Submodular Functions, Optimization, and Applications to Machine Learning

— Fall Quarter, Lecture 16 —

Prof. Jeff Bilmes
University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Nov 25th, 2020

\[f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \]

- \(f(A) + 2f(C) + f(B) \)
- \(f(A) + f(C) + f(B) \)
- \(f(A \cap B) \)
Announcements, Assignments, and Reminders

- Homework 3, due Wednesday (tonight), Nov 25th, 2020, 11:59pm.
- Office hours this week, Monday (11/23), Tues (11/24), & Wed (11/25), 10:00pm at our class zoom link. I can meet Monday night at 10:00pm as well on request.
- Happy Thanksgiving!
Class Road Map - EE563

- **L1(9/30):** Motivation, Applications, Definitions, Properties
- **L2(10/5):** Sums concave(modular), uses (diversity/costs, feature selection), information theory
- **L3(10/7):** Monge, More Definitions, Graph and Combinatorial Examples,
- **L4(10/12):** Graph & Combinatorial Examples, Matrix Rank, Properties, Other Defs, Independence
- **L5(10/14):** Properties, Defs of Submodularity, Independence
- **L6(10/19):** Matroids, Matroid Examples, Matroid Rank,
- **L7(10/21):** Matroid Rank, More on Partition Matroid, Laminar Matroids, System of Distinct Reps, Transversals
- **L8(10/26):** Transversal Matroid, Matroid and representation, Dual Matroid
- **L9(10/28):** Other Matroid Properties, Combinatorial Geometries, Matroid and Greedy, Polyhedra, Matroid Polytopes
- **L10(11/2):** Matroid Polytopes, Matroids → Polymatroids
- **L11(11/4):** Matroids → Polymatroids,
- **L12(11/9):** Polymatroids, Polymatroids and Greedy
- **L13(11/16):** Polymatroids and Greedy, Possible Polytopes, Extreme Points, Cardinality Constrained Maximization
- **L14(11/18):** Cardinality Constrained Maximization, Curvature
- **L15(11/23):** Curvature, Submodular Max w. Other Constraints, Start Cont. Extensions
- **L16(11/25):** Submodular Max w. Other Constraints, Cont. Extensions, Lovász extension
- **L17(11/30):**
- **L18(12/2):**
- **L19(12/7):**
- **L20(12/9):**
- **L21(12/14):** final meeting (presentations) maximization.

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
Homework 4 will come out later this week, will be due about 1.5-2 weeks after that.

Final project: Read and present a recent (past 5 years) paper on submodular/supermodular optimization. Paper should have both a theoretical and practical component. What is due: (1) 4-page paper summary, and (2) 10 minute presentation about the paper, will be giving presentations on Monday 12/14/2020. You must choose your paper before the 14th (this will be HW5), and you must turn in your slides and 4-page paper (this will be HW6).
We’ve been discussing algorithms and approximations for $\max_{A \in C} f(A)$ where f is a polymatroid function and C is a constraint set (e.g., cardinality, matroid, multiple matroids, knapsacks) as well as other problems (e.g., submodular welfare problem).
What About Non-monotone

- We sometimes wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.

- **Given** polymatroid \(f: 2^V \rightarrow \mathbb{R} \)

- **Form** non-monotone function by, e.g.,

 - \(1) \quad \bar{f}(A) = f(A) - m(A) \)
 - \(\text{or} \quad 2) \quad \tilde{f}(A) = f(A) + f(V \setminus A) - f(V) \)

 - Ex: \(f(A) = H(x_A) \)
 - \(\bar{f}(A) = I(A; V \setminus A) \)
What About Non-monotone

- We sometimes wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.

- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard (this is even true for the graph cut function, see Hong, “Inapproximability Of The Max-Cut Problem With Negative Weights”, 2008).

$$f(\subseteq_0) \geq 2(\cap), \text{opt}$$

$$d(\cap) > 0$$
What About Non-monotone

- We sometimes wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.

- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard (this is even true for the graph cut function, see Hong, “Inapproximability Of The Max-Cut Problem With Negative Weights”, 2008).

- Therefore, submodular function max in such case is inapproximable unless P=NP (since any such procedure would give us the sign of the max).
What About Non-monotone

- We sometimes wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.

- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard (this is even true for the graph cut function, see Hong, “Inapproximability Of The Max-Cut Problem With Negative Weights”, 2008).

- Therefore, submodular function max in such case is inapproximable unless P=NP (since any such procedure would give us the sign of the max).

- Thus, any approximation algorithm must be for unipolar submodular functions. E.g., non-negative but otherwise arbitrary submodular functions.
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:

Lemma 16.3.1

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:

Lemma 16.3.1

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- Idea of proof: Given $v_1, v_2 \in S$, suppose $f(S - v_1) \leq f(S)$ and $f(S - v_2) \leq f(S)$. Submodularity requires $f(S - v_1) + f(S - v_2) \geq f(S) + f(S - v_1 - v_2)$ which would be impossible unless $f(S - v_1 - v_2) \leq f(S)$. I.e., if also $f(S - v_1 - v_2) > f(S)$ were true, submodularity can’t hold.
Submodularity and local optima

- Given any submodular function \(f \), a set \(S \subseteq V \) is a local maximum of \(f \) if \(f(S - v) \leq f(S) \) for all \(v \in S \) and \(f(S + v) \leq f(S) \) for all \(v \in V \setminus S \) (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:

Lemma 16.3.1

Given a submodular function \(f \), if \(S \) is a local maximum of \(f \), and \(I \subseteq S \) or \(I \supseteq S \), then \(f(I) \leq f(S) \).

- Idea of proof: Given \(v_1, v_2 \in S \), suppose \(f(S - v_1) \leq f(S) \) and \(f(S - v_2) \leq f(S) \). Submodularity requires
 \[
 f(S - v_1) + f(S - v_2) \geq f(S) + f(S - v_1 - v_2)
 \]
 which would be impossible unless \(f(S - v_1 - v_2) \leq f(S) \). I.e., if also
 \(f(S - v_1 - v_2) > f(S) \) were true, submodularity can’t hold.

- Similarly, given \(v_1, v_2 \notin S \), and \(f(S + v_1) \leq f(S) \) and \(f(S + v_2) \leq f(S) \). Submodularity requires
 \[
 f(S + v_1) + f(S + v_2) \geq f(S) + f(S + v_1 + v_2)
 \]
 which requires \(f(S + v_1 + v_2) \leq f(S) \).
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:

Lemma 16.3.1

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and $[S, V]$ can be ruled out as a possible improvement over S.
Submodularity and local optima

- Given any submodular function \(f \), a set \(S \subseteq V \) is a local maximum of \(f \) if \(f(S - v) \leq f(S) \) for all \(v \in S \) and \(f(S + v) \leq f(S) \) for all \(v \in V \setminus S \) (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:

Lemma 16.3.1

Given a submodular function \(f \), if \(S \) is a local maximum of \(f \), and \(I \subseteq S \) or \(I \supseteq S \), then \(f(I) \leq f(S) \).

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice \([\emptyset, S]\) and \([S, V]\) can be ruled out as a possible improvement over \(S \).

- Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).

- The following interesting result is true for any submodular function:

Lemma 16.3.1

*Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.***

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and $[S, V]$ can be ruled out as a possible improvement over S.

- Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.

- This is the approach can yield a $\left(\frac{1}{3} - \frac{\varepsilon}{n}\right)$ approximation algorithm for maximizing non-monotone non-negative submodular functions, with most $O\left(\frac{1}{\varepsilon} n^3 \log n\right)$ function calls using approximate local maxima search.
Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1/2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1/2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012.
Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1/2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012. Recall $[a]_+ = \max(a, 0)$.

Recall $[a]_+ = \max(a, 0)$.

Algorithm 3: Randomized Linear-time non-monotone submodular max
1. Set L; U /* Lower L, upper U. Invariant: $L \leq U$ */
2. Order elements of $V = (v_1, v_2, ..., v_n)$ arbitrarily;
3. for $i = 1, ..., |V|$ do
4. $a[f(v_i | L)] + b[f(U | U \cap \{v_i\})]$
5. if $a = b = 0$ then $p = 1/2$;
6. else $p = a/(a + b)$;
7. if Flip of coin with $Pr(\text{heads}) = p$ draws heads then
8. $L \leftarrow \{v_i\}$;
9. Otherwise /* if the coin drew tails, an event with prob. 1 - p */
10. $U \leftarrow U \cap \{v_i\}$
11. return L (which is the same as U at this point)
Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1/2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.

- Buchbinder, Feldman, Naor, Schwartz 2012. Recall $[a]_+ = \max(a, 0)$.

Algorithm 4: Randomized Linear-time non-monotone submodular max

1. Set $L \leftarrow \emptyset$; $U \leftarrow V$ /* Lower L, upper U. Invariant: $L \subseteq U$ */ ;
2. Order elements of $V = (v_1, v_2, \ldots, v_n)$ arbitrarily ;
3. for $i \leftarrow 0 \ldots |V|$ do
 4. $a \leftarrow [f(v_i|L)]_+$; $b \leftarrow [−f(U|U \setminus \{v_i\})]_+$;
 5. if $a = b = 0$ then $p \leftarrow 1/2$;
 6. else $p \leftarrow a/(a + b)$;
 7. if Flip of coin with $\Pr(\text{heads}) = p$ draws heads then
 8. $L \leftarrow L \cup \{v_i\}$;
 9. Otherwise /* if the coin drew tails, an event with prob. $1 − p$ */
 10. $U \leftarrow U \setminus \{v_i\}$
11. return L (which is the same as U at this point)
Each “sweep” of the algorithm is $O(n)$.
Linear time algorithm unconstrained non-monotone max

- Each “sweep” of the algorithm is \(O(n) \).
- Running the algorithm \(1 \times \) (with an arbitrary variable order) results in a \(1/3 \) approximation.
Linear time algorithm unconstrained non-monotone max

- Each “sweep” of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1/3$ approximation.
- The $1/2$ guarantee is in expected value (the expected solution has the $1/2$ guarantee).
Linear time algorithm unconstrained non-monotone max

- Each “sweep” of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1/3$ approximation.
- The $1/2$ guarantee is in expected value (the expected solution has the $1/2$ guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.
Linear time algorithm unconstrained non-monotone max

- Each “sweep” of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1/3$ approximation.
- The $1/2$ guarantee is in expected value (the expected solution has the $1/2$ guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.
- It may be possible to choose the random order smartly to get better results in practice.

But note, even a random subset is a $1/4$ approximation to the optimal solution for unconstrained non-monotone submodular maximization, in expectation (Feige, Mirrokni, Vondrak, Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133-1153, 2011.)
Each “sweep” of the algorithm is $O(n)$.

Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1/3$ approximation.

The $1/2$ guarantee is in expected value (the expected solution has the $1/2$ guarantee).

In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better results in practice.

But note, even a random subset is a $1/4$ approximation to the optimal solution for unconstrained non-monotone submodular maximization, in expectation (Feige, Mirrokni, Vondrak, Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133-1153, 2011.)
In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.

The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.
In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.

The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.

Often the computational costs of the algorithms are prohibitive (e.g., exponential in k) with large constants, so these algorithms might not scale.
In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.

The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.

Often the computational costs of the algorithms are prohibitive (e.g., exponential in k) with large constants, so these algorithms might not scale.

On the other hand, these algorithms offer deep and interesting intuition into submodular functions, beyond what we have covered here.
Some results on submodular maximization

As we’ve seen, we can get $1 - 1/e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
Some results on submodular maximization

- As we’ve seen, we can get $1 - 1/e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- For general matroid, greedy reduces to $1/2$ approximation (as we’ve seen).
Some results on submodular maximization

- As we’ve seen, we can get $1 - \frac{1}{e}$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- For general matroid, greedy reduces to $\frac{1}{2}$ approximation (as we’ve seen).
- We can recover $1 - \frac{1}{e}$ approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak’s publications).
Some results on submodular maximization

- As we’ve seen, we can get $1 - 1/e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.

- For general matroid, greedy reduces to $1/2$ approximation (as we’ve seen).

- We can recover $1 - 1/e$ approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak’s publications).

- More general constraints are possible too, as we see on the next table (for references, see Jan Vondrak’s publications http://theory.stanford.edu/~jvondrak/).
Venn Family of Subclusive Constraints

Figure idea from Amin Karbasi
Submodular Max Summary - From J. Vondrak

Monotone Maximization

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Approximation</th>
<th>Hardness</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S</td>
<td>\leq k)</td>
<td>(1 - 1/e)</td>
</tr>
<tr>
<td>matroid</td>
<td>(1 - 1/e)</td>
<td>(1 - 1/e)</td>
<td>multilinear ext.</td>
</tr>
<tr>
<td>(O(1)) knapsacks</td>
<td>(1 - 1/e)</td>
<td>(1 - 1/e)</td>
<td>multilinear ext.</td>
</tr>
<tr>
<td>(k) matroids</td>
<td>(k + \epsilon)</td>
<td>(k / \log k)</td>
<td>local search</td>
</tr>
<tr>
<td>(k) matroids and (O(1)) knapsacks</td>
<td>(O(k))</td>
<td>(k / \log k)</td>
<td>multilinear ext.</td>
</tr>
</tbody>
</table>

Nonmonotone Maximization

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Approximation</th>
<th>Hardness</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td>(1/2)</td>
<td>(1/2)</td>
<td>combinatorial</td>
</tr>
<tr>
<td>matroid</td>
<td>(1/e)</td>
<td>0.48</td>
<td>multilinear ext.</td>
</tr>
<tr>
<td>(O(1)) knapsacks</td>
<td>(1/e)</td>
<td>0.49</td>
<td>multilinear ext.</td>
</tr>
<tr>
<td>(k) matroids</td>
<td>(k + O(1))</td>
<td>(k / \log k)</td>
<td>local search</td>
</tr>
<tr>
<td>(k) matroids and (O(1)) knapsacks</td>
<td>(O(k))</td>
<td>(k / \log k)</td>
<td>multilinear ext.</td>
</tr>
</tbody>
</table>
Continuous Extensions of Discrete Set Functions

- Any function $f : 2^V \rightarrow \mathbb{R}$ (equivalently $f : \{0, 1\}^V \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f} : [0, 1]^V \rightarrow \mathbb{R}$.
Continuous Extensions of Discrete Set Functions

- Any function \(f : 2^V \to \mathbb{R} \) (equivalently \(f : \{0, 1\}^V \to \mathbb{R} \)) can be extended to a continuous function in the sense \(\tilde{f} : [0, 1]^V \to \mathbb{R} \).
- This may be tight (i.e., \(\tilde{f}(1_A) = f(A) \) for all \(A \)). I.e., the extension \(\tilde{f} \) coincides with \(f \) at the hypercube vertices.
Continuous Extensions of Discrete Set Functions

- Any function $f : 2^V \to \mathbb{R}$ (equivalently $f : \{0, 1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\hat{f} : [0, 1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\hat{f}(1_A) = f(A)$ for all A). I.e., the extension \hat{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0, 1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer’11). Example $n = 1$.

Concave Extensions

$\hat{f} : [0, 1] \to \mathbb{R}$

Discrete Function

$f : \{0, 1\}^V \to \mathbb{R}$

Convex Extensions

$\tilde{f} : [0, 1] \to \mathbb{R}$
Continuous Extensions of Discrete Set Functions

- Any function \(f : 2^V \rightarrow \mathbb{R} \) (equivalently \(f : \{0, 1\}^V \rightarrow \mathbb{R} \)) can be extended to a continuous function in the sense \(\tilde{f} : [0, 1]^V \rightarrow \mathbb{R} \).
- This may be tight (i.e., \(\tilde{f}(1_A) = f(A) \) for all \(A \)). I.e., the extension \(\tilde{f} \) coincides with \(f \) at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the \(n \)-D hypercube \(\{0, 1\}^n \) has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer’11). Example \(n = 1 \),

\[
\begin{align*}
\text{Concave Extensions} & : \tilde{f} : [0, 1] \rightarrow \mathbb{R} \\
\text{Discrete Function} & : f : \{0, 1\}^V \rightarrow \mathbb{R} \\
\text{Convex Extensions} & : \tilde{f} : [0, 1] \rightarrow \mathbb{R}
\end{align*}
\]

- Since there are an exponential number of vertices \(\{0, 1\}^n \), important questions regarding such extensions is:
Continuous Extensions of Discrete Set Functions

- Any function \(f : 2^V \rightarrow \mathbb{R} \) (equivalently \(f : \{0, 1\}^V \rightarrow \mathbb{R} \)) can be extended to a continuous function in the sense \(\tilde{f} : [0, 1]^V \rightarrow \mathbb{R} \).
- This may be tight (i.e., \(\tilde{f}(1_A) = f(A) \) for all \(A \)). I.e., the extension \(\tilde{f} \) coincides with \(f \) at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the \(n \)-D hypercube \(\{0, 1\}^n \) has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer’11). Example \(n = 1 \),

Concave Extensions
\[
\tilde{f} : [0, 1] \rightarrow \mathbb{R}
\]

Discrete Function
\[
f : \{0, 1\}^V \rightarrow \mathbb{R}
\]

Convex Extensions
\[
\tilde{f} : [0, 1] \rightarrow \mathbb{R}
\]

- Since there are an exponential number of vertices \(\{0, 1\}^n \), important questions regarding such extensions is:
 1. When are they computationally feasible to obtain or estimate?
Continuous Extensions of Discrete Set Functions

- Any function $f : 2^V \to \mathbb{R}$ (equivalently $f : \{0, 1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f} : [0, 1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0, 1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer’11). Example $n = 1$,

\[
\begin{align*}
\text{Concave Extensions} & : \ [0, 1] \to \mathbb{R} \\
\text{Discrete Function} & : \ {0, 1}^V \to \mathbb{R} \\
\text{Convex Extensions} & : \ [0, 1] \to \mathbb{R}
\end{align*}
\]

- Since there are an exponential number of vertices $\{0, 1\}^n$, important questions regarding such extensions is:
 1. When are they computationally feasible to obtain or estimate?
 2. When do they have nice mathematical properties?
Continuous Extensions of Discrete Set Functions

- Any function \(f : 2^V \rightarrow \mathbb{R} \) (equivalently \(f : \{0, 1\}^V \rightarrow \mathbb{R} \)) can be extended to a continuous function in the sense \(\tilde{f} : [0, 1]^V \rightarrow \mathbb{R} \).
- This may be tight (i.e., \(\tilde{f}(1_A) = f(A) \) for all \(A \)). I.e., the extension \(\tilde{f} \) coincides with \(f \) at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the \(n \)-D hypercube \(\{0, 1\}^n \) has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer’11).

\[\tilde{f} : [0, 1] \rightarrow \mathbb{R} \quad \quad f : \{0, 1\}^V \rightarrow \mathbb{R} \quad \quad \tilde{f} : [0, 1] \rightarrow \mathbb{R} \]

- Since there are an exponential number of vertices \(\{0, 1\}^n \), important questions regarding such extensions is:
 1. When are they computationally feasible to obtain or estimate?
 2. When do they have nice mathematical properties?
 3. When are they useful for something practical?
Def: Convex Envelope of a function

- Given any function \(h : \mathcal{D}_h \rightarrow \mathbb{R} \), where \(\mathcal{D}_h \subseteq \mathbb{R}^n \), define the new function \(\tilde{h} : \mathbb{R}^n \rightarrow \mathbb{R} \) via:

\[
\tilde{h}(x) = \sup \{ g(x) : g \text{ is convex} \& \ g(y) \leq h(y), \forall y \in \mathcal{D}_h \}\] \quad (16.1)

Alternatively,

\[
\tilde{h}(x) = \inf \{ t : (x, t) \in \text{convex hull } (\text{epigraph } h) \}\] \quad (16.2)
Def: Convex Envelope of a function

- Given any function $h: \mathcal{D}_h \rightarrow \mathbb{R}$, where $\mathcal{D}_h \subseteq \mathbb{R}^n$, define the new function $\tilde{h}: \mathbb{R}^n \rightarrow \mathbb{R}$ via:

$$\tilde{h}(x) = \sup \{g(x) : g \text{ is convex} \& g(y) \leq h(y), \forall y \in \mathcal{D}_h\} \quad (16.1)$$

- I.e., (1) $\tilde{h}(x)$ is convex, (2) $\tilde{h}(x) \leq h(x), \forall x$, and (3) if $g(x)$ is any convex function having the property that $g(x) \leq h(x), \forall x$, then $g(x) \leq \tilde{h}(x)$.
Def: Convex Envelope of a function

- Given any function \(h : \mathcal{D}_h \rightarrow \mathbb{R} \), where \(\mathcal{D}_h \subseteq \mathbb{R}^n \), define the new function \(\tilde{h} : \mathbb{R}^n \rightarrow \mathbb{R} \) via:

 \[
 \tilde{h}(x) = \sup \{ g(x) : g \text{ is convex} \& \ g(y) \leq h(y), \forall y \in \mathcal{D}_h \} \tag{16.1}
 \]

 - i.e., (1) \(\tilde{h}(x) \) is convex, (2) \(\tilde{h}(x) \leq h(x) \), \(\forall x \), and (3) if \(g(x) \) is any convex function having the property that \(g(x) \leq h(x) \), \(\forall x \), then \(g(x) \leq \tilde{h}(x) \).

- Alternatively,

 \[
 \tilde{h}(x) = \inf \{ t : (x, t) \in \text{convexhull(epigraph}(h)) \} \tag{16.2}
 \]
Convex Closure of Discrete Set Functions

- Given set function $f : 2^V \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\tilde{f} : [0, 1]^V \rightarrow \mathbb{R}$, as

$$\tilde{f}(x) = \min_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S) \quad (16.3)$$

where $\triangle^n(x) =$

$$\left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \geq 0 \forall S \subseteq V, \ \& \ \sum_{S \subseteq V} p_S 1_S = x \right\}$$
Convex Closure of Discrete Set Functions

- Given set function \(f : 2^V \rightarrow \mathbb{R} \), an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function \(\tilde{f} : [0, 1]^V \rightarrow \mathbb{R} \), as

\[
\tilde{f}(x) = \min_{p \in \Delta^n(x)} \sum_{S \subseteq V} p_S f(S)
\]

(16.3)

where \(\Delta^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \geq 0 \forall S \subseteq V, \ \& \ \sum_{S \subseteq V} p_S 1_S = x \right\} \)

- Hence, \(\Delta^n(x) \) is the set of all probability distributions over the \(2^n \) vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to \(x \), i.e., for any \(p \in \Delta^n(x) \), \(E_{S \sim p}(1_S) = \sum_{S \subseteq V} p_S 1_S = x \).
Convex Closure of Discrete Set Functions

- Given set function \(f : 2^V \rightarrow \mathbb{R} \), an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function \(\tilde{f} : [0, 1]^V \rightarrow \mathbb{R} \), as

\[
\tilde{f}(x) = \min_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S)
\]

(16.3)

where \(\triangle^n(x) = \{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \geq 0 \forall S \subseteq V, \ & \sum_{S \subseteq V} p_S 1_S = x \} \)

- Hence, \(\triangle^n(x) \) is the set of all probability distributions over the \(2^n \) vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to \(x \), i.e., for any \(p \in \triangle^n(x), \ E_{S \sim p}(1_S) = \sum_{S \subseteq V} p_S 1_S = x \).

- Hence, \(\tilde{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)] \)
Convex Closure of Discrete Set Functions

- Given set function $f : 2^V \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\tilde{f} : [0, 1]^V \rightarrow \mathbb{R}$, as

$$\tilde{f}(x) = \min_{p \in \Delta^n(x)} \sum_{S \subseteq V} p_S f(S)$$

(16.3)

where $\Delta^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \geq 0 \forall S \subseteq V, \ & \sum_{S \subseteq V} p_S 1_S = x \right\}$

- Hence, $\Delta^n(x)$ is the set of all probability distributions over the 2^n vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any $p \in \Delta^n(x)$, $E_{S \sim p}(1_S) = \sum_{S \subseteq V} p_S 1_S = x$.

- Hence, $\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)]$

So far as far as we know, this is just a convex extension. Does it have any special properties? We will show that
Given, $\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)]$, we can show:

1. That \tilde{f} is tight (i.e., for all $S \subseteq V$, we have $\tilde{f}(\mathbb{1}_S) = f(S)$).
2. That \tilde{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
3. That the convex closure \tilde{f} is the convex envelope of the function defined only on the hypercube vertices, and that takes value $f(S)$ at $\mathbb{1}_S$.
4. The definition of the Lovász extension of a set function, and that \tilde{f} is the Lovász extension if f is submodular.
Convex Closure of Discrete Set Functions

Given, \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} ES \sim p[f(S)] \), we can show:

1. that \(\tilde{f} \) is tight (i.e., \(\forall S \subseteq V \), we have \(\tilde{f}(1_S) = f(S) \)).
Convex Closure of Discrete Set Functions

- Given, \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \), we can show:
 1. that \(\tilde{f} \) is tight (i.e., \(\forall S \subseteq V \), we have \(\tilde{f}(1_S) = f(S) \)).
 2. that \(\tilde{f} \) is convex (and consequently, that any arbitrary set function has a tight convex extension).

\[\uparrow \text{tight convex extension} \]
Given, \(\tilde{f}(x) = \min_{p \in \Delta^n} E S \sim p[f(S)] \), we can show:

1. that \(\tilde{f} \) is tight (i.e., \(\forall S \subseteq V \), we have \(\tilde{f}(1_S) = f(S) \)).
2. that \(\tilde{f} \) is convex (and consequently, that any arbitrary set function has a tight convex extension).
3. that the convex closure \(\tilde{f} \) is the convex envelope of the function defined only on the hypercube vertices, and that takes value \(f(S) \) at \(1_S \).
Given, $\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)]$, we can show:

1. that \tilde{f} is tight (i.e., $\forall S \subseteq V$, we have $\tilde{f}(1_S) = f(S)$).
2. that \tilde{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
3. that the convex closure \bar{f} is the convex envelope of the function defined only on the hypercube vertices, and that takes value $f(S)$ at 1_S.
4. the definition of the Lovász extension of a set function, and that \tilde{f} is the Lovász extension iff f is submodular.
Lemma 16.4.1

∀A ⊆ V, we have \(\tilde{f}(1_A) = f(A) \).

Proof.

- Define \(p^x \) to be an achieving argmin in \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p} [f(S)] \).
Tightness of Convex Closure

Lemma 16.4.1

∀A ⊆ V, we have \(\tilde{f}(1_A) = f(A) \).

Proof.

- Define \(p^x \) to be an achieving argmin in \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} ES \sim p[f(S)] \).
- Take an arbitrary \(A \), so that \(1_A = \sum_{S \subseteq V} p_S^1A 1_S \).

What are properties of \(\exists p_S 1_S \subseteq V ? \)
Lemma 16.4.1

∀A ⊆ V, we have $\tilde{f}(1_A) = f(A)$.

Proof.

- Define p^x to be an achieving argmin in $\tilde{f}(x) = \min_{p \in \Delta^n(x)} ES \sim_p [f(S)]$.
- Take an arbitrary A, so that $1_A = \sum_{S \subseteq V} p^1_A 1_S$.
- Suppose $\exists S'$ with $S' \setminus A \neq 0$ having $p^1_{S'} > 0$. This would mean, for any $v \in S' \setminus A$, that $\left(\sum_S p^1_A 1_S\right)(v) > 0$, a contradiction.

\[\vdots \]

All such S' have $p^1_{S'} = 0$.

Prof. Jeff Bilmes
Tightness of Convex Closure

Lemma 16.4.1

∀A ⊆ V, we have \(\tilde{f}(1_A) = f(A) \).

Proof.

- Define \(p^x \) to be an achieving argmin in \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} ES_p[f(S)] \).
- Take an arbitrary \(A \), so that \(1_A = \sum_{S \subseteq V} p^1_S 1_S \).
- Suppose \(\exists S' \) with \(S' \setminus A \neq 0 \) having \(p_{S'}^{1_A} > 0 \). This would mean, for any \(v \in S' \setminus A \), that \(\left(\sum_S p_S^{1_A} 1_S \right)(v) > 0 \), a contradiction.
- Suppose \(\exists S' \) s.t. \(A \setminus S' \neq \emptyset \) with \(p_{S'}^{1_A} > 0 \).
Tightness of Convex Closure

Lemma 16.4.1

\forall A \subseteq V, \text{ we have } \tilde{f}(1_A) = f(A).

Proof.

- Define \(p^x \) to be an achieving argmin in \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} ES \sim_p [f(S)] \).
- Take an arbitrary \(A \), so that \(1_A = \sum_{S \subseteq V} p^1_A 1_S \).
- Suppose \(\exists S' \) with \(S' \setminus A \neq 0 \) having \(p^1_{S'} > 0 \). This would mean, for any \(v \in S' \setminus A \), that \(\left(\sum_S p^1_A 1_S \right)(v) > 0 \), a contradiction.
- Suppose \(\exists S' \) s.t. \(A \setminus S' \neq \emptyset \) with \(p^1_{S'} > 0 \).
- Then, for any \(v \in A \setminus S' \), consider below leading to a contradiction

\[
\begin{align*}
p_{S'}1_{S'} + \sum_{S \subseteq A, S \neq S'} p_S 1_S & \Rightarrow \left(\sum_{S \subseteq A} p_S 1_S \right)(v) < 1 \\
& \text{can't sum to 1}
\end{align*}
\]

i.e., \(v \in A \) so it must get value 1, but since \(v \notin S' \), \(v \) is deficient.
Lemma 16.4.2

\[\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \] is convex in \([0, 1]^V\).

Proof.

Let \(x, y \in [0, 1]^V\), \(0 \leq \lambda \leq 1\), and \(z = \lambda x + (1 - \lambda)y\), then

\[\lambda \tilde{f}(x) + (1 - \lambda) \tilde{f}(y) = \lambda \sum_S p_S^x f(S) + (1 - \lambda) \sum_S p_S^y f(S) \tag{16.5} \]

\[= \sum_S (\lambda p_S^x + (1 - \lambda)p_S^y) f(S) \tag{16.6} \]

\[= \sum_S p_S^z f(S) \geq \min_{p \in \Delta^n(z)} E_{S \sim p}[f(S)] \tag{16.7} \]

\[= \tilde{f}(z) = \tilde{f}(\lambda x + (1 - \lambda)y) \tag{16.8} \]
Lemma 16.4.2

\[\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \text{ is convex in } [0, 1]^V. \]

Proof.

- Let \(x, y \in [0, 1]^V \), \(0 \leq \lambda \leq 1 \), and \(z = \lambda x + (1 - \lambda) y \), then

\[
\lambda \tilde{f}(x) + (1 - \lambda) \tilde{f}(y) = \lambda \sum_S p_S^x f(S) + (1 - \lambda) \sum_S p_S^y f(S) \tag{16.5}
\]

\[
= \sum_S (\lambda p_S^x + (1 - \lambda) p_S^y) f(S) \tag{16.6}
\]

\[
= \sum_S p^z_S f(S) \geq \min_{p \in \Delta^n(z)} E_{S \sim p}[f(S)] \tag{16.7}
\]

\[
= \tilde{f}(z) = \tilde{f}(\lambda x + (1 - \lambda) y) \tag{16.8}
\]

- Note that \(p^z_S = \lambda p^x_S + (1 - \lambda)p^y_S \) and is feasible in the min since

\[
\sum_S p^z_S = 1, \quad p^z_S \geq 0 \quad \text{and} \quad \sum_S p^z_S 1_S = z \quad \text{and} \quad \rho^z_S \in \Delta^n(z)
\]
Def: Convex Envelope of a function

- Given any function $h : \mathcal{D}_h \rightarrow \mathbb{R}$, where $\mathcal{D}_h \subseteq \mathbb{R}^n$, define the new function $\tilde{h} : \mathbb{R}^n \rightarrow \mathbb{R}$ via:

$$\tilde{h}(x) = \sup \{ g(x) : g \text{ is convex} \& g(y) \leq h(y), \forall y \in \mathcal{D}_h \} \quad (16.1)$$

- I.e., (1) $\tilde{h}(x)$ is convex, (2) $\tilde{h}(x) \leq h(x), \forall x$, and (3) if $g(x)$ is any convex function having the property that $g(x) \leq h(x), \forall x$, then $g(x) \leq \tilde{h}(x)$.

- Alternatively,

$$\tilde{h}(x) = \inf \{ t : (x, t) \in \text{convexhull(epigraph}(h))\} \quad (16.2)$$
Lemma 16.4.3

\[\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \] is the convex envelope.

Proof.

- Suppose \(\exists \) a convex \(\bar{f} \) with \(\bar{f}(1_A) = f(A) = \tilde{f}(1_A), \forall A \subseteq V \) and \(\exists x \in [0, 1]^V \) s.t. \(\bar{f}(x) > \tilde{f}(x) \).

- Define \(p^x \) to be an achieving argmin in \(\tilde{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \). Hence, we have \(x = \sum_S p^x_S 1_S \). Thus

\begin{align}
\tilde{f}(x) &= \sum_S p^x_S f(S) = \sum_S p^x_S \bar{f}(1_S) \\
&< \bar{f}(x) = \bar{f}(\sum_S p^x_S 1_S)
\end{align}

but the inequality contradicts the convexity of \(\bar{f} \).
Recall
\[f(e|A) = f(A+e) - f(A) \]

Notice how submodularity,
\[f(e|B) \leq f(e|A) \]
for \(A \subseteq B \), defines the shape of the polytope.

In fact, we have strictness here
\[f(e|B) < f(e|A) \]
for \(A \subset B \).

Also, consider how the greedy algorithm proceeds along the edges of the polytope.
Polymatroid with labeled edge lengths

- Recall
 \[f(e|A) = f(A+e) - f(A) \]

- Notice how
 submodularity,
 \[f(e|B) \leq f(e|A) \]
 for
 \[A \subseteq B \]
 defines the shape of the polytope.

- In fact, we have
 strictness here
 \[f(e|B) < f(e|A) \]
 for
 \[A \subset B \]

- Also, consider how the greedy algorithm
 proceeds along the edges of the polytope.
Optimization over P_f

- Consider the following optimization. Given $w \in \mathbb{R}^E$,
 \[
 \begin{align*}
 \text{maximize} & \quad w^T x \\
 \text{subject to} & \quad x \in P_f
 \end{align*}
 \]
 \hspace{1cm} (16.11a) \hspace{1cm} (16.11b)

- Since P_f is down closed, if $\exists e \in E$ with $w(e) < 0$ then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}_+^E$.

- In a future lecture, we will see that any $x \in P_f$ with $x \notin B_f$ is dominated by $x \leq y \in B_f$ which can only increase $w^T x \leq w^T y$ when $w \in \mathbb{R}_+^E$.

- Hence, the problem is equivalent to: given $w \in \mathbb{R}_+^E$,
 \[
 \begin{align*}
 \text{maximize} & \quad w^T x \\
 \text{subject to} & \quad x \in B_f
 \end{align*}
 \]
 \hspace{1cm} (16.12a) \hspace{1cm} (16.12b)

- Moreover, we can have $w \in \mathbb{R}^E$ if we insist on $x \in B_f$.
Consider again optimization problem. Given $w \in \mathbb{R}^E$,

\[
\begin{align*}
\text{maximize} & \quad w^T x \\
\text{subject to} & \quad x \in B_f
\end{align*}
\]

(16.13a)

(16.13b)
A continuous extension of f

- Consider again optimization problem. Given $w \in \mathbb{R}^E$,

$$\begin{align*}
\text{maximize} & \quad w^T x \\
\text{subject to} & \quad x \in B_f
\end{align*}$$

(16.13a) (16.13b)

- We may consider this optimization problem a function $\breve{f} : \mathbb{R}^E \to \mathbb{R}$ of $w \in \mathbb{R}^E$, defined as:

$$\breve{f}(w) = \max(wx : x \in B_f)$$

(16.14)
A continuous extension of f

- Consider again optimization problem. Given $w \in \mathbb{R}^E$,
 \[
 \begin{align*}
 & \text{maximize} & & w^T x \\
 & \text{subject to} & & x \in B_f
 \end{align*}
 \]
 (16.13a) (16.13b)

- We may consider this optimization problem a function $\tilde{f} : \mathbb{R}^E \to \mathbb{R}$ of $w \in \mathbb{R}^E$, defined as:
 \[\tilde{f}(w) = \max(wx : x \in B_f)\]
 (16.14)

- Note that this is $\tilde{f}(w)$ which is a distinct notation from the convex closure $\tilde{f}(x)$ we defined before.
Consider again optimization problem. Given \(w \in \mathbb{R}^E \),

\[
\begin{align*}
\text{maximize} & \quad w^\top x \\
\text{subject to} & \quad x \in B_f
\end{align*}
\]

(16.13a) (16.13b)

We may consider this optimization problem a function \(\tilde{f} : \mathbb{R}^E \rightarrow \mathbb{R} \) of \(w \in \mathbb{R}^E \), defined as:

\[
\tilde{f}(w) = \max(wx : x \in B_f)
\]

(16.14)

Note that this is \(\tilde{f}(w) \) which is a distinct notation from the convex closure \(\tilde{f}(x) \) we defined before.

Hence, for any \(w \), from the solution to the above theorem (as we have seen), we can compute the value of this function using Edmond’s greedy algorithm.
Recall Edmond’s Theorem: The Greedy Algorithm

- Recall, Edmonds proved that the solution to $f'(w) = \max(wx : x \in B_f)$ is solved by the greedy algorithm iff f is submodular.
- In particular, sort choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$.
- Define a vector $x^* \in \mathbb{R}^V$ where element e_i has value $x(e_i) = f(e_i|E_{i-1})$ for all $i \in V$.
- Then $\langle w, x^* \rangle = \max(wx : x \in B_f)$

Theorem 16.5.1 (Edmonds)

If $f : 2^E \to \mathbb{R}_+$ is given, and B_f is a polytope in \mathbb{R}^E of the form $B_f = \{x \in \mathbb{R}^E : x(A) \leq f(A), \forall A \subseteq E, x(E) = f(E)\}$, then the greedy solution to the problem $\max(w^\top x : x \in B_f)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff the corresponding P_f is a polymatroid).
Greedy-based continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
Greedy-based continuous extension of submodular f

That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

Define chain $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ based on w, so the i^{th} element of this change has $E_i = \{e_1, e_2, \ldots, e_i\}$.
Greedy-based continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- Define chain $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ based on w, so the i^{th} element of this change has $E_i = \{e_1, e_2, \ldots, e_i\}$.

We have

\[\hat{f}(w) \]
Greedy-based continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
- Define chain $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ based on w, so the i^{th} element of this change has $E_i = \{e_1, e_2, \ldots, e_i\}$.

We have

$$\tilde{f}(w) = \max(wx : x \in B_f)$$

(16.15)
Greedy-based continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- Define chain $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ based on w, so the ith element of this change has $E_i = \{e_1, e_2, \ldots, e_i\}$.

We have

$$\hat{f}(w) = \max(wx : x \in B_f)$$

$$= \sum_{i=1}^{m} w(e_i) f(e_i|E_{i-1}) = \sum_{i=1}^{m} w(e_i) x(e_i)$$
That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

Define chain $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ based on w, so the i^{th} element of this change has $E_i = \{e_1, e_2, \ldots, e_i\}$.

We have

$$\tilde{f}(w) = \max(wx : x \in B_f) \quad (16.15)$$

$$= \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i) x(e_i) \quad (16.16)$$

$$= \sum_{i=1}^{m} w(e_i) (f(E_i) - f(E_{i-1})) \quad (16.17)$$
Greedy-based continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
- Define chain $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ based on w, so the i^{th} element of this change has $E_i = \{e_1, e_2, \ldots, e_i\}$.

We have

$$\tilde{f}(w) = \max(wx : x \in B_f) = \max\left(\sum_{i=1}^{m} w(e_i)f(e_i | E_{i-1})\right)$$

$$= \sum_{i=1}^{m} w(e_i)f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i)x(e_i)$$

$$= \sum_{i=1}^{m} w(e_i)(f(E_i) - f(E_{i-1}))$$

$$= -w(e_1)f(E_0) + w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
Greedy-based continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$\tilde{f}(w) = \max(wx : x \in B_f) \quad (16.19)$$
Greedy-based continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$\tilde{f}(w) = \max(wx : x \in B_f) \quad (16.19)$$

- Therefore, if f is a submodular function, we can write:

$$\tilde{f}(w)$$
Definition of the continuous extension, once again, for reference:

$$\tilde{f}(w) = \max(wx : x \in B_f)$$ (16.19)

Therefore, if f is a submodular function, we can write

$$\tilde{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$ (16.20)
Greedy-based continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$\tilde{f}(w) = \max(wx : x \in B_f) \quad (16.19)$$

- Therefore, if f is a submodular function, we can write

$$\tilde{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i) \quad (16.20)$$

$$= \sum_{i=1}^{m} \lambda_i f(E_i) \quad (16.21)$$
Definition of the continuous extension, once again, for reference:

$$\tilde{f}(w) = \max(wx : x \in B_f)$$ \hspace{1cm} (16.19)

Therefore, if f is a submodular function, we can write

$$\tilde{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$ \hspace{1cm} (16.20)

$$= \sum_{i=1}^{m} \lambda_i f(E_i)$$ \hspace{1cm} (16.21)

where $\lambda_m = w(e_m)$ and otherwise $\lambda_i = w(e_i) - w(e_{i+1})$, where the elements are sorted descending according to w as before.
Greedy-based continuous extension: properties?

- So we go from f to B_f to $\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$ when f is submodular.

\[\tilde{f}(1_A) = f(A) \]

$A = 3e_2$
So we go from f to B_f to $\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$ when f is submodular.

Convex analysis $\Rightarrow \tilde{f}(w) = \max(wx : x \in P)$ is always convex in w for any set $P \subseteq R^E$, since a maximum of a set of linear functions (true even when f is not submodular or P is not itself a convex set).
Greedy-based continuous extension: properties?

- So we go from f to B_f to $\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$ when f is submodular.

- Convex analysis $\Rightarrow \tilde{f}(w) = \max(wx : x \in P)$ is always convex in w for any set $P \subseteq \mathbb{R}^E$, since a maximum of a set of linear functions (true even when f is not submodular or P is not itself a convex set).

- What this says, though is that when f is submodular, then $\sum_{i=1}^{m} \lambda_i f(E_i)$ is convex.
Greedy-based continuous extension: properties?

- So we go from \(f \) to \(B_f \) to \(\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i) \) when \(f \) is submodular.

- Convex analysis \(\Rightarrow \tilde{f}(w) = \max(wx : x \in P) \) is always convex in \(w \) for any set \(P \subseteq \mathbb{R}^E \), since a maximum of a set of linear functions (true even when \(f \) is not submodular or \(P \) is not itself a convex set).

- What this says, though is that when \(f \) is submodular, then \(\sum_{i=1}^{m} \lambda_i f(E_i) \) is convex.

- What can we say about the form \(\sum_{i=1}^{m} \lambda_i f(E_i) \) in general? What is this particular form if \(f \) isn’t even submodular?
Reminder on notation

- Recall, for any such $w \in \mathbb{R}^E$, we have

$$
\begin{pmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_n
\end{pmatrix} = \left(w_1 - w_2 \right) \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \left(w_2 - w_3 \right) \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \left(w_{n-1} - w_n \right) \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix} + \left(w_m \right) \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \left(w_1 \right) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}
$$

(16.22)

- If we take w in decreasing order, then each coefficient of the vectors is non-negative (except possibly the last one, $\lambda_m = w_m$).
- We often take $w \in \mathbb{R}_+^V$ or even $w \in [0, 1]^V$, making $\lambda_m \geq 0$.
More reminder on notation

- Again, order the elements based on w and define E_i based on decreasing order of w, giving $E_i = \{e_1, e_2, \ldots, e_i\}$ for $i = 0, \ldots, n$.

- Recall that

\[
1_{E_0} = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix},
1_{E_1} = \begin{pmatrix}
1 \\
0 \\
\vdots \\
0
\end{pmatrix}, \ldots, 1_{E_\ell} = \begin{pmatrix}
1 \\
1 \\
\vdots \\
1 \\
0 \\
\vdots \\
0
\end{pmatrix} \ell \times (n - \ell) \times (n - \ell)
\]

- Hence, from the previous and current slide, we have $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$
From \tilde{f} back to f, even when f is not submodular

- From the continuous \tilde{f}, we can recover $f(A)$ for any $A \subseteq V$.

\[
\tilde{f}(w) = \sum_{i=1}^{m} i \text{ if } (E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m} (w(e_i) w(e_{i+1})) f(E_i) = 1_{A}(m) f(E_m) + \sum_{i=1}^{m} (1_{A}(i) 1_{A}(i+1)) f(E_i) = 1_{A}(m) + \sum_{i=1}^{m} (1_{A}(i) 1_{A}(i+1)) f(E_i) (16.24) \\
= (1_{A}(|A|) 1_{A}(|A|+1)) f(E_{|A|}) = f(E_{|A|}) = f(A) (16.25)
\]
From \tilde{f} back to f, even when f is not submodular

- From the continuous \tilde{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w = 1_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
From \(\tilde{f} \) back to \(f \), even when \(f \) is not submodular

- From the continuous \(\tilde{f} \), we can recover \(f(A) \) for any \(A \subseteq V \).
- Take \(w = 1_A \) for some \(A \subseteq E \), so \(w \) is vertex of the hypercube.
- Order and rename the elements of \(E \) in decreasing order of \(w \) so that
 \[
 w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m).
 \]
From \(\tilde{f} \) back to \(f \), even when \(f \) is not submodular

- From the continuous \(\tilde{f} \), we can recover \(f(A) \) for any \(A \subseteq V \).
- Take \(w = 1_A \) for some \(A \subseteq E \), so \(w \) is vertex of the hypercube.
- Order and rename the elements of \(E \) in decreasing order of \(w \) so that
 \[w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m). \]
- This means
 \[w = (w(e_1), w(e_2), \ldots, w(e_m)) = (1, 1, 1, \ldots, 1, 0, 0, \ldots, 0) \tag{16.23} \]
 so that \(1_A(i) = 1 \) if \(i \leq |A| \), and \(1_A(i) = 0 \) otherwise.

\[w(e_i) - w(e_{i+1}) \]
From ĵ back to f, even when f is not submodular

- From the continuous ĵ, we can recover f(A) for any A ⊆ V.
- Take w = 1_A for some A ⊆ E, so w is vertex of the hypercube.
- Order and rename the elements of E in decreasing order of w so that
 \[w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m). \]
- This means
 \[w = (w(e_1), w(e_2), \ldots, w(e_m)) = (1, \ldots, 1, 0, \ldots, 0) \]
 \[\text{\text{times} \text{times}} \]
 where |A| times \(m-|A| \) times

 so that \(1_A(i) = 1 \) if \(i \leq |A| \), and \(1_A(i) = 0 \) otherwise.
- For any \(f : 2^E \to \mathbb{R} \), \(w = 1_A \), since \(E_{|A|} = \{e_1, e_2, \ldots, e_{|A|}\} = A \):
 \[\hat{f}(w) \]

\[(16.23) \]

\[(16.24) \]
From \tilde{f} back to f, even when f is not submodular

- From the continuous \tilde{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w = 1_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order and rename the elements of E in decreasing order of w so that $w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m)$.
- This means

 $$w = (w(e_1), w(e_2), \ldots, w(e_m)) = (1, 1, 1, \ldots, 1, 0, 0, \ldots, 0)$$

 (16.23)

 so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise.
- For any $f : 2^E \rightarrow \mathbb{R}$, $w = 1_A$, since $E_{|A|} = \{e_1, e_2, \ldots, e_{|A|}\} = A$:

 $$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
From \(\tilde{f} \) back to \(f \), even when \(f \) is not submodular

- From the continuous \(\tilde{f} \), we can recover \(f(A) \) for any \(A \subseteq V \).
- Take \(w = 1_A \) for some \(A \subseteq E \), so \(w \) is vertex of the hypercube.
- Order and rename the elements of \(E \) in decreasing order of \(w \) so that \(w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m) \).
- This means

\[
w = (w(e_1), w(e_2), \ldots, w(e_m)) = (1, 1, 1, \ldots, 1, 0, 0, \ldots, 0) \quad (16.23)
\]

so that \(1_A(i) = 1 \) if \(i \leq |A| \), and \(1_A(i) = 0 \) otherwise.
- For any \(f : 2^E \rightarrow \mathbb{R} \), \(w = 1_A \), since \(E_{|A|} = \{e_1, e_2, \ldots, e_{|A|}\} = A \):

\[
\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1})) f(E_i)
\]
From \tilde{f} back to f, even when f is not submodular

- From the continuous \tilde{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w = 1_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order and rename the elements of E in decreasing order of w so that $w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \ldots, w(e_m)) = \left(1, 1, 1, \ldots, 1, 0, 0, \ldots, 0\right)$$

so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise.
- For any $f : 2^E \rightarrow \mathbb{R}$, $w = 1_A$, since $E_{|A|} = \{e_1, e_2, \ldots, e_{|A|}\} = A$:

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1})) f(E_i)$$

$$= 1_A(m) f(E_m) + \sum_{i=1}^{m-1} (1_A(i) - 1_A(i + 1)) f(E_i)$$

(16.24)
From \tilde{f} back to f, even when f is not submodular

- From the continuous \tilde{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w = 1_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order and rename the elements of E in decreasing order of w so that $w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m)$.
- This means
 \[w = (w(e_1), w(e_2), \ldots, w(e_m)) = (1, 1, 1, \ldots, 1, 0, 0, \ldots, 0) \]
 \[\text{with } |A| \text{ times, } m-|A| \text{ times} \]
 so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise.
- For any $f : 2^E \rightarrow \mathbb{R}$, $w = 1_A$, since $E_{|A|} = \{e_1, e_2, \ldots, e_{|A|}\} = A$:
 \[
 \tilde{f}(w) = \sum_{i=1}^m \lambda_i f(E_i) = w(e_m)f(E_m) + \sum_{i=1}^{m-1}(w(e_i) - w(e_{i+1}))f(E_i)
 \]
 \[= 1_A(m)f(E_m) + \sum_{i=1}^{m-1}(1_A(i) - 1_A(i+1))f(E_i) \]
 \[= (1_A(|A|) - 1_A(|A|+1))f(E_{|A|}) = f(E_{|A|}) \]
 (16.24)
From \tilde{f} back to f, even when f is not submodular

- From the continuous \tilde{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w = 1_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order and rename the elements of E in decreasing order of w so that $w(e_1) \geq w(e_2) \geq w(e_3) \geq \cdots \geq w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \ldots, w(e_m)) = \left(1, 1, 1, \ldots, 1, 0, 0, \ldots, 0 \right)$$

so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise.

- For any $f : 2^E \to \mathbb{R}$, $w = 1_A$, since $E_{|A|} = \{e_1, e_2, \ldots, e_{|A|}\} = A$:

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$

$$= 1_A(m)f(E_m) + \sum_{i=1}^{m-1} (1_A(i) - 1_A(i + 1))f(E_i)$$

$$= (1_A(|A|) - 1_A(|A| + 1))f(E_{|A|}) = f(E_{|A|}) = f(A)$$
Summary so far

- To summarize, with \(\tilde{f}(1_A) = \sum_{i=1}^{m} \lambda_i f(E_i) \), we have

 \[
 \tilde{f}(1_A) = f(A), \quad \text{even if } f \text{ not submodular} \quad (16.26)
 \]
Summary so far

- To summarize, with $\tilde{f}(1_A) = \sum_{i=1}^{m} \lambda_i f(E_i)$, we have
 $$\tilde{f}(1_A) = f(A), \quad (16.26)$$

- Thus, we can view $\tilde{f} : [0, 1]^E \to \mathbb{R}$ defined on the hypercube, with f defined as \tilde{f} evaluated on the hypercube extreme points (vertices).
Summary so far

- To summarize, with $\tilde{\tilde{f}}(\mathbf{1}_A) = \sum_{i=1}^m \lambda_i f(E_i)$, we have

$$\tilde{\tilde{f}}(\mathbf{1}_A) = f(A),$$

(16.26)

- Thus, we can view $\tilde{\tilde{f}} : [0, 1]^E \rightarrow \mathbb{R}$ defined on the hypercube, with f defined as $\tilde{\tilde{f}}$ evaluated on the hypercube extreme points (vertices).

- ...and when f is submodular, we also have have

$$\tilde{\tilde{f}}(\mathbf{1}_A) = \max \{ \mathbf{1}_A^T x : x \in B_f \}$$

(16.27)

and

$$\tilde{\tilde{f}}(w) = \max \{ w^T x : x \in B_f \} = \sum_{i=1}^m \lambda_i f(E_i)$$

(16.28)
Summary so far

- To summarize, with $\tilde{f}(1_A) = \sum_{i=1}^{m} \lambda_i f(E_i)$, we have
 $$\tilde{f}(1_A) = f(A), \tag{16.26}$$

- Thus, we can view $\tilde{f} : [0, 1]^E \to \mathbb{R}$ defined on the hypercube, with f defined as \tilde{f} evaluated on the hypercube extreme points (vertices).

- ...and when f is submodular, we also have have
 $$\tilde{f}(1_A) = \max \{ 1_A^\top x : x \in B_f \} \tag{16.27}$$

 and
 $$\tilde{f}(w) = \max \{ w^\top x : x \in B_f \} = \sum_{i=1}^{m} \lambda_i f(E_i) \tag{16.28}$$

- When considering $\tilde{f} : [0, 1]^E \to \mathbb{R}$, then any $w \in [0, 1]^E$ is in positive orthant, and we have
 $$\tilde{f}(w) = \max \{ w^\top x : x \in P_f \} \tag{16.29}$$
The Lovász extension of an arbitrary $f : 2^V \to \mathbb{R}$

Thus, for any $f : 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\tilde{f}(1_A) = f(A)$, $\forall A$, in this way where

\[
\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) \tag{16.30}
\]

with the $E_i = \{e_1, \ldots, e_i\}$’s defined based on sorted descending order of w as in $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, and where

for $i \in \{1, \ldots, m\}$,

\[
\lambda_i = \begin{cases}
 w(e_i) - w(e_{i+1}) & \text{if } i < m \\
 w(e_m) & \text{if } i = m
\end{cases}
\tag{16.31}
\]

so that $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$.
The Lovász extension of an arbitrary \(f : 2^V \rightarrow \mathbb{R} \)

- Thus, for any \(f : 2^E \rightarrow \mathbb{R} \), even non-submodular \(f \), we can define an extension, having \(\tilde{f}(1_A) = f(A) \), \(\forall A \), in this way where

\[
\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)
\]

with the \(E_i = \{e_1, \ldots, e_i\} \)'s defined based on sorted descending order of \(w \) as in \(w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m) \), and where

\[
\lambda_i = \begin{cases}
 w(e_i) - w(e_{i+1}) & \text{if } i < m \\
 w(e_m) & \text{if } i = m
\end{cases}
\]

so that \(w = \sum_{i=1}^{m} \lambda_i 1_{E_i} \).

- \(w = \sum_{i=1}^{m} \lambda_i 1_{E_i} \) is an interpolation of certain hypercube vertices.
The Lovász extension of an arbitrary $f : 2^V \rightarrow \mathbb{R}$

- Thus, for any $f : 2^E \rightarrow \mathbb{R}$, even non-submodular f, we can define an extension, having $\tilde{f}(1_A) = f(A)$, $\forall A$, in this way where

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$ (16.30)

with the $E_i = \{e_1, \ldots, e_i\}$’s defined based on sorted descending order of w as in $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, and where

$$\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$$ (16.31)

so that $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$.

- $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ is an interpolation of certain hypercube vertices.

- $\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$ is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.
The Lovász extension of an arbitrary $f : 2^V \to \mathbb{R}$

Thus, for any $f : 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\tilde{f}(1_A) = f(A), \forall A$, in this way where

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$ \hspace{1cm} (16.30)

with the $E_i = \{e_1, \ldots, e_i\}$’s defined based on sorted descending order of w as in $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, and where

for $i \in \{1, \ldots, m\}$, \hspace{1cm} $\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$ \hspace{1cm} (16.31)

so that $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$.

$w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ is an interpolation of certain hypercube vertices.

$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$ is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.

This extension is called the Lovász extension!
Again sorting E descending in w, the extension summarized:

$$
\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1})
$$

(16.32) **Weighted gains**

$$
= \sum_{i=1}^{m} w(e_i) (f(E_i) - f(E_{i-1}))
$$

(16.33)

$$
= w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1})) f(E_i)
$$

(16.34)

$$
= \sum_{i=1}^{m} \lambda_i f(E_i)
$$

(16.35) **Weighted functions**
Again sorting E descending in w, the extension summarized:

\[
\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1})
\]

(16.32)

\[= \sum_{i=1}^{m} w(e_i) (f(E_i) - f(E_{i-1})) \]

(16.33)

\[= w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1})) f(E_i) \]

(16.34)

\[= \sum_{i=1}^{m} \lambda_i f(E_i) \]

(16.35)

So $\tilde{f}(w)$ seen either as sum of weighted gain evaluations (Eqn. (16.32)),
or as sum of weighted function evaluations (Eqn. (16.35)).
Summary: comparison of the two extension forms

- So if f is submodular, then we can write $\tilde{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

 $$\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i) \quad (16.36)$$

 where $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
Summary: comparison of the two extension forms

- So if \(f \) is submodular, then we can write \(\tilde{f}(w) = \max(wx : x \in B_f) \) (which is clearly convex) in the form:

\[
\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i) \tag{16.36}
\]

where \(w = \sum_{i=1}^{m} \lambda_i 1_E_i \) and \(E_i = \{e_1, \ldots, e_i\} \) defined based on sorted descending order \(w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m) \).

- On the other hand, for any \(f \) (even non-submodular), we can produce an extension \(\tilde{f} \) having the form

\[
\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) \tag{16.37}
\]

where \(w = \sum_{i=1}^{m} \lambda_i 1_E_i \) and \(E_i = \{e_1, \ldots, e_i\} \) defined based on sorted descending order \(w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m) \).
Summary: comparison of the two extension forms

- So if f is submodular, then we can write $\tilde{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

$$\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$$

(16.36)

where $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- On the other hand, for any f (even non-submodular), we can produce an extension \tilde{f} having the form

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$

(16.37)

where $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- In both Eq. (16.36) and Eq. (16.37), we have $\tilde{f}(1_A) = f(A)$, $\forall A$, but Eq. (16.37), might not be convex for non-submodular f.
Summary: comparison of the two extension forms

- **So if** f **is submodular**, then we can write $\tilde{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

\[\tilde{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i) \quad (16.36) \]

where $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- **On the other hand,** for any f (even non-submodular), we can produce an extension \tilde{f} having the form

\[\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) \quad (16.37) \]

where $w = \sum_{i=1}^{m} \lambda_i 1_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- In both Eq. (16.36) and Eq. (16.37), we have $\tilde{f}(1_A) = f(A)$, $\forall A$, but Eq. (16.37), might not be convex for non-submodular f.

- **Submodularity is sufficient for convexity, but is it also necessary?**
The Lovász extension of $f : 2^E \rightarrow \mathbb{R}$

- This continuous extension \tilde{f} of f, in any case (f being submodular or not), is typically called the Lovász extension of f (but also sometimes called the Choquet integral, or the Lovász-Edmonds extension since Edmonds showed many of the critical results).
The Lovász extension of \(f : 2^E \to \mathbb{R} \)

- This continuous extension \(\tilde{f} \) of \(f \), in any case (\(f \) being submodular or not), is typically called the Lovász extension of \(f \) (but also sometimes called the Choquet integral, or the Lovász-Edmonds extension since Edmonds showed many of the critical results).

- Lovász showed that if a function \(\tilde{f}(w) \) defined as in Eqn. (16.30) is convex, then \(f \) must be submodular.
Theorem 16.5.2

A function \(f : 2^E \rightarrow \mathbb{R} \) is submodular iff its Lovász extension \(\tilde{f} \) of \(f \) is convex.

Proof.

We’ve already seen that if \(f \) is submodular, its extension can be written via Eqn.(16.30) due to the greedy algorithm, and therefore is also equivalent to \(\tilde{f}(w) = \max \{wx : x \in P_f\} \), and thus is convex.
Theorem 16.5.2

A function $f : 2^E \rightarrow \mathbb{R}$ is submodular iff its Lovász extension \tilde{f} of f is convex.

Proof.

- We’ve already seen that if f is submodular, its extension can be written via Eqn.(16.30) due to the greedy algorithm, and therefore is also equivalent to $\tilde{f}(w) = \max \{wx : x \in P_f\}$, and thus is convex.

- Conversely, suppose the Lovász extension $\tilde{f}(w) = \sum_i \lambda_i f(E_i)$ (of some function $f : 2^E \rightarrow \mathbb{R}$) is a convex function.

...
Theorem 16.5.2

A function $f : 2^E \rightarrow \mathbb{R}$ is submodular iff its Lovász extension \tilde{f} of f is convex.

Proof.

- We’ve already seen that if f is submodular, its extension can be written via Eqn. (16.30) due to the greedy algorithm, and therefore is also equivalent to $f(w) = \max \{wx : x \in P_f\}$, and thus is convex.

- Conversely, suppose the Lovász extension $\tilde{f}(w) = \sum_i \lambda_i f(E_i)$ of some function $f : 2^E \rightarrow \mathbb{R}$ is a convex function.

- We note that, based on the extension definition, in particular the definition of the $\{\lambda_i\}_i$, we have that $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for any $\alpha \in \mathbb{R}_+$. I.e., f is a positively homogeneous convex function.
Earlier, we saw that $\tilde{f}(1_A) = f(A)$ for all $A \subseteq E$.

Now, given $A, B \subseteq E$, we will show that $\tilde{f}(1_A + 1_B) = \tilde{f}(1_A \Delta B) + f(A \setminus B)$ (16.38)

Let $C = A \setminus B$, or order E based on decreasing

$w = (w(e_1), w(e_2), \ldots, w(e_m))$ (16.40)

Then, considering $\tilde{f}(w) = \sum_{i} f(E_i)$, we have $|C| = 1$, $|A \setminus B| = 1$, and $i = 0$ for $i \not\in \{|C|, |A \setminus B|\}$. But then $E |C| = A \setminus B$ and $E |A \setminus B| = A \setminus B$. Therefore, $\tilde{f}(w) = \tilde{f}(1_A + 1_B) = f(A \setminus B) + f(A \setminus B)$.

Earlier, we saw that $\tilde{f}(1_A) = f(A)$ for all $A \subseteq E$.

Now, given $A, B \subseteq E$, we will show that

$$\tilde{f}(1_A + 1_B) = \tilde{f}(1_{A \cup B} + 1_{A \cap B})$$

$$= f(A \cup B) + f(A \cap B).$$
Earlier, we saw that $\tilde{f}(1_A) = f(A)$ for all $A \subseteq E$.

Now, given $A, B \subseteq E$, we will show that

\[
\tilde{f}(1_A + 1_B) = \tilde{f}(1_{A\cup B} + 1_{A\cap B})
\]

\[= f(A \cup B) + f(A \cap B).\] (16.39)

Let $C = A \cap B$, order E based on decreasing $w = 1_A + 1_B$ so that

\[
w = (w(e_1), w(e_2), \ldots, w(e_m))
\]

\[= (2, 2, \ldots, 2, 1, 1, \ldots, 1, 0, 0, \ldots, 0)\] (16.41)
Lovász Extension, Submodularity and Convexity

... proof of Thm. 16.5.2 cont.

- Earlier, we saw that \(\tilde{f}(1_A) = f(A) \) for all \(A \subseteq E \).

- Now, given \(A, B \subseteq E \), we will show that
 \[
 \tilde{f}(1_A + 1_B) = \tilde{f}(1_{A \cup B} + 1_{A \cap B})
 = f(A \cup B) + f(A \cap B).
 \] (16.38) (16.39)

- Let \(C = A \cap B \), order \(E \) based on decreasing \(w = 1_A + 1_B \) so that
 \[
 w = (w(e_1), w(e_2), \ldots, w(e_m))
 = (2, 2, \ldots, 2, 1, 1, \ldots, 1, 0, 0, \ldots, 0)
 \]
 \[
 \begin{align*}
 i \in C & \quad i \in A \triangle B & \quad i \in E \setminus (A \cup B)
 \end{align*}
 \] (16.40) (16.41)

- Then, considering \(\tilde{f}(w) = \sum_i \lambda_i f(E_i) \), we have \(\lambda_{|C|} = 1 \), \(\lambda_{|A \cup B|} = 1 \), and \(\lambda_i = 0 \) for \(i \notin \{|C|, |A \cup B|\} \).
Earlier, we saw that \(\tilde{f}(1_A) = f(A) \) for all \(A \subseteq E \).

Now, given \(A, B \subseteq E \), we will show that

\[
\tilde{f}(1_A + 1_B) = \tilde{f}(1_{A \cup B} + 1_{A \cap B}) = f(A \cup B) + f(A \cap B).
\] (16.38)

Let \(C = A \cap B \), order \(E \) based on decreasing \(w = 1_A + 1_B \) so that

\[
w = (w(e_1), w(e_2), \ldots, w(e_m)) = (2, 2, \ldots, 2, 1, 1, \ldots, 1, 0, 0, \ldots, 0)
\] (16.40)

\[
= (\underbrace{2, 2, \ldots, 2}_{i \in C}, \underbrace{1, 1, \ldots, 1}_{i \in A \triangle B}, \underbrace{0, 0, \ldots, 0}_{i \in E \setminus (A \cup B)}).
\] (16.41)

Then, considering \(\tilde{f}(w) = \sum_i \lambda_i f(E_i) \), we have \(\lambda_{|C|} = 1, \lambda_{|A \cup B|} = 1 \), and \(\lambda_i = 0 \) for \(i \notin \{|C|, |A \cup B|\} \).

But then \(E_{|C|} = A \cap B \) and \(E_{|A \cup B|} = A \cup B \). Therefore,

\[
\tilde{f}(w) = \tilde{f}(1_A + 1_B) = f(A \cap B) + f(A \cup B).
\]
Also, since \tilde{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$0.5[f(A \cap B) + f(A \cup B)]$$

(16.45)
Also, since \tilde{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$0.5[f(A \cap B) + f(A \cup B)] = 0.5[\tilde{f}(1_A + 1_B)]$$ \hspace{1cm} (16.42)

Thus, f must be submodular.
Also, since \tilde{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$0.5[f(A \cap B) + f(A \cup B)] = 0.5[\tilde{f}(1_A + 1_B)]$$ \hspace{1cm} (16.42)

$$= \tilde{f}(0.51_A + 0.51_B)$$ \hspace{1cm} (16.43)

$$\Rightarrow 0.5f(A \cap B) + 0.5f(A \cup B) \leq f(A) + f(B)$$ \hspace{1cm} (16.45)
Also, since \(\tilde{f} \) is convex (by assumption) and positively homogeneous, we have for any \(A, B \subseteq E \),

\[
0.5[f(A \cap B) + f(A \cup B)] = 0.5[\tilde{f}(1_A + 1_B)]
\]

\[
= \tilde{f}(0.51_A + 0.51_B) \quad (16.43)
\]

\[
\leq 0.5\tilde{f}(1_A) + 0.5\tilde{f}(1_B) \quad (16.44)
\]

\[
= 0.5f(1_A) + 0.5f(1_B) \quad (16.45)
\]
Also, since \tilde{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

\[
0.5[f(A \cap B) + f(A \cup B)] = 0.5[\tilde{f}(1_A + 1_B)] \\
= \tilde{f}(0.51_A + 0.51_B) \\
\leq 0.5\tilde{f}(1_A) + 0.5\tilde{f}(1_B) \\
= 0.5(f(A) + f(B))
\] (16.42) (16.43) (16.44) (16.45)
Also, since \(\tilde{f} \) is convex (by assumption) and positively homogeneous, we have for any \(A, B \subseteq E \),

\[
0.5[f(A \cap B) + f(A \cup B)] = 0.5[\tilde{f}(1_A + 1_B)] \\
= \tilde{f}(0.51_A + 0.51_B) \\
\leq 0.5\tilde{f}(1_A) + 0.5\tilde{f}(1_B) \\
= 0.5(f(A) + f(B))
\]

(16.42)
(16.43)
(16.44)
(16.45)

Thus, we have shown that for any \(A, B \subseteq E \),

\[
f(A \cup B) + f(A \cap B) \leq f(A) + f(B)
\]

(16.46)

so \(f \) must be submodular.
The above theorem showed that the Lovász extension is convex iff f is submodular.
The above theorem showed that the Lovász extension is convex iff f is submodular.

Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.
The above theorem showed that the Lovász extension is convex iff f is submodular.

Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.

I.e., not only is the Lovász extension convex for f submodular and tight at each 1_A, it is the actual convex closure when f.
Lovász ext. vs. the concave closure of submodular function

- The above theorem showed that the Lovász extension is convex iff f is submodular.
- Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.
- I.e., not only is the Lovász extension convex for f submodular and tight at each 1_A, it is the actual convex closure when f.
- Hence, convex closure (which normally looks daunting) is easy to evaluate (the greedy algorithm) when f is submodular and takes this particular form iff f is submodular.
Theorem 16.5.3

Let $\bar{f}(w) = \max(wy : y \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$ be the Lovász extension and $\tilde{f}(x) = \min_{p \in \Delta^n(x)} ES \sim p[f(S)]$ be the convex closure. Then \bar{f} and \tilde{f} coincide iff f is submodular, i.e., $\bar{f}(w) = \tilde{f}(w), \forall w \in [0, 1]$.

Proof.

- Assume f is submodular.
Theorem 16.5.3

Let $\tilde{f}(w) = \max(wy : y \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$ be the Lovász extension and $\tilde{f}(x) = \min_{p \in \triangle^n(x)} ES \sim p[f(S)]$ be the convex closure. Then \tilde{f} and \tilde{f} coincide iff f is submodular, i.e., $\tilde{f}(w) = \tilde{f}(w), \forall w \in [0, 1]$.

Proof.

• Assume f is submodular.

• Given x, let p^x be an achieving argmin in $\tilde{f}(x)$ that also maximizes $\sum_S p^x_S |S|^2$.
Theorem 16.5.3

Let \(\tilde{f}(w) = \max(\lambda y : y \in Bf) = \sum_{i=1}^{m} \lambda_i f(E_i) \) be the Lovász extension and \(\check{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \) be the convex closure. Then \(\check{f} \) and \(\tilde{f} \) coincide iff \(f \) is submodular, i.e., \(\check{f}(w) = \tilde{f}(w) \), \(\forall w \in [0, 1] \).

Proof.

- Assume \(f \) is submodular.
- Given \(x \), let \(p^x \) be an achieving argmin in \(\check{f}(x) \) that also maximizes \(\sum_S p^x_S |S|^2 \).
- Suppose \(\exists A, B \subseteq V \) that are crossing (i.e., \(A \not\subseteq B \), \(B \not\subseteq A \)) with positive \(p^x_A, p^x_B \). W.l.o.g., \(p^x_A \geq p^x_B > 0 \).

\[|A \setminus B| > 0 \]
\[|B \setminus A| > 0 \]
Lovász ext. vs. the concave closure of submodular function

Theorem 16.5.3

Let \(\tilde{f}(w) = \max(wy : y \in B_f) = \sum_{i=1}^m \lambda_i f(E_i) \) be the Lovász extension and \(\bar{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)] \) be the convex closure. Then \(\tilde{f} \) and \(\bar{f} \) coincide iff \(f \) is submodular, i.e., \(\tilde{f}(w) = \bar{f}(w), \forall w \in [0, 1] \).

Proof.

- Assume \(f \) is submodular.
- Given \(x \), let \(p^x \) be an achieving argmin in \(\bar{f}(x) \) that also maximizes \(\sum_S p^x_S |S|^2 \).
- Suppose \(\exists A, B \subseteq V \) that are crossing (i.e., \(A \not\subseteq B, B \not\subseteq A \)) with positive \(p^x_A, p^x_B \). W.l.o.g., \(p^x_A \geq p^x_B > 0 \).
- Then we may update \(p^x \), keeping it a distribution, as follows:
 \[
 \bar{p}^x_A \leftarrow p^x_A - p^x_B \geq 0 \quad \bar{p}^x_B \leftarrow p^x_B - p^x_A = 0 \tag{16.47}
 \]
 \[
 \bar{p}^x_{A \cup B} \leftarrow p^x_{A \cup B} + p^x_B \geq 0 \quad \bar{p}^x_{A \cap B} \leftarrow p^x_{A \cap B} + p^x_A \geq 0 \tag{16.48}
 \]
 and by submodularity, this does not increase \(\sum_S p^x_S f(S) \).
This does increase $\sum_S p^x_S |S|^2$ however since $|S|^2$ is supermodular, i.e.:

$$|A \cup B|^2 + |A \cap B|^2 = (|A| + |B \setminus A|)^2 + (|B| - |B \setminus A|)^2$$ \hspace{1cm} (16.49)

$$= |A|^2 + |B|^2 + 2|B \setminus A|(|A| - |B| + |B \setminus A|)$$ \hspace{1cm} (16.50)

$$= |A|^2 + |B|^2 + 2|B \setminus A||A \setminus B|$$ \hspace{1cm} (16.51)

$$> |A|^2 + |B|^2$$ \hspace{1cm} (16.52)

Since A crosses B
...proof cont.

- This does increase \(\sum_S p^x_S |S|^2 \) however since \(|S|^2 \) is supermodular, i.e.:

\[
|A \cup B|^2 + |A \cap B|^2 = (|A| + |B \setminus A|)^2 + (|B| - |B \setminus A|)^2
\]

\[
= |A|^2 + |B|^2 + 2|B \setminus A||A| - |B| + |B \setminus A|) \quad (16.49)
\]

\[
= |A|^2 + |B|^2 + 2|B \setminus A||A \setminus B| \quad (16.50)
\]

\[
> |A|^2 + |B|^2 \quad (16.51)
\]

- Contradiction! Hence, there can be no crossing sets \(A, B \) and we must have, for any \(A, B \) with \(p^x_A > 0 \) and \(p^x_B > 0 \) either \(A \subset B \) or \(B \subset A \).
This does increase \(\sum_S p^x_S |S|^2 \) however since \(|S|^2 \) is supermodular, i.e.:

\[
|A \cup B|^2 + |A \cap B|^2 = (|A| + |B \setminus A|)^2 + (|B| - |B \setminus A|)^2
\]

\[
= |A|^2 + |B|^2 + 2|B \setminus A|(|A| - |B| + |B \setminus A|)
\]

\[
= |A|^2 + |B|^2 + 2|B \setminus A||A \setminus B|
\]

\[
> |A|^2 + |B|^2
\]

Contradiction! Hence, there can be no crossing sets \(A, B \) and we must have, for any \(A, B \) with \(p^x_A > 0 \) and \(p^x_B > 0 \) either \(A \subset B \) or \(B \subset A \).

Hence, the sets \(\{A \subseteq V : p^x_A > 0\} \) form a chain and can be at most as large as size \(n = |V| \).
This does increase \(\sum_S p_S^x |S|^2 \) however since \(|S|^2\) is supermodular, i.e.:
\[
|A \cup B|^2 + |A \cap B|^2 = (|A| + |B \setminus A|)^2 + (|B| - |B \setminus A|)^2
\]
\[
= |A|^2 + |B|^2 + 2|B \setminus A|(|A| - |B| + |B \setminus A|)
\]
\[
= |A|^2 + |B|^2 + 2|B \setminus A||A \setminus B|
\]
\[
> |A|^2 + |B|^2
\]

Contradiction! Hence, there can be no crossing sets \(A, B \) and we must have, for any \(A, B \) with \(p_A^x > 0 \) and \(p_B^x > 0 \) either \(A \subset B \) or \(B \subset A \).

Hence, the sets \(\{A \subseteq V : p_A^x > 0\} \) form a chain and can be at most as large as size \(n = |V| \).

The only feasible chain is the same chain that defines the Lovász extension \(\tilde{f}(x) \), namely \(\emptyset = E_0 \subseteq E_1 \subseteq E_2 \subseteq \ldots \) where \(E_i = \{e_1, e_2, \ldots, e_i\} \) and \(e_i \) is ordered as \(x(e_1) \geq x(e_2) \geq \cdots \geq x(e_n) \).
Next, assume f is not submodular. We must show that the Lovász extension $\tilde{f}(x)$ and the concave closure $\tilde{\tilde{f}}(x)$ need not coincide.
Next, assume f is not submodular. We must show that the Lovász extension $\tilde{f}(x)$ and the concave closure $\tilde{f}(x)$ need not coincide.

Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S) + f(S + i + j) > f(S + i) + f(S + j)$, a strict violation of submodularity.
Next, assume f is not submodular. We must show that the Lovász extension $\tilde{f}(x)$ and the concave closure $\tilde{\tilde{f}}(x)$ need not coincide.

Since f is not submodular, $\exists S$ and $i, j \not\in S$ such that $f(S) + f(S + i + j) > f(S + i) + f(S + j)$, a strict violation of submodularity.

Consider $x = 1_S + \frac{1}{2}1_{\{i,j\}} \in [0,1]$.

... proof cont.
Next, assume f is not submodular. We must show that the Lovász extension $\tilde{f}(x)$ and the concave closure $\bar{f}(x)$ need not coincide.

Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S) + f(S + i + j) > f(S + i) + f(S + j)$, a strict violation of submodularity.

Consider $x = 1_S + \frac{1}{2}1_{\{i,j\}}$. Then L.E. has $\tilde{f}(x) = \frac{1}{2}f(S) + \frac{1}{2}f(S + i + j)$ and this p is feasible for $\tilde{f}(x)$ with $p_S = 1/2$ and $p_{S+i+j} = 1/2$. \[\bar{f}(x) \]
Next, assume f is not submodular. We must show that the Lovász extension $\tilde{f}(x)$ and the concave closure $\tilde{\tilde{f}}(x)$ need not coincide.

Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S) + f(S + i + j) > f(S + i) + f(S + j)$, a strict violation of submodularity.

Consider $x = 1_S + \frac{1}{2} 1_{\{i,j\}}$.

Then L.E. has $\tilde{f}(x) = \frac{1}{2} f(S) + \frac{1}{2} f(S + i + j)$ and this p is feasible for $\tilde{f}(x)$ with $p_S = 1/2$ and $p_{S+i+j} = 1/2$.

An alternate feasible distribution for $\tilde{f}(x)$ in the convex closure is $\bar{p}_{S+i} = \bar{p}_{S+j} = 1/2$.
Next, assume f is not submodular. We must show that the Lovász extension $\tilde{f}(x)$ and the concave closure $\tilde{\tilde{f}}(x)$ need not coincide.

Since f is not submodular, $\exists S$ and $i, j \notin S$ such that
$$f(S) + f(S + i + j) > f(S + i) + f(S + j),$$
a strict violation of submodularity.

Consider $x = 1_S + \frac{1}{2} 1_{\{i,j\}}$.

Then L.E. has $\tilde{f}(x) = \frac{1}{2} f(S) + \frac{1}{2} f(S + i + j)$ and this p is feasible for $\tilde{f}(x)$ with $p_S = 1/2$ and $p_{S+i+j} = 1/2$.

An alternate feasible distribution for $\tilde{\tilde{f}}(x)$ in the convex closure is
$$\tilde{p}_{S+i} = \tilde{p}_{S+j} = 1/2.$$

This gives
$$\tilde{f}(x) \leq \frac{1}{2} [f(S + i) + f(S + j)] < \tilde{\tilde{f}}(x) \tag{16.53}$$

meaning $\tilde{f}(x) \neq \tilde{\tilde{f}}(x)$.

...proof cont.