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Logistics Review

Class Road Map - EE563
L1(9/30): Motivation, Applications,
Definitions, Properties
L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory
L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial
Examples, Matrix Rank, Properties, Other
Defs, Independence
L5(10/14): Properties, Defs of
Submodularity, Independence
L6(10/19): Matroids, Matroid Examples,
Matroid Rank,
L7(10/21): Matroid Rank, More on
Partition Matroid, Laminar Matroids,
System of Distinct Reps, Transversals
L8(10/26): Transversal Matroid, Matroid
and representation, Dual Matroid
L9(10/28): Other Matroid Properties,
Combinatorial Geometries, Matroid and
Greedy, Polyhedra, Matroid Polytopes
L10(11/2): Matroid Polytopes, Matroids
→ Polymatroids

L11(11/4): Matroids → Polymatroids,
Polymatroids
L12(11/9): Polymatroids, Polymatroids
and Greedy
L–(11/11): Veterans Day, Holiday
L13(11/16): Polymatroids and Greedy,
Possible Polytopes, Extreme Points,
Cardinality Constrained Maximization
L14(11/18): Cardinality Constrained
Maximization, Curvature
L15(11/23): Curvature, Submodular Max
w. Other Constraints, Start Cont.
Extensions
L16(11/25): Submodular Max w. Other
Constraints, Cont. Extensions, Lovász
extension
L17(11/30): Choquet Integration,
Non-linear Measure/Aggregation,
Definitions/Properties, Examples.
L18(12/2): Multilinear Extension,
Submodular Max/polyhedral, Most
Violated Ineq., Matroids Closure/Sat
L19(12/7): Fund. Circuit/Dep, SFM, L.E.
primal, Start SFM via Min-Norm Point
L20(12/9):
L21(12/14): final meeting (presentations)
maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Rest of class

Homework 4 posted, due Thursday Dec 17th, 2020, 11:55pm.
Final project paper proposal, was due Sunday Dec 6th, 11:59pm.
Final project 4-page paper and presentation slides, due Sunday Dec
13th, 11:59pm.
Final project presentation, Monday Dec 14th, starting at 10:30am.
Final project: Read and present a recent (past 5 years) paper on
submodular/supermodular optimization. Paper should have both a
theoretical and practical component. What is due: (1) 4-page paper
summary, and (2) 10 minute presentation about the paper, will be
giving presentations on Monday 12/14/2020. You must choose your
paper before the 14th (this will be HW5), and you must turn in your
slides and 4-page paper (this will be HW6).
Recall, grades will be based on a combination of a final project (40%)
and the four homeworks (60%).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 19 - Dec 7th, 2020 F3/54 (pg.3/54)

Logistics Review

Most violated inequality problem in matroid polytope case

Consider

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ rM (A),∀A ⊆ E

}
(19.19)

Suppose we have any x ∈ RE+ such that x 6∈ P+
r .

Hence, there must be a set of W ⊆ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rM (A) for A ∈ W.
The most violated inequality when x is considered w.r.t. P+

r corresponds
to the set A that maximizes x(A)− rM (A), i.e., the most violated
inequality is valuated as:

max {x(A)− rM (A) : A ∈ W} = max {x(A)− rM (A) : A ⊆ E} (19.20)

Since x is modular and x(E \A) = x(E)− x(A), we can express this via a
min as in;:

min {rM (A) + x(E \A) : A ⊆ E} (19.21)
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Most violated inequality/polymatroid membership/SFM

The most violated inequality when x is considered w.r.t. P+
f

corresponds to the set A that maximizes x(A)− f(A), i.e., the most
violated inequality is valuated as:

max {x(A)− f(A) : A ∈ W} = max {x(A)− f(A) : A ⊆ E} (19.19)

Since x is modular and x(E \A) = x(E)− x(A), we can express this
via a min as in;:

min {f(A) + x(E \A) : A ⊆ E} (19.20)

More importantly, min {f(A) + x(E \A) : A ⊆ E} is a form of
submodular function minimization, namely
min {f(A)− x(A) : A ⊆ E} for a submodular f and x ∈ RE+,
consisting of a difference of polymatroid and modular function (so
f − x is no longer necessarily monotone, nor positive).
We will ultimately answer how general this form of SFM is.
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Most violated inequality/polymatroid membership/SFM

Consider

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
(19.19)

Suppose we have any x ∈ RE+ such that x 6∈ P+
f , most violated

inequality is based on set A that solves min {f(A)− x(A) : A ⊆ E} or
min {f(A) + x(E \A) : A ⊆ E}
Hence, there must be a set of W ⊆ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rM (A) for A ∈ W.

1

2 P

x

1

2 P
x

1

2 P

W = {{1}, {1, 2}} W = {{2}, {1, 2}} W = {{1, 2}}
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Fundamental circuits in matroids

Lemma 19.2.9
Let I ∈ I(M), and e ∈ E, then I ∪ {e} contains at most one circuit in M .

Proof.
Suppose, to the contrary, that there are two distinct circuits C1, C2

such that (C1 ∪ C2) ⊆ I ∪ {e}.
Then e ∈ C1 ∩ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ⊆ (C1 ∪ C2) \ {e} ⊆ I
This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I ∪ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I ∪ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).
If e ∈ span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).
If e ∈ I, then I + e = I doesn’t create a circuit. In such cases, C(I, e)
is not really defined.
In such cases, we define C(I, e) = {e}, and we will soon see why.
If e /∈ span(I) (i.e., when I + e is independent), then we set
C(I, e) = ∅.
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The sat function = Polymatroid Closure

In a matroid, closure (span) of a set A are all items that A spans (eq.
that depend on A).
We wish to generalize closure to polymatroids.
Consider x ∈ Pf for polymatroid function f .
Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.
That is, we saw in Lecture 11 that for any A,B ∈ D(x), we have that
A ∪B ∈ D(x) and A ∩B ∈ D(x), which can constitute a join and
meet.
Recall, for a given x ∈ Pf , we have defined this tight family as

D(x) = {A : A ⊆ E, x(A) = f(A)} (19.20)

and

sat(x)
def
=
⋃
{A : A ∈ D(x)} (19.21)
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Minimizers of a Submodular Function form a lattice

Theorem 19.2.10
For arbitrary submodular f , the minimizers are closed under union and
intersection. That is, letM = argminX⊆E f(X) be the set of minimizers of
f . Let A,B ∈M. Then A ∪B ∈M and A ∩B ∈M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) ≤ f(A ∩B) and
f(A) = f(B) ≤ f(A ∪B).
By submodularity, we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (19.22)

Hence, we must have f(A) = f(B) = f(A ∪B) = f(A ∩B).

Thus, the minimizers of a submodular function form a lattice, and there is a
maximal and a minimal minimizer of every submodular function.
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The sat function = Polymatroid Closure

Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).
For some x ∈ Pf , we have defined:

cl(x)
def
= sat(x)

def
=
⋃
{A : A ∈ D(x)} (19.22)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (19.23)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (19.24)

Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function fx(A) , f(A)− x(A).
Eq. (19.24) says that sat consists of elements of E for point x that are
Pf saturated (any additional positive movement, in that dimension,
leaves Pf ). We’ll revisit this in a few slides.
First, we see how sat generalizes matroid closure.
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The sat function = Polymatroid Closure

Lemma 19.2.10 (Matroid sat : RE+ → 2E is the same as closure.)

For I ∈ I, we have sat(1I) = span(I) (19.26)

Proof.
For 1I(I) = |I| = r(I), so I ∈ D(1I) and I ⊆ sat(1I). Also,
I ⊆ span(I).
Consider some b ∈ span(I) \ I.
Then I ∪ {b} ∈ D(1I) since 1I(I ∪ {b}) = |I| = r(I ∪ {b}) = r(I).
Thus, b ∈ sat(1I).

Therefore, sat(1I) ⊇ span(I) .
. . .
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Saturation Capacity

The max is achieved when

α = ĉ(x; e)
def
= min {f(A)− x(A),∀A ⊇ {e}} (19.43)

ĉ(x; e) is known as the saturation capacity associated with x ∈ Pf and
e.
Thus we have for x ∈ Pf ,

ĉ(x; e)
def
= min {f(A)− x(A),∀A 3 e} (19.44)
= max {α : α ∈ R, x+ α1e ∈ Pf} (19.45)

We immediately see that for e ∈ E \ sat(x), we have that ĉ(x; e) > 0.
Also, we have that: e ∈ sat(x) ⇔ ĉ(x; e) = 0.
Note that any α with 0 ≤ α ≤ ĉ(x; e) we have x+ α1e ∈ Pf .
We also see that computing ĉ(x; e) is a form of submodular function
minimization.
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Fund. Circuit/Dep SFM SFM via L.E. primal SFM via Min-Norm Point Review & Support for Min-Norm

Dependence Function

Tight sets can be restricted to contain a particular element.
Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (19.1)
= D(x) ∩ {A : A ⊆ E, e ∈ A} (19.2)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(x, e) denoted
as follows:

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else
(19.3)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).
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dep and sat in a lattice

Given some x ∈ Pf ,
The picture on the
right summarizes
the relationships
between the lattices
and sublattices.
Note, dep(x, e) ⊇
dep(x) =⋂ {A : x(A) = f(A)}.
In fact,
sat(x, e) = sat(x).
Why?
Example lattice on 5
elements.

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )

{a,b,c,d,e}

{a} {b} {c} {d} {e}

{a,c,e} {b,c,e}{a,b,e}

{a,b,d,e}

{d,e}

{a,d,e} {b,d,e}

{a,b,c,e}

{a,e} {b,e} {c,e}

{a,c,d,e}

{c,d,e}

{b,c,d,e}{a,b,c,d}

{c,d}{b,d}{a,b} {a,c} {a,d} {b,c}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

∅
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dep and sat in a lattice

Given x ∈ Pf , recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

⋃ {A : A ∈ D(x)} is the “1” element of this
lattice.
Consider the “0” element of D(x), i.e., dry(x)

def
=
⋂ {A : A ∈ D(x)}

We can see dry(x) as the elements that are necessary for tightness.
That is, we can equivalently define dry(x) as

dry(x) =
{
e′ : x(A) < f(A),∀A 63 e′

}
(19.4)

This can be read as, for any e′ ∈ dry(x), any set that does not contain
e′ is not tight for x (any set A that is missing any element of dry(x) is
not tight).
Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).
Note that dry need not be the empty set. Exercise: give example.
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e-containing dep and sat

Now, given x ∈ Pf , and e ∈ sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e ∈ A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=
⋃ {A : A ∈ D(x, e)}.

Analogously, we can define the “0” element of this sub-lattice as
dry(x, e)

def
=
⋂ {A : A ∈ D(x, e)}.

We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e ∈ sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
{
e′ : x(A) < f(A),∀A 63 e′, e ∈ A

}
(19.5)

This can be read as, for any e′ ∈ dry(x, e), any e-containing set that
does not contain e′ is not tight for x. Could call it ntight(x, e),
necessary elements for e-containing tightness.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (19.5).
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I ∈ I giving 1I ∈ Pr.
We have sat(1I) = span(I) = closure(I).
Suppose e ∈ sat(1I) \ I, then consider an A 3 e with |I ∩A| = r(A).
Then I ∩A serves as a base for A (i.e., I ∩A spans A) and any such A
contains a circuit (i.e., we can add e ∈ A \ I to I ∩A w/o increasing
rank).
Given e ∈ sat(1I) \ I, and consider dep(1I , e), with

dep(1I , e) =
⋂
{A : e ∈ A ⊆ E,1I(A) = r(A)} (19.6)

=
⋂
{A : e ∈ A ⊆ E, |I ∩A| = r(A)} (19.7)

=
⋂
{A : e ∈ A ⊆ E, r(A)− |I ∩A| = 0} (19.8)

By SFM lattice, ∃ a unique minimal A 3 e with |I ∩A| = r(A).
Thus, dep(1I , e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Therefore, when e ∈ sat(1I) \ I, then dep(1I , e) = C(I, e) where
C(I, e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).
Now, if e ∈ sat(1I) ∩ I with I ∈ I, we said that C(I, e) was undefined
(since no circuit is created in this case) and so we defined it as
C(I, e) = {e}
This explains why: for such an e, we have dep(1I , e) = {e} since all
such sets A 3 e with |I ∩A| = r(A) contain e, but in this case no
cycle is created, i.e., |I ∩A| ≥ |I ∩ {e}| = r(e) = 1.
We are thus free to take subsets of I as A, all of which must contain e,
but all of which have rank equal to size, and min size is 1.
Also note: in general for x ∈ Pf and e ∈ sat(x), we have dep(x, e) is
tight by definition (i.e., x(dep(x, e)) = f(dep(x, e))), the minimum
e-constaining x-tight set.
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Summary of sat, and dep

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight) set
w.r.t. x. I.e., sat(x) = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) ,

⋃
{A : A ∈ D(x)} (19.9)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (19.10)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (19.11)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(19.12)

Note, for x ∈ Pf , if x+ α(1e − 1e′) ∈ Pf , then x+ α′(1e − 1e′) ∈ Pf for
any 0 ≤ α′ < α.
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Dependence Function and exchange
For e ∈ span(I) \ I, we have that I + e /∈ I. This is a set addition
restriction property.
Analogously, for e ∈ sat(x), any x+ α1e /∈ Pf for α > 0. This is a
vector increase restriction property.
Recall, we have C(I, e) \ e′ ∈ I for e′ ∈ C(I, e). I.e., C(I, e) consists
of elements that when removed recover independence.
In other words, given an e ∈ span(I) \ I, we have that

C(I, e) = {a ∈ E : I + e− a ∈ I} (19.13)

I.e., an addition of e to I stays within I only if we simultaneously
remove one of the elements of C(I, e).
But, analogous to the circuit case, is there an exchange property for
dep(x, e) in the form of vector movement restriction?
We might expect the vector dep(x, e) property to take the form:
a positive move in the e-direction stays within P+

f only if we
simultaneously take a negative move in one of the dep(x, e) directions.
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Dependence Function and exchange in 2D
dep(x, e) is set of neg. directions we must move if we want to move in pos.
e direction, starting at x and staying within Pf .
Viewable in 2D, we have for A,B ⊆ E, A ∩B = ∅:

(e)
A

B

A

B

(e)

(e)-(a)-(a)
x x

Left: e ∈ B and A ∩ dep(x, e) =
∅, and we can’t move further in
(e) direction, and moving in any
negative a ∈ A direction doesn’t
change that. No dependence be-
tween (e) and any element in A.

Right: A ⊆ dep(x, e). We can’t
move further in the (e) direction,
but we can move further in (e) di-
rection by moving in some negative
a ∈ A direction. Dependence be-
tween (e) and elements in A.
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Dependence Function and exchange in 3D
We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
In 3D, we have:

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) x

x

(e)

-(a)
(e
)-(
a)

0.6

0.8

1

1.2

(a) x

(e)

-(a)

(e
)-(
a)

I.e., for e ∈ sat(x), a ∈ sat(x), a ∈ dep(x, e), e /∈ dep(x, a), and
dep(x, e) = {a : a ∈ E,∃α > 0 : x+ α(1e − 1a) ∈ Pf} (19.14)

We next show this formally . . .
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dep and exchange derived

The derivation for dep(x, e), x ∈ Pf , involves turning a strict inequality into
a non-strict one with a strict explicit slack variable α:

dep(x, e) = ntight(x, e) = (19.15)
=
{
e′ : x(A) < f(A),∀A 63 e′, e ∈ A

}
(19.16)

=
{
e′ : ∃α > 0, s.t. α ≤ f(A)− x(A),∀A 63 e′, e ∈ A

}
(19.17)

=
{
e′ : ∃α > 0, s.t. α1e(A) ≤ f(A)− x(A),∀A 63 e′, e ∈ A

}
(19.18)

=
{
e′ : ∃α > 0, s.t. α(1e(A)− 1e′(A)) ≤ f(A)− x(A),∀A 63 e′, e ∈ A

}
(19.19)

=
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A),∀A 63 e′, e ∈ A

}
(19.20)

Now, 1e(A)− 1e′(A) = 0 if either {e, e′} ⊆ A, or {e, e′} ∩A = ∅.
Also, if e′ ∈ A but e /∈ A, then
x(A) + α(1e(A)− 1e′(A)) = x(A)− α ≤ f(A) since x ∈ Pf and α > 0.
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dep and exchange derived

thus, we get the same in the above if we remove the constraint
A 63 e′, e ∈ A, that is we get

dep(x, e) =
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A),∀A

}
(19.21)

This is then identical to

dep(x, e) =
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(19.22)

Compare with original, the minimal element of D(x, e), with e ∈ sat(x):

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else
(19.23)
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Submodular Function Minimization (SFM)

We now have the tools to discuss unconstrained SFM.
We saw that SFM can be used to solve most violated inequality
problems for a given x ∈ Pf and, in general, SFM can solve the
question “Is x ∈ Pf ” by seeing if x violates any inequality (if the most
violated one is negative, solution to SFM, then x ∈ Pf ). That is, given
x ∈ RV , compute either:

min
A⊆V

(f(A)− x(A)), or min
A⊆V

(f(A) + x(V \A)). (19.24)

Unconstrained SFM, minA⊆V f(A) solves many other problems as well
in combinatorial optimization, machine learning, and other fields. It
generally produces sets that are homogeneous in some way as measured
by f .
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SFM application in ML: Low complexity data subsets.
Find large (or preferable) and low-complexity subsets of datasets Lin &
Bilmes, “An Application of the Submodular Principal Partition to Training Data
Subset Selection”, NeurIPS workshops 2011
Given bipartite graph G =
(V,U,E), nodes V , U and edges
E, where V is a set of data objects,
U is a set of possible properties of
each data object (e.g., objects in
images, or words in documents).
Neighbor function Γ(X) ⊆ U
are the objects in X ⊆ V and
f(Γ(X)) is submodular for sub-
modular f : 2V → R+.

Γ(X)

X

U
E

V

v1

v2

v3

v4

u1

u2

u3

Given modular w : 2V → R+ scores for objects v ∈ V . Then
h(X) = w(V \X) + f(Γ(X)) is submodular, the minimization (SFM)
of which produces are desiable (w(X) big, large if w(X) = |X|) subset
that is low complexity relative to f(Γ(X)).
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Ellipsoid algorithm, and polynomial time SFM

For a long time, it was not known if general purpose submodular function
minimization was possible in polynomial time.
This was answered in the early 1980s via the help of Edmonds’s greedy
algorithm from 1970. Let C ⊆ RV be a non-empty convex compact set.

Definition 19.4.1 ((strong) optimization problem)

Given c ∈ RV , find a vector x ∈ C that maximizes cᵀx on C. I.e., solve

max
x∈C

cᵀx (19.25)

Definition 19.4.2 ((strong) separation problem)

Given a vector y ∈ RV , decide if y ∈ C, and if not, find a hyperplane that
separates y from C. I.e., find vector c ∈ RV such that:

cᵀy > max
x∈C

cᵀx (19.26)
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Ellipsoid algorithm, and polynomial time SFM

We have the following important theorem:

Theorem 19.4.3 (Grötschel, Lovász, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm to
solve the separation problem for the members of C if‌f there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.
We saw already that the Edmonds greedy algorithm solves the strong
optimization problem for polymatroidal polytopes, e.g., maxx∈Bf

cᵀx.
The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and
then creates a sequence of elipsoids of exponentially decreasing volume
which are used to address a P membership problem.
This is sufficient to show that we can solve SFM in polynomial time! See
the book: Grötschel, Lovász, and Schrijver, “Geometric Algorithms and
Combinatorial Optimization” for details.
Unfortunately, it does not lead to a practical algorithm.
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Lovász extension, convex minimization, and SFM

SFM is also related to the convexity of the Lovász extension, the ease
of minimizing convex functions.
We can recover f from f̆ via f(A) = f̆(1A). We can also minimize f̆
since it is convex.
We will now show that we can get discrete solutions to the minimization
of f from the continuous solution to the minimization of f̆ .
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Review from lecture 17

The next slide comes from lecture 17.
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One slide review of convex closure/L.E./CI

convex closure f̌(x) = minp∈4n(x)ES∼p[f(S)], where where 4n(x) ={
p ∈ R2n :

∑
S⊆V pS = 1, pS ≥ 0∀S ⊆ V, & ∑

S⊆V pS1S = x
}

“Edmonds” extension f̆(w) = max(wx : x ∈ Bf )

Lovász extension fLE(w) =
∑m

i=1 λif(Ei), with λi such that
w =

∑m
i=1 λi1Ei

fσ∗(w) = maxσ∈Π[m]
wᵀcσ, Π[m] set of m! permutations of [m],

σ ∈ Π[m] a permutation, cσ vector with cσi = f(Eσi)− f(Eσi−1),
Eσi = {eσ1 , eσ2 , . . . , eσi}.
Choquet integral Cf (w) =

∑m
i=1(wei − wei+1)f(Ei)

ſ(w) =
∫ +∞
−∞ f̂(α)dα, f̂(α) =

{
f({w ≥ α}) if α ≥ 0

f({w ≥ α})− f(E) if α < 0

All the same when f is submodular. We’ll use f̆(w) for the Lovász
extension.
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Minimizing f̆ vs. minimizing f

In fact, we have:

Theorem 19.5.1

Let f be submodular and f̆ be its Lovász extension. Then
min {f(A)|A ⊆ E} = minw∈{0,1}E f̆(w) = minw∈[0,1]E f̆(w).

Proof.

First, since f̆(1A) = f(A),∀A ⊆ V , we clearly have
min {f(A)|A ⊆ V } = minw∈{0,1}E f̆(w) ≥ minw∈[0,1]E f̆(w).

Next, consider any w ∈ [0, 1]E , sort elements E = {e1, . . . , em} as
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), define Ei = {e1, . . . , ei}, and define
λm = w(em) and λi = w(ei)− w(ei+1) for i ∈ {1, . . . ,m− 1}.
Then, as we have seen, w =

∑
i λi1Ei and λi ≥ 0.

Also,
∑

i λi = w(e1) ≤ 1.
. . .
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Minimizing f̆ vs. minimizing f

. . . cont. proof of Thm. 19.5.1.

Note that since f(∅) = 0, min {f(A)|A ⊆ E} ≤ 0.
Then we have for all w ∈ [0, 1]E ,

f̆(w) =

∫ 1

0
f({w ≥ α})dα =

m∑
i=1

λif(Ei) (19.27)

≥
m∑
i=1

λi min
A⊆E

f(A) (19.28)

≥ min
A⊆E

f(A) (19.29)

Thus, min {f(A)|A ⊆ E} = minw∈[0,1]E f̆(w).
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Other minimizers based on min of f̆
Let w∗ ∈ argmin

{
f̆(w)|w ∈ [0, 1]E

}
and let

A∗ ∈ argmin {f(A)|A ⊆ V }.
Previous theorem states that f̆(w∗) = f(A∗).
Let λ∗i be the Lovász extension weights and E∗i be the chain of sets
associated with optimal w∗. From previous theorem, we have

f̆(w∗) =
∑
i

λ∗i f(E∗i ) = f(A∗) = min {f(A)|A ⊆ E} (19.30)

and that f(A∗) ≤ f(E∗i ),∀i, and that f(A∗) ≤ 0, and
∑

i λi ≤ 1.
Thus, since w∗ ∈ [0, 1]E , each 0 ≤ λ∗i ≤ 1, we have for all i such that
λ∗i > 0,

f(E∗i ) = f(A∗) (19.31)

meaning such E∗i are also minimizers of f , and
∑

i λi = 1.
Note that the negative of f(A∗) is crucial here (see next slides).
By the L.E. properties, w∗ =

∑
i λ
∗
i1Ei , we have that w∗ is in the

convex hull of incidence vectors of minimizers of f .
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.
We know that f(E∗i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E∗i ).

If f(A∗) = 0, then we must have f(E∗i ) = 0 for any i such that
λi > 0. Otherwise, assume f(A∗) < 0.
Suppose there exists an i such that f(E∗i ) > f(A∗).
Then we have

f(A∗) =
∑
i

λif(E∗i ) >
∑
i

λif(A∗) = f(A∗)
∑
i

λi (19.32)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.
Hence, must have f(E∗i ) = f(A∗) for all i.
Hence,

∑
i λi = 1 since f(A∗) =

∑
i λif(A∗).
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Yet another way to see Equation 19.31

We know f(A∗) ≤ 0. Consider two cases in Equation 19.31.
Case 1: f(A∗) = 0. Then for any i with λi > 0 we must have
f(Ei) = 0 as well for all i since f(A∗) ≤ f(Ei).
Case 2 is where f(A∗) < 0. In this second case, we have

0 > f(A∗) =
∑
i

λif(Ei) ≥
∑
i

λif(A∗) (19.33)

(a)

≥
∑
i

λif(A∗) + (1− λ̄)f(A∗) = f(A∗) (19.34)

where λ̄ =
∑

i λi and (1− λ̄) ≥ 0 and where (a) follows since
f(A∗) < 0.
Hence, all inequalities must be equalities, which means that we must
have that λ̄ = 1.
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θ-rounding the L.E. minimum

We can also view the above as a form of rounding a continuous convex
relaxation to the problem.

Definition 19.5.2 (θ-rounding)

Given vector x ∈ [0, 1]E , choose θ ∈ (0, 1) and define a set corresponding to
elements above θ, i.e.,

X̂θ = {i : x̂(i) ≥ θ} , {x̂ ≥ θ} (19.35)

Lemma 19.5.3 (Fujishige-2005)

Given a continuous minimizer x∗ ∈ argminx∈[0,1]n f̆(x), the discrete
minimizers are exactly the maximal chain of sets ∅ ⊆ Xθ1 ⊂ . . . Xθk

obtained by θ-rounding x∗, for θj ∈ (0, 1).
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Min-Norm Point: Definition

Consider the optimization:

minimize ‖x‖22 (19.36a)

subject to x ∈ Bf (19.36b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.
Note, x∗ is the unique optimal solution since we have a strictly convex
objective over a set of convex constraints.
x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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Ex: 3D base Bf : permutahedron

Consider submodular
function f : 2V → R with
n = |V | = 4, and for
X ⊆ V , concave g,

f(X) = g(|X|) =

|X|∑
i=1

(n− i+ 1)

= |X|
(
n− |X| − 1

2

)
Then Bf is a 3D polytope,
and in this particular case
gives us a permutahedron
with 24 distinct extreme
points, on the right (from
wikipedia).
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Min-Norm Point and Submodular Function Minimization
Given optimal solution x∗ to [min ‖x‖22 s.t. x ∈ Bf ], and consider:

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E), (19.37)
A− = {e : x∗(e) < 0}, A0 = {e : x∗(e) ≤ 0}. (19.38)

Thus, we immediately have that:

A− ⊆ A0 (19.39)

and that

x∗(A−) = x∗(A0) = y∗(A−) = y∗(A0). (19.40)

These quantities will solve the SFM problem: we will see that
f(A−) = f(A0) = minA⊆V f(A) and that A− is the unique minimal
minimizer and A0 is the unique maximal minimizer.
The proof is nice since it uses recently developed tools (e.g., dep, sat).
We’ll also show both the Fujishige-Wolfe algorithm and the
Frank-Wolfe algorithm (which are quite different from each other) can
find the min-norm point relatively efficiently.
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Base Polytope Bf Existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)

}
always

exists.
Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).
From past lectures, we now know that:
(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.
Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base Polytope Bf Dominance
Now, for any A ⊆ E, we can generate a particular point in Bf
That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|, and
where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with k = |A|.
Note there are k!(n− k)! < n! such orderings.
Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).
We have generated a point (a vertex) x in Bf such that x(A) = f(A).
Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
6= ∅ (19.41)

In words, Bf inter-
sects all “multi-axis
congruent” hyperplanes
within RE of the form{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Bf dominates Pf
In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 19.7.1
If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.
We construct the y algorithmically: initially set y ← x.
y ∈ Pf , T is tight for y so y(T ) = f(T ).
Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 3 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x . . .
Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 19 - Dec 7th, 2020 F45/54 (pg.45/54)

Fund. Circuit/Dep SFM SFM via L.E. primal SFM via Min-Norm Point Review & Support for Min-Norm

Bf dominates Pf
. . . proof of Thm. 19.7.1 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).
We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′+ e)− y(T ′+ e). Hence, after
each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of ĉ(y; e)).
Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .
Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (19.42)
= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y doesn’t
decrease and it stays within Pf .
Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Review from Lecture 12

The following slide repeats Theorem 13.4.2 from lecture 12 and is one of the
most important theorems in submodular theory.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 19.7.1

Let f be a submodular function defined on subsets of E. For any x ∈ RE ,
we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(19.1)

Essentially the same theorem as Theorem ??, but note Pf rather than P+
f .

Taking x = 0 we get:

Corollary 19.7.2
Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (19.2)
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Modified max-min theorem
Min-max theorem (Thm 13.4.2) restated for x = 0.

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (19.43)

Theorem 19.7.2 (Edmonds-1970)

min {f(X)|X ⊆ E} = max
{
x−(E)|x ∈ Bf

}
(19.44)

where x−(e) = min {x(e), 0} for e ∈ E.

Proof via the Lovász ext.

min {f(X)|X ⊆ E} = min
w∈[0,1]E

f̆(w) = min
w∈[0,1]E

max
x∈Pf

wᵀx (19.45)

= min
w∈[0,1]E

max
x∈Bf

wᵀx (19.46)

= max
x∈Bf

min
w∈[0,1]E

wᵀx (19.47)

= max
x∈Bf

x−(E) (19.48)
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Convexity, Strong duality, and min/max swap

The min/max switch follows from strong duality. I.e., consider
g(w, x) = wᵀx and we have domains w ∈ [0, 1]E and x ∈ Bf . then for any
(w, x) ∈ [0, 1]E ×Bf , we have

min
w′∈[0,1]E

g(w′, x) ≤ g(w, x) ≤ max
x′∈Bf

g(w, x′) (19.49)

which means that we have weak duality

max
x∈Bf

min
w′∈[0,1]E

g(w′, x) ≤ min
w∈[0,1]E

max
x′∈Bf

g(w, x′) (19.50)

but since g(w, x) is linear, we have strong duality, meaning

max
x∈Bf

min
w′∈[0,1]E

g(w′, x) = min
w∈[0,1]E

max
x′∈Bf

g(w, x′) (19.51)
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Alternate proof of modified max-min theorem

We start directly from Theorem 13.4.2.

max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (19.52)

Given y ∈ RE , define y− ∈ RE with y−(e) = min {y(e), 0} for e ∈ E.

max (y(E) : y ≤ 0, y ∈ Pf ) = max
(
y−(E) : y ≤ 0, y ∈ Pf

)
(19.53)

= max
(
y−(E) : y ∈ Pf

)
(19.54)

= max
(
y−(E) : y ∈ Bf

)
(19.55)

The first equality follows since y ≤ 0. The second equality (together with
the first) shown on following slide. The third equality follows since for any
x ∈ Pf there exists a y ∈ Bf with x ≤ y (follows from Theorem 19.7.1).

e1

e2

Bf

e1

e2

Bf

e1

e2

Bf e1

e2

Bf

e1

e2

Bf
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Alternate proof of modified max-min theorem
Consider the following two problems for down-closed polyhedron P :

max
∑
e∈E

y(e)

s.t. y ≤ x
y ∈ P

(19.56a)

(19.56b)
(19.56c)

max
∑
e∈E

min(y(e), x(e))

s.t. y ∈ P

(19.57a)

(19.57b)

Solutions identical cost. Let y∗1 be l.h.s. OPT and y∗2 be r.h.s. OPT.
Consider l.h.s. OPT y∗1 in r.h.s. evaluation and suppose it is worse
(lower) than r.h.s. OPT:∑

e∈E
min(y∗1(e), x(e)) <

∑
e∈E

min(y∗2(e), x(e)) (19.58)

But the vector ȳ∗1 with entries ȳ∗1(e) = min(y∗2(e), x(e)) has
ȳ∗1(e) ≤ x(e) and ȳ∗1 ∈ P since y∗2 ∈ P , ȳ∗1 ≤ y∗2, and P is down-closed.
Thus, ȳ∗1 is l.h.s. feasible but a better l.h.s. evaluation, a contradiction
of the optimality of y∗1 for l.h.s.
Similarly, consider r.h.s. OPT y∗2 in l.h.s. evaluation and suppose it is
worse (lower) than l.h.s. OPT∑

e∈E
y∗2(e) <

∑
e∈E

y∗1(e) (19.59)

But the vector ȳ∗2 with entries ȳ∗2(e) = y∗1(e) has ȳ∗2 ∈ P and since
ȳ∗2(e) ≤ x(e) for all e, we have∑

e∈E
y∗2(e) <

∑
e∈E

y∗1(e) =
∑
e∈E

ȳ∗2(e) =
∑
e∈E

min(ȳ∗2(e), x(e)) (19.60)

Thus, we have r.h.s. feasible vector ȳ∗2 strictly better than r.h.s. OPT
contradicting the optimality of y∗2.
Thus, l.h.s. and r.h.s. have identically valued solutions.
Hence, from previous slide, taking x = 0, max (y(E) : y ≤ 0, y ∈ Pf ) =
max (y−(E) : y ∈ Pf ) = max (y−(E) : y ∈ Bf )
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min {wᵀx : x ∈ Bf}
Recall that the greedy algorithm solves, for w ∈ RE+

max {wᵀx|x ∈ Pf} = max {wᵀx|x ∈ Bf} (19.61)

since for all x ∈ Pf , there exists y ≥ x with y ∈ Bf .
For arbitrary w ∈ RE , we saw in Lecture 16 that the greedy algorithm
will also solve:

max {wᵀx|x ∈ Bf} (19.62)

Also, since w ∈ RE is arbitrary, and since

min {wᵀx|x ∈ Bf} = −max {−wᵀx|x ∈ Bf} (19.63)

the greedy algorithm using ordering (e1, e2, . . . , em) such that

w(e1) ≤ w(e2) ≤ · · · ≤ w(em) (19.64)

will solve l.h.s. of Equation (19.63).
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Greedy solves max {wᵀx|x ∈ Bf} for arbitrary w ∈ RE

Let f(A) be arbitrary submodular function, and f(A) = f ′(A)−m(A)
where f ′ is polymatroidal, and w ∈ RE .

max {wᵀx|x ∈ Bf} = max {wᵀx|x(A) ≤ f(A)∀A, x(E) = f(E)}
= max

{
wᵀx|x(A) ≤ f ′(A)−m(A)∀A, x(E) = f ′(E)−m(E)

}
= max

{
wᵀx|x(A) +m(A) ≤ f ′(A)∀A, x(E) +m(E) = f ′(E)

}
= max

{
wᵀx+ wᵀm|

x(A) +m(A) ≤ f ′(A)∀A, x(E) +m(E) = f ′(E)
}
− wᵀm

= max
{
wᵀy|y ∈ Bf ′

}
− wᵀm

= wᵀy∗ − wᵀm = wᵀ(y∗ −m)

where y = x+m, so that x∗ = y∗ −m.
So y∗ uses greedy algorithm with positive orthant Bf ′ . To show, we use
Theorem ?? in Lecture 11, but we don’t require y ≥ 0, and don’t stop when
w goes negative to ensure y∗ ∈ Bf ′ . Then when we subtract off m from y∗,
we get solution to the original problem.
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