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Logistics Review

Class Road Map - EE563

L1(9/30): Motivation, Applications,
Definitions, Properties
L2(10/5): Sums concave(modular), uses
(diversity/costs, feature selection),
information theory
L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial
Examples, Matrix Rank, Properties, Other
Defs, Independence
L5(10/14): Properties, Defs of
Submodularity, Independence
L6(10/19): Matroids, Matroid Examples,
Matroid Rank,
L7(10/21): Matroid Rank, More on
Partition Matroid, Laminar Matroids,
System of Distinct Reps, Transversals
L8(10/26): Transversal Matroid, Matroid
and representation, Dual Matroid
L9(10/28): Other Matroid Properties,
Combinatorial Geometries, Matroid and
Greedy, Polyhedra, Matroid Polytopes
L10(11/2): Matroid Polytopes, Matroids
! Polymatroids

L11(11/4): Matroids ! Polymatroids,
Polymatroids
L12(11/9): Polymatroids, Polymatroids
and Greedy
L–(11/11): Veterans Day, Holiday
L13(11/16): Polymatroids and Greedy,
Possible Polytopes, Extreme Points,
Cardinality Constrained Maximization
L14(11/18): Cardinality Constrained
Maximization, Curvature
L15(11/23): Curvature, Submodular Max
w. Other Constraints, Start Cont.
Extensions
L16(11/25): Submodular Max w. Other
Constraints, Cont. Extensions, Lovász
extension
L17(11/30): Choquet Integration,
Non-linear Measure/Aggregation,
Definitions/Properties, Examples.
L18(12/2):
L19(12/7):
L20(12/9):
L21(12/14): final meeting (presentations)
maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Rest of class

Homework 4 posted, due Thursday Dec 17th, 2020, 11:55pm.
Final project paper proposal, due Sunday Dec 6th, 11:59pm.
Final project 4-page paper and presentation slides, due Sunday Dec
13th, 11:59pm.
Final project presentation, Monday Dec 14th, starting at 10:30am.
Final project: Read and present a recent (past 5 years) paper on
submodular/supermodular optimization. Paper should have both a
theoretical and practical component. What is due: (1) 4-page paper
summary, and (2) 10 minute presentation about the paper, will be
giving presentations on Monday 12/14/2020. You must choose your
paper before the 14th (this will be HW5), and you must turn in your
slides and 4-page paper (this will be HW6).
Recall, grades will be based on a combination of a final project (40%)
and the four homeworks (60%).
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Def: Convex Envelope of a function

Given any function h : Dh ! R, where Dh ✓ Rn, define the new
function ȟ : Rn ! R via:

ȟ(x) = sup {g(x) : g is convex & g(y)  h(y), 8y 2 Dh} (17.1)

I.e., (1) ȟ(x) is convex, (2) ȟ(x)  h(x), 8x, and (3) if g(x) is any
convex function having the property that g(x)  h(x), 8x, then
g(x)  ȟ(x).
Alternatively,

ȟ(x) = inf {t : (x, t) 2 convexhull(epigraph(h))} (17.2)

h(x)
epi(h)(x)

ȟ(x)
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Convex Closure of Discrete Set Functions

Given set function f : 2V ! R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f̌ : [0, 1]V ! R, as

f̌(x) = min
p24n(x)

X

S✓V

pSf(S) (17.1)

where for x 2 [0, 1]V we have 4n(x) =n
p 2 R2n :

P
S✓V pS = 1, pS � 08S ✓ V, &

P
S✓V pS1S = x

o

Hence, 4n(x) is the set of all probability distributions over the 2n

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to x 2 [0, 1]V , i.e., for
any p 2 4n(x), ES⇠p(1S) =

P
S✓V pS1S = x.

Hence, f̌(x) = minp24n(x)ES⇠p[f(S)]

We will show that this is a convex extension. Does it have any special
properties?
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Convex Closure of Discrete Set Functions

Given, f̌(x) = minp24n(x)ES⇠p[f(S)], we can show:
1 that f̌ is tight (i.e., 8S ✓ V , we have f̌(1S) = f(S)).
2 that f̌ is convex (and consequently, that any arbitrary set function has a

tight convex extension).
3 that the convex closure f̌ is the convex envelope of the function defined

only on the hypercube vertices, and that takes value f(S) at 1S .
4 the definition of the Lovász extension of a set function, and that f̌ is the

Lovász extension iff f is submodular.

Note that the concave closure can also be defined, as
f̌(x) = maxp24n(x)ES⇠p[f(S)], but it is in general impossible to
obtain exactly even for submodular functions.
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Greedy-based continuous extension of submodular f

Given a submodular function f , a w 2 RE
+, choose element order

(e1, e2, . . . , em) based on decreasing w,so that
1 � w(e1) � w(e2) � · · · � w(em) � 0.
Define chain ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E based on w, so the
i
th element of this change has Ei = {e1, e2, . . . , ei}.

We have, for w 2 RE
+ that

f̆(w) = max(wx : x 2 Pf ) = max(wx : x 2 Bf ) (17.12)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (17.13)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (17.14)

= (1��w(e1))f(E0) + w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei)

(17.15)
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Greedy-based continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf ) (17.12)

Therefore, if f is a submodular function, we can write

f̆(w) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (17.13)

=
mX

i=1

�if(Ei) (17.14)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.
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The Lovász extension of an arbitrary f : 2V ! R
Thus, for any f : 2E ! R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), 8A, in this way where

f̆(w) =
mX

i=1

�if(Ei) (17.20)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) � w(e2) � · · · � w(em), and where

for i 2 {1, . . . ,m}, �i =

(
w(ei)� w(ei+1) if i < m

w(em) if i = m
(17.21)

so that w =
Pm

i=1 �i1Ei .
w =

Pm
i=1 �i1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
Pm

i=1 �if(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
This extension is called the Lovász extension!
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Summary: comparison of the two extension forms

So if f is submodular, then we can write f̆(w) = max(wx : x 2 Bf )
(which is clearly convex) in the form:

f̆(w) = max(wx : x 2 Bf ) =
mX

i=1

�if(Ei) (17.24)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
mX

i=1

�if(Ei) (17.25)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
In both Eq. (??) and Eq. (??), we have f̆(1A) = f(A), 8A, but
Eq. (??), might not be convex for non-submodular f .
Submodularity is sufficient for convexity, but is it also necessary?
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Lovász Extension, Submodularity and Convexity

Theorem 17.2.6

A function f : 2E ! R is submodular iff its Lovász extension f̆ of f is
convex.

Proof.
We’ve already seen that if f is submodular, its extension can be written
via Eqn.(??) due to the greedy algorithm, and therefore is also
equivalent to f̆(w) = max {wx : x 2 Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
P

i �if(Ei) (of some
function f : 2E ! R) is a convex function.
We note that, based on the extension definition, in particular the
definition of the {�i}i, we have that f̆(↵w) = ↵f̆(w) for any ↵ 2 R+.
I.e., f is a positively homogeneous convex function.

. . .
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Lovász ext. vs. the concave closure of submodular function

Theorem 17.2.6

Let f̆(w) = max(wy : y 2 Bf ) =
Pm

i=1 �if(Ei) be the Lovász extension
and f̌(x) = minp24n(x)ES⇠p[f(S)] be the convex closure. Then f̆ and f̌

coincide iff f is submodular, i.e., f̆(w) = f̌(w), 8w 2 [0, 1].

Proof.
Assume f is submodular.
Given x, let px be an achieving argmin in f̌(x) that also maximizesP

S p
x
S |S|2.

Suppose 9A,B ✓ V that are crossing (i.e., A 6✓ B, B 6✓ A) with
positive p

x
A, p

x
B. W.l.o.g., pxA � p

x
B > 0.

Then we may update p
x, keeping it a distribution, as follows:

p̄
x
A  p

x
A � p

x
B p̄

x
B  p

x
B � p

x
B (17.33)

p̄
x
A[B  p

x
A[B + p

x
B p̄

x
A\B  p

x
A\B + p

x
B (17.34)

and by submodularity, this does not increase
P

S p
x
Sf(S).

. . .
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Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Integration

Integration is just summation (e.g., the
R

symbol has as its origins a
sum).

Lebesgue integration (See Rudin 1987, Definition 1.23, for details)
allows integration w.r.t. an underlying measure µ of sets. Formal
definition (from Rudin): given measurable function f , we can define

Z

X
fdu = sup IX(s) (17.1)

where IX(s) =
Pn

i=1 ciµ(X \Xi), and where we take the sup over all
measurable functions s such that 0  s  f and s(x) =

Pn
i=1 ciIXi(x)

and where IXi(x) is indicator of membership of set Xi, with ci > 0.
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Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Review

Recall, a Boolean function f is any function f : {0, 1}m ! {0, 1} and
is a pseudo-Boolean function if f : {0, 1}m ! R.

Any set function corresponds to a pseudo-Boolean function. I.e., given
f : 2E ! R, form fb : {0, 1}m ! R as fb(x) = f(Ax) where the A, x

bijection is A = {e 2 E : xe = 1} and x = 1A.
Also, if we have an expression for fb we can construct a set function f

as f(A) = fb(1A). We can also often relax fb to any x 2 [0, 1]m. We
saw this for Lovász extension.
It turns out that a concept essentially identical to the Lovász extension
was derived much earlier, in 1954, and using this derivation (via
integration) leads to deeper intuition.
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Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Choquet integral

Definition 17.3.1
Let f be any capacity on E and w 2 RE

+. The Choquet integral (1954) of w
w.r.t. f is defined by

Cf (w) =
mX

i=1

(wei � wei+1)f(Ei) (17.2)

where in the sum, we have sorted and renamed the elements of E so that
we1 � we2 � · · · � wem � wem+1 , 0, and where Ei = {e1, e2, . . . , ei}.

We immediately see that an equivalent formula is as follows:

Cf (w) =
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (17.3)

where E0
def
= ;.
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Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Choquet integral

Definition 17.3.1
Let f be any capacity on E and w 2 RE

+. The Choquet integral (1954) of w
w.r.t. f is defined by

Cf (w) =
mX

i=1

(wei � wei+1)f(Ei) (17.2)

where in the sum, we have sorted and renamed the elements of E so that
we1 � we2 � · · · � wem � wem+1 , 0, and where Ei = {e1, e2, . . . , ei}.

this again essentially Abel’s partial summation formula: Given two
arbitrary sequences {an} and {bn} with An =

Pn
k=1 ak, we have

nX

k=m

akbk =
nX

k=m

Ak(bk � bk+1) +Anbn+1 �Am�1bm (17.4)
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Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so that
w(e1) � w(e2) � · · · � w(em�1) � w(em), then
Ei = {e1, e2, . . . , ei} = {e 2 E : we � wei}.
For any wei > ↵ � wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e 2 E : we > ↵}.
Can segment real-axis at boundary points wei , right most is we1 .

A function can be defined on a segment wei > ↵ � wei+1 of R. This
function Fi : [wei+1 , wei)! R is defined as

Fi(↵) = f({e 2 E : we > ↵}) = f(Ei) (17.5)
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...
w(e1)w(e2)w(e3)w(e4)w(e5)w(em) w(em�1)

A function can be defined on a segment wei > ↵ � wei+1 of R. This
function Fi : [wei+1 , wei)! R is defined as

Fi(↵) = f({e 2 E : we > ↵}) = f(Ei) (17.5)
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Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take w 2 RE
+).

The piecewise-constant function is defined as:

F (↵) =

8
><

>:

f(E) if 0  ↵ < wm

f({e 2 E : we > ↵}) if wei+1  ↵ < wei , i 2 {1, . . . ,m� 1}
0 (= f(;)) if w1 < ↵

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i
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...
...

0

f({e1})
f({e1,e2})

f({e1,e2,e3})

f({e1,e2,e3,e4})

f({e1,e2,e3,e4,e5})f(E)
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The “integral” in the Choquet integral

Now consider the integral, with w 2 RE
+, and normalized f so that

f(;) = 0. Recall wm+1
def
= 0.

f̃(w)
def
=

Z 1

0
F (↵)d↵ (17.6)

=

Z 1

0
f({e 2 E : we > ↵})d↵ (17.7)

=

Z 1

wm+1

f({e 2 E : we > ↵})d↵ (17.8)

=
mX

i=1

Z wi

wi+1

f({e 2 E : we > ↵})d↵ (17.9)

=
mX

i=1

Z wi

wi+1

f(Ei)d↵ =
mX

i=1

f(Ei)(wi � wi+1) (17.10)
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The “integral” in the Choquet integral

But we saw before that
Pm

i=1 f(Ei)(wi � wi+1) is just the Lovász
extension of a function f .

Thus, we have the following definition:

Definition 17.3.2
Given w 2 RE

+, the Lovász extension (equivalently Choquet integral) may be
defined as follows:

f̃(w)
def
=

Z 1

0
F (↵)d↵ (17.11)

where the function F is defined as before.

Note that it is not necessary in general to require w 2 RE
+ (i.e., we can

take w 2 RE) nor that f be non-negative, but it is a bit more involved.
Above is the simple case.
The above integral will be further generalized a bit later.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w 2 [0, 1]E for some finite ground set E,
then for any x 2 RE we have the weighted average of x as:

WAVG(x) =
X

e2E

x(e)w(e) (17.12)

Consider 1e for e 2 E, we have

WAVG(1e) = w(e) (17.13)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e 2 E}. Moreover, we are
interpolating as in

WAVG(x) =
X

e2E

x(e)w(e) =
X

e2E

x(e)WAVG(1e) (17.14)
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Integration, Aggregation, and Weighted Averages
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average, and can be seen as an aggregation function.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
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so seen as a function on the hypercube vertices, the entire WAVG
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Integration, Aggregation, and Weighted Averages

WAVG(x) =
X

e2E

x(e)w(e) (17.15)

WAVG function is linear in weights w and in the argument x, and is
homogeneous. That is, for all w,w1, w2, x, x1, x2 2 RE and ↵ 2 R,

WAVGw1+w2(x) = WAVGw1(x) + WAVGw2(x), (17.16)
WAVGw(x1 + x2) = WAVGw(x1) + WAVGw(x2), (17.17)

and is homogeneous, 8↵ 2 R,

WAVG(↵x) = ↵WAVG(x). (17.18)

How related? The Lovász extension f̆(x) is still linear in “weights” (i.e.,
the submodular function f), but will not be linear in x and will only be
positively homogeneous (for ↵ � 0).
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Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. I.e.,
for each 1A : A ✓ E we might have (for all A ✓ E):

AG(1A) = wA (17.19)

What then might AG(x) be for some x 2 RE? Our weighted average
functions might look something more like the r.h.s. in:

AG(x) =
X

A✓E

x(A)wA =
X

A✓E

x(A)AG(1A) (17.20)
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Integration, Aggregation, and Weighted Averages
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AG(x) =
X

A✓E

x(A)wA =
X

A✓E

x(A)AG(1A) (17.20)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F19/49 (pg.45/160)

it
= e€ "" we



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Choquet integral and aggregation

We wish to produce some notion of generalized aggregation function
having the flavor of:

AG(x) =
X

A✓E

x(A)wA =
X

A✓E

x(A)AG(1A) (17.21)

how does this correspond to Lovász extension?

Let us partition the hypercube [0, 1]m into q polytopes, V1,V2, . . . ,Vq,
each polytope defined by a set of vertices.

E.g., for each i, Vi =
{1A1 ,1A2 , . . . ,1Ak} (k vertices)
and the convex hull of Vi defines
the i

th polytope. This forms a
“triangulation” of the hypercube.

For any x 2 [0, 1]m there is a (not necessarily unique) V(x) = Vj for
some j such that x 2 conv(V(x)).
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Choquet integral and aggregation
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each polytope defined by a set of vertices.

E.g., for each i, Vi =
{1A1 ,1A2 , . . . ,1Ak} (k vertices)
and the convex hull of Vi defines
the i

th polytope. This forms a
“triangulation” of the hypercube.

https://mathoverflow.net/ques-
tions/130878/regularity-of-delau-
nay-triangulation-of-a-hypercube

For any x 2 [0, 1]m there is a (not necessarily unique) V(x) = Vj for
some j such that x 2 conv(V(x)).
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Choquet integral and aggregation

We wish to produce some notion of generalized aggregation function
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each polytope defined by a set of vertices.

E.g., for each i, Vi =
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Choquet integral and aggregation

Most generally, for x 2 [0, 1]m, let us define the (unique) coefficients
↵
x
0(A) and ↵

x
i (A) that define the affine transformation of the

coefficients of x to be used with the particular hypercube vertex
1A 2 conv(V(x)). The affine transformation is as follows:

↵
x
0(A) +

mX

j=1

↵
x
j (A)xj 2 R (17.22)

Note that many of these coefficient are often zero.

From this, we can define an aggregation function of the form

AG(x) def
=

X

A:1A2V(x)

⇣
↵
x
0(A) +

mX

j=1

↵
x
j (A)xj

⌘
AG(1A) (17.23)

Note, no longer necessarily linear in x.
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coefficients of x to be used with the particular hypercube vertex
1A 2 conv(V(x)). The affine transformation is as follows:

↵
x
0(A) +

mX

j=1

↵
x
j (A)xj 2 R (17.22)

Note that many of these coefficient are often zero.
From this, we can define an aggregation function of the form

AG(x) def
=

X

A:1A2V(x)

⇣
↵
x
0(A) +

mX

j=1

↵
x
j (A)xj

⌘
AG(1A) (17.23)

Note, no longer necessarily linear in x.
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Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation �, define

conv(V�) =
�
x 2 [0, 1]n|x�(1) � x�(2) � · · · � x�(m)

 
(17.24)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.
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https://mathoverflow.net/ques-
tions/130878/regularity-of-delau-
nay-triangulation-of-a-hypercube

With this, we can define {Vi}m!
i=1 as the vertices of conv(V�) for each

permutation �.

In this case, we have:

Proposition 17.4.1
The above linear interpolation in Eqn. (17.23) using the canonical partition
yields the Lovász extension with ↵

x
0(A) +

Pm
j=1 ↵

x
j (A)xj = x�i � x�i�1 for

A = Ei = {e�1 , . . . , e�i} for appropriate order �.

Hence, Lovász extension can be seen as a form of generalized
aggregation function.
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Choquet integral and aggregation
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Choquet integral and aggregation
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Choquet integral and aggregation
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Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation �, define

conv(V�) =
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Then these m! blocks of the partition are called the canonical partitions
of the hypercube.
With this, we can define {Vi}m!

i=1 as the vertices of conv(V�) for each
permutation �. In this case, we have:
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Lovász extension as max over orders

We can also write the Lovász extension as follows:

f̃(w) = max
�2⇧[m]

w
|
c
� (17.25)

where ⇧[m] is the set of m! permutations of [m] = E, � 2 ⇧[m] is a
particular permutation, and c

� is a vector associated with permutation
� defined as:

c
�
i = f(E�i)� f(E�i�1) (17.26)

where E�i = {e�1 , e�2 , . . . , e�i}.

Note this immediately follows from the definition of the Lovász
extension in the form:

f̃(w) = max
x2Pf

w
|
x = max

x2Bf

w
|
x (17.27)

since we know that the maximum is achieved by an extreme point of
the base Bf and all extreme points are obtained by a
permutation-of-E-parameterized greedy instance.
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Lovász extension as max over orders

We can also write the Lovász extension as follows:

f̃(w) = max
�2⇧[m]

w
|
c
� (17.25)

where ⇧[m] is the set of m! permutations of [m] = E, � 2 ⇧[m] is a
particular permutation, and c

� is a vector associated with permutation
� defined as:

c
�
i = f(E�i)� f(E�i�1) (17.26)

where E�i = {e�1 , e�2 , . . . , e�i}.
Note this immediately follows from the definition of the Lovász
extension in the form:

f̃(w) = max
x2Pf

w
|
x = max

x2Bf

w
|
x (17.27)

since we know that the maximum is achieved by an extreme point of
the base Bf and all extreme points are obtained by a
permutation-of-E-parameterized greedy instance.
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Lovász extension, defined in multiple ways

As shorthand notation, lets use {w � ↵} ⌘ {e 2 E : w(e) � ↵}, called
the (weak) ↵-superlevel set of w.

A similar definition holds for
{w > ↵} (called the strong, or strict, ↵-superlevel set of w).
Given any w 2 RE , sort E as w(e1) � w(e2) � · · · � w(em).

Also,
w.l.o.g., number elements of w so that w1 � w2 � · · · � wm.

We have already seen how we can define the Lovász extension for any
(not necessarily submodular) function f in the following equivalent
ways:

f̃(w) =
mX

i=1

w(ei)f(ei|Ei�1) (17.28)

=
m�1X

i=1

f(Ei)(w(ei)� w(ei+1)) + f(E)w(em) (17.29)

=
m�1X

i=1

�if(Ei) (17.30)
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f(Ei)(w(ei)� w(ei+1)) + f(E)w(em) (17.29)

=
m�1X

i=1

�if(Ei) (17.30)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F24/49 (pg.64/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Lovász extension, as integral

Additional ways we can define the Lovász extension for any (not
necessarily submodular) but normalized function f include:

f̃(w) =
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

�if(Ei) (17.31)

=
m�1X

i=1

f(Ei)(w(ei)� w(ei+1)) + f(E)w(em) (17.32)

=

Z +1

min {w1,...,wm}
f({w � ↵})d↵+ f(E)min {w1, . . . , wm}

(17.33)

(a)
=

Z +1

0
f({w � ↵})d↵+

Z 0

�1
[f({w � ↵})� f(E)]d↵

(17.34)

We will show (a) in a few slides.
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general Lovász extension, as simple integral

Assuming (a), we have that, given function f , and any w 2 RE :

f̃(w) =

Z +1

�1
f̂(↵)d↵ (17.35)

where

f̂(↵) =

(
f({w � ↵}) if ↵ � 0

f({w � ↵})� f(E) if ↵ < 0
(17.36)

So we can write it as a simple integral over the appropriate function.
These make it easier to see certain properties of the Lovász extension.
But first, we show the above ((a) in particular).
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(17.36)

So we can write it as a simple integral over the appropriate function.
These make it easier to see certain properties of the Lovász extension.
But first, we show the above ((a) in particular).
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Lovász extension, as integral

To show Eqn. (17.33), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.

Then, consider that, as a function of ↵, we have

f({w � ↵}) =

8
><

>:

0 if ↵ > w(e1)

f(Ek) if ↵ 2 (w(ek+1), w(ek)), k 2 {1, . . . ,m� 1}
f(E) if ↵ < w(em).

(17.37)

For integration purposes, we may use open intervals since sets of zero
measure don’t change integration.
Inside the integral, then, this recovers Eqn. (17.32).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F27/49 (pg.69/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Lovász extension, as integral

To show Eqn. (17.33), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.
Then, consider that, as a function of ↵, we have

f({w � ↵}) =

8
><

>:

0 if ↵ > w(e1)

f(Ek) if ↵ 2 (w(ek+1), w(ek)), k 2 {1, . . . ,m� 1}
f(E) if ↵ < w(em).

(17.37)

For integration purposes, we may use open intervals since sets of zero
measure don’t change integration.

Inside the integral, then, this recovers Eqn. (17.32).
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Lovász extension, as integral

To show Eqn. (17.33), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.
Then, consider that, as a function of ↵, we have

f({w � ↵}) =

8
><

>:

0 if ↵ > w(e1)

f(Ek) if ↵ 2 (w(ek+1), w(ek)), k 2 {1, . . . ,m� 1}
f(E) if ↵ < w(em).

(17.37)

For integration purposes, we may use open intervals since sets of zero
measure don’t change integration.
Inside the integral, then, this recovers Eqn. (17.32).
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Lovász extension, as integral

To show Eqn. (17.34), start with Eqn. (17.33), note
wm = min {w1, . . . , wm}, take any �  min {0, w1, . . . , wm}, and form:

f̃(w)

=

Z +1

wm

f({w � ↵})d↵+ f(E)min {w1, . . . , wm}

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f({w � ↵})d↵+ f(E)

Z wm

0
d↵

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f(E)d↵+

Z wm

0
f(E)d↵

=

Z +1

0
f({w � ↵})d↵+

Z 0

�
f({w � ↵})d↵�

Z 0

�
f(E)d↵

=

Z +1

0
f({w � ↵})d↵+

Z 0

�
[f({w � ↵})� f(E)]d↵

and then let � ! �1 and we get Eqn. (17.34), i.e.:

=

Z +1

0
f({w � ↵})d↵+

Z 0

�1
[f({w � ↵})� f(E)]d↵
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Lovász extension, as integral

To show Eqn. (17.34), start with Eqn. (17.33), note
wm = min {w1, . . . , wm}, take any �  min {0, w1, . . . , wm}, and form:

f̃(w) =

Z +1

wm

f({w � ↵})d↵+ f(E)min {w1, . . . , wm}

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f({w � ↵})d↵+ f(E)

Z wm

0
d↵

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f(E)d↵+

Z wm

0
f(E)d↵

=

Z +1

0
f({w � ↵})d↵+

Z 0

�
f({w � ↵})d↵�

Z 0

�
f(E)d↵

=

Z +1

0
f({w � ↵})d↵+

Z 0

�
[f({w � ↵})� f(E)]d↵

and then let � ! �1 and we get Eqn. (17.34), i.e.:

=

Z +1

0
f({w � ↵})d↵+

Z 0

�1
[f({w � ↵})� f(E)]d↵
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Lovász extension, as integral

To show Eqn. (17.34), start with Eqn. (17.33), note
wm = min {w1, . . . , wm}, take any �  min {0, w1, . . . , wm}, and form:

f̃(w) =

Z +1

wm

f({w � ↵})d↵+ f(E)min {w1, . . . , wm}

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f({w � ↵})d↵+ f(E)

Z wm

0
d↵

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f(E)d↵+

Z wm

0
f(E)d↵

=

Z +1

0
f({w � ↵})d↵+

Z 0

�
f({w � ↵})d↵�

Z 0

�
f(E)d↵

=

Z +1

0
f({w � ↵})d↵+

Z 0

�
[f({w � ↵})� f(E)]d↵

and then let � ! �1 and we get Eqn. (17.34), i.e.:

=

Z +1

0
f({w � ↵})d↵+

Z 0

�1
[f({w � ↵})� f(E)]d↵
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Lovász extension, as integral

To show Eqn. (17.34), start with Eqn. (17.33), note
wm = min {w1, . . . , wm}, take any �  min {0, w1, . . . , wm}, and form:

f̃(w) =

Z +1

wm

f({w � ↵})d↵+ f(E)min {w1, . . . , wm}

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f({w � ↵})d↵+ f(E)

Z wm

0
d↵

=

Z +1

�
f({w � ↵})d↵�

Z wm

�
f(E)d↵+

Z wm

0
f(E)d↵

=
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f({w � ↵})d↵+
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�
f({w � ↵})d↵�
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�
f(E)d↵
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Z +1

0
f({w � ↵})d↵+

Z 0

�
[f({w � ↵})� f(E)]d↵

and then let � ! �1 and we get Eqn. (17.34), i.e.:

=

Z +1

0
f({w � ↵})d↵+

Z 0

�1
[f({w � ↵})� f(E)]d↵
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Lovász extension properties

Using the above, have the following (some of which we’ve seen):

Theorem 17.5.1
Let f, g : 2E ! R be normalized (f(;) = g(;) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and g̃

then f̃ + g̃ is the Lovász extension of f + g and �f̃ is the Lovász extension of
�f for � 2 R.

2 If w 2 RE
+ then f̃(w) =

R +1
0 f({w � ↵})d↵.

3 For w 2 RE , and ↵ 2 R, we have f̃(w + ↵1E) = f̃(w) + ↵f(E).

4 Positive homogeneity: I.e., f̃(↵w) = ↵f̃(w) for ↵ � 0.

5 For all A ✓ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), 8A, then f̃(w) = f̃(�w) (f̃ is even).

7 Given partition E
1 [ E

2 [ · · · [ E
k of E and w =

Pk
i=1 �i1Ek with

�1 � �2 � · · · � �k, and with E
1:i = E

1 [ E
2 [ · · · [ E

i, then
f̃(w) =

Pk
i=1 �if(E

i|E1:i�1) =
Pk�1

i=1 f(E1:i)(�i � �i+1) + f(E)�k.
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Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
f̃(w + ↵1E) = f̃(w) + ↵f(E).

This means that, say when m = 2, that as we move along the line
w1 = w2, the Lovász extension scales linearly.
And if f(E) = 0, then the Lovász extension is constant along the
direction 1E .
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Lovász extension properties

Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(;) = 0, we have

f̃(�w) =
Z 1

�1
f({�w � ↵})d↵

=

Z 1

�1
f({w  �↵})d↵ (17.38)

(a)
=

Z 1

�1
f({w  ↵})d↵ (b)

=

Z 1

�1
f({w > ↵})d↵ (17.39)

=

Z 1

�1
f({w � ↵})d↵ = f̃(w)

(17.40)

Equality (a) follows since
R1
�1 f(↵)d↵ =

R1
�1 f(a↵+ b)d↵ for any b

and a 2 ±1, and equality (b) follows since f(A) = f(E \A), so
f({w  ↵}) = f({w > ↵}).
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Lovász extension properties

Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(;) = 0, we have

f̃(�w) =
Z 1

�1
f({�w � ↵})d↵ =

Z 1

�1
f({w  �↵})d↵ (17.38)

(a)
=

Z 1

�1
f({w  ↵})d↵ (b)

=

Z 1

�1
f({w > ↵})d↵ (17.39)

=

Z 1

�1
f({w � ↵})d↵ = f̃(w)

(17.40)

Equality (a) follows since
R1
�1 f(↵)d↵ =

R1
�1 f(a↵+ b)d↵ for any b

and a 2 ±1, and equality (b) follows since f(A) = f(E \A), so
f({w  ↵}) = f({w > ↵}).
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Lovász extension properties

Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(;) = 0, we have

f̃(�w) =
Z 1

�1
f({�w � ↵})d↵ =

Z 1

�1
f({w  �↵})d↵ (17.38)

(a)
=

Z 1

�1
f({w  ↵})d↵

(b)
=

Z 1

�1
f({w > ↵})d↵ (17.39)

=

Z 1

�1
f({w � ↵})d↵ = f̃(w)

(17.40)

Equality (a) follows since
R1
�1 f(↵)d↵ =

R1
�1 f(a↵+ b)d↵ for any b

and a 2 ±1, and equality (b) follows since f(A) = f(E \A), so
f({w  ↵}) = f({w > ↵}).
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Lovász extension properties

Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(;) = 0, we have

f̃(�w) =
Z 1

�1
f({�w � ↵})d↵ =

Z 1

�1
f({w  �↵})d↵ (17.38)

(a)
=

Z 1

�1
f({w  ↵})d↵ (b)

=

Z 1

�1
f({w > ↵})d↵ (17.39)

=

Z 1

�1
f({w � ↵})d↵ = f̃(w)

(17.40)

Equality (a) follows since
R1
�1 f(↵)d↵ =

R1
�1 f(a↵+ b)d↵ for any b

and a 2 ±1, and equality (b) follows since f(A) = f(E \A), so
f({w  ↵}) = f({w > ↵}).
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Lovász extension properties

Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(;) = 0, we have

f̃(�w) =
Z 1

�1
f({�w � ↵})d↵ =

Z 1

�1
f({w  �↵})d↵ (17.38)

(a)
=

Z 1

�1
f({w  ↵})d↵ (b)

=

Z 1

�1
f({w > ↵})d↵ (17.39)

=

Z 1

�1
f({w � ↵})d↵

= f̃(w)

(17.40)

Equality (a) follows since
R1
�1 f(↵)d↵ =

R1
�1 f(a↵+ b)d↵ for any b

and a 2 ±1, and equality (b) follows since f(A) = f(E \A), so
f({w  ↵}) = f({w > ↵}).
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Lovász extension properties

Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(;) = 0, we have

f̃(�w) =
Z 1

�1
f({�w � ↵})d↵ =

Z 1

�1
f({w  �↵})d↵ (17.38)

(a)
=

Z 1

�1
f({w  ↵})d↵ (b)

=

Z 1

�1
f({w > ↵})d↵ (17.39)

=

Z 1

�1
f({w � ↵})d↵ = f̃(w) (17.40)

Equality (a) follows since
R1
�1 f(↵)d↵ =

R1
�1 f(a↵+ b)d↵ for any b

and a 2 ±1, and equality (b) follows since f(A) = f(E \A), so
f({w  ↵}) = f({w > ↵}).
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Lovász extension, expected value of random variable

Recall, for w 2 RE
+, we have f̃(w) =

R1
0 f({w � ↵})d↵

Since f({w � ↵}) = 0 for ↵ > w1 � w`, we have for w 2 RE
+, we have

f̃(w) =
R w1

0 f({w � ↵})d↵
For w 2 [0, 1]E , then f̃(w) =

R w1

0 f({w � ↵})d↵ =
R 1
0 f({w � ↵})d↵

since f({w � ↵}) = 0 for 1 � ↵ > w1.
Consider ↵ as a uniform random variable on [0, 1] and let h(↵) be a
function of ↵. Then the expected value E[h(↵)] =

R 1
0 h(↵)d↵.

Hence, for w 2 [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(↵)[f({w � ↵})| {z }
h(↵)

] = Ep(↵)[f(e 2 E : w(ei) � ↵)| {z }
h(↵)

] (17.41)

where ↵ is uniform random variable in [0, 1].
Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w 2 RE
+, we have f̃(w) =

R1
0 f({w � ↵})d↵

Since f({w � ↵}) = 0 for ↵ > w1 � w`, we have for w 2 RE
+, we have

f̃(w) =
R w1

0 f({w � ↵})d↵

For w 2 [0, 1]E , then f̃(w) =
R w1

0 f({w � ↵})d↵ =
R 1
0 f({w � ↵})d↵

since f({w � ↵}) = 0 for 1 � ↵ > w1.
Consider ↵ as a uniform random variable on [0, 1] and let h(↵) be a
function of ↵. Then the expected value E[h(↵)] =

R 1
0 h(↵)d↵.

Hence, for w 2 [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(↵)[f({w � ↵})| {z }
h(↵)

] = Ep(↵)[f(e 2 E : w(ei) � ↵)| {z }
h(↵)

] (17.41)

where ↵ is uniform random variable in [0, 1].
Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w 2 RE
+, we have f̃(w) =

R1
0 f({w � ↵})d↵

Since f({w � ↵}) = 0 for ↵ > w1 � w`, we have for w 2 RE
+, we have

f̃(w) =
R w1

0 f({w � ↵})d↵
For w 2 [0, 1]E , then f̃(w) =

R w1

0 f({w � ↵})d↵ =
R 1
0 f({w � ↵})d↵

since f({w � ↵}) = 0 for 1 � ↵ > w1.

Consider ↵ as a uniform random variable on [0, 1] and let h(↵) be a
function of ↵. Then the expected value E[h(↵)] =

R 1
0 h(↵)d↵.

Hence, for w 2 [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(↵)[f({w � ↵})| {z }
h(↵)

] = Ep(↵)[f(e 2 E : w(ei) � ↵)| {z }
h(↵)

] (17.41)

where ↵ is uniform random variable in [0, 1].
Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w 2 RE
+, we have f̃(w) =

R 1
0 f({w � ↵})d↵

Since f({w � ↵}) = 0 for ↵ > w1 � w`, we have for w 2 RE
+, we have

f̃(w) =
R w1

0 f({w � ↵})d↵
For w 2 [0, 1]E , then f̃(w) =

R w1

0 f({w � ↵})d↵ =
R 1
0 f({w � ↵})d↵

since f({w � ↵}) = 0 for 1 � ↵ > w1.
Consider ↵ as a uniform random variable on [0, 1] and let h(↵) be a
function of ↵. Then the expected value E[h(↵)] =

R 1
0 h(↵)d↵.

Hence, for w 2 [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(↵)[f({w � ↵})| {z }
h(↵)

] = Ep(↵)[f(e 2 E : w(ei) � ↵)| {z }
h(↵)

] (17.41)

where ↵ is uniform random variable in [0, 1].
Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w 2 RE
+, we have f̃(w) =

R 1
0 f({w � ↵})d↵

Since f({w � ↵}) = 0 for ↵ > w1 � w`, we have for w 2 RE
+, we have

f̃(w) =
R w1

0 f({w � ↵})d↵
For w 2 [0, 1]E , then f̃(w) =

R w1

0 f({w � ↵})d↵ =
R 1
0 f({w � ↵})d↵

since f({w � ↵}) = 0 for 1 � ↵ > w1.
Consider ↵ as a uniform random variable on [0, 1] and let h(↵) be a
function of ↵. Then the expected value E[h(↵)] =

R 1
0 h(↵)d↵.

Hence, for w 2 [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(↵)[f({w � ↵})| {z }
h(↵)

] = Ep(↵)[f(e 2 E : w(ei) � ↵)| {z }
h(↵)

] (17.41)

where ↵ is uniform random variable in [0, 1].

Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F32/49 (pg.102/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Lovász extension, expected value of random variable

Recall, for w 2 RE
+, we have f̃(w) =

R 1
0 f({w � ↵})d↵

Since f({w � ↵}) = 0 for ↵ > w1 � w`, we have for w 2 RE
+, we have

f̃(w) =
R w1

0 f({w � ↵})d↵
For w 2 [0, 1]E , then f̃(w) =

R w1

0 f({w � ↵})d↵ =
R 1
0 f({w � ↵})d↵

since f({w � ↵}) = 0 for 1 � ↵ > w1.
Consider ↵ as a uniform random variable on [0, 1] and let h(↵) be a
function of ↵. Then the expected value E[h(↵)] =

R 1
0 h(↵)d↵.

Hence, for w 2 [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(↵)[f({w � ↵})| {z }
h(↵)

] = Ep(↵)[f(e 2 E : w(ei) � ↵)| {z }
h(↵)

] (17.41)

where ↵ is uniform random variable in [0, 1].
Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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One slide review of concave relaxation

convex closure f̌(x) = minp24n(x)ES⇠p[f(S)], where where 4n(x) =n
p 2 R2n :

P
S✓V pS = 1, pS � 08S ✓ V, &

P
S✓V pS1S = x

o

“Edmonds” extension f̆(w) = max(wx : x 2 Bf )

Lovász extension fLE(w) =
Pm

i=1 �if(Ei), with �i such that
w =

Pm
i=1 �i1Ei

f̃(w) = max�2⇧[m]
w

|
c
�, ⇧[m] set of m! permutations of [m],

� 2 ⇧[m] a permutation, c� vector with c
�
i = f(E�i)� f(E�i�1),

E�i = {e�1 , e�2 , . . . , e�i}.
Choquet integral Cf (w) =

Pm
i=1(wei � wei+1)f(Ei)

f̃(w) =
R +1
�1 f̂(↵)d↵, f̂(↵) =

(
f({w � ↵}) if ↵ � 0

f({w � ↵})� f(E) if ↵ < 0

All the same when f is submodular.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.42)
= (w1 � w2)f({1}) + w2f({1, 2}) (17.43)

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.44)
= (w2 � w1)f({2}) + w1f({1, 2}) (17.45)
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.42)
= (w1 � w2)f({1}) + w2f({1, 2}) (17.43)

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.44)
= (w2 � w1)f({2}) + w1f({1, 2}) (17.45)
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.46)
= (w1 � w2)f({1}) + w2f({1, 2}) (17.47)

=
1

2
f(1)(w1 � w2) +

1

2
f(1)(w1 � w2) (17.48)

+
1

2
f({1, 2})(w1 + w2)�

1

2
f({1, 2})(w1 � w2) (17.49)

+
1

2
f(2)(w1 � w2) +

1

2
f(2)(w2 � w1) (17.50)

A similar (symmetric) expression holds when w1  w2.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.46)
= (w1 � w2)f({1}) + w2f({1, 2}) (17.47)

=
1

2
f(1)(w1 � w2) +

1

2
f(1)(w1 � w2) (17.48)

+
1

2
f({1, 2})(w1 + w2)�

1

2
f({1, 2})(w1 � w2) (17.49)

+
1

2
f(2)(w1 � w2) +

1

2
f(2)(w2 � w1) (17.50)

A similar (symmetric) expression holds when w1  w2.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})� f({1, 2})) |w1 � w2| (17.51)

+
1

2
(f({1})� f({2}) + f({1, 2}))w1 (17.52)

+
1

2
(�f({1}) + f({2}) + f({1, 2}))w2 (17.53)

= � (f({1}) + f({2})� f({1, 2}))min {w1, w2} (17.54)
+ f({1})w1 + f({2})w2 (17.55)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 � I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.
This “simple” but general form of the Lovász extension with m = 2 can be
useful.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})� f({1, 2})) |w1 � w2| (17.51)

+
1

2
(f({1})� f({2}) + f({1, 2}))w1 (17.52)

+
1

2
(�f({1}) + f({2}) + f({1, 2}))w2 (17.53)

= � (f({1}) + f({2})� f({1, 2}))min {w1, w2} (17.54)
+ f({1})w1 + f({2})w2 (17.55)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 � I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.

This “simple” but general form of the Lovász extension with m = 2 can be
useful.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})� f({1, 2})) |w1 � w2| (17.51)

+
1

2
(f({1})� f({2}) + f({1, 2}))w1 (17.52)

+
1

2
(�f({1}) + f({2}) + f({1, 2}))w2 (17.53)

= � (f({1}) + f({2})� f({1, 2}))min {w1, w2} (17.54)
+ f({1})w1 + f({2})w2 (17.55)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 � I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.
This “simple” but general form of the Lovász extension with m = 2 can be
useful.
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Example: m = 2, E = {1, 2}, contours

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
⇣
1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
⇣
1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
⇣
1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
⇣
1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours
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f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
⇣
1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F37/49 (pg.116/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Example: m = 2, E = {1, 2}, contours

If w1 � w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
⇣
1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours
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f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

If w = (1, 0)/f({1}) =
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1/f({1}), 0

⌘
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1  w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.57)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
n
w 2 R2 : f̃(w) = 1

o
, particular marked

points of form w = 1A ⇥ 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}

Contour plot of m = 2 Lovász extension (from Bach-2011).

0

w2 > w1

w1 > w2

(1, 1)/f({1, 2})

(1, 0)/f({1})

(0, 1)/f({2})

˜
n
w : f(w) = 1

o

w2

w1
45°
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.

Consider any submodular f 0 and x 2 Bf 0 . Then f(A) = f
0(A)� x(A)

is submodular

, and moreover f(E) = f
0(E)� x(E) = 0.

Hence, from f̃(w + ↵1E) = f̃(w) + ↵f(E), we have that
f̃(w + ↵1E) = f̃(w) when f(E) = 0.
Thus, we can look “down” on the contour plot of the Lovász extension,n
w : f̃(w) = 1

o
, from a vantage point of being right on the ray

{x : x = ↵1E ,↵ > 0} since moving in direction 1E changes nothing.
I.e., consider 2D plane perpendicular to the ray {x : x = ↵1E ,↵ > 0}
at any point along that ray, then Lovász extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.
Consider any submodular f 0 and x 2 Bf 0 . Then f(A) = f

0(A)� x(A)
is submodular

, and moreover f(E) = f
0(E)� x(E) = 0.

Hence, from f̃(w + ↵1E) = f̃(w) + ↵f(E), we have that
f̃(w + ↵1E) = f̃(w) when f(E) = 0.
Thus, we can look “down” on the contour plot of the Lovász extension,n
w : f̃(w) = 1

o
, from a vantage point of being right on the ray

{x : x = ↵1E ,↵ > 0} since moving in direction 1E changes nothing.
I.e., consider 2D plane perpendicular to the ray {x : x = ↵1E ,↵ > 0}
at any point along that ray, then Lovász extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.
Consider any submodular f 0 and x 2 Bf 0 . Then f(A) = f

0(A)� x(A)
is submodular, and moreover f(E) = f

0(E)� x(E) = 0.

Hence, from f̃(w + ↵1E) = f̃(w) + ↵f(E), we have that
f̃(w + ↵1E) = f̃(w) when f(E) = 0.
Thus, we can look “down” on the contour plot of the Lovász extension,n
w : f̃(w) = 1

o
, from a vantage point of being right on the ray

{x : x = ↵1E ,↵ > 0} since moving in direction 1E changes nothing.
I.e., consider 2D plane perpendicular to the ray {x : x = ↵1E ,↵ > 0}
at any point along that ray, then Lovász extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.
Consider any submodular f 0 and x 2 Bf 0 . Then f(A) = f

0(A)� x(A)
is submodular, and moreover f(E) = f

0(E)� x(E) = 0.
Hence, from f̃(w + ↵1E) = f̃(w) + ↵f(E), we have that
f̃(w + ↵1E) = f̃(w) when f(E) = 0.

Thus, we can look “down” on the contour plot of the Lovász extension,n
w : f̃(w) = 1

o
, from a vantage point of being right on the ray

{x : x = ↵1E ,↵ > 0} since moving in direction 1E changes nothing.
I.e., consider 2D plane perpendicular to the ray {x : x = ↵1E ,↵ > 0}
at any point along that ray, then Lovász extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.
Consider any submodular f 0 and x 2 Bf 0 . Then f(A) = f

0(A)� x(A)
is submodular, and moreover f(E) = f

0(E)� x(E) = 0.
Hence, from f̃(w + ↵1E) = f̃(w) + ↵f(E), we have that
f̃(w + ↵1E) = f̃(w) when f(E) = 0.
Thus, we can look “down” on the contour plot of the Lovász extension,n
w : f̃(w) = 1

o
, from a vantage point of being right on the ray

{x : x = ↵1E ,↵ > 0} since moving in direction 1E changes nothing.

I.e., consider 2D plane perpendicular to the ray {x : x = ↵1E ,↵ > 0}
at any point along that ray, then Lovász extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.
Consider any submodular f 0 and x 2 Bf 0 . Then f(A) = f

0(A)� x(A)
is submodular, and moreover f(E) = f

0(E)� x(E) = 0.
Hence, from f̃(w + ↵1E) = f̃(w) + ↵f(E), we have that
f̃(w + ↵1E) = f̃(w) when f(E) = 0.
Thus, we can look “down” on the contour plot of the Lovász extension,n
w : f̃(w) = 1

o
, from a vantage point of being right on the ray

{x : x = ↵1E ,↵ > 0} since moving in direction 1E changes nothing.
I.e., consider 2D plane perpendicular to the ray {x : x = ↵1E ,↵ > 0}
at any point along that ray, then Lovász extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m = 3, E = {1, 2, 3}
Example 1 (from Bach-2011): f(A) = 1|A|2{1,2}
= min {|A|, 1}+min {|E \A|, 1}� 1 is submodular, and
f̃(w) = maxk2{1,2,3} wk �mink2{1,2,3} wk.
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Example: m = 3, E = {1, 2, 3}
Example 1 (from Bach-2011): f(A) = 1|A|2{1,2}
= min {|A|, 1}+min {|E \A|, 1}� 1 is submodular, and
f̃(w) = maxk2{1,2,3} wk �mink2{1,2,3} wk.

w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/f({2,3})

(0,0,1)/f({3})

(1,0,1)/f({1,3})

(1,0,0)/f({1})

(1,1,0)/f({1,2})
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Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F40/49 (pg.127/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Example: m = 3, E = {1, 2, 3}

Example 2 (from
Bach-2011): f(A) =
|112A�122A|+|122A�132A|

This gives a “total variation”
function for the Lovász
extension, with
f̃(w) = |w1�w2|+ |w2�w3|.
When used as a prior, prefers
piecewise-constant signals
(e.g.,

P
i |wi � wi+1|).

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)

(1,1,0)
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Example: m = 3, E = {1, 2, 3}

Example 2 (from
Bach-2011): f(A) =
|112A�122A|+|122A�132A|
This gives a “total variation”
function for the Lovász
extension, with
f̃(w) = |w1�w2|+ |w2�w3|.

When used as a prior, prefers
piecewise-constant signals
(e.g.,

P
i |wi � wi+1|).

(0,1,0)/2
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(0,1,1)
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Example: m = 3, E = {1, 2, 3}

Example 2 (from
Bach-2011): f(A) =
|112A�122A|+|122A�132A|
This gives a “total variation”
function for the Lovász
extension, with
f̃(w) = |w1�w2|+ |w2�w3|.
When used as a prior, prefers
piecewise-constant signals
(e.g.,

P
i |wi � wi+1|).

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)
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Total Variation Example

From “Nonlinear total
variation based noise
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top left
original, bottom right
total variation.
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Example: Lovász extension of concave over modular

Let m : E ! R+ be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

Let Mj =
Pj

i=1m(ei), with w(e1) � w(e2) � . . . for some w.
f̃(w) is given as

f̃(w) =
mX

i=1

w(ei)
�
g(Mi)� g(Mi�1)

�
(17.58)

And if m(A) = |A|, we get

f̃(w) =
mX

i=1

w(ei)
�
g(i)� g(i� 1)

�
(17.59)
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Example: Lovász extension of concave over modular

Let m : E ! R+ be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.
Let Mj =

Pj
i=1m(ei), with w(e1) � w(e2) � . . . for some w.

f̃(w) is given as
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And if m(A) = |A|, we get
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g(i)� g(i� 1)

�
(17.59)
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Example: Lovász extension of concave over modular

Let m : E ! R+ be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.
Let Mj =

Pj
i=1m(ei), with w(e1) � w(e2) � . . . for some w.

f̃(w) is given as

f̃(w) =
mX

i=1

w(ei)
�
g(Mi)� g(Mi�1)

�
(17.58)

And if m(A) = |A|, we get

f̃(w) =
mX

i=1

w(ei)
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g(i)� g(i� 1)

�
(17.59)
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Example: Lovász extension of concave over modular

Let m : E ! R+ be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.
Let Mj =

Pj
i=1m(ei), with w(e1) � w(e2) � . . . for some w.

f̃(w) is given as

f̃(w) =
mX

i=1

w(ei)
�
g(Mi)� g(Mi�1)

�
(17.58)

And if m(A) = |A|, we get

f̃(w) =
mX

i=1

w(ei)
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g(i)� g(i� 1)

�
(17.59)
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E ! R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V ! R+ with f(X) = m(�(X)) where
�(X) = {(u, v)|(u, v) 2 E, u 2 X, v 2 V \X} is non-monotone
submodular.

Simple way to write it, with mij = m((i, j)):

f(X) =
X

i2X,j2V \X

mij (17.60)

Exercise: show that Lovász extension of graph cut may be written as:

f̃(w) =
X

i,j2V

mij max {(wi � wj), 0} (17.61)

where elements are ordered as usual, w1 � w2 � · · · � wn.
This is also a form of “total variation”
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E ! R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V ! R+ with f(X) = m(�(X)) where
�(X) = {(u, v)|(u, v) 2 E, u 2 X, v 2 V \X} is non-monotone
submodular.
Simple way to write it, with mij = m((i, j)):

f(X) =
X

i2X,j2V \X

mij (17.60)

Exercise: show that Lovász extension of graph cut may be written as:

f̃(w) =
X

i,j2V

mij max {(wi � wj), 0} (17.61)

where elements are ordered as usual, w1 � w2 � · · · � wn.
This is also a form of “total variation”
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E ! R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V ! R+ with f(X) = m(�(X)) where
�(X) = {(u, v)|(u, v) 2 E, u 2 X, v 2 V \X} is non-monotone
submodular.
Simple way to write it, with mij = m((i, j)):

f(X) =
X

i2X,j2V \X

mij (17.60)

Exercise: show that Lovász extension of graph cut may be written as:

f̃(w) =
X

i,j2V

mij max {(wi � wj), 0} (17.61)

where elements are ordered as usual, w1 � w2 � · · · � wn.

This is also a form of “total variation”
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E ! R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V ! R+ with f(X) = m(�(X)) where
�(X) = {(u, v)|(u, v) 2 E, u 2 X, v 2 V \X} is non-monotone
submodular.
Simple way to write it, with mij = m((i, j)):

f(X) =
X

i2X,j2V \X

mij (17.60)

Exercise: show that Lovász extension of graph cut may be written as:

f̃(w) =
X

i,j2V

mij max {(wi � wj), 0} (17.61)

where elements are ordered as usual, w1 � w2 � · · · � wn.
This is also a form of “total variation”
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A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions, where
w(e1) � w(e2) � · · · � w(em) � 0. Let Wk , Pk

i=1w(ei).

f(A) f̃(w)

|A| kwk1
min(|A|, 1) kwk1

min(|A|, 1)�max(|A|�m+ 1, 0) kwk1 �miniwi

min(|A|, k) Wk

min(|A|, k)�max(|A|� (n� k) + 1, 1) 2Wk �Wm

min(|A|, |E \A|) 2Wbm/2c �Wm

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

Given training data D = {(xi, yi)}mi=1 with (xi, yi) 2 Rn ⇥ R, perform
the following risk minimization problem:

min
w2Rn

1

m

mX

i=1

`(yi, w
|
xi) + �⌦(w), (17.62)

where `(·) is a loss function (e.g., squared error) and ⌦(w) is a norm.
When data has multiple responses (xi, yi) 2 Rn⇥Rk, learning becomes:

min
w1,...,wk2Rn

kX

j=1

1

m

mX

i=1

`(yki , (w
k)

|
xi) + �⌦(wk), (17.63)

When data has multiple responses only that are observed, (yi) 2 R
k

we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk2Rn

kX

j=1

1

m

mX

i=1

`(yki , (w
k)

|
xi) + �⌦(wk), (17.64)
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Norms, sparse norms, and computer vision

Common norms include p-norm ⌦(w) = kwkp = (
Pp

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

⌦(w) =
NX

i=2

|wi � wi�1| (17.65)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Norms, sparse norms, and computer vision

Common norms include p-norm ⌦(w) = kwkp = (
Pp

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).

Image denoising, total variation is useful, norm takes form:

⌦(w) =
NX

i=2

|wi � wi�1| (17.65)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F47/49 (pg.143/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Norms, sparse norms, and computer vision

Common norms include p-norm ⌦(w) = kwkp = (
Pp

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

⌦(w) =
NX

i=2

|wi � wi�1| (17.65)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Norms, sparse norms, and computer vision

Common norms include p-norm ⌦(w) = kwkp = (
Pp

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

⌦(w) =
NX

i=2

|wi � wi�1| (17.65)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F47/49 (pg.145/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0

Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).

Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.

With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!

Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, kwk0 = 1| supp(w).
Using ⌦(w) = kwk0 is NP-hard, instead we often optimize tightest
convex relaxation, kwk1 which is the convex envelope.
With kwk0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but 9 many more!
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Lovász extension and norms

Using Lovász extension to define various norms of the form
kwkf̃ = f̃(|w|). This renders the function symmetric about all orthants
(meaning, kwkf̃ = kb� wkf̃ for any b 2 {�1, 1}m and � is
element-wise multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.
With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).
Hence, not all norms come from the Lovász extension of some
submodular function.
Similarly, not all convex functions are the Lovász extension of some
submodular function.
Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
kwkf̃ = f̃(|w|). This renders the function symmetric about all orthants
(meaning, kwkf̃ = kb� wkf̃ for any b 2 {�1, 1}m and � is
element-wise multiplication).
Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.

With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).
Hence, not all norms come from the Lovász extension of some
submodular function.
Similarly, not all convex functions are the Lovász extension of some
submodular function.
Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
kwkf̃ = f̃(|w|). This renders the function symmetric about all orthants
(meaning, kwkf̃ = kb� wkf̃ for any b 2 {�1, 1}m and � is
element-wise multiplication).
Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.
With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.
Similarly, not all convex functions are the Lovász extension of some
submodular function.
Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
kwkf̃ = f̃(|w|). This renders the function symmetric about all orthants
(meaning, kwkf̃ = kb� wkf̃ for any b 2 {�1, 1}m and � is
element-wise multiplication).
Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.
With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).
Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.
Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
kwkf̃ = f̃(|w|). This renders the function symmetric about all orthants
(meaning, kwkf̃ = kb� wkf̃ for any b 2 {�1, 1}m and � is
element-wise multiplication).
Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.
With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).
Hence, not all norms come from the Lovász extension of some
submodular function.
Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F49/49 (pg.159/160)



Choquet Integration Non-linear Measure and Aggregation Lovász extn., defs/props Lovász extension examples

Lovász extension and norms

Using Lovász extension to define various norms of the form
kwkf̃ = f̃(|w|). This renders the function symmetric about all orthants
(meaning, kwkf̃ = kb� wkf̃ for any b 2 {�1, 1}m and � is
element-wise multiplication).
Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.
With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).
Hence, not all norms come from the Lovász extension of some
submodular function.
Similarly, not all convex functions are the Lovász extension of some
submodular function.
Bach-2011 has a complete discussion of this.
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