

Logistics		Review
Class Road Map - E	EE563	
 L1(9/30): Motivation, Applications, Definitions, Properties L2(10/5): Sums concave(modular), uses (diversity/costs, feature selection), information theory L3(10/7): Monge, More Definitions, Graph and Combinatorial Examples, L4(10/12): Graph & Combinatorial Examples, Matrix Rank, Properties, Other Defs, Independence L5(10/14): Properties, Defs of Submodularity, Independence L6(10/19): Matroids, Matroid Examples, Matroid Rank, L7(10/21): Matroid Rank, More on Partition Matroid, Laminar Matroids, System of Distinct Reps, Transversals L8(10/26): Transversal Matroid, Matroid and representation, Dual Matroid L9(10/28): Other Matroid Properties, Combinatorial Geometries, Matroid and Greedy, Polyhedra, Matroid Polytopes L10(11/2): Matroid Polytopes, Matroids, → Polymatroids 	 L11(11/4): Matroids → Polymatroids, Polymatroids L12(11/9): Polymatroids, Polymatroids and Greedy L-(11/11): Veterans Day, Holiday L13(11/16): Polymatroids and Greedy, Possible Polytopes, Extreme Points, Cardinality Constrained Maximization L14(11/18): Cardinality Constrained Maximization, Curvature L15(11/23): Curvature, Submodular Max w. Other Constraints, Start Cont. Extensions L16(11/25): Submodular Max w. Other Constraints, Cont. Extensions, Lovász extension L17(11/30): Choquet Integration, Non-linear Measure/Aggregation, Definitions/Properties, Examples. L18(12/2): Multilinear Extension, Submodular Max/polyhedral, Most Violated Ineq., Matroids Closure/Sat L19(12/7): Fund. Circuit/Dep, SFM, L.E. primal, Start SFM via Min-Norm Point L20(12/9): L21(12/14): final meeting (presentations) maximization. 	
Last day of instruction, Fri. Dec 1 Prof. Jeff Bilmes EE563/Spr	Ith. Finals Week: Dec 12-18, 2020 ring 2020/Submodularity - Lecture 19 - Dec 7th, 2020	F2/54 (pg.2/54)

Review

Rest of class

- Homework 4 posted, due Thursday Dec 17th, 2020, 11:55pm.
- Final project paper proposal, was due Sunday Dec 6th, 11:59pm.
- Final project 4-page paper and presentation slides, due Sunday Dec 13th, 11:59pm.
- Final project presentation, Monday Dec 14th, starting at 10:30am.
- Final project: Read and present a recent (past 5 years) paper on submodular/supermodular optimization. Paper should have both a theoretical and practical component. What is due: (1) 4-page paper summary, and (2) 10 minute presentation about the paper, will be giving presentations on Monday 12/14/2020. You must choose your paper before the 14th (this will be HW5), and you must turn in your slides and 4-page paper (this will be HW6).
- Recall, grades will be based on a combination of a final project (40%) and the four homeworks (60%).

Logistics

Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
(19.19)

- Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \notin P_r^+$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_r^+ corresponds to the set A that maximizes $x(A) r_M(A)$, i.e., the most violated inequality is valuated as:

 $\max \{x(A) - r_M(A) : A \in \mathcal{W}\} = \max \{x(A) - r_M(A) : A \subseteq E\}$ (19.20)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min\left\{r_M(A) + x(E \setminus A) : A \subseteq E\right\}$$
(19.21)

EE563/Spring 2020/Submodularity - Lecture 19 - Dec 7th, 2020

Most violated inequality/polymatroid membership/SFM

• The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

 $\max \{x(A) - f(A) : A \in \mathcal{W}\} = \max \{x(A) - f(A) : A \subseteq E\}$ (19.19)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min \left\{ f(A) + x(E \setminus A) : A \subseteq E \right\}$$
(19.20)

Review

- More importantly, min {f(A) + x(E \ A) : A ⊆ E} is a form of submodular function minimization, namely min {f(A) x(A) : A ⊆ E} for a submodular f and x ∈ ℝ^E₊, consisting of a difference of polymatroid and modular function (so f x is no longer necessarily monotone, nor positive).
- We will ultimately answer how general this form of SFM is.

Review Most violated inequality/polymatroid membership/SFM Consider $P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$ (19.19)• Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \notin P_f^+$, most violated inequality is based on set A that solves $\min \{ f(A) - x(A) : A \subseteq E \}$ or $\min \left\{ f(A) + x(E \setminus A) : A \subseteq E \right\}$ • Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$. θX Ρ 2 2 2 Ρ Ρ $\mathcal{W} = \{\{1\}, \{1, 2\}\}$ $\mathcal{W} = \{\{2\}, \{1, 2\}\}$ $\mathcal{W} = \{\{1, 2\}\}$

Logistics

Fundamental circuits in matroids

Lemma 19.2.9

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_1, C_2 such that $(C_1 \cup C_2) \subseteq I \cup \{e\}$.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Logistics

The sat function = Polymatroid Closure

- In a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 11 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_f$, we have defined this tight family as

$$\mathcal{D}(x) = \{A : A \subseteq E, x(A) = f(A)\}$$
(19.20)

and

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(19.21)

Logistics

Review

Minimizers of a Submodular Function form a lattice

Theorem 19.2.10

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$. By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (19.22)

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

Logistics

The sat function = Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(19.22)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(19.23)

Review

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(19.24)

- Hence, sat(x) is the maximal (zero-valued) minimizer of the submodular function f_x(A) ≜ f(A) x(A).
- Eq. (19.24) says that sat consists of elements of E for point x that are P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

 $12/54 \,(\mathrm{pg.}12/54)$

Saturation Capacity

• The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(19.43)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(19.44)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(19.45)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x; e) > 0$.
- Also, we have that: $e \in \operatorname{sat}(x) \Leftrightarrow \hat{c}(x; e) = 0$.

EE563/Spring 2020/Submodularity

- Note that any α with $0 \leq \alpha \leq \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x; e)$ is a form of submodular function minimization.

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$
(19.1)

$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
(19.2)

- Thus, $\mathcal{D}(x, e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x, e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(19.3)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the minimal x-tight set containing e).

Fund. Circuit/Dep SFM SFM via L.E. primal SFM via Min-Norm Point Review & Support for Min-I dep and sat in a lattice

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $sat(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
(19.4)

- This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is ntight(x), for the necessary for tightness (but we'll actually use neither name).
- \bullet Note that dry need not be the empty set. Exercise: give example.

e-containing dep and sat Now, given x ∈ P_f, and e ∈ sat(x), recall distributive sub-lattice of e-containing tight sets D(x, e) = {A : e ∈ A, x(A) = f(A)} We can define the "1" element of this sub-lattice as sat(x, e) def U {A : A ∈ D(x, e)}. Analogously, we can define the "0" element of this sub-lattice as dry(x, e) def ∩ {A : A ∈ D(x, e)}. We can see dry(x, e) as the elements that are necessary for e-containing tightness, with e ∈ sat(x). That is, we can view dry(x, e) as dry(x, e) = {e' : x(A) < f(A), ∀A ≇ e', e ∈ A} (19.5) This can be read as, for any e' ∈ dry(x, e), any e-containing set that does not contain e' is not tight for x. Could call it ntight(x, e),

necessary elements for *e*-containing tightness. • But actually, dry(x, e) = dep(x, e), so we have derived another expression for dep(x, e) in Eq. (19.5).

Fund Circuity/Dep SFM SFM via LE. primal SFM via LE. primal

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Suppose $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then I ∩ A serves as a base for A (i.e., I ∩ A spans A) and any such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩ A w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(19.6)

$$= \bigcap \left\{ A : e \in A \subseteq E, |I \cap A| = r(A) \right\}$$
(19.7)

$$= \bigcap \left\{ A : e \in A \subseteq E, r(A) - |I \cap A| = 0 \right\}$$
(19.8)

- By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.
- Thus, $dep(\mathbf{1}_{I}, e)$ must be a circuit since if it included more than a circuit, it would not be minimal in this sense.

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if e ∈ sat(1_I) ∩ I with I ∈ I, we said that C(I, e) was undefined (since no circuit is created in this case) and so we defined it as C(I, e) = {e}
- This explains why: for such an e, we have dep(1_I, e) = {e} since all such sets A ∋ e with |I ∩ A| = r(A) contain e, but in this case no cycle is created, i.e., |I ∩ A| ≥ |I ∩ {e}| = r(e) = 1.
- We are thus free to take subsets of *I* as *A*, all of which must contain *e*, but all of which have rank equal to size, and min size is 1.
- Also note: in general for x ∈ P_f and e ∈ sat(x), we have dep(x, e) is tight by definition (i.e., x(dep(x, e)) = f(dep(x, e))), the minimum e-constaining x-tight set.

Fund. Circuit/Dep SFM SFM via LE. primal SFM via Min-Norm Point Review & Support fo Summary of sat, and dep

• For $x \in P_f$, sat(x) (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., sat $(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(19.9)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\}$$
(19.10)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(19.11)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
$$= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
(19.12)

 $= \{e': \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$ (19.12) Note, for $x \in P_f$, if $x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f$, then $x + \alpha'(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f$ for any $0 \le \alpha' < \alpha$.

Fund. Circuit/Dep SFM SFM via LE. primal SFM via Min-Norm Point Review & Support for Min-Norm Dependence Function and exchange in 2D 2D

- dep(x, e) is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_f .
- Viewable in 2D, we have for $A, B \subseteq E$, $A \cap B = \emptyset$:

Left: $e \in B$ and $A \cap dep(x, e) = \emptyset$, and we can't move further in (e) direction, and moving in any negative $a \in A$ direction doesn't change that. No dependence between (e) and any element in A.

Right: $A \subseteq dep(x, e)$. We can't move further in the (e) direction, but we can move further in (e) direction by moving in some negative $a \in A$ direction. **Dependence** between (e) and elements in A.

Fund. Circuit/Dep SFM SFM via L.E. primal SFM via Min-Norm Point Review & Support for Min-Norm dep and exchange derived Image: Sem via L.E. primal Image: Sem via L.E. primal Image: Sem via L.E. primal Image: Sem via L.E. primal

• The derivation for dep(x, e), $x \in P_f$, involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$dep(x,e) = \mathsf{ntight}(x,e) =$$
(19.15)

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
(19.16)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(19.17)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(19.18)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(19.19)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \not\supseteq e', e \in A \right\}$$
(19.20)

• Now,
$$1_e(A) - \mathbf{1}_{e'}(A) = 0$$
 if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.

• Also, if
$$e' \in A$$
 but $e \notin A$, then
 $x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) = x(A) - \alpha \leq f(A)$ since $x \in P_f$ and $\alpha > 0$.

dep and exchange derived

nd. Circuit/Dep

• thus, we get the same in the above if we remove the constraint $A \not\supseteq e', e \in A$, that is we get

$$dep(x,e) = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \right\}$$
(19.21)

This is then identical to

$$dep(x,e) = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \right\}$$
(19.22)

• Compare with original, the minimal element of $\mathcal{D}(x, e)$, with $e \in \operatorname{sat}(x)$:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(19.23)

Fund. Circuit/Dep SFM SFM via L.E. primal SFM via Min-Norm Point Submodular Function Minimization (SFM)

- We now have the tools to discuss unconstrained SFM.
- We saw that SFM can be used to solve most violated inequality problems for a given x ∈ P_f and, in general, SFM can solve the question "Is x ∈ P_f" by seeing if x violates any inequality (if the most violated one is negative, solution to SFM, then x ∈ P_f). That is, given x ∈ ℝ^V, compute either:

$$\min_{A \subseteq V} (f(A) - x(A)), \text{ or } \min_{A \subseteq V} (f(A) + x(V \setminus A)).$$
(19.24)

 Unconstrained SFM, min_{A⊆V} f(A) solves many other problems as well in combinatorial optimization, machine learning, and other fields. It generally produces sets that are homogeneous in some way as measured by f.

SFM Fund. Circuit/Dep Review & Support IC Ellipsoid algorithm, and polynomial time SFM

- For a long time, it was not known if general purpose submodular function minimization was possible in polynomial time.
- This was answered in the early 1980s via the help of Edmonds's greedv algorithm from 1970. Let $C \subseteq \mathbb{R}^V$ be a non-empty convex compact set.

Definition 19.4.1 ((strong) optimization problem)

Given $c \in \mathbb{R}^V$, find a vector $x \in C$ that maximizes $c^{\mathsf{T}}x$ on C. I.e., solve

 $x \epsilon$

$$\max_{x \in C} c^{\mathsf{T}} x$$

(19.25)

(19.26)

Definition 19.4.2 ((strong) separation problem)

Given a vector $y \in \mathbb{R}^V$, decide if $y \in C$, and if not, find a hyperplane that separates y from C. I.e., find vector $c \in \mathbb{R}^V$ such that:

$$c^{\mathsf{T}}y > \max_{x \in C} c^{\mathsf{T}}x$$

Ellipsoid algorithm, and polynomial time SFM

• We have the following important theorem:

Theorem 19.4.3 (Grötschel, Lovász, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm to solve the separation problem for the members of C iff there is a polynomial-time algorithm to solve the optimization problem for the members of C.

- We saw already that the Edmonds greedy algorithm solves the strong optimization problem for polymatroidal polytopes, e.g., $\max_{x \in B_f} c^T x$.
- The ellipsoid algorithm first bounds a polytope *P* with an ellipsoid, and then creates a sequence of elipsoids of exponentially decreasing volume which are used to address a *P* membership problem.
- This is sufficient to show that we can solve SFM in polynomial time! See the book: Grötschel, Lovász, and Schrijver, "Geometric Algorithms and Combinatorial Optimization" for details.
- Unfortunately, it does not lead to a practical algorithm.

- SFM is also related to the convexity of the Lovász extension, the ease of minimizing convex functions.
- We will now show that we can get discrete solutions to the minimization of f from the continuous solution to the minimization of \check{f} .

Fund. Circuit/Dep SFM SFM via LE. primal SFM via LE. primal SFM via Min-Norm Point Review & Support for I One slide review of convex closure/L.E./Cl

- convex closure $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, where where $\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \ge 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$
- "Edmonds" extension $\check{f}(w) = \max(wx : x \in B_f)$
- Lovász extension $f_{\mathsf{LE}}(w) = \sum_{i=1}^m \lambda_i f(E_i)$, with λ_i such that $w = \sum_{i=1}^m \lambda_i \mathbf{1}_{E_i}$
- $f_{\sigma^*}(w) = \max_{\sigma \in \Pi_{[m]}} w^{\mathsf{T}} c^{\sigma}$, $\Pi_{[m]}$ set of m! permutations of [m], $\sigma \in \Pi_{[m]}$ a permutation, c^{σ} vector with $c_i^{\sigma} = f(E_{\sigma_i}) - f(E_{\sigma_{i-1}})$, $E_{\sigma_i} = \{e_{\sigma_1}, e_{\sigma_2}, \dots, e_{\sigma_i}\}$.

• Choquet integral
$$C_f(w) = \sum_{i=1}^m (w_{e_i} - w_{e_{i+1}}) f(E_i)$$

•
$$f(w) = \int_{-\infty}^{+\infty} \hat{f}(\alpha) d\alpha$$
, $\hat{f}(\alpha) = \begin{cases} f(\{w \ge \alpha\}) & \text{if } \alpha \ge 0\\ f(\{w \ge \alpha\}) - f(E) & \text{if } \alpha < 0 \end{cases}$

• All the same when f is submodular. We'll use $\check{f}(w)$ for the Lovász extension.

Fund. Circuit/Dep	SFM	SFM via L.E. primal	SFM via Min-Norm Point 	Review & Support for Min-Norm
Minimizin	g \breve{f} vs.	minimizing	f	

... cont. proof of Thm. 19.5.1.

• Note that since
$$f(\emptyset) = 0$$
, $\min \{f(A) | A \subseteq E\} \le 0$.

• Then we have for all $w \in [0,1]^E$,

$$\breve{f}(w) = \int_0^1 f(\{w \ge \alpha\}) d\alpha = \sum_{i=1}^m \lambda_i f(E_i)$$
(19.27)

$$\geq \sum_{i=1}^{m} \lambda_i \min_{A \subseteq E} f(A) \tag{19.28}$$

$$\geq \min_{A \subseteq E} f(A) \tag{19.29}$$

• Thus, $\min \{f(A) | A \subseteq E\} = \min_{w \in [0,1]^E} \check{f}(w).$

Fund. Create/Deep SFM SFM via LE. primal SFM via Min-Norm Point Review & support for Min-Norm A bit more on level sets being minimizers

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \ge f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.
- If $f(A^*) = 0$, then we must have $f(E_i^*) = 0$ for any i such that $\lambda_i > 0$. Otherwise, assume $f(A^*) < 0$.
- Suppose there exists an *i* such that $f(E_i^*) > f(A^*)$.
- Then we have

$$f(A^*) = \sum_i \lambda_i f(E_i^*) > \sum_i \lambda_i f(A^*) = f(A^*) \sum_i \lambda_i$$
(19.32)

and since $f(A^*) < 0,$ this means that $\sum_i \lambda_i > 1$ which is a contradiction.

- Hence, must have $f(E_i^*) = f(A^*)$ for all *i*.
- Hence, $\sum_i \lambda_i = 1$ since $f(A^*) = \sum_i \lambda_i f(A^*)$.

Fund. Circuit/DepSFMSFM via L.E. primalSFM via Min-Norm PointReview & Support for θ -rounding the L.E. minimum

We can also view the above as a form of rounding a continuous convex relaxation to the problem.

Definition 19.5.2 (θ -rounding)

Given vector $x \in [0,1]^E$, choose $\theta \in (0,1)$ and define a set corresponding to elements above θ , i.e.,

$$\hat{X}_{\theta} = \{i : \hat{x}(i) \ge \theta\} \triangleq \{\hat{x} \ge \theta\}$$
(19.35)

Lemma 19.5.3 (Fujishige-2005)

Given a continuous minimizer $x^* \in \operatorname{argmin}_{x \in [0,1]^n} \check{f}(x)$, the discrete minimizers are exactly the maximal chain of sets $\emptyset \subseteq X_{\theta_1} \subset \ldots X_{\theta_k}$ obtained by θ -rounding x^* , for $\theta_j \in (0,1)$.

Ex: 3D base B_f : permutahedron

• Consider submodular function $f: 2^V \to \mathbb{R}$ with n = |V| = 4, and for $X \subseteq V$, concave g,

und. Circuit/Dep

$$f(X) = g(|X|) = \sum_{i=1}^{|X|} (n-i+1)$$
$$= |X| \left(n - \frac{|X| - 1}{2}\right)$$

• Then B_f is a 3D polytope, and in this particular case gives us a permutahedron with 24 distinct extreme points, on the right (from wikipedia).

Min-Norm Point and Submodular Function Minimization

• Given optimal solution x^* to $[\min ||x||_2^2$ s.t. $x \in B_f]$, and consider:

$$y^* = x^* \land 0 = (\min(x^*(e), 0) | e \in E),$$
(19.37)

$$A_{-} = \{e : x^{*}(e) < 0\}, \qquad A_{0} = \{e : x^{*}(e) \le 0\}.$$
 (19.38)

• Thus, we immediately have that:

$$A_{-} \subseteq A_{0} \tag{19.39}$$

and that

$$x^*(A_-) = x^*(A_0) = y^*(A_-) = y^*(A_0).$$
 (19.40)

- These quantities will solve the SFM problem: we will see that
 f(A₋) = f(A₀) = min_{A⊆V} f(A) and that A₋ is the unique minimal
 minimizer and A₀ is the unique maximal minimizer.
- The proof is nice since it uses recently developed tools (e.g., dep, sat).
- We'll also show both the Fujishige-Wolfe algorithm and the Frank-Wolfe algorithm (which are quite different from each other) can find the min-norm point relatively efficiently.

Fund. Circuit/Dep	SFM 	SFM via L.E. primal	SFM via Min-Norm Point	Review & Support for Min-Norm ▋
Base Pol	ytope B_{f}	Dominance		
 Now, for 	or any $A \subseteq E$, we can generate	e a particular point	in B_f
 I hat is where I 	, choose the c	ordering of $E = ($	$e_1, e_2, \ldots, e_n)$ when e_1, e_2, \ldots, e_n where e_1, e_2, \ldots, e_n	re $n = E $, and ith $k = A $
 Note th 	$E_i = (e_1, e_2, .)$	(k-k)! < n! such a	orderings. $E_k = A$ w	$\kappa = A .$
 Generat 	x via greed	dy using this orde	r, $\forall i, x(e_i) = f(e_i)$	$E_{i-1}).$
 We hav 	e generated a	a point (a vertex)	x in B_f such that	x(A) = f(A).
• Thus, f	or any A , we	have		
	B_j	$f \cap \left\{ x \in \mathbb{R}^E : x(x) \right\}$	$4) = f(A) \big\} \neq \emptyset$	(19.41)
In wo	ords, B_f	inter-	fie.)e.) fe./e.)	
sects	all "mu	lti-axis	Tie, le, e, e,	
 congrue within 	B^E of the	rplanes		
$\{x \in \mathbb{R}\}$	$E^E: x(A) = f$	f(A)	fe_	
$\frac{1}{1000}$	$A \subseteq E.$	f(e, e,)	rie lie, e.i	
		(e, ,e_j))		
		Te je		
Prof. Jeff Bilmes	EE563/Sp	pring 2020/Submodularity - L	ecture 19 - Dec 7th, 2020	F44/54 (pg.44/54)

Fund. Circuit/Dep	SFM 	SFM via L.E. primal	SFM via Min-Norm Point 	Review & Support for Min-Norm ┃	
B_f domi	nates P_f				
proof of	Thm. 19.7.1	cont.			
• Each step maintains feasibility: consider one step adding e to T' — for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.					
• We set $y($ each step,	$(e) \leftarrow y(e) + y \in P_f \text{ and } $	$\hat{c}(y;e) \leq y(e) + \hat{c}(y;e) \geq 0.$ (al	f(T'+e) - y(T'+e)so, consider r.h. ve	e). Hence, after rsion of $\hat{c}(y; e)$).	
 Also, only 	• Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e) = x(e)$ for $e \in T$.				
• Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) - y(S_e)$.					
• At iteration e , let $y'(e)$ (resp. $y(e)$) be new (resp. old) entry for e , then					
Į	$y'(S_e) = y(S_e)$	$_{e} \setminus \{e\}) + y'(e)$		(19.42)	
	= y(S)	$_{e} \setminus \{e\}) + [y(e)]$	$+ f(S_e) - y(S_e)] =$	$= f(S_e)$	
So, S_e is tight for y' . It remains tight in further iterations since y doesn't decrease and it stays within P_f .					
• Also, $E = T \cup \bigcup_{e \notin T} S_e$ is also tight, meaning the final y has $y \in B_f$.					
Prof. Loff Bilmon	EE62/S	aning 2020 (Submodulovity	Lecture 10 Dec 7th 2020	FAR/54 (pg 48/54)	

A polymatroid function's polyhedron is a polymatroid.

Theorem 19.7.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^E$, we have:

$$rank(x) = \max\left(y(E) : y \le x, y \in \mathbf{P_f}\right) = \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(19.1)

Essentially the same theorem as Theorem ??, but note P_f rather than P_f^+ . Taking x = 0 we get:

Corollary 19.7.2

Let f be a submodular function defined on subsets of E. We have:

$$rank(0) = \max(y(E) : y \le 0, y \in P_f) = \min(f(A) : A \subseteq E)$$
 (19.2)

 Fund. Circuit/Dep
 SFM
 SFM via LE. primal
 SFM via Min-Norm
 Review & Support for Min-Norm

 Convexity, Strong duality, and min/max swap

The min/max switch follows from strong duality. I.e., consider $g(w,x) = w^{\intercal}x$ and we have domains $w \in [0,1]^E$ and $x \in B_f$. then for any $(w,x) \in [0,1]^E \times B_f$, we have

$$\min_{w' \in [0,1]^E} g(w',x) \le g(w,x) \le \max_{x' \in B_f} g(w,x')$$
(19.49)

which means that we have weak duality

$$\max_{x \in B_f} \min_{w' \in [0,1]^E} g(w', x) \le \min_{w \in [0,1]^E} \max_{x' \in B_f} g(w, x')$$
(19.50)

but since g(w, x) is linear, we have strong duality, meaning

$$\max_{x \in B_f} \min_{w' \in [0,1]^E} g(w', x) = \min_{w \in [0,1]^E} \max_{x' \in B_f} g(w, x')$$
(19.51)

Alternate proof of modified max-min theorem

We start directly from Theorem 13.4.2.

$$\max(y(E): y \le 0, y \in P_f) = \min(f(A): A \subseteq E)$$
(19.52)

Given $y \in \mathbb{R}^E$, define $y^- \in \mathbb{R}^E$ with $y^-(e) = \min \{y(e), 0\}$ for $e \in E$.

$$\max(y(E): y \le 0, y \in P_f) = \max(y^-(E): y \le 0, y \in P_f)$$
(19.53)

$$= \max\left(y^-(E) : y \in P_f\right) \tag{19.54}$$

$$= \max\left(y^{-}(E) : y \in B_f\right) \tag{19.55}$$

The first equality follows since $y \leq 0$. The second equality (together with the first) shown on following slide. The third equality follows since for any $x \in P_f$ there exists a $y \in B_f$ with $x \leq y$ (follows from Theorem 19.7.1).

 $\min\left\{w^{\mathsf{T}}x:x\in B_f\right\}$ • Recall that the greedy algorithm solves, for $w \in \mathbb{R}^E_+$ $\max\left\{w^{\mathsf{T}}x|x\in P_f\right\} = \max\left\{w^{\mathsf{T}}x|x\in B_f\right\}$ (19.61)since for all $x \in P_f$, there exists $y \ge x$ with $y \in B_f$. • For arbitrary $w \in \mathbb{R}^E$, we saw in Lecture 16 that the greedy algorithm will also solve: $\max\left\{w^{\mathsf{T}}x|x\in B_f\right\}$ (19.62)• Also, since $w \in \mathbb{R}^E$ is arbitrary, and since $\min \left\{ w^{\mathsf{T}} x | x \in B_f \right\} = -\max \left\{ -w^{\mathsf{T}} x | x \in B_f \right\}$ (19.63)the greedy algorithm using ordering (e_1, e_2, \ldots, e_m) such that $w(e_1) < w(e_2) < \dots < w(e_m)$ (19.64)will solve l.h.s. of Equation (19.63). 2020/Submodularity

Fund. Greatly/Dep SFM via LE. primal SFM via Min. Norm Paint Review & Support for Min. Norm Control C

Let f(A) be arbitrary submodular function, and f(A) = f'(A) - m(A)where f' is polymatroidal, and $w \in \mathbb{R}^E$.

$$\max \{w^{\mathsf{T}} x | x \in B_f\} = \max \{w^{\mathsf{T}} x | x(A) \le f(A) \,\forall A, x(E) = f(E)\} \\ = \max \{w^{\mathsf{T}} x | x(A) \le f'(A) - m(A) \,\forall A, x(E) = f'(E) - m(E)\} \\ = \max \{w^{\mathsf{T}} x | x(A) + m(A) \le f'(A) \,\forall A, x(E) + m(E) = f'(E)\} \\ = \max \{w^{\mathsf{T}} x + w^{\mathsf{T}} m | \\ x(A) + m(A) \le f'(A) \,\forall A, x(E) + m(E) = f'(E)\} - w^{\mathsf{T}} m \\ = \max \{w^{\mathsf{T}} y | y \in B_{f'}\} - w^{\mathsf{T}} m \\ = w^{\mathsf{T}} y^* - w^{\mathsf{T}} m = w^{\mathsf{T}} (y^* - m)$$

where y = x + m, so that $x^* = y^* - m$.

So y^* uses greedy algorithm with positive orthant $B_{f'}$. To show, we use Theorem ?? in Lecture 11, but we don't require $y \ge 0$, and don't stop when w goes negative to ensure $y^* \in B_{f'}$. Then when we subtract off m from y^* , we get solution to the original problem.