "edge-based cover of vertices") in graph $G = (V, E)$ is a set $F \subseteq E(G)$ of edges such that every vertex in G is incident to at least one edge in F.

- Let $|V|(F)$ be the number of vertices incident to edge set F. Then we wish to find the smallest set $F \subseteq E$ subject to $|V|(F) = |V|$.
Graph Cut Problems
Also submodular optimization

- Minimum cut: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
Graph Cut Problems
Also submodular optimization

- **Minimum cut**: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.

- **Maximum cut**: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.

Let $\delta: 2^V \to \mathbb{R}^+$ be the cut function, namely for any given set of nodes $X \subseteq V$, $|\delta(X)|$ measures the number of edges between nodes X and $V \setminus X$.

Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X) = \sum_{e \in \delta(X)} w(e)$.

Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.
Graph Cut Problems
Also submodular optimization

- Minimum cut: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.

- Maximum cut: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.

- Let $\delta : 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, $|\delta(X)|$ measures the number of edges between nodes X and $V \setminus X$ — i.e., $\delta(x) = E(X, V \setminus X)$.

Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X) = \sum_{e\in\delta(X)} \text{weight}(e)$. Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.
Graph Cut Problems

Also submodular optimization

- **Minimum cut**: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.

- **Maximum cut**: Given a graph $G = (V, E)$, find a set of vertices $S \subseteq V$ that maximize the cut (set of edges) between S and $V \setminus S$.

- Let $\delta : 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, $|\delta(X)|$ measures the number of edges between nodes X and $V \setminus X$ — i.e., $\delta(x) = E(X, V \setminus X)$.

- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X) = w(\delta(X))$.

Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.
Graph Cut Problems
Also submodular optimization

- Minimum cut: Given a graph \(G = (V, E) \), find a set of vertices \(S \subseteq V \) that minimize the cut (set of edges) between \(S \) and \(V \setminus S \).
- Maximum cut: Given a graph \(G = (V, E) \), find a set of vertices \(S \subseteq V \) that maximize the cut (set of edges) between \(S \) and \(V \setminus S \).
- Let \(\delta : 2^V \rightarrow \mathbb{R}_+ \) be the cut function, namely for any given set of nodes \(X \subseteq V \), \(|\delta(X)| \) measures the number of edges between nodes \(X \) and \(V \setminus X \) — i.e., \(\delta(x) = E(X, V \setminus X) \).
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, \(f(X) = w(\delta(X)) \).
- Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.
Matrix Rank functions

Let V, with $|V| = m$ be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m). Thus, $\forall v \in V$, $\exists x_v \in \mathbb{R}^n$.
Matrix Rank functions

- Let V, with $|V| = m$ be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m). Thus, $\forall v \in V$, $\exists x_v \in \mathbb{R}^n$.

- For a given set $\{v, v_1, v_2, \ldots, v_k\}$, it might or might not be possible to find $(\alpha_i)_{i}$ such that:

$$x_v = \sum_{i=1}^{k} \alpha_i x_{v_i} \quad (3.50)$$

If not, then x_v is **linearly independent** of x_{v_1}, \ldots, x_{v_k}.
Matrix Rank functions

- Let \(V \), with \(|V| = m \) be an index set of a set of vectors in \(\mathbb{R}^n \) for some \(n \) (unrelated to \(m \)). Thus, \(\forall v \in V, \exists x_v \in \mathbb{R}^n \).

- For a given set \(\{v, v_1, v_2, \ldots, v_k\} \), it might or might not be possible to find \((\alpha_i)\) such that:

\[
x_v = \sum_{i=1}^{k} \alpha_i x_{v_i}
\]

(3.50)

If not, then \(x_v \) is linearly independent of \(x_{v_1}, \ldots, x_{v_k} \).

- Let \(r(S) \) for \(S \subseteq V \) be the rank of the set of vectors \(S \). Then \(r(\cdot) \) is a submodular function, and in fact is called a matric matroid rank function.
Example: Rank function of a matrix

Given $n \times m$ matrix $X = (x_1, x_2, \ldots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
Example: Rank function of a matrix

- Given \(n \times m \) matrix \(\mathbf{X} = (x_1, x_2, \ldots, x_m) \) with \(x_i \in \mathbb{R}^n \) for all \(i \). There are \(m \) length-\(n \) column vectors \(\{x_i\}_i \).
- Let \(V = \{1, 2, \ldots, m\} \) be the set of column vector indices.
Example: Rank function of a matrix

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \ldots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$.
- Let $V = \{1, 2, \ldots, m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let $r(A)$ be the rank of the column vectors indexed by A.

▶ Skip matrix rank example
Example: Rank function of a matrix

- Given $n \times m$ matrix $X = (x_1, x_2, \ldots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V = \{1, 2, \ldots, m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let $r(A)$ be the rank of the column vectors indexed by A.
- $r(A)$ is the dimensionality of the vector space spanned by the set of vectors $\{x_a\}_{a \in A}$.

Skip matrix rank example
Example: Rank function of a matrix

Given \(n \times m \) matrix \(X = (x_1, x_2, \ldots, x_m) \) with \(x_i \in \mathbb{R}^n \) for all \(i \). There are \(m \) length-\(n \) column vectors \(\{x_i\}_i \)

Let \(V = \{1, 2, \ldots, m\} \) be the set of column vector indices.

For any \(A \subseteq V \), let \(r(A) \) be the rank of the column vectors indexed by \(A \).

\(r(A) \) is the dimensionality of the vector space spanned by the set of vectors \(\{x_a\}_{a \in A} \).

Thus, \(r(V) \) is the rank of the matrix \(X \).
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{pmatrix} =
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
| & | & | & | & | & | & | & | \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8
\end{pmatrix}
$$

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mid & \mid \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
\mid & \mid \\
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C') = 3$, $r(B \cup C') = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & \begin{pmatrix} 0 & 2 & 3 & 0 & 1 & 3 & 1\end{pmatrix} & 2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8\end{pmatrix}
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C') = 3$, $r(B \cup C') = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text{x1} & \text{x2} & \text{x3} & \text{x4} & \text{x5} & \text{x6} & \text{x7} & \text{x8}
\end{pmatrix}
$$

• Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $Ar = \{1\}$, $Br = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.
• $r(A \cup Ar) = 3$, $r(B \cup Br) = 3$, $r(A \cup Br) = 4$, $r(B \cup Ar) = 4$.
• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

$$\begin{pmatrix}
0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mid \mid \mid \mid \mid \mid \mid \mid \mid \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8
\end{pmatrix}$$

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
& x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C') = 2$.
- $r(A \cup C') = 3$, $r(B \cup C') = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C') = 2$.

Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
\vdots & \vdots \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & \vdots \\
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mid & \mid \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
\mid & \mid \\
\end{pmatrix}
$$

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

$r \left(\bigcup_i V_i \right) \geq \sum_{i=1}^n r(V_i)$
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
| | | | | | | | | \\
x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | x_8 |
\end{bmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
\]

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C') = 3$, $r(B \cup C') = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C') = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mid \\
x_1 & x_2 & x_3 & \mid \mid \mid \mid \mid \mid \mid \\
x_4 & x_5 & \mid \mid \mid \mid \mid \mid \mid \\
x_6 & x_7 & \mid \mid \mid \mid \mid \mid \mid \\
x_8 & \mid \mid \mid \mid \mid \mid \mid \\
\end{bmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C') = 3$, $r(B \cup C') = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C') = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 3 & 0 & 1 & 3 & 1 \\
0 & 2 & 0 & 4 & 0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{pmatrix}
$$

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C') = 3$, $r(B \cup C') = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C') = 2$.
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020

F42/62 (pg.134/211)
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
$$

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{pmatrix}
$$

$\begin{pmatrix}
| & | & | & | & | & | & | & | \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
| & | & | & | & | & | & | \\
\end{pmatrix}$
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

$r(A \cup C) = 3$, $r(B \cup C) = 3$.

$r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

$r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

\[\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\ 2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\ 3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\ 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \end{pmatrix} \]
Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 2 & 2 & 3 & 0 & 1 & 3 & 1 \\
2 & 0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\left|\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
x_8 \\
\end{array}\right|
\end{pmatrix}
\]

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.
- $6 = r(A) + r(B) = r(A \cup B) + r(C) > r(A \cup B) + r(A \cap B) = 5$.

Prof. Jeff Bilmes
EE563/Spring 2020/Submodularity - Lecture 3 - Oct 7th, 2020
F42/62 (pg.137/211)
Rank function of a matrix

Let $A, B \subseteq V$ be two subsets of column indices.
Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, $r(A)$ can be viewed as an area.
Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, $r(A)$ can be viewed as an area.

$$r(A) + r(B) \geq r(A \cup B)$$
Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, $r(A)$ can be viewed as an area.

$$r(A) + r(B) \geq r(A \cup B)$$

- If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if \exists common span), then that area is counted twice in $r(A) + r(B)$, so the inequality will be strict.
Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, $r(A)$ can be viewed as an area.

$$r(A) + r(B) \geq r(A \cup B)$$

- If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if \exists common span), then that area is counted twice in $r(A) + r(B)$, so the inequality will be strict.
- Any function where the above inequality is true for all $A, B \subseteq V$ is called subadditive.
Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.

\[
\text{Let } C \text{ index vectors spanning all dimensions common to } A \text{ and } B. \text{ We call } C \text{ the common span and call } A \cap B \text{ the common indices.}
\]

\[
\text{Let } A_r \text{ index vectors spanning dimensions spanned by } A \text{ but not } B.
\]
Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.

Then:

$$r(A) = r(C) + r(A_r)$$

Similarly,

$$r(B) = r(C) + r(B_r)$$

Then:

$$r(A) + r(B)$$

counts the dimensions spanned by C twice, i.e.,

$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$

(3.51)

But:

$$r(A \cup B)$$

counts the dimensions spanned by C only once.

$$r(A \cup B) = r(A_r) + r(C) + r(B_r).$$

(3.52)
Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.

Let A_r index vectors spanning dimensions spanned by A but not B.

Let B_r index vectors spanning dimensions spanned by B but not A.

Then, $r(A) = r(C) + r(A_r)$.
Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.

Let A_r index vectors spanning dimensions spanned by A but not B.

Let B_r index vectors spanning dimensions spanned by B but not A.

Then, $r(A) = r(C) + r(A_r)$

Similarly, $r(B) = r(C) + r(B_r)$.
Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.

Let A_r index vectors spanning dimensions spanned by A but not B.

Let B_r index vectors spanning dimensions spanned by B but not A.

Then, $r(A) = r(C') + r(A_r)$

Similarly, $r(B) = r(C') + r(B_r)$.

Then $r(A) + r(B)$ counts the dimensions spanned by C twice, i.e.,

$$r(A) + r(B) = r(A_r) + 2r(C') + r(B_r).$$ \hspace{1cm} (3.51)
Rank functions of a matrix

- Vector sets A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common indices.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $\text{r}(A) = \text{r}(C) + \text{r}(A_r)$
- Similarly, $\text{r}(B) = \text{r}(C) + \text{r}(B_r)$.
- Then $\text{r}(A) + \text{r}(B)$ counts the dimensions spanned by C twice, i.e.,

$$\text{r}(A) + \text{r}(B) = \text{r}(A_r) + 2\text{r}(C) + \text{r}(B_r). \quad (3.51)$$

- But $\text{r}(A \cup B)$ counts the dimensions spanned by C only once.

$$\text{r}(A \cup B) = \text{r}(A_r) + \text{r}(C) + \text{r}(B_r) \quad (3.52)$$
Rank functions of a matrix

- Then \(r(A) + r(B) \) counts the dimensions spanned by \(C \) twice, i.e.,

\[
r(A) + r(B) = r(A_r) + 2r(C) + r(B_r)
\]
Rank functions of a matrix

- Then $r(A) + r(B)$ counts the dimensions spanned by C twice, i.e.,
 \[r(A) + r(B) = r(A_r) + 2r(C) + r(B_r) \]

- But $r(A \cup B)$ counts the dimensions spanned by C only once.
 \[r(A \cup B) = r(A_r) + r(C) + r(B_r) \]
Rank functions of a matrix

- Then $r(A) + r(B)$ counts the dimensions spanned by C twice, i.e.,
 \[r(A) + r(B) = r(A_r) + 2r(C) + r(B_r) \]

- But $r(A \cup B)$ counts the dimensions spanned by C only once.
 \[r(A \cup B) = r(A_r) + r(C) + r(B_r) \]

- Thus, we have **subadditivity**: $r(A) + r(B) \geq r(A \cup B)$. Can we add more to the r.h.s. and still have an inequality? Yes.
Note, $r(A \cap B) \leq r(C)$. Why? Vectors indexed by $A \cap B$ (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

$$r(C) \geq r(A \cap B)$$

In short:
Rank function of a matrix

- Note, \(r(A \cap B) \leq r(C) \). Why? Vectors indexed by \(A \cap B \) (i.e., the common index set) span no more than the dimensions commonly spanned by \(A \) and \(B \) (namely, those spanned by the professed \(C \)).

\[
r(C) \geq r(A \cap B)
\]

In short:
- Common span (blue) is “more” (no less) than span of common index (magenta).
Note, $r(A \cap B) \leq r(C)$. Why? Vectors indexed by $A \cap B$ (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

$$r(C) \geq r(A \cap B)$$

In short:
- Common span (blue) is “more” (no less) than span of common index (magenta).
- More generally, common information (blue) is “more” (no less) than information within common index (magenta).
The Venn and Art of Submodularity

\[r(A) + r(B) \geq r(A \cup B) + r(A \cap B) \]

\[= r(A_r) + 2r(C) + r(B_r) \]

\[= r(A_r) + r(C) + r(B_r) \]

\[= r(A \cap B) \]
Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let $f(X)$ denote the dimensionality of the linear subspace spanned by the subspaces in X.

Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let $f(X)$ denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let $f(X)$ denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f : 2^S \to \mathbb{R}_+$ as follows,

\[
f(X) = r(\bigcup_{s \in X} X_s)
\]

we have that f is submodular, and is known to be a polymatroid rank function.
Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let $f(X)$ denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f : 2^S \to \mathbb{R}_+$ as follows,
 \[f(X) = r(\bigcup_{s \in X} X_s) \] (3.53)
 we have that f is submodular, and is known to be a polymatroid rank function.
- In general (as we will see) polymatroid rank functions are submodular, normalized $f(\emptyset) = 0$, and monotone non-decreasing ($f(A) \leq f(B)$ whenever $A \subseteq B$).
Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let $f(X)$ denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f : 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\bigcup_{s \in X} X_s)$$

we have that f is submodular, and is known to be a polymatroid rank function.

- In general (as we will see) polymatroid rank functions are submodular, normalized $f(\emptyset) = 0$, and monotone non-decreasing ($f(A) \leq f(B)$ whenever $A \subseteq B$).
- We use the term non-decreasing rather than increasing, the latter of which is strict (also so that a constant function isn’t “increasing”).
Spanning trees

- Let E be a set of edges of some graph $G = (V, E)$, and let $r(S)$ for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the graph induced by edges S.
Let E be a set of edges of some graph $G = (V, E)$, and let $r(S)$ for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the graph induced by edges S.

Example: Given $G = (V, E)$, $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $E = \{1, 2, \ldots, 12\}$. $S = \{1, 2, 3, 4, 5, 8, 9\} \subset E$. Two spanning trees have the same edge count (the rank of S).
Let E be a set of edges of some graph $G = (V, E)$, and let $r(S)$ for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the graph induced by edges S.

Example: Given $G = (V, E)$, $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $E = \{1, 2, \ldots, 12\}$. $S = \{1, 2, 3, 4, 5, 8, 9\} \subset E$. Two spanning trees have the same edge count (the rank of S).

Then $r(S)$ is submodular, and is another matrix rank function corresponding to the incidence matrix of the graph.
Given E, let $f_1, f_2 : 2^E \to \mathbb{R}$ be two submodular functions. Then

$$f : 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) + f_2(A)$$

is submodular.
Summing Submodular Functions

Given E, let $f_1, f_2 : 2^E \to \mathbb{R}$ be two submodular functions. Then

$$f : 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) + f_2(A)$$

(3.58)

is submodular. This follows easily since

$$f(A) + f(B) = f_1(A) + f_2(A) + f_1(B) + f_2(B)$$

(3.59)

$$\geq f_1(A \cup B) + f_2(A \cup B) + f_1(A \cap B) + f_2(A \cap B)$$

(3.60)

$$= f(A \cup B) + f(A \cap B).$$

(3.61)

I.e., it holds for each component of f in each term in the inequality.
Given \(E \), let \(f_1, f_2 : 2^E \rightarrow \mathbb{R} \) be two submodular functions. Then

\[
 f : 2^E \rightarrow \mathbb{R} \text{ with } f(A) = f_1(A) + f_2(A) \tag{3.58}
\]

is submodular. This follows easily since

\[
 f(A) + f(B) = f_1(A) + f_2(A) + f_1(B) + f_2(B) \tag{3.59}
\]

\[
 \geq f_1(A \cup B) + f_2(A \cup B) + f_1(A \cap B) + f_2(A \cap B) \tag{3.60}
\]

\[
 = f(A \cup B) + f(A \cap B). \tag{3.61}
\]

I.e., it holds for each component of \(f \) in each term in the inequality. In fact, any conic combination (i.e., non-negative linear combination) of submodular functions is submodular, as in \(f(A) = \alpha_1 f_1(A) + \alpha_2 f_2(A) \) for \(\alpha_1, \alpha_2 \geq 0 \).
Given E, let $f_1, m : 2^E \rightarrow \mathbb{R}$ be a submodular and a modular function.
Given \(E \), let \(f_1, m : 2^E \rightarrow \mathbb{R} \) be a submodular and a modular function. Then

\[
f : 2^E \rightarrow \mathbb{R} \text{ with } f(A) = f_1(A) - m(A)
\]

is submodular (as is \(f(A) = f_1(A) + m(A) \)).
Given E, let $f_1, m : 2^E \to \mathbb{R}$ be a submodular and a modular function. Then

$$f : 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) - m(A)$$

is submodular (as is $f(A) = f_1(A) + m(A)$). This follows easily since

$$f(A) + f(B) = f_1(A) - m(A) + f_1(B) - m(B)$$

$$\geq f_1(A \cup B) - m(A \cup B) + f_1(A \cap B) - m(A \cap B) \quad (3.64)$$

$$= f(A \cup B) + f(A \cap B).$$

$$= f(A \cup B) + f(A \cap B). \quad (3.65)$$
Given E, let $f_1, m : 2^E \rightarrow \mathbb{R}$ be a submodular and a modular function. Then

$$f : 2^E \rightarrow \mathbb{R} \text{ with } f(A) = f_1(A) - m(A) \quad (3.62)$$

is submodular (as is $f(A) = f_1(A) + m(A)$). This follows easily since

$$f(A) + f(B) = f_1(A) - m(A) + f_1(B) - m(B) \quad (3.63)$$

$$\geq f_1(A \cup B) - m(A \cup B) + f_1(A \cap B) - m(A \cap B) \quad (3.64)$$

$$= f(A \cup B) + f(A \cap B). \quad (3.65)$$

That is, the modular component with $m(A) + m(B) = m(A \cup B) + m(A \cap B)$ never destroys the inequality.

Note of course that if m is modular than so is $-m$.
Restricting Submodular functions

Given E, let $f : 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f' : 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$

(3.66)

is submodular.
Restricting Submodular functions

Given E, let $f : 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f' : 2^E \to \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$

(3.66)

is submodular.

Proof.
Restricting Submodular functions

Given E, let $f : 2^E \rightarrow \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f' : 2^E \rightarrow \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$

(3.66)

is submodular.

Proof.

Given $A \subseteq B \subseteq E \setminus v$, consider

$$f((A + v) \cap S') - f(A \cap S) \geq f((B + v) \cap S') - f(B \cap S)$$

(3.67)
Restricting Submodular functions

Given E, let $f : 2^E \rightarrow \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f' : 2^E \rightarrow \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)$$

(3.66)

is submodular.

Proof.

Given $A \subseteq B \subseteq E \setminus v$, consider

$$f((A + v) \cap S') - f(A \cap S') \geq f((B + v) \cap S') - f(B \cap S')$$

(3.67)

If $v \not\in S$, then both differences on each size are zero.
Restricting Submodular functions

Given \(E \), let \(f: 2^E \rightarrow \mathbb{R} \) be a submodular functions. And let \(S \subseteq E \) be an arbitrary fixed set. Then

\[
f' : 2^E \rightarrow \mathbb{R} \text{ with } f'(A) \triangleq f(A \cap S)
\]

(3.66)

is submodular.

Proof.

Given \(A \subseteq B \subseteq E \setminus v \), consider

\[
f((A + v) \cap S') - f(A \cap S) \geq f((B + v) \cap S') - f(B \cap S)
\]

(3.67)

If \(v \notin S \), then both differences on each size are zero. If \(v \in S \), then we can consider this

\[
f(A' + v) - f(A') \geq f(B' + v) - f(B')
\]

(3.68)

with \(A' = A \cap S \) and \(B' = B \cap S \). Since \(A' \subseteq B' \), this holds due to submodularity of \(f \).
Summing Restricted Submodular Functions

Given V, let $f_1, f_2 : 2^V \rightarrow \mathbb{R}$ be two submodular functions and let $S_1, S_2 \subseteq V$ be two arbitrary fixed sets. Then

$$f : 2^V \rightarrow \mathbb{R} \text{ with } f(A) = f_1(A \cap S_1) + f_2(A \cap S_2)$$

is submodular. This follows easily from the preceding two results.
Given V, let $f_1, f_2 : 2^V \rightarrow \mathbb{R}$ be two submodular functions and let $S_1, S_2 \subseteq V$ be two arbitrary fixed sets. Then

$$f : 2^V \rightarrow \mathbb{R} \text{ with } f(A) = f_1(A \cap S_1) + f_2(A \cap S_2)$$ (3.69)

is submodular. This follows easily from the preceding two results.

Given V, let $C = \{C_1, C_2, \ldots, C_k\}$ be a set of subsets of V, and for each $C \in C$, let $f_C : 2^V \rightarrow \mathbb{R}$ be a submodular function. Then

$$f : 2^V \rightarrow \mathbb{R} \text{ with } f(A) = \sum_{C \in C} f_C(A \cap C')$$ (3.70)

is submodular.
Given V, let $f_1, f_2 : 2^V \rightarrow \mathbb{R}$ be two submodular functions and let $S_1, S_2 \subseteq V$ be two arbitrary fixed sets. Then

$$f : 2^V \rightarrow \mathbb{R} \text{ with } f(A) = f_1(A \cap S_1) + f_2(A \cap S_2) \quad (3.69)$$

is submodular. This follows easily from the preceding two results.

Given V, let $C = \{C_1, C_2, \ldots, C_k\}$ be a set of subsets of V, and for each $C \in C$, let $f_C : 2^V \rightarrow \mathbb{R}$ be a submodular function. Then

$$f : 2^V \rightarrow \mathbb{R} \text{ with } f(A) = \sum_{C \in C} f_C(A \cap C) \quad (3.70)$$

is submodular. This property is critical for image processing and graphical models. For example, let C be all pairs of the form $\{\{u, v\} : u, v \in V\}$, or let it be all pairs corresponding to the edges of some undirected graphical model.
Given \(V \), let \(c \in \mathbb{R}^V_+ \) be a given fixed vector. Then \(f : 2^V \rightarrow \mathbb{R}_+ \), where

\[
f(A) = \max_{j \in A} c_j
\]

(3.71)

is submodular and normalized (we take \(f(\emptyset) = 0 \)).

Proof.

Consider

\[
\max_{j \in A} c_j + \max_{j \in B} c_j \geq \max_{j \in A \cup B} c_j + \max_{j \in A \cap B} c_j
\]

(3.72)

which follows since we have that

\[
\max(\max_{j \in A} c_j, \max_{j \in B} c_j) = \max_{j \in A \cup B} c_j
\]

(3.73)

and

\[
\min(\max_{j \in A} c_j, \max_{j \in B} c_j) \geq \max_{j \in A \cap B} c_j
\]

(3.74)
Given V, let $c \in \mathbb{R}^V$ be a given fixed vector (not necessarily non-negative). Then $f : 2^V \to \mathbb{R}$, where

$$f(A) = \max_{j \in A} c_j$$

(3.75)

is submodular, where we take $f(\emptyset) \leq \min_j c_j$ (so the function need not be normalized).

Proof.

The proof is identical to the normalized case.
Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place “facilities” (factories) at certain locations to satisfy sites (at all locations) having various demands.

\[f(A) = \sum_{i \in S} \max_{j \in A} c_{ij}. \] (3.76)
Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place “facilities” (factories) at certain locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted bipartite graph $G = (F, S, E, c)$ where F is set of possible factory/plant locations, S is set of sites needing service, E are edges indicating (factory, site) service possibility pairs, and $c: E \to \mathbb{R}^+$ is the benefit of a given pair.

Facility location function has form:

$$f(A) = \sum_{i \in S} \max_{j \in A} c_{ij}.$$ (3.76)
Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place “facilities” (factories) at certain locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted bipartite graph $G = (F, S, E, c)$ where F is set of possible factory/plant locations, S is set of sites needing service, E are edges indicating (factory, site) service possibility pairs, and $c : E \rightarrow \mathbb{R}_+$ is the benefit of a given pair.

Facility location function has form:

$$f(A) = \sum_{i \in S} \max_{j \in A} c_{ij}. \quad (3.76)$$

Diagram:

Facility locations sites

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefit of having site 2 serviced by facility 4.
Facility/Plant Location (uncapacitated) w. plant benefits

Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the “benefit” or “value” (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the “benefit” or “value” (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.

Goal is to find a set A that maximizes $f(A)$ (the benefit) placing a bound on the number of plants A (e.g., $|A| \leq k$).
Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the “benefit” or “value” (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the “benefit” or “value” (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define $f(A)$ as the “delivery benefit” plus “construction benefit” when the locations $A \subseteq F$ are to be constructed.
Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the “benefit” or “value” (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define $f(A)$ as the “delivery benefit” plus “construction benefit” when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$f(A) = \sum_{j \in A} m_j + \sum_{i \in S} \max_{j \in A} c_{ij}.$$ \hspace{1cm} (3.77)
Facility/Plant Location (uncapacitated) w. plant benefits

- Let \(F = \{1, \ldots, f\} \) be a set of possible factory/plant locations for facilities to be built.
- \(S = \{1, \ldots, s\} \) is a set of sites (e.g., cities, clients) needing service.
- Let \(c_{ij} \) be the “benefit” or “value” (e.g., \(1/c_{ij} \) is the cost) of servicing site \(i \) with facility location \(j \).
- Let \(m_j \) be the benefit (e.g., either \(1/m_j \) is the cost or \(-m_j \) is the cost) to build a plant at location \(j \).
- Each site should be serviced by only one plant but no less than one.
- Define \(f(A) \) as the “delivery benefit” plus “construction benefit” when the locations \(A \subseteq F \) are to be constructed.
- We can define the (uncapacitated) facility location function

\[
f(A) = \sum_{j \in A} m_j + \sum_{i \in S} \max_{j \in A} c_{ij}.
\] (3.77)

- Goal is to find a set \(A \) that maximizes \(f(A) \) (the benefit) placing a bound on the number of plants \(A \) (e.g., \(|A| \leq k \)).
Facility Location

Given V, E, let $c \in \mathbb{R}^{V \times E}$ be a given $|V| \times |E|$ matrix. Then

$$f : 2^E \to \mathbb{R}, \text{ where } f(A) = \sum_{i \in V} \max_{j \in A} c_{ij}$$

(3.78) is submodular.

Proof.

We can write $f(A)$ as $f(A) = \sum_{i \in V} f_i(A)$ where $f_i(A) = \max_{j \in A} c_{ij}$ is submodular (max of a i^{th} row vector), so f can be written as a sum of submodular functions.

Thus, the facility location function (which only adds a modular function to the above) is submodular.
Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, \ldots, n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A. We have that:

$$f(A) = \log \det(\Sigma_A)$$

is submodular. (3.79) The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function. Suppose $X \in \mathbb{R}^n$ is multivariate Gaussian random variable, that is $x \sim p(x) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$ (3.80).
Log Determinant

- Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, \ldots, n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.

- We have that:

\[
f(A) = \log \det(\Sigma_A) \text{ is submodular.} \quad (3.79)
\]
Log Determinant

- Let Σ be an $n \times n$ positive definite matrix. Let $V = \{1, 2, \ldots, n\} \equiv [n]$ be an index set, and for $A \subseteq V$, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.

- We have that:

$$f(A) = \log \det(\Sigma_A) \text{ is submodular.} \quad (3.79)$$

- The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).
Log Determinant

- Let \(\Sigma \) be an \(n \times n \) positive definite matrix. Let \(V = \{1, 2, \ldots, n\} \equiv [n] \) be an index set, and for \(A \subseteq V \), let \(\Sigma_A \) be the (square) submatrix of \(\Sigma \) obtained by including only entries in the rows/columns given by \(A \).

- We have that:

\[
 f(A) = \log \det(\Sigma_A) \text{ is submodular.} \tag{3.79}
\]

- The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose \(X \in \mathbb{R}^n \) is multivariate Gaussian random variable, that is

\[
x \in p(x) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right) \tag{3.80}
\]
Log Determinant

Then the (differential) entropy of the r.v. X is given by

$$h(X) = \log \sqrt{|2\pi e\Sigma|} = \log \sqrt{(2\pi e)^n |\Sigma|}$$ \hspace{1cm} (3.81)

and in particular, for a variable subset A,

$$f(A) = h(X_A) = \log \sqrt{(2\pi e)^{|A|} |\Sigma_A|}$$ \hspace{1cm} (3.82)

Entropy is submodular (further conditioning reduces entropy), and moreover

$$f(A) = h(X_A) = m(A) + \frac{1}{2} \log |\Sigma_A|$$ \hspace{1cm} (3.83)

where $m(A)$ is a modular function.

Note: still submodular in the semi-definite case as well.
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u (m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- \max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ.
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ.
- Matrix rank function is submodular.
Summary: Properties so far

- SCCM is submodular \(f(A) = \sum_{u \in U} \phi_u(m_u(A)) \) where \(m_u \) is a non-negative modular and \(\phi_u \) is concave.
- \(\max \) is submodular \(f(A) = \max_{j \in A} c_j \), as is facility location \(f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u} \).
- Log determinant \(f(A) = \log \det(\Sigma_A) \) submodular for p.d. \(\Sigma \).
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
Summary: Properties so far

- SCCM is submodular \(f(A) = \sum_{u \in U} \phi_u(m_u(A)) \) where \(m_u \) is a non-negative modular and \(\phi_u \) is concave.
- \(\max \) is submodular \(f(A) = \max_{j \in A} c_j \), as is facility location \(f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u} \).
- Log determinant \(f(A) = \log \det(\Sigma_A) \) submodular for p.d. \(\Sigma \).
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
Summary: Properties so far

- SCCM is submodular \(f(A) = \sum_{u \in U} \phi_u(m_u(A)) \) where \(m_u \) is a non-negative modular and \(\phi_u \) is concave.
- \(\max \) is submodular \(f(A) = \max_{j \in A} c_j \), as is facility location \(f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u} \).
- Log determinant \(f(A) = \log \det(\Sigma_A) \) submodular for p.d. \(\Sigma \).
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, \(f(A) = f'(A) + m(A) \).
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ.
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, $f(A) = f'(A) + m(A)$.
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular and m is modular. (supermodular) if f is submodular (supermodular).
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ.
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, $f(A) = f'(A) + m(A)$.
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular and m is modular. (supermodular) if f is submodular (supermodular).
- Summing: if $\alpha_i \geq 0$ and $f_i : 2^V \rightarrow \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.

Prof. Jeff Bilmes
Summary: Properties so far

- SCCM is submodular $f(A) = \sum_{u \in U} \phi_u(m_u(A))$ where m_u is a non-negative modular and ϕ_u is concave.
- max is submodular $f(A) = \max_{j \in A} c_j$, as is facility location $f(A) = \sum_{u \in U} \max_{a \in A} s_{a,u}$.
- Log determinant $f(A) = \log \det(\Sigma_A)$ submodular for p.d. Σ.
- Matrix rank function is submodular.
- Graph cut, set cover, and incidence functions, and quadratics with non-positive off-diagonals, are all submodular.
- Number of connected components in induced graph, and interior edge function, is supermodular.
- Submodular plus modular is submodular, $f(A) = f'(A) + m(A)$.
- Complementation: $f'(A) = f(V \setminus A)$ is submodular if f is submodular and m is modular. (supermodular) if f is submodular (supermodular).
- Summing: if $\alpha_i \geq 0$ and $f_i : 2^V \rightarrow \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions preserve submodularity: $f'(A) = f(A \cap S)$.