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Logistics

Class Road Map - EE563

L1(9/30): Motivation, Applications,
Definitions, Properties

L2(10/5): Sums concave(modular), uses @
(diversity/costs, feature selection),
information theory

L3(10/7): Monge, More Definitions,
Graph and Combinatorial Examples,
L4(10/12): Graph & Combinatorial
Examples, Matrix Rank, Properties, Other
Defs, Independence

L5(10/14): Properties, Defs of
Submodularity, Independence

L6(10/19): Matroids, Matroid Examples,
Matroid Rank,

L7(10/21): Matroid Rank, More on
Partition Matroid, Laminar Matroids,
System of Distinct Reps, Transversals
L8(10/26): Transversal Matroid, Matroid
and representation, Dual Matroid
L9(10/28): Other Matroid Properties,
Combinatorial Geometries, Matroid and
Greedy, Polyhedra, Matroid Polytopes
L10(11/2): Matroid Polytopes, Matroids
— Polymatroids

Last day of instruction, Fri. Dec 11th
ff Bilmes

L11(11/4): Matroids — Polymatroids,
Polymatroids

L12(11/9): Polymatroids, Polymatroids
and Greedy

L—(11/11): Veterans Day, Holiday
L13(11/16): Polymatroids and Greedy,
Possible Polytopes, Extreme Points,
Cardinality Constrained Maximization
L14(11/18): Cardinality Constrained
Maximization, Curvature

L15(11/23): Curvature, Submodular Max
w. Other Constraints, Start Cont.
Extensions

L16(11/25): Submodular Max w. Other
Constraints, Cont. Extensions, Lovasz
extension

L17(11/30): Choquet Integration,
Non-linear Measure/Aggregation,
Definitions/Properties, Examples.
L18(12/2):

L19(12/7):

120(12/9):

L21(12/14): final meeting (presentations)
maximization.

. Finals Week: Dec 12-18, 2020

EES563/Spring 2020/Submodularity - Lecture 17 - Nov 30th,

F2/49 (pg.2/160)



Rest of class

@ Homework 4 posted, due Thursday Dec 17th, 2020, 11:55pm.
@ Final project paper proposal, due'Sunday Dec 6th, 11:59pm.

@ Final project 4-page paper and presentation slides, due Sunday Dec
13th, 11:59pm.

@ Final project presentation, Monday Dec 14th, starting at 10:30am.

e Final project: Read and present a recent (past 5 years) paper on
submodular/supermodular optimization. Paper should have both a
theoretical and practical component. What is due: (1) 4-page paper
summary, and (2) 10 minute presentation about the paper, will be
giving presentations on Monday 12/14/2020. You must choose your
paper before the 14th (this will be HW5), and you must turn in your
slides and 4-page paper (this will be HW6).

@ Recall, grades will be based on a combination of a final project (40%)
and the four homeworks (60%).
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Def: Convex Envelope of a function

o Given any function h : D;, — R, where D;, C R", define the new
function i : R — R via:
h(x) = sup {g(x) : g is convex & g(y) < h(y),Yy € D} (17.1)

o le, (1) h(z) is convex, (2) h(z) < h(x),Vz, and (3) if g(z) is any
convex function having the property that g(z) < h(x), Vz, then
g(x) < h(a)

o Alternatively,

h(z) = inf {t : (z,t) € convexhull(epigraph(h))} (17.2)
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Review
[LARRNRRN

Convex Closure of Discrete Set Functions

o Given set function f: 2"V — R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f:00,1]¥ =R, as

fa)= min S psf(S) (17.1)

where for@ € [0,1]" we have A" (x) =
{P ERY Y gcyps=1,ps = O0VS CV, & Y5y psls = $}
@ Hence, A™(x) is the set of all probability distributions over the 2™

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to = € [0,1]", i.e., for
any p € A" (), Eg~p(ls) = ngvpsls =z

e Hence, f(7) = min,can(z) Bs~plf(S)]

@ We will show that this is a convex extension. Does it have any special
properties?
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Review
[NERRNRRN

Convex Closure of Discrete Set Functions

A d
e Given, f(z) = min,ean (z) Es~p[f(S)], we gan show:

@ that f is tight (i.e., VS C V, we have f(15) = £(9)).

@ that f is convex (and consequently, that any arbitrary set function has a
tight convex extension).

© that the convex closure f is the convex envelope of the function defined
only on the hypercube vertices, and that takes value f(S) at 1.

@ the definition of the Lovasz extension of a set function, and that f is the
Lovasz extension iff f is submodular.

@ Note that the concave closure can also be defined, as
f(z) = max,c an () Es~p[f(S)], but it is in general impossible to
obtain exactly even for submodular functions.
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Greedy-based continuous extension of submodular f

@ Given a submodular function f, a w E%,%ﬁogse element order
(e1,e2,...,en) based on decreasing w,so that
12> w(er) = w(es) = - = wiem) = 0.

° Define chan 0 £ EyCc By C By C--- C E,,, = E based on w, so the

ith element of this change has E; = {eq, ea,...,¢e;}.
We have, for w & % that
y cog®
f(w) = max(wzx : v € Py) = max(wx :x € By) (17.12)
Z:w(ez fleilEiq) = Zw (e;)x(e;) (17.13)
=1 =1
= w(e)(f(Ei) - f(Ei-1)) (17.14)
i=1
m—1

= (18 =w(e1)) f(Eo) + wlem)f(Em) + ‘ (wlei) — wleiv1)) f(Es)
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Greedy-based continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:

92

f(w) = max(wzx : x € By) (17.12)

@ Therefore, if f is a submodular function, we can write

m—1

f(w) = wlem) f(Em) + w(eiv1))f(Ei) (17.13)

z:l

- i Nif(E) (17.14)

where A\, = w(e;,) and otherwise \; = w(e;) — w(e;+1), where the
elements are sorted descending according to w as before.
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The Lovasz extension of an arbitrary f : 2V — R

@ Thus, for any f : 2UE — R, even non-submodular f, we can define an
extension, having f(14) = f(A), VA, in this way where

flw) = Nif(Ey) (17.20)
i=1

with the E; = {e1,...,e;}'s defined based on sorted descending order
of was in w(e;) > w(ez) > -+ > w(en), and where

foric {1,...,m}, A= {w(ei) Swlein) <m0
w(em) ifi=m
so that w = """, N\ilg,.
e w=> " N\1g, is an interpolation of certain hypercube vertices.
o flw) = Yoty Aif (E;) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
@ This extension is called the Lovasz extension!

EES563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F9/49 (pg.9/160)



eeeeee

Summary: comparison of the two extension forms
@ So if f is submodular, then we can write f(w) = max(wz : x € By)
(which is clearly convex) in the form:

v

f(w) = max(wzx : ¢ € By) = Z)\Zf(EZ) (17.24)
i=1

where w = > \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(e;) > w(ez) > -+ > w(em).

@ On the other hand, for any f (even non-submodular), we can produce
an extension f having the form

flw) =" Nif(E) (17.25)
=1

where w = >"", N\i1p, and E; = {e1,...,e;} defined based on sorted
descending order w(e1) > w(ez) > -+ > w(em).

o In both Eq. (2?) and Eq. (??), we have f(14) = f(A), VA, but
Eq. (??), might not be convex for non-submodular f.
@ Submodularity is sufficient for convexity, but is it also necessary?
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Review
[NNRRERR NI

Lovasz Extension, Submodularity and Convexity

Theorem 17.2.6

A function f : 2F — R is submodular iff its Lovasz extension f of f is
convex.

Proof.

o We've already seen that if f is submodular, its extension can be written
via Eqn.(?7) due to the greedy algorithm, and therefore is also
equivalent to f(w) = max{wz : x € Py}, and thus is convex.

o Conversely, suppose the Lovasz extension f(w) = > i Nif(E;) (of some
function f : 2P — R) is a convex function.

@ We note that, based on the extension definition, in particular the
definition of the {\;},, we have that f(aw) = af(w) for any o € R
l.e., f is a positively homogeneous convex function.
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Lovasz ext. vs. the concave closure of submodular function

Theorem 17.2.6

Let f(w) = max(wy : y € By) =" Nif(E;) be the Lovasz extension
and f(z) = min, e an(g) Es~p[f(S)] be the convex closure. Then fand f
coincide iff f is submodular, i.e., f(w) = f(w),Vw € [0,1].
Proof.

@ Assume f is submodular.

|

@ Given z, let p® be an achieving argmin in f(z) that also maximizes
ZSP§|S|2-
@ Suppose A, B C V that are crossing (i.e., AZ B, B Z A) with
positive p%, pj. W.lo.g., p% > p% > 0.
@ Then we may update p*, keeping it a distribution, as follows:
DA < Pa — DB 7% — % — 1% (17.33)
Paus < Paus +PB DAnB < Pang + DB (17.34)
and by submodularity, this does not increase > ¢ p& f(S).
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Choauet Integration
[NRN]

Integration

e Integration is just summation (e.g., the [ symbol has as its origins a
sum).
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Integration

o Integration is just summation (e.g., the [ symbol has as its origins a
sum).

@ Lebesgue integration (See Rudin 1987, Definition 1.23, for details)
allows integration w.r.t. an underlying measure p of sets. Formal
definition (from Rudin): given measurable function f, we can define

/ fdu =sup Ix(s) (17.1)
JXx

where Ix(s) = > i, cip(X N X;), and where we take the sup over all
measurable functions s such that 0 < s < f and s(z) = > | ¢;Ix,(x)
and where Ix,(x) is indicator of membership of set X;, with ¢; > 0.
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Choauet Integration
(L AN}

Review

@ Recall, a Boolean function f is any function f : {0,1}" — {0,1} and
is a pseudo-Boolean function if f: {0,1}" — R.

ff Bilmes EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F14/49 (pg.15/160)



@ Recall, a Boolean function f is any function f: {0,1}" — {0,1} and
is a pseudo-Boolean function if f:{0,1}" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2E =R, form f,: {0,1}" — R as fy(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.
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Choauet Integration

Review

@ Recall, a Boolean function f is any function f: {0,1}" — {0,1} and
is a pseudo-Boolean function if f:{0,1}" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2E =R, form f,: {0,1}" — R as fy(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.

@ Also, if we have an expression for f; we can construct a set function f
as f(A) = fp(14). We can also often relax f, to any = € [0,1]™. We
saw this for Lovasz extension.
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Choauet Integration

Review

@ Recall, a Boolean function f is any function f: {0,1}" — {0,1} and
is a pseudo-Boolean function if f:{0,1}" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2E =R, form f,: {0,1}" — R as fy(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.

@ Also, if we have an expression for f; we can construct a set function f
as f(A) = fp(14). We can also often relax f; to any = € [0,1]™. We
saw this for Lovasz extension.

@ It turns out that a concept essentially identical to the Lovasz extension
was derived much earlier, in 1954, and using this derivation (via
integration) leads to deeper intuition.
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Choquet integral

Definition 17.3.1

Let f be any capacity on E and w € R¥. The Choquet integral (1954) of w
w.r.t. f is defined by

Cf(w) = Z(wei - we¢+1)f(Ei) (17'2)
=1

where in the sum, we have sorted and renamed the elements of E so that
Wey > Wey >+ + > We,, > We,, ., =0, and where E; = {e1,e2,...,¢€}.

@ We immediately see that an equivalent formula is as follows:

Cr(w) = w(e)(f(E:) - f(Ei-1)) (17.3)

i=1

where Ej dfp.
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oquet integral

Definition 17.3.1
Let f be any capacity on E and w € R¥. The Choquet integral (1954) of w
w.r.t. f is defined by

m

Cf(w) = Z(wei - we¢+1)f(Ei) (17'2)

=1

where in the sum, we have sorted and renamed the elements of E so that
Wey > Wey >+ ++ > We,, > We,, , =0, and where E; = {e1,e2,...,¢€}.

@ this again essentially Abel's partial summation formula: Given two
arbitrary sequences {a,} and {b,} with A, = >}, ai, we have

> agbr =Y Ag(br — brs1) + Anbng1 — A1 (17.4)

k=m k=m
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Choauet Integration
(RN1 ]

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
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Choauet Integration

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:we > w,,}.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F16/49 (pg.22/160)



Choauet Integration

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:we > w,,}.

e For any we, > a > we,,, we also have
E; ={ei,ea,...,e;} ={e € E:w. > a}.
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Choguet Integrati
(RN1 ]

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:we > w,,}.

e For any we, > a > we,,, we also have
E; ={ei,ea,...,e;} ={e € E:w. > a}.

o Can segment real-axis at boundary points we,, right most is we, .

w(em) wiem—1) ** wles) w(es) wles) w(ea)w(er)
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Choguet Integrati
(RN1 ]

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:we > w,,}.

e For any we, > a > we,,, we also have
E; ={ei,ea,...,e;} ={e € E:w. > a}.

o Can segment real-axis at boundary points we,, right most is we, .

w(em) wlem—1) ***  w(es) ; w(eq) wles) wleg)w(er)
A
o A function can be defined on a segment w,, > o > We,,, of R. This

function Fj : [we,,,,we;) — R is defined as

Fi(a) = f{e € E:we > a}) = f(E) (17.5)
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Choguet Integrati
(RN1 ]

The “integral” in the Choquet integral

@ We can generalize this to multiple segments of R (for now, take w € R%).
The piecewise-constant function is defined as:

f(E) if 0 <a<w,
Fla)=q f{le€ E:we>a}) ifwe,, <a<we,ic{l,...,m—1}
0 (= f(0)) if w <«
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Choauet Integration

The “integral” in the Choquet integral

@ We can generalize this to multiple segments of R (for now, take w € R%).
The piecewise-constant function is defined as:

f(E) if0<a<wny,
Fla)=q f{le€ E:we>a}) ifwe,, <a<we,ic{l,...,m—1}
0 (= f(0)) if w <«

o Visualizing a piecewise constant function, where the constant values are
given by f evaluated on F; for each ¢

F(a)
) f(E) f({e1,ez,e3,e4,95}) M}
f(E\e,.}) f(fe,e,})
f(E\le, e, ) *°° filey e e5e,)) %y
1 1 1 1 1 1 A o
0 w(em) w(em—1) w(es)  w(es) w(es) w(e2) w(er)
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Choquet I
(RN1 ]

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that
f(0) = 0. Recall w41 def .

Flw) /0 ~ Fla)da (17.6)
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Choguet Integrati
(RN1 ]

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that
f(0) = 0. Recall w41 def .

f(w) def /OOO F(a)da (17.6)
= /Ooo f{e € E:we > a})da (17.7)
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Choauet Integration
(RN1 ]

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that

f(0) = 0. Recall w41 def .

f(w) def /OOO F(a)da (17.6)
= /Ooo f{e € E:we > a})da (17.7)
= /Oo f{ee€ E:w. > a})do (17.8)
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Choauet Integration
(RN1 ]

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that

f(0) = 0. Recall w41 def .

Flw) % /OOO F(a)da (17.6)
= /Ooo f{e € E:we > a})do (17.7)
_ /w: f({e € E:we > a))da (17.8)
_ i wﬂ fe € E: we > a})da (17.9)
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Choauet Integration
(RN1 ]

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that

f(0) = 0. Recall w41 &ty

f(w) def /OOO F(a)da (17.6)
= /Ooo f{e € E:we > a})da (17.7)
= /Oo f{ee€ E:w. > a})do (17.8)

Z/W f{e € E:we > a})do (17.9)

Wi

+
[un

I
ANgERD
&h
M
=
(S
e
g

+

(17.10)

j=1 Y Wit1 =1
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Choquet I
(RN1 ]

The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.
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Choguet Integrati

The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.

@ Thus, we have the following definition:

Definition 17.3.2
Given w € RY, the Lovasz extension (equivalently Choquet integral) may be

defined as follows:

Flw) & /OOO F(a)da (17.11)

where the function F' is defined as before. )

F16/49 (pg.34/160)
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The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.
@ Thus, we have the following definition:

Definition 17.3.2

Given w € RY, the Lovasz extension (equivalently Choquet integral) may be
defined as follows:

Flw) & /OOO F(a)da (17.11)

where the function F' is defined as before.

@ Note that it is not necessary in general to require w € Rf (i.e., we can
take w € R¥) nor that f be non-negative, but it is a bit more involved.

Above is the simple case.

F16/49 (pg.35/160)
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The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.
@ Thus, we have the following definition:

Definition 17.3.2

Given w € RY, the Lovasz extension (equivalently Choquet integral) may be

defined as follows:

Flw) & /OOO F(a)da (17.11)

where the function F' is defined as before.

@ Note that it is not necessary in general to require w € Rf (i.e., we can
take w € R¥) nor that f be non-negative, but it is a bit more involved.
Above is the simple case.

@ The above integral will be further generalized a bit later.
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Non-linear Measure an d Aggregation
[NERRN

Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

e le., given a weight vector w € [0, 1]¥ for some finite ground set E,
then for any 2 € R” we have the weighted average of z as:

WAVG(z) = > " z(e)w(e) (17.12)

eckE
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EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020



Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

e le., given a weight vector w € [0, 1]¥ for some finite ground set E,
then for any 2 € R” we have the weighted average of z as:

WAVG(z) = > " a(e)w(e) (17.12)
eck
@ Consider 1. for e € E, we have
WAVG(1,.) = w(e) (17.13)

F17/49 (pg.39/160)
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

e le., given a weight vector w € [0, 1]¥ for some finite ground set E,
then for any 2 € R” we have the weighted average of z as:

WAVG(z) = > " a(e)w(e) (17.12)
eckE
o Consider 1, for e € E/, we have
WAVG(1,) = w(e) (17.13)
so seen as a function on the hypercube vertices, the entire WAVG

function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1.: e € E}.

% ks
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
e le., given a weight vector w € [0, 1]¥ for some finite ground set E,
then for any 2 € R” we have the weighted average of z as:
WAVG(z) = > " a(e)w(e) (17.12)
eckE
o Consider 1, for e € E/, we have

WAVG(1.) = w(e) (17.13)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1, : e € E}. Moreover, we are
interpolating as in

WAVG(z) = Z:I;(e)w(e) = Zw(e)WAVG(lﬁ) (17.14)

eck eckE
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Non-linear Measure and Aggregation
[LERRN

Integration, Aggregation, and Weighted Averages

WAVG(z) = > a(e)w(e) (17.15)
eclk

@ WAVG function is linear in weights w and in the argument z, and is
homogeneous. That is, for all w, w1, ws, z,z1, 22 € RF and o € R,

WAVG,y, 4o, () = WAVG,, () + WAVG,, (z), (17.16)
WAVG,, (21 + m2) = WAVG,, (1) + WAVG,, (22), (17.17)

and is homogeneous, Vo € R,

WAVG(az) = aWAVG(z). (17.18)
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Non-linear Measure and Aggregation
[LERRN

Integration, Aggregation, and Weighted Averages
(x)

L& O ) g, ot L%,
e WAVG(z) = 3 a(e)u(e) (17.15)

eeE

LG4 b

@ WAVG function is linear in weights w and in the argument z, and is
homogeneous. That is, for all w, w1, ws, z,z1, 22 € RF and o € R,

WAVG,y, 4, () = WAVG,, () + WAVG,, (2), (17.16)
WAVG,, (1 + 22) = WAVG,, (z1) + WAVG,, (22), (17.17)

and is homogeneous, Ya € R,

WAVG(azx) = aWAVG(z). (17.18)

o How related? The Lovasz extension f(z) is still linear in “weights” (i.e.,
the submodular function f), but will not be linear in  and will only be
positively homogeneous (for a > 0).
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. l.e.,
for each 14 : A C E we might have (for all A C E):

AG(14) =wy (17.19)
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. l.e.,
for each 14 : A C E we might have (for all A C E):

AG(14) =wy (17.19)

@ What then might AG(z) be for some 2 € R¥? Our weighted average
functions might look something more like the r.h.s. in:

AG(z) = Y a(A)ywa = Y 2(A)AG(14) (17.20)

ACE ACE

= ST = = e

celB AAde =cE
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Choquet integral and aggregation

@ We wish to produce some notion of generalized aggregation function
having the flavor of:

AG(z) = Y 2(A)ywa = Y _ 2(A)AG(14) (17.21)

ACE ACE

how does this correspond to Lovasz extension?
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Choquet integral and aggregation

@ We wish to produce some notion of generalized aggregation function
having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (17.21)
ACE ACE
how does this correspond to Lovasz extension?
@ Let us partition the hypercube [0, 1]™ into ¢ polytopes, Vi, Vs, ..., V,,
each polytope defined by a set of vertices.
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Choquet integral and aggregation

@ We wish to produce some notion of generalized aggregation function
having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (17.21)

ACE ACE

how does this correspond to Lovasz extension?
o Let us partition the hypercube [0, 1]™ into ¢ polytopes, Vi, Vs, ..., V,,
each polytope defined by a set of vertices.

Eg., for each 1, Vi =
{14,,14,,...,14,} (kK vertices)
and the convex hull of V; defines
the it polytope. This forms a
“triangulation” of the hypercube.
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Choquet integral and aggregation

@ We wish to produce some notion of generalized aggregation function
having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (17.21)

ACE ACE

how does this correspond to Lovasz extension?
o Let us partition the hypercube [0, 1]™ into ¢ polytopes, Vi, Vs, ..., V,,
each polytope defined by a set of vertices.

E.g., for each i, V; =
{14,,14,,...,14,} (kK vertices)
and the convex hull of V; defines
the it polytope. This forms a
“triangulation” of the hypercube.

e For any z € [0, 1]™ there is a (not necessarily unique) V(z) = V; for
some j such that x € conv(V(z
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Choquet integral and aggregation

@ Most generally, for x € [0,1]™, let us define the (unique) coefficients
aj(A) and o (A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex

14 € conv(V(x)). The affine transformation is as follows:

aZ(A) + i af(A)z; € R (17.22)
j=1

Note that many of these coefficient are often zero.
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Choquet integral and aggregation

@ Most generally, for x € [0,1]™, let us define the (unique) coefficients
aj(A) and o (A) that define the affine transformation of the
coefficients of  to be used with the particular hypercube vertex
14 € conv(V(x)). The affine transformation is as follows:

af(A)+> al(A)z,; eR (17.22)

Note that many of these coefficient are often zero.

@ From this, we can define an aggregation function of the form

AGz) E Y (ag(AHZa;(A)xj)AGuA) (17.23)

A:l,;eV(x) Jj=1
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Choquet integral and aggregation

@ Most generally, for x € [0,1]™, let us define the (unique) coefficients
aj(A) and o (A) that define the affine transformation of the
coefficients of  to be used with the particular hypercube vertex
14 € conv(V(x)). The affine transformation is as follows:

af(A)+> al(A)z,; eR (17.22)

Note that many of these coefficient are often zero.

@ From this, we can define an aggregation function of the form

AG) & Y (ag(A)—l—Za;”(A)xj)AG(lA) (17.23)
A:l4€V(x) j=1

@ Note, no longer necessarily linear in x.
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(V, {1 € [0, 1251y = Topa) = -+ 2 :Jc(,(m)} (17.24)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

= m,vm
/)

100
/ 001

000
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {JU € [0, 1]n‘$g(1) > Lgz) =0 2 xo(m)} (17.24)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {Vi}ﬁl as the vertices of conv(V,) for each
permutation o.
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {JU € [0, 1]n‘$g(1) > Lgz) =0 2 xo(m)} (17.24)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {VZ}ZZI as the vertices of conv(V,) for each
permutation o. In this case, we have:
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {JU € [0, 1]n‘$g(1) > Lgz) =0 2 xo(m)} (17.24)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {VZ}ZZI as the vertices of conv(V,) for each
permutation o. In this case, we have:

Proposition 17.4.1

The above linear interpolation in Eqn. (17.23) using the canonical partition
yields the Lovasz extension with af(A) + > " af (A)rj = x4, — T4, , for
A=E;={es,,...,€q} for appropriate order c.

F22/49 (pg.56/160)
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {JU € [0, 1]n‘$g(1) > Lgz) =0 2 xo(m)} (17.24)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {V,};Zl as the vertices of conv(V,) for each
permutation o. In this case, we have:

Proposition 17.4.1

The above linear interpolation in Eqn. (17.23) using the canonical partition
yields the Lovasz extension with af(A) + > " af (A)rj = x4, — T4, , for
A=E;={es,,...,€q} for appropriate order c.

@ Hence, Lovasz extension can be seen as a form of generalized
aggregation function. pom- Mater mecgn Fhiarz.

F22/49 (pg.57/160)
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Lovész extn., defs/props
LARRRNRNAN

Lovasz extension as max over orders

@ We can also write the Lovasz extension as follows:

f(w) = max wTc’ 17.25
f(w) S wie (17.25)

where IIj,,,) is the set of m! permutations of [m] = E, o € I, is a
particular permutation, and ¢ is a vector associated with permutation
o defined as:

Cg = f(E07) - f(E(T;,_1> (1726)

where E,. = {es,, €0y, ---,€0,}
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Lovasz extension as max over orders

@ We can also write the Lovasz extension as follows:

f(w) = max wTe’ (17.25)
UEH[m]
where IIj,,,) is the set of m! permutations of [m] = E, o € I, is a
particular permutation, and ¢? is a vector associated with permutation
o defined as:

C? - f(ECfi> - f(Ea'i—l): -F(Zw /E (1 '26)
where E,. = {es,, €0y, ---,€0,} e
@ Note this immediately follows from the definition of the Lovasz
extension in the form:

f(w) = max w2z = max wTz 17.27

f( ) CL’pr IGB‘f ( )
since we know that the maximum is achieved by an extreme point of
the base B and all extreme points are obtained by a

permutation-of- F-parameterized greedy instance.
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Lovész extn., defs/props
(LARRRRRNE

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € F: w(e) > a}, called
the (weak) a-superlevel set of w.
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Lovész extn., defs/props
(LARRRRRNE

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € E: w(e) > a}, called
the (weak) a-superlevel set of w. A similar definition holds for
{w > a} (called the strong, or strict, a-superlevel set of w).
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Lovész extn., defs/props
(LARRRRRNE

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € E: w(e) > a}, called
the (weak) a-superlevel set of w. A similar definition holds for
{w > a} (called the strong, or strict, a-superlevel set of w).

e Given any w € RE sort E as w(ey) > w(eg) > -+ > w(en).
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Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € E: w(e) > a}, called
the (weak) a-superlevel set of w. A similar definition holds for
{w > a} (called the strong, or strict, a-superlevel set of w).

o Given any w € RE sort E as w(ey) > w(eg) > -+ > w(ey). Also,
w.l.0.g., number elements of w so that wy > wy > -+ > wyy,.
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Lovész extn., defs/props
(LARRRRRNE

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € E: w(e) > a}, called
the (weak) a-superlevel set of w. A similar definition holds for
{w > a} (called the strong, or strict, a-superlevel set of w).

e Given any w € R” sort E as w(ey) > w(es) > -+ > w(ey). Also,
w.l.o.g., number elements of w so that wy > wo > -+ > w,,.

@ We have already seen how we can define the Lovasz extension for any
(not necessarily submodular) function f in the following equivalent

ways:
m

flw) = Zw(ei)f(ei\EH) (17.28)

= > f(E)(w(e) - wleirr)) + f(B)w(em) (17.29)

= Z Aif (Ep) (17.30)
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extn., defs/pro
HI\HHH

Lovasz extension, as integral

e Additional ways we can define the Lovasz extension for any (not
necessarily submodular) but normalized function f include:

f(w)zzw( (el Eioy) ZAf (17.31)
i=1
m—1

= 3 B wled) ~ wlessn)) + F(Bulen) (17.32)

+oo
— / o | }f({w > al)da+ f(E)min{wi,...,wy,}
(17.33)
+00 0
@) /0 fw > a})da +/ [f({w > a}) = f(BE)lda
(17.34)

We will show (a) in a few slides.
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general Lovasz extension, as simple integral

@ Assuming (a), we have that, given function f, and any w € R¥:

+oo

f(w) = / fla)da (17.35)

where
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@ Assuming (a), we have that, given function f, and any w € R¥:

where

@ So we can write it as a simple

EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020

| farda

(17.35)

ifa>0

17.36
ifa<0 ( )

integral over the appropriate function.
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Lovész extn., defs/props
(R RRRRNE

general Lovasz extension, as simple integral

@ Assuming (a), we have that, given function f, and any w € R¥:

~ +w A~
flw) = / fla)da (17.35)
where

ifa>0

flo) = { w2 o) (17.36)
flw>al) - f(E) fa<0

@ So we can write it as a simple integral over the appropriate function.

@ These make it easier to see certain properties of the Lovasz extension.
But first, we show the above ((a) in particular).
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Lovész extn., defs/props

Lovasz extension, as integral

@ To show Eqn. (17.33), first note that the r.h.s. terms are the same
since w(ey,) = min{wy, ..., wn}.

Lovasz extension, as integral

o Additional ways we can define the Lovasz extension for any (not
necessarily submodular) but normalized function f include:

m m

flw) = Z w(e;) f(ei|Eio1) = Z/\f‘(E/) (17.31)
i=1 t=1
m—1
= > f(E)(w(e) — wleir)) + f(E)i(em) (17.32)
ol
- / f{w > a})da + f(E) min {wy, ..., wn}
Jmin {wr . wm}
(17.33)
Foc 0
@ /n F({w > a})da + /\[f({ur > a}) - f(B)lda
(17.34)

We will show (a) in a few slides,
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Lovasz extension, as integral

e To show Eqn. (17.33), first note that the r.h.s. terms are the same
since w(ey,) = min{wi, ..., wn}.

@ Then, consider that, as a function of o, we have

0 if a > w(ep)
fw>a}) =< f(Ey) ifae (wlegs1),w(er)),ke{l,...,m—1}
N fE) __ifa<w(en).

(17.37)

r ,
o wice) wie,)

For integration purposes, we may use open intervals since sets of zero

measure don't change integration.
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Lovasz extension, as integral

e To show Eqn. (17.33), first note that the r.h.s. terms are the same
since w(ey,) = min{wi, ..., wn}.

@ Then, consider that, as a function of o, we have

0 if > w(ep)
f{w>a}) =< f(Ey) ifae (wlegs1),w(er)),ke{l,...,m—1}
f(E) if a <w(en).
(17.37)

For integration purposes, we may use open intervals since sets of zero
measure don't change integration.

o Inside the integral, then, this recovers Eqn. (17.32).
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Lovész extn., defs/props

Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note
Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:

f(w) /j; é VV'/l)( O/ l/-/,,.,,>

Lovasz extension, as integral

o Additional ways we can define the Lovasz extension for any (not
necessarily submodular) but normalized function f include:

m m

Fw) =Y wien el Eir) = Y Nif (Ed) (17.31)
=1 =1
= ’il F(EBi)(w(e:) — wleir1)) + f(E)w(en) (17.32)
=1
= /+: ’ f{w > a})da + f(E)min {w, ..., Wy }
(17.33)
G v/ﬁ“f/({u-z a})da + ‘/‘n\u‘uu- > a}) - f(B)da
(17.34)

We will show (a) in a few slides.
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Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note
Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:

~ +oo
flw) = / fw > a})da+ f(E)min{wy, ..., wy,}

Wm
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Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note

Wy, = min{wy, ..., wy}, take any 8 < min {0, w1, ..., wy,}, and form:
i +00
fw) = f{w > a})da + f(E)min {ws, ..., wn,}
_ /+°° fw > aPda— [ f{w > a})da + F(E) /wm da
g B 0
W\/
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Lovész extn., defs/props
(NERRLARNE

Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note

Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:
- +oo
flw) = f{w > a})da + f(E)min {ws,. .., wny}
[ s apda = [ fw S a}ydo + F(B) /wm do
B B 0
00 “Wim Wm,
- / ffw = ayda< [ fBda+ | f(E)do
B B8 0
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Lovész extn., defs/props
(NERRLARNE

Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note

Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:
- +oo
fwy = [ 5w = ahda+ fEymin ... )
[ pqws anda— [ f{w > abda + f(E) /wm da
B B 0
+o00 Wm, Wm
— fHw > a})da — f(E)da+ f(E)da
B B 0

= [ swz apia+s / e, / J(B)do
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Loy
[RERRLERNN

Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note

Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:
- +oo
fwy = [ 5w = ahda+ fEymin ... )
[ pqw s apdo— [ f(w > ahda+ £(B) /wm da
B B 0
+o0 Wm, Wm
= fw > a})da — f(E)da+ f(E)da
B B 0

= [ itz apaa / " F(fw > a})da - / ' (B)da

00 0
— [ 1wz apda+ 1w = ah) = f(B)da
0 B

S .
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Loy
[RERRL NN

Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note

Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:
- +oo
fwy = [ 5w = ahda+ fEymin ... )
[ pqw s apdo— [ f(w > ahda+ £(B) /wm da
B B 0
+o0 Wm, Wm
= fw > a})da — f(E)da+ f(E)da
B B 0

= [ fttw = apaa+ / " F(fw > a})da - / ' J(B)do

—+o00 0
= [ = apda+ /B ({w > a}) - f(B)lda
and then let § — —oo and we get Eqn. (17.34), i.e.:
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Lovész extn., defs/props
(NERRLARNE

Lovasz extension, as integral
e To show Eqn. (17.34), start with Eqn. (17.33), note

Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., wy,}, and form:
- +oo
fwy = [ 5w = ahda+ fEymin ... )
[ pqw s apdo— [ f(w > ahda+ £(B) /wm da
B B 0
+o0 Wm, Wm
= fw > a})da — f(E)da+ f(E)da
B B 0

= [ fttw = apaa+ / " F(fw > a})da - / ' J(B)do

—+o00 0
= [ = apda+ /B ({w > a}) - f(B)lda
and then let § — —oo and we get Eqn. (17.34), i.e.:

- i’
= [T itwzapda+ [ wzah - @i a239)

0 —00

EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F28/49 (pg.79/160)



L defs/props

Lovasz extension properties
e Using the above, have the following (some of which we've seen):
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Lovész extn., defs/props

Lovasz extension properties
o Using the above, have the following (some of which we've seen):

Theorem 17.5.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then
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Lovész extn., defs/props

Lovasz extension properties
o Using the above, have the following (some of which we've seen):

Theorem 17.5.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.
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Lovész extn., defs/props

Lovasz extension properties

o Using the above, have the following (some of which we've seen):

Theorem 17.5.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + g is the Lovdsz extension of f + g and \f is the Lovdsz extension of
Af for A € R.

@ Ifw e RY then f(w) = [ f({w > a})da
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Lovész extn., defs/props

Lovasz extension properties
o Using the above, have the following (some of which we've seen):

Theorem 17.5.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + g is the Lovdsz extension of f + g and \f is the Lovdsz extension of
Af for A € R.

Q Ifw e RY then f(w) = [7*° f({w > a})da.
© Forw € R, and o € R, we have f(w + @lg) = f(w) + af (E).
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Lovész extn., defs/props

Lovasz extension properties

o Using the above, have the following (some of which we've seen):

Theorem 17.5.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + g is the Lovdsz extension of f + g and \f is the Lovdsz extension of
Af for A € R.

Q Ifw e RY then f(w) = [7*° f({w > a})da.
© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).

Q Positive homogeneity: l.e., f(aw) = af (w) for a > 0.

EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F29/49 (pg.85/160)



Lovész extn., defs/props

Lovasz extension properties
o Using the above, have the following (some of which we've seen):

Theorem 17.5.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + g is the Lovdsz extension of f + g and \f is the Lovdsz extension of
Af for A € R.

Q Ifw e RY then f(w) = [7*° f({w > a})da.

© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).
Q Positive homogeneity: l.e., f(aw) = af(w) for a > 0.

Q@ Forall ACE, f(1,) = f(A).
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Lovasz extension properties
o Using the above, have the following (some of which we've seen):

Theorem 17.5.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + g is the Lovdsz extension of f + g and \f is the Lovdsz extension of
Af for A € R.

Q Ifw e RY then f(w) = [7*° f({w > a})da.

© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).
Q Positive homogeneity: l.e., f(aw) = af(w) for a > 0.

© Forall ACE, f(14) = f(A).

Q [ symmetric as in f(A) = f(E\ A),VA, then f(u) = ]Z(fu) (f is even).

ClH)= £l +£1Cv )
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Lovasz extension properties
e Using the above, have the following (some of which we've

seen):

Theorem 17.5.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + g is the Lovdsz extension of f + g and \f is the Lovdsz extension of

Af for A € R.

Q Ifw e RY then f(w) = [7*° f({w > a})da.

© Forw € RE, and o € R, we have f(w + alp) = f(w) + af (E

@ Positive homogeneity: l.e., f(aw) = af(w) for a > 0.
© Forall ACE, f(14) = f(A).

Q@ f symmetric as in f(A) = f(E\ A),YA, then f(w) = f(—w) (f is even).

@ Given partition E'UE?>U---UE* of E and w = Zle vilE,
Y1 =72 > >k, and with EY = EYUE? U --- U E', then

fw) =5 wf(EYEY ) = S0 FEY (v — visr) + F(E) .

).

with
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Lovész extn., defs/props
(NRRRARL T

Lovasz extension properties: ex. property 3

o Consider property property 3, for example, which says that

flw+alp) = f(w) + af(E).
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Lovasz extension properties: ex. property 3

o Consider property property 3, for example, which says that

flw+alg) = f(w) + af(E).
@ This means that, say when m = 2, that as we move along the line
w1 = wo, the Lovasz extension scales linearly.
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Lovész extn., defs/props
(NRRRARL T

Lovasz extension properties: ex. property 3

o Consider property property 3, for example, which says that
flw+alg) = f(w) + af(E).

@ This means that, say when m = 2, that as we move along the line
w1 = we, the Lovasz extension scales linearly.

e And if f(E) =0, then the Lovasz extension is constant along the
direction 1.
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Lovész extn., defs/props
(NERRARRNY

Lovasz extension properties

o Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.

e For example, if f is symmetric, and since f(E) = f(0) = 0, we have

F(w) = / " f{ew > ah)do

(17.40)

Equality (a) follows since [*°_ f(a)do = [7_ f(ac+ b)do for any b
and a € £1, and equality (b) follows since f(A) = f(E \ A), so
fw <a}) = f({w> a}).
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Lovész extn., defs/props
(NERRARRNY

Lovasz extension properties

o Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.

e For example, if f is symmetric, and since f(E) = f(0) = 0, we have

few) = [ s@wz apda= [ f(ws —ahia (738)

(17.40)

Equality (a) follows since [*° f(a)do = [7_ f(ac+ b)do for any b
and a € £1, and equality (b) follows since f(A) = f(E \ A), so
fw <a}) = f({w> a}).
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Lovész extn., defs/props
(NERRARRNY

Lovasz extension properties

o Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(#) = 0, we have
few)= [ sz ahda= [~ < -apia (739)
Q[ #w < apda
(17.40)

Equality (a) follows since [*° f(a)do = [7_ f(ac+ b)do for any b
and a € £1, and equality (b) follows since f(A) = f(E \ A), so
fw <a}) = f({w> a}).
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Lovasz extension properties

o Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(B) = 0, we have
— [ #@wzahia= [ fws apda (17.39)
/ F({w < a})da ¥ / F{w > a})da (17.39)
SuzAd= B\ Sw g3 (1740)

Equality (a) follows since [*°_ f(a)do = [7_ f(ac+ b)do for any b
and a € £1, and equality (b) follows since f(A) = f(E \ A), so
fw <a}) = f({w> a}).
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Lovasz extension properties

o Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(#) = 0, we have
— [ #@wzahia= [ fws apda (17.39)
/ f{w < a})da / f{w > a})da (17.39)
_ /x ({w > a})da (17.40)

Equality (a) follows since [ f(a)da = [*°_ f(ac + b)da for any b

and a € £1, and equality (b) follows since f(A) = f(E \ A), so
fw <a}) = f({w> a}).
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Lovasz extension properties

o Given Eqns. (17.31) through (17.34), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(B) = 0, we have
— [ #@wzahia= [ fws apda (17.39)
@[ <anda® [ g sapia (739
_ /oo F({w > a})da = f(w) (17.40)

Equality (a) follows since [ f(a)da = [*°_ f(ac + b)da for any b

and a € £1, and equality (b) follows since f(A) = f(E \ A), so
fw <a}) = f({w> a}).
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Lovész extn., defs/props
(NRNRNARNI]

Lovasz extension, expected value of random variable
o Recall, for w € RY, we have f(w) = [ f({w > a})da
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Lovasz extension, expected value of random variable
o Recall, for w € RY, we have f(w) = [ f({w > a})da

@ Since f({w > a}) =0 for a > wy 2 wy, we have for w € RY, we have
flw) = 5" f{w > a})da
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Lovasz extension, expected value of random variable
o Recall, for w € RY, we have f(w) = [ f({w > a})da
e Since f({w > a}) =0 for a > wy 2 wy, we have for w € R¥, we have
flw) = 5" f{w > a})da
e For w € [0,1]7, then f(w) = ({w > al)da = jo {w > a})da
since f{w > a})=0for 1> a > w
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extn., defs/pro
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Lovasz extension, expected value of random variable

o Recall, for w € RY, we have f(w) = [ f({w > a})da

e Since f({w > a}) =0 for a > wy 2 wy, we have for w € R¥, we have
fw) = [ f{w = a})da

e For w e [0,1]7, then f(w) = [* f({w > a})da = fo ({w > a})da
since f({w > a})=0for 1> a > wy.

e Consider «v as a uniform random variable on [O 1] and let h(a) be a
function of . Then the expected value E[h(a fo h(a)de.
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extn., defs/pro
HHHH\I

Lovasz extension, expected value of random variable
o Recall, for w € RY, we have f(w) = [ f({w > a})da
e Since f({w > a}) =0 for a > wy 2 wy, we have for w € R¥, we have
flw) = 5" f{w > a})da
e For w e [0,1]7, then f(w) = [* f({w > a})da = fo ({w > a})da
since f{w > a})=0for1> a > wy.

o Consider «v as a uniform random variable on [0 1] and Iet h( ) be a
function of a. Then the expected value E[h fo

@ Hence, for w € [0, 1]™, we can also define the Lovasz extension as

fw) =Ep)[f({w = a})] =By [fle € E:wle) 2 o)) (17.41)
h(a) h(x)

where « is uniform random variable in [0, 1].
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Lovasz extension, expected value of random variable

o Recall, for w € RY, we have f(w) = [ f({w > a})da

e Since f({w > a}) =0 for a > wy 2 wy, we have for w € R¥, we have
fw) = [ f{w = a})da

e For w e [0,1]7, then f(w) = [* f({w > a})da = fo ({w > a})da
since f({w > a})=0for 1> a > wy.

o Consider «v as a uniform random variable on [0 1] and Iet h( ) be a
function of a. Then the expected value E[h fo

@ Hence, for w € [0, 1]™, we can also define the Lovasz extension as

F(w) = By [f({w > a})] = Epo[f (e € Bz w(e;) > )] (17.41)
———

-~

h(a) h(a)

where « is uniform random variable in [0, 1].

@ Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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One slide review of concave relaxation

l P,’k-d—,ﬁ/{_
convex closure f(x) = Minyean (z) Es~p[f(S)], where where A™(x) =

{p ERY : Y geyps=1,ps 2 OVS CV, & Y ooy psls = a?}

“Edmonds” extension f(w) = max(wz : = € By)
Lovasz extension fig(w) =Y "1 A f(E;), with A; such that
w =321 Ailp,
fw) = maxger,, wTc?, U, set of m! permutations of [m)],
o € I, a permutation, ¢” vector with ¢f = f(E,,) — f(Eos,_,),
E;, ={€s,:€05, 160}
Choquet integral C(w) = > " (we; — We,, , ) f(E;)
o f({w>a}) fa>0
= I e fle) = {f({wza}>—f<E> fa<o

@ All the same when f is submodular.
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Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o If wy > wsq, then

f(w) = wi f({1}) + w2 f({2}{1}) (17.42)
= (w1 —wa) f({1}) + w2 f({1,2}) (17.43)
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Lovész extensi

Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o If wy > wsq, then

f(w) =wi f({1}) + w2 f({2}{1})
= (w1 —w2) f({1}) + w2 f({1,2})

o If wy < wsy, then

fw) = w2 f({2}) +wi f({1}{2})
= (w2 —w1)f({2}) + wif({1,2})

(17.42)
(17.43)

(17.44)
(17.45)



Simple expressions for Lovasz E. with m = 2, F = {1,

o If wy > ws, then

f(w) = wi f({1}) + w2 f({2}{1})
= (w1 —w2) f({1}) + w2 f({1,2})

F()(wy — we) + %f(l)(wl — w3)
+ 1,20 (wn 4 wn) — %f({l, 20) (w1 — wy)
F@) (w1 — wa) + 3 (2)wz — wn)

1
2

+

2

N | =

(17.46)
(17.47)

(17.48)
(17.49)

(17.50)



Simple expressions for Lovasz E. with m = 2, F = {1

o If wy > wsq, then

f(w) =wi f({1}) + waf({2}{1})
= (w1 —w2) f({1}) + w2 f({1,2})

= 1f(l)(wl —wsy) + éf(l)(wl — ws)

2
A2 0+ ws) — 5 P12 (wr — )
+ %f(?)(wl —wa) + %f@)(wz —wy)

@ A similar (symmetric) expression holds when w; < ws.

(17.46)
(17.47)

(17.48)
(17.49)

(17.50)



Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o This gives, for general wy, wo, that

1

5 (FHLY) + f({2}) = F({1,2})) hwr — we

5 (01 — FE2) + £({1,2))

3 (R + F(2D) + (1,2 s

= = ({1 + F({2H = F({1,2})) min {wy, wo}
+ f{1Hwr + f({2Hwe

(17.51)
(17.52)

(17.53)

(17.54)
(17.55)



Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o This gives, for general wq, wo, that

Flw) = 5 (FHID) + FU21) = F(L21) fen — s (17.51)
5 UL = 72D + £, 20) (17.52)

+ 5 (SR + FU2D) + 7L, 2D) wy (17.53)

=~ (FI) + FU2D) ~ FL2D) min fwr,wa} (17.54)
A + A2} (17.55)

@ Thus, if f(A) = H(X4) is the entropy function, we have
f(w) = H(e1)wy + H(eg)wy — I(ey; ez) min {wy, wa} which must be
convex in w, where I(e1;ez) is the mutual information.

om(sﬂ"\'?'f"f'r",
CM& IP/Z,;(L/= () efre) \q‘:/z,,zm)




Lovész extension examples
(NN RRRRNNRRNRNRY

Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o This gives, for general wq, wo, that

Flw) = 5 (FHID) + FU21) = F(L21) fen — s (17.51)
5 UL = 72D + £, 20) (17.52)

+ 5 (SR + FU2D) + 7L, 2D) wy (17.53)

=~ (FI) + FU2D) ~ FL2D) min fwr,wa} (17.54)
A + A2} (17.55)

® Thus, if f(A) = H(X4) is the entropy function, we have
f(w) = H(e1)wy + H(eg)wy — I(e1; ez) min {wy, wa} which must be
convex in w, where I(eg;ez) is the mutual information.

@ This “simple” but general form of the Lovasz extension with m = 2 can be
useful.
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Example: m = 2, E = {1,2}, contours

o If wy > ws, then

f(w) = wif({1}) +waf({2}{1}) (17.56)
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Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi fF({1}) + w2 f({2}{1}) (17.56)

o If w=(1,0)/f({1}) = (1/f({1}).,o) then f(w) = 1.
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Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

fw) = wi f({1}) +wa f({2}{1}) (17.56)
o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.

= t L
= (%m ) £3, Y




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi fF({1}) + w2 f({2}{1}) (17.56)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.

o Ifw < wo, then

f(w) = wa f({2}) +wi f({1}{2}) (17.57)




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi fF({1}) + w2 f({2}{1}) (17.56)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.
o If wy < wsy, then

flw) = w2 f({2}) + wi fF({1}{2}) (17.57)

o Ifw=1(0,1)/f({2}) = (0,1/f({2})) then f(w) = 1.




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi fF({1}) + w2 f({2}{1}) (17.56)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.
o If wy < wsy, then

flw) = w2 f({2}) + wi fF({1}{2}) (17.57)

o Ifw=(0,1)/f({2}) = (0,1/f({2})) then f(w) = 1.
o If w=(1,1)/f({1,2}) then f(w) = 1.




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

fw) = wi f({1}) +wa f({2}{1}) (17.56)
Xe.)
o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1. (
o Ifw=(1,1)/f({1,2}) then f(w) = 1.
o If wy < wsy, then Ale:]
Flw) = waf({2}) +wrf({1}{2}) (17.57)

o Ifw=(0,1)/f({2}) = (0,1/({2})) then f(w) = 1.
o If w=(1,1)/f({1,2}) then f(w) = 1.

@ Can plot contours of the form {w €ER?: f(w) = 1}, particular marked

points of form w = 14 X ﬁ for certain A, where f(w) = 1.




Example: m =2, £ = {1,2}

e Contour plot of m = 2 Lovasz extension (from Bach-2011).

U)2A

(0,1)/f({2})

—

Y27 A1,/ £({1,2))
w1 > W9

45° wl

{w : f(w) = 1}

(4/6[72

>

(1,0)/f({1})




Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.
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Lovis examples
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

e Consider any submodular f" and z € By/. Then f(A) = f'(A) — z(A)
is submodular
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

re & ;o A vt ot b,pv W)w/
from 7‘—\1(/7 Ceccadiy so
/}\J Uf}y/’ 0//

g,,‘ = ? ZU‘;} 60_1/ Ty ZU;' S

£(g)=0 V7.
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

@ Hence, from f(w + alg) = f(w) + af(E), we have that

f(w+alg) = f(w) when f(E) = 0.
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

@ Hence, from f(u{—i— alp) = f(w) + af (E), we have that

f(w+alg) = f(w) when f(E) = 0.
@ Thus, we can look “"down” on the contour plot of the Lovasz extension,
{w : flw) = 1}, from a vantage point of being right on the ray

{z:x =alg,a > 0} since moving in direction 1 changes nothing.
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

o Hence, from f(u{—i— alp) = f(w) + af (E), we have that
f(w+alg) = f(w) when f(E) = 0.

@ Thus, we can look “"down” on the contour plot of the Lovasz extension,
{w : flw) = 1}, from a vantage point of being right on the ray
{z:x = alg,a > 0} since moving in direction 1 changes nothing.

@ l.e., consider 2D plane perpendicular to the ray {z : x = alg,a > 0}
at any point along that ray, then Lovasz extension is surface plot with
coordinates on that 2D plane, or alternatively we can view contours
(which we will do).
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Example: m =3, £ ={1,2,3}

@ Example 1 (from Bach-2011): f(A) = 14/cf1,2}
= min {|A[, 1} + min {|E'\ A, 1} — 1 is submodular, and
f(w) = MaXpe(1,2,3) Wk — Milge (1 23} W
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Example: m =3, £ ={1,2,3}

o Example 1 (from Bach-2011): f(A) = 1 4/¢f1,2)
= min {|A[, 1} + min {| £\ A[, 1} — 1 is submodular, and
f(w) = maxge(y 233 Wi — Minge(y 233 Wi
WI=W,

wis wiswya00.D/({3})

W3> W2>W1

(103N M 0.1.1/6(23)

W1> W3 >W2 W2> W3 >W]

(1.0.0)/f({1}), (0.1.00/f({2})

wy> wy>w,y AW

(1 ,15,())/f({ 1,2})
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Lovész extension examples
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Example: m =3, £ ={1,2,3}

A(O,O,l)

o Example 2 (from
Bach-2011): f(A) =
[Tica—1acal+[12ca—13ea]

_Fo.L
(1,0,1)/2 f

RN 0,1.0)/2

(100) . 2N
¥

(1,10

EE563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F41/49 (pg.128/160)



Example: m =3, £ ={1,2,3}

o Example 2 (from
Bach-2011): f(A)
[Lica—1oeal+[l2ea—13e4]

o This gives a “total variation”
function for the Lovasz
extension, with
fw) = |wy —ws| 4wy —ws].

(1.0, )2

100) &

examples
[RERRRN]

0.1.0)/2

(1,10

17 - Nov 30th, 2020 F41/49 (pg.129/160)
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Example: m =3, £ ={1,2,3}

o Example 2 (from
Bach-2011): f(A) =
[11e4—12ea|+[12ea —13e4]

o This gives a “total variation” (1,0 1)/2 .
function for the Lovasz o

extension, with
- ’ - 4(0,1,0)/2
flw) = |wy —wa|+|wz —ws]. ( )
. (1,0,0) & EN
@ When used as a prior, prefers £
piecewise-constant signals
(e.g 22 [wi — wita]). 1(1,1,0)
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Total Variation Example

0 l 0 |
ZmE ENE
- = = : :
=1l-- "= e
v= o= E =
From “Nonlinear total =1 -0 5 E
variation based noise s =1 ”I — g
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top left s i e
original, bottom right T~ — ;
total variation. =1 - = ||| :0a ME
=1l =1l e
= I — =1l o
. Em W=

EES563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F42/49 (pg.131/160)




Example: Lovasz extension of concave over modular

@ Let m: E — R be a modular function and define f(A) = g(m(A))
where ¢ is concave. Then f is submodular.
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Example: Lovasz extension of concave over modular

e Let m: E — R, be a modular function and define f(A4) = g(m(A))
where ¢ is concave. Then f is submodular.

° Let M; = Zgzl m(e;), with w(e1) > w(ez) > ... for some w.
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Example: Lovasz extension of concave over modular

e Let m: E — R, be a modular function and define f(A4) = g(m(A))
where ¢ is concave. Then f is submodular.

o Let M, = ZLI m(e;), with w(e;) > w(ez) > ... for some w.

o f(w) is given as

flw) =3 _wle)(9(M) - 9(Mi-1)) (17.58)

=1
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Lovész extension exampl les
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Example: Lovasz extension of concave over modular

e Let m: E — R, be a modular function and define f(A4) = g(m(A))
where ¢ is concave. Then f is submodular.

o Let M, = ZLI m(e;), with w(e;) > w(ez) > ... for some w.

o f(w) is given as

Flw) = 3" wien) (o(M:) — (M) (17.58)

Flw) = 3" e (gli) — gi = 1) (17.59)
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R, is a modular function over the edges, we know
from Lecture 2 that f : 2V — R, with f(X) = m(I'(X)) where
NX) ={(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.
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Example: Lovasz extension and cut functions

o Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R, is a modular function over the edges, we know
from Lecture 2 that f : 2V — R, with f(X) = m(I'(X)) where
INX) ={(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((¢, j)):

FX) = > my (17.60)

—

ieX,jeV\X
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Example: Lovasz extension and cut functions

e Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R, is a modular function over the edges, we know
from Lecture 2 that f : 2V — R, with f(X) = m(I'(X)) where
INX) ={(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((,7)):

=3 my (17.60)
i€X,jEV\X

o Exercise: show that Lovasz extension of graph cut may be written as:

f(w) = Z m;; max {(w; —wj),0} (17.61)

1,j€V

where elements are ordered as usual, wy > wy > -+ > w,,.
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Example: Lovasz extension and cut functions

o Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R, is a modular function over the edges, we know
from Lecture 2 that f : 2V — R, with f(X) = m(I'(X)) where
INX) ={(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((,7)):

=3 my (17.60)
i€X,jEV\X

o Exercise: show that Lovasz extension of graph cut may be written as:

f(w) = Z m;; max {(w; — wj),0} (17.61)

1,j€V

where elements are ordered as usual, w1 > we > -+ > wy,.

@ This is also a form of “total variation”
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L les
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A few more Lovasz extension examples

Some additional submodular functions and their Lovasz extensions, where
w(er) > w(ez) > - > wlem) > 0. Let Wi, 2 58 wiey).

| f(A) | f(w) |
4] [l
min([A], 1 []eg
min(|A],1) — max(|A| —m +1,0) |w]|oo — min; w;
min(|A[, k) Wi
min(|A|, k) — max(|A| — (n — k) + 1,1) 2Wi — Wi,
min([AL, |5\ A] W sl W

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

e Given training data D = {(x;, ;) },~, with (z;,y;) € R" x R, perform
the following risk minimization problem:

s
% &Hﬂgazﬁ i, wTz;) + A2 (w), (17.62)

where £(-) is a loss function (e.g., squared error) and Q(w) is a norm.
o When data has multiple responses (;, ;) € R™ x R¥, learning becomes:

k m

) 1
min Z ~ Z Ok, (W) a) + AQ(wh), (17.63)
’ j=1 i=1
o When data has multiple responses only that are observed, (y;) € R¥
we get dictionary Iearning (Krause & Guestrin, Das & Kempe):

min min Z Zf T T2) + AQwh),  (17.64)

TlyeesTm wl kER"

EES563/Spring 2020/Submodularity - Lecture 17 - Nov 30th, 2020 F46/49 (pg.141/160)



Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lw|, = (3-8, wf)l/p
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Lovész extension examples

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lw|, = (3-8, wf)l/p

@ 1-norm promotes sparsity (prefer solutions with zero entries).
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Lovész extension examples

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lw|, = (3-8, wf)l/p

@ 1-norm promotes sparsity (prefer solutions with zero entries).
@ Image denoising, total variation is useful, norm takes form:

N
Qw) =D |w; — w1 (17.65)
1=2

(ecetv ey decee ;, .,

////////// () pree)

ccl ¢y
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Lovész extension examples

Norms, sparse norms, and computer vision

: _ _ (P /P
e Common norms include p-norm Q(w) = ||wl|, = (> r_; w;)
@ l-norm promotes sparsity (prefer solutions with zero entries).
@ Image denoising, total variation is useful, norm takes form:

N
Qw) = |wi — w4 (17.65)
i=2

@ Points of difference should be “sparse” (frequently zero).

(Rodriguez,
2000)
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Lovész extension examples

Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(y)f>W

—
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w € RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
@ Desirable sparse norm: count the non-zeros,

wllo = 17 supp(w).
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||wl|; which is the convex envelope.
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||wl|; which is the convex envelope.

With ||wl|o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||wl|; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

)
m Wv.)

() (ve)

)= % - A

g
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||wl|; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovéasz-extension f of f (Vondrak 2007, Bach 2010).
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||wl|; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||wl|; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!

Ex: total variation is Lovasz-ext. of graph cut, but 3 many more!
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
|wll = f(lw|). This renders the function symmetric about all orthants
(meaning, wl[;=lbOwl|forany be {-1,1}" and © is
element-wise multiplication).

’ ”‘7#/ ) ® ’
” “//4‘5 ()

/

o VA (44
% 0 °
7
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Lovész extension examples

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
JwllF= f(lw|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1}™ and @ is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A] is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢ norm.
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Lovasz extension and norms

f(lw|). This renders the function symmetric about all orthants
veaning, [lw]|f = [[b© w7 for any b € {-1,1}" and © is

element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A] is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).
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Lovész extension examples

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
JwllF= f(lw|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1}™ and @ is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A] is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢ norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.
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Lovész extension examples

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
JwllF= f(lw|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1}™ and @ is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A] is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢ norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
JwllF= f(lw|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1}™ and @ is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A] is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢ norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.

Bach-2011/has a complete discussion of this. CWDW' Loo K)»
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