Submodular Functions, Optimization, and Applications to Machine Learning
— Fall Quarter, Lecture 15 —
http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes
University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Nov 23rd, 2020

Logistics

Announcements, Assignments, and Reminders

- Homework 3, out, due Wednesday, Nov 25th, 2020, 11:59pm.
- Office hours this week, Tues (11/24) & Wed (11/25), 10:00pm at our class zoom link. I can meet Monday night at 10:00pm as well on request.
Logistics

Class Road Map - EE563

- L1(9/30): Motivation, Applications, Definitions, Properties
- L2(10/5): Sums concave(modular), uses (diversity/costs, feature selection), information theory
- L3(10/7): Monge, More Definitions, Graph and Combinatorial Examples,
- L4(10/12): Graph & Combinatorial Examples, Matrix Rank, Properties, Other Defs, Independence
- L5(10/14): Properties, Defs of Submodularity, Independence
- L6(10/19): Matroids, Matroid Examples, Matroid Rank,
- L8(10/26): Transversal Matroid, Matroid and representation, Dual Matroid
- L9(10/28): Other Matroid Properties, Combinatorial Geometries, Matroid and Greedy, Polyhedra, Matroid Polytopes
- L10(11/2): Matroid Polytopes, Matroids → Polymatroids
- L11(11/4): Matroids → Polymatroids, Polymatroids
- L12(11/9): Polymatroids, Polymatroids and Greedy
- L13(11/16): Polymatroids and Greedy, Possible Polytopes, Extreme Points, Cardinality Constrained Maximization
- L14(11/18): Cardinality Constrained Maximization, Curvature
- L15(11/23): Curvature, Submodular Max w. Other Constraints, Start Cont. Extensions
- L16(11/25):
- L17(11/30):
- L18(12/2):
- L19(12/7):
- L20(12/9):
- L21(12/14): final meeting (presentations) maximization.

Rest of class

- Homework 4 will come out later this week, will be due about 1.5-2 weeks after that.
- Final project: Read and present a recent (past 5 years) paper on submodular/supermodular optimization. Paper should have both a theoretical and practical component. What is due: (1) 4-page paper summary, and (2) 10 minute presentation about the paper, will be giving presentations on Monday 12/14/2020. You must choose your paper before the 14th (this will be HW5), and you must turn in your slides and 4-page paper (this will be HW6).
A bit more precisely:

Algorithm 1: The Greedy Algorithm

1. Set $S_0 \leftarrow \emptyset$;
2. for $i \leftarrow 0 \ldots |E| - 1$ do
 1. Choose v_i as follows:
 $v_i \in \operatorname{argmax}_{v \in V \setminus S_i} f(\{v\} | S_i) = \operatorname{argmax}_{v \in V \setminus S_i} f(S_i \cup \{v\})$;
 2. Set $S_{i+1} \leftarrow S_i \cup \{v_i\}$;

Greedy Algorithm for Card. Constrained Submodular Max

- This algorithm has a guarantee

Theorem 15.2.1

Given a polymatroid function f, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \geq (1 - 1/e) \max_{|S| \leq i} f(S)$.

- To approximately find $A^* \in \operatorname{argmax} \{f(A) : |A| \leq k\}$, we repeat the greedy step until we have selected k elements in Algorithm 4.
- We can think of a “greedy operator” $\tilde{A} \in \operatorname{argmax} \{f(A) : |A| \leq k\}$
- Again, since this generalizes max k-cover, Feige (1998) showed that this can’t be improved. Unless $P = NP$, no polynomial time algorithm can do better than $(1 - 1/e + \epsilon)$ for any $\epsilon > 0$.
The Greedy Algorithm: $1 - 1/e$ intuition.

- At step $i < k$, greedy chooses v_i to maximize $f(v|S_i)$.
- Let S^* be optimal solution (of size k) and $OPT = f(S^*)$. By submodularity, we will show:

$$
\exists v \in V \setminus S_i : f(v|S_i) = f(S_i + v|S_i) \geq \frac{1}{k}(OPT - f(S_i))
$$

(15.2)

Equation (15.2) will show that Equation (15.2) ⇒:

$$
OPT - f(S_{i+1}) \leq (1 - 1/k)(OPT - f(S_i))
$$

$$
\Rightarrow OPT - f(S_k) \leq (1 - 1/k)^k OPT
$$

$$
\Rightarrow OPT (1 - 1/e) \leq f(S_k)
$$

Priority Queue

- Use a priority queue Q as a data structure: operations include:
 - Insert an item (v, α) into queue, with $v \in V$ and $\alpha \in \mathbb{R}$.

$$
\text{insert}(Q, (v, \alpha))
$$

(15.15)

- Pop the item (v, α) with maximum value α off the queue.

$$
(v, \alpha) \leftarrow \text{pop}(Q)
$$

(15.16)

- Query the value of the max item in the queue

$$
\max(Q) \in \mathbb{R}
$$

(15.17)

- On next slide, we call a popped item “fresh” if the value (v, α) popped has the correct value $\alpha = f(v|S_i)$. Use extra “bit” to store this info.
Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’s Accelerated Greedy Algorithm

1. Set $S_0 \leftarrow \emptyset$; $i \leftarrow 0$; Initialize priority queue Q;
2. for $v \in E$ do
3. \hspace{1em} INSERT($Q, f(v)$)
4. repeat
5. \hspace{1em} $(v, \alpha) \leftarrow \text{pop}(Q)$;
6. \hspace{1em} if α not “fresh” then
7. \hspace{2em} recompute $\alpha \leftarrow f(v|S_i)$
8. \hspace{1em} if (popped α in line 5 was “fresh”) OR ($\alpha \geq \text{max}(Q)$) then
9. \hspace{2em} Set $S_{i+1} \leftarrow S_i \cup \{v\}$; and mark other items in Q as stale
10. \hspace{2em} $i \leftarrow i + 1$;
11. \hspace{1em} else
12. \hspace{2em} insert($Q, (v, \alpha)$) as a fresh item
13. until $i = |E|$;

(Minimum) Submodular Set Cover

- Given polymatroid f, goal is to find a covering set of minimum cost:

\[S^* \in \arg\min_{S \subseteq V} |S| \text{ such that } f(S) \geq \alpha \quad (15.15) \]

where α is a “cover” requirement.
- Normally take $\alpha = f(V)$ but defining $f'(A) = \min\{f(A), \alpha\}$ we can take any α. Hence, we have equivalent formulation:

\[S^* \in \arg\min_{S \subseteq V} |S| \text{ such that } f'(S) \geq f'(V) \quad (15.16) \]

- Note that this immediately generalizes standard set cover, in which case $f(A)$ is the cardinality of the union of sets indexed by A.
- Greedy Algorithm: Pick the first chain item S_i chosen by aforementioned greedy algorithm such that $f(S_i) \geq \alpha$ and output that as solution.
(Minimum) Submodular Set Cover: Approximation Analysis

- For integer valued f, this greedy algorithm has an $O(\log(\max_{s \in V} f(\{s\})))$ approximation. Let S^* be optimal, and S^G be greedy solution, then

\[
|S^G| \leq |S^*|H(\max_{s \in V} f(\{s\})) = |S^*|O(\log_e(\max_{s \in V} f(\{s\}))) \quad (15.15)
\]

where H is the harmonic function, i.e., $H(d) = \sum_{i=1}^{d} (1/i)$.

- If f is not integral value, then bounds we get are of the form:

\[
|S^G| \leq |S^*||(1 + \log_e \frac{f(V)}{f(V) - f(S_{T-1})}) \quad (15.16)
\]

where S_T is the greedy solution that occurs at step T, where T is the number of iterations the algorithm runs until threshold is reached.

- As we mentioned earlier, even set cover (a special case of submodular set cover) is hard to approximate with a factor better than $(1 - \epsilon) \log \alpha$, where α is the desired cover constraint.

Curvature of a Submodular function

- Curvature definition again (by submodularity, both forms are the same):

\[
c_f \triangleq 1 - \min_{S,j \notin S: f(j|\emptyset) \neq 0} \frac{f(j|S)}{f(j|\emptyset)} = 1 - \min_{j: f(j|\emptyset) \neq 0} \frac{f(j|V \setminus \{j\})}{f(j|\emptyset)} \quad (15.20)
\]

- Note: Matroid rank is either modular $c_r = 0$ or maximally curved $c_r = 1$. thus, matroid rank can have only the extreme points of curvature, namely 0 or 1.

- Polymatroid functions are, however, more nuanced, in that they allow non-extreme curvature, with $c_f \in (0, 1)$.

- Recall the notion of “partial dependence” within polymatroid functions.
Curvature and approximation: key theorem

- Curvature-based approximation bound for max k cardinality.

Theorem 15.2.2

Given a polymatroid function \(f : 2^V \rightarrow \mathbb{R}_+ \) with curvature \(c_f \in [0, 1] \) defined above. Then the greedy algorithm’s solution to the problem \(\max_{A \subseteq V : |A| \leq k} f(A) \) has the following approximation bound:

\[
\frac{1}{c_f} (1 - e^{-c_f})
\]

(15.20)

\[f(\tilde{S}_{\text{greedy}}) \geq \frac{1}{c_f} (1 - e^{-c_f}) \text{OPT} \]

(15.21)

Submodular and Supermodular Curvature Approximation

- Let \(f \) be a polymatroid function and let \(g \) be a non-negative monotone non-decreasing supermodular function (e.g., \(g(A) = \phi(m(A)) \) where \(\phi() \) is non-decreasing convex and \(m : V \rightarrow \mathbb{R}_+ \)).
- Let \(\kappa_f = 1 - \min_v \frac{f(v|V \setminus \{v\})}{f(v)} \) be the submodular total curvature,
- Define \(\kappa^g = 1 - \min_v \frac{g(v)}{g(v|V \setminus \{v\})} \) as a “supermodular curvature”
- \(\kappa^g \in [0, 1] \) and \(\kappa^g = 0 \) means \(g \) is modular, \(\kappa^g = 1 \) means \(g \) is “fully curved”
- Form function \(h(A) = f(A) + g(A) \), then \(h \) is neither submodular nor supermodular, but is known as a BP-function.
Theorem 15.3.1

Given a polymatroid function \(f : 2^V \rightarrow \mathbb{R}_+ \) with curvature \(\kappa_f \in [0, 1] \) and a non-negative monotone non-decreasing supermodular function \(g : 2^V \rightarrow \mathbb{R}_+ \) with curvature \(\kappa_g \), and \(h = f + g \). Then the greedy algorithm’s solution to the problem \(\max_{A \subseteq V : |A| \leq k} h(A) \) has the following approximation bound:

\[
\frac{1}{\kappa_f} \left(1 - e^{-(1-\kappa_g)\kappa_f} \right) \tag{15.1}
\]

For purely supermodular optimization (i.e., \(\kappa_f = 0 \)) we get that greedy has a guarantee of \(1 - \kappa_g \).

Both curvatures are very easy to compute given BP decomposition.

BP functions are an example of when quality of solutions to non-submodular problems can be analyzed via submodularity since BP functions are neither submodular nor supermodular.

Another example: “deviation from submodularity” can be measured using the submodularity ratio (Das & Kempe) that we saw in HW1:

\[
\gamma_{U,k}(f) \triangleq \min_{L \subseteq U, S : |S| \leq k, S \cap L = \emptyset} \frac{\sum_{s \in S} f(x|L)}{f(S|L)} \tag{15.2}
\]

\(f \) is submodular if and only if \(\gamma_{V,|V|} = 1 \).

For some variable selection problems, can get bounds of the form:

\[
\text{Solution} \geq (1 - \frac{1}{e^\gamma_{U^*,k}}) \text{OPT} \tag{15.3}
\]

where \(U^* \) is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being submodular (see Das & Kempe, 2011).

Another analogous concepts, submodular degree.
Generalizations

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where
 $\mathcal{I} = \{S \subseteq V : |S| \leq k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1 - 1/e$ optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I} = \{X \subseteq V : |X \cap V| \leq k_i$ for all $i = 1, \ldots, \ell\}$, or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost $c(v) \geq 0$, we may ask for $c(S) \leq b$ where $b \geq 0$ is a budget, in units of costs.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- i.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step
 $$S_{i+1} = S_i \cup \left\{ \arg\max_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^{p} \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$ (15.4)
- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 15.4.1

Given a polymatroid function f, and set of matroids $\{M_j = (E, \mathcal{I}_j)\}_{j=1}^{p}$, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \geq \frac{1}{p+1} \max_{|S| \leq i, S \in \bigcap_{i=1}^{p} \mathcal{I}_i} f(S)$, assuming such sets exists.

- For one matroid, we have a 1/2 approximation.
- Very easy algorithm, Minoux trick still possible, while addresses multiple matroid constraints — but the bound is not that good when there are many matroids.
Curvature approximation with matroid constraints

- Conforti & Cornuéjols showed that greedy gives a $1/(1 + c_f)$ approximation to $\max \{ f(S) : S \in \mathcal{I} \}$ when f has total curvature c.
- Hence, greedy subject to matroid constraint is a $\max(1/(1 + c_f), 1/2)$ approximation algorithm, and if $c_f < 1$ then it is better than $1/2$ (e.g., with $c_f = 1/4$ then we have a 0.8 algorithm).

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G = (V, F, E)$. Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 1. $I \in \mathcal{I}_F$ if $|I \cap (V, f)| \leq 1$ for all $f \in F$,
 2. and $I \in \mathcal{I}_V$ if $|I \cap (v, F)| \leq 1$ for all $v \in V$.
- Therefore, a matching in G is simultaneously independent in both M_V and M_F and finding the maximum matching is finding the maximum cardinality set independent in both matroids.
- In bipartite graph case, therefore, can be solved in polynomial time.
Let $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ be two graphs on an isomorphic set of edges (let’s just give them same names E).

Consider two cycle matroids associated with these graphs $M_1 = (E, I_1)$ and $M_2 = (E, I_2)$. They might be very different (e.g., an edge might be between two distinct nodes in G_1 but the same edge is a loop in multi-graph G_2.)

We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_1, M_2, or both).

This is again a matroid intersection problem.

Definition: a Hamiltonian cycle is a cycle that passes through each node of a graph exactly once.

Given directed graph G, goal is to find such a Hamiltonian cycle.

From G with n nodes, create G' with $n + 1$ nodes by duplicating (w.l.o.g.) a particular node $v_1 \in V(G)$ to v_1^+, v_1^-, and have all outgoing edges from v_1 come instead from v_1^- and all edges incoming to v_1 go instead to v_1^+.

Let M_1 be the cycle matroid on G' (I independent if no cycles).

Let M_2 be the partition matroid having as independent sets those that have no more than one edge leaving any node — i.e., $I \in \mathcal{I}(M_2)$ if $|I \cap \delta^-(v)| \leq 1$ for all $v \in V(G')$.

Let M_3 be the partition matroid having as independent sets those that have no more than one edge entering any node — i.e., $I \in \mathcal{I}(M_3)$ if $|I \cap \delta^+(v)| \leq 1$ for all $v \in V(G')$.

Then a Hamiltonian cycle exists if and only if there is an n-element intersection of M_1, M_2, and M_3.

Recall, the traveling salesperson problem (TSP) is the problem to given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.
Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class).

Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.

Consider bipartite graph $G = (E, F, V)$ where E and F are the left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F corresponds to a French language sentence — goal is to form a matching (an alignment) between the two.

Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
Greedy over > 1 matroids: Multiple Language Alignment

- One possible alignment, a matching, with score as sum of edge weights.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

- Edges incident to English words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

- The two edge partitions can be used to set up two 1-partition matroids on the edges.

- For each matroid, a set of edges is independent only if the set intersects each partition block no more than one time.
Greedy over > 1 matroids: Multiple Language Alignment

- Edges incident to French words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

- The two edge partitions can be used to set up two 1-partition matroids on the edges.
- For each matroid, a set of edges is independent only if the set intersects each partition block no more than one time.

Typical to use bipartite matching to find an alignment between the two language strings.

As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges, and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1

... the ... of public ownership

... le ... de propriété publique

... the ... of public ownership

... le ... de propriété publique
Greedy over > 1 matroids: Multiple Language Alignment

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two \(k \)-partition matroids, allowing for “fertility” in the models:

Fertility at most 2

\[
\begin{align*}
\ldots \text{the ... of public ownership} & \quad \ldots \text{the ... of public ownership} \\
\ldots \text{le ... de propriété publique} & \quad \ldots \text{le ... de propriété publique}
\end{align*}
\]

- Generalizing further, each block of edges in each partition matroid can have its own “fertility” limit:
- \(\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \leq k_i \text{ for all } i = 1, \ldots, \ell \} \).
- Maximizing submodular function subject to multiple matroid constraints addresses this problem.
Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players").
- Each player has a submodular "valuation" function, $g_i : 2^E \to \mathbb{R}_+$, $g_i(A)$ measures how "desirable" or "valuable" subset $A \subseteq E$ of goods are to that player.
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.
- Goal of submodular welfare: Partition the goods $E = E_1 \cup E_2 \cup \cdots \cup E_n$ into n blocks in order to maximize the submodular social welfare, measured as:

\[
\text{submodular-social-welfare}(E_1, E_2, \ldots, E_n) = \sum_{i=1}^{n} g_i(E_i).
\] (15.5)

- We can solve this via submodular maximization subject to multiple matroid independence constraints as we next describe ...

Submodular Welfare: Submodular Max over matroid partition

- Create new ground set E' as disjoint union of n copies of the ground set. I.e.,

\[
E' = E \cup E \cup \cdots \cup E
\] (15.6)

- Let $E^{(i)} \subseteq E'$ be the i^{th} block of E'.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_e = \{(e', i) \in E' : e' = e\}$.
- Hence, $\{E_e\}_{e \in E}$ is a partition of E', each block of the partition for one of the original elements in E.
- Create a 1-partition matroid $M = (E', \mathcal{I})$ where

\[
\mathcal{I} = \{S \subseteq E' : \forall e \in E, |S \cap E_e| \leq 1\}
\] (15.7)
Submodular Welfare: Submodular Max over matroid partition

- Hence, S is independent in matroid $\mathcal{M} = (E', I)$ if S uses each original element no more than once.
- Create submodular function $f' : 2^{E'} \to \mathbb{R}_+$ with $f'(S) = \sum_{i=1}^{n} g_i(S \cap E^{(i)})$.
- Submodular welfare maximization becomes matroid constrained submodular max $\max \{f'(S) : S \in I\}$, so greedy algorithm gives a $1/2$ approximation.

Submodular Social Welfare

- Have $n = 6$ people (who don’t like to share) and $|E| = m = 7$ pieces of sushi. E.g., $e \in E$ might be $e =$ "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \cup E \cup E \cup E \cup E \cup E$.
- Partition matroid partitions: $E_{e_1} \cup E_{e_2} \cup E_{e_3} \cup E_{e_4} \cup E_{e_5} \cup E_{e_6} \cup E_{e_7}$.
- independent allocation
- non-independent allocation
Submodular Social Welfare

- Have $n = 6$ people (who don’t like to share) and $|E| = m = 7$ pieces of sushi. E.g., $e \in E$ might be $e =$ "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \cup E \cup E \cup E \cup E \cup E$.
- Partition matroid partitions:
 $E_{e_1} \cup E_{e_2} \cup E_{e_3} \cup E_{e_4} \cup E_{e_5} \cup E_{e_6} \cup E_{e_7}$.
- independent allocation
- non-independent allocation
Have $n = 6$ people (who don’t like to share) and $|E| = m = 7$ pieces of sushi. E.g., $e \in E$ might be $e =$ "salmon roll".

Goal: distribute sushi to people to maximize social welfare.

Ground set disjoint union $E \cup E \cup E \cup E \cup E \cup E$.

Partition matroid partitions: $E_{e_1} \cup E_{e_2} \cup E_{e_3} \cup E_{e_4} \cup E_{e_5} \cup E_{e_6} \cup E_{e_7}$.

independent allocation

non-independent allocation
The constraint $|A| \leq k$ is a simple cardinality constraint.

Consider a non-negative integral modular function $c: E \rightarrow \mathbb{Z}_+$. A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is\[\max \{ f(A) : A \subseteq V, c(A) \leq b \} .\]

Important: A knapsack constraint yields an independence system (down closed) but it is not a matroid!

$c(e)$ may be seen as the cost of item e and if $c(e) = 1$ for all e, then we recover the cardinality constraint we saw earlier.

Greedy can be seen as choosing the best gain: Starting with $S_0 = \emptyset$, we repeat the following greedy step
\[
S_{i+1} = S_i \cup \left\{ \arg \max_{v \in V \setminus S_i} \left(f(S_i \cup \{v\}) - f(S_i) \right) \right\}
\]
(15.8)

the gain is $f(\{v\}|S_i) = f(S_i + v) - f(S_i)$, so greedy just chooses next the currently unselected element with greatest gain.

Core idea in knapsack case: Greedy can be extended to choose next whatever looks cost-normalized best, i.e., Starting some initial set S_0, we repeat the following cost-normalized greedy step
\[
S_{i+1} = S_i \cup \left\{ \arg \max_{v \in V \setminus S_i} \frac{f(S_i \cup \{v\}) - f(S_i)}{c(v)} \right\}
\]
(15.9)

which we repeat until $c(S_{i+1}) > b$ and then take S_i as the solution.
A Knapsack Constraint

- There are a number of ways of getting approximation bounds using this strategy.
- If we run the normalized greedy procedure starting with \(S_0 = \emptyset \), and compare the solution found with the max of the singletons \(\max_{v \in V} f(\{v\}) \), choosing the max, then we get a \((1 - e^{-1/2}) \approx 0.39 \) approximation, in \(O(n^2) \) time (Minoux trick also possible for further speed).
- Partial enumeration: On the other hand, we can get a \((1 - e^{-1}) \approx 0.63 \) approximation in \(O(n^5) \) time if we run the above procedure starting from all sets of cardinality three (so restart for all \(S_0 \) such that \(|S_0| = 3 \)), and compare that with the best singleton and pairwise solution.
- Extending something similar to this to \(d \) simultaneous knapsack constraints is possible as well.

What About Non-monotone

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If \(f \) is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of \(f \) is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless P=NP (since any such procedure would give us the sign of the max).
- Thus, any approximation algorithm must be for unipolar submodular functions. E.g., non-negative but otherwise arbitrary submodular functions.
Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S - v) \leq f(S)$ for all $v \in S$ and $f(S + v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 15.4.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- Idea of proof: Given $v_1, v_2 \in S$, suppose $f(S - v_1) \leq f(S)$ and $f(S - v_2) \leq f(S)$. Submodularity requires $f(S - v_1) + f(S - v_2) \geq f(S) + f(S - v_1 - v_2)$ which would be impossible unless $f(S - v_1 - v_2) \leq f(S)$.
- Similarly, given $v_1, v_2 \not\in S$, and $f(S + v_1) \leq f(S)$ and $f(S + v_2) \leq f(S)$. Submodularity requires $f(S + v_1) + f(S + v_2) \geq f(S) + f(S + v_1 + v_2)$ which requires $f(S + v_1 + v_2) \leq f(S)$.

In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and $[S, V]$ can be ruled out as a possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.

This is the approach can yield a $(\frac{1}{3} - \frac{\epsilon}{n})$ approximation algorithm for maximizing non-monotone non-negative submodular functions, with most $O(\frac{1}{\epsilon^2} n^3 \log n)$ function calls using approximate local maxima search.
Linear time algorithm unconstrained non-monotone max

- Tight randomized tight 1/2 approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012. Recall \([a]_+ = \max(a, 0) \).

Algorithm 3: Randomized Linear-time non-monotone submodular max

1. Set \(L \leftarrow \emptyset \); \(U \leftarrow V \) /* Lower \(L \), upper \(U \). Invariant: \(L \subseteq U \) */;
2. Order elements of \(V = (v_1, v_2, \ldots, v_n) \) arbitrarily;
3. for \(i \leftarrow 0 \ldots |V| \) do
4. \hspace{0.5cm} \(a \leftarrow [f(v_i|L)]_+; b \leftarrow [-f(U|U \setminus \{v_i\})]_+ \);
5. \hspace{0.5cm} if \(a = b = 0 \) then \(p \leftarrow 1/2 \);
6. \hspace{0.5cm} else \(p \leftarrow a/(a+b) \);
7. \hspace{0.5cm} if Flip of coin with \(\Pr(\text{heads}) = p \) draws heads then
8. \hspace{0.5cm} \hspace{0.5cm} \(L \leftarrow L \cup \{v_i\} \);
9. \hspace{0.5cm} Otherwise /* if the coin drew tails, an event with prob. \(1 - p \) */
10. \hspace{0.5cm} \hspace{0.5cm} \(U \leftarrow U \setminus \{v_i\} \);
11. return \(L \) (which is the same as \(U \) at this point)

Each “sweep” of the algorithm is \(O(n) \).

- Running the algorithm \(1 \times \) (with an arbitrary variable order) results in a 1/3 approximation.
- The 1/2 guarantee is in expected value (the expected solution has the 1/2 guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.
- It may be possible to choose the random order smartly to get better results in practice.
- But note, even a random subset is a 1/4 approximation to the optimal solution for unconstrained non-monotone submodular maximization, in expectation (Feige, Mirrokni, Vondrak, Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133-1153, 2011.)
More general still: multiple constraints different types

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.
- Often the computational costs of the algorithms are prohibitive (e.g., exponential in \(k\)) with large constants, so these algorithms might not scale.
- On the other hand, these algorithms offer deep and interesting intuition into submodular functions, beyond what we have covered here.

Some results on submodular maximization

- As we’ve seen, we can get \(1 - 1/e\) for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- For general matroid, greedy reduces to \(1/2\) approximation (as we’ve seen).
- We can recover \(1 - 1/e\) approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak’s publications).
- More general constraints are possible too, as we see on the next table (for references, see Jan Vondrak’s publications http://theory.stanford.edu/~jvondrak/).
Venn Family of Subclusive Constraints

Figure idea from Amin Karbasi

Submodular Max Summary - From J. Vondrak

Monotone Maximization

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Approximation</th>
<th>Hardness</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S</td>
<td>\leq k) matroid</td>
<td>(1 - 1/e)</td>
</tr>
<tr>
<td>(O(1)) knapsacks</td>
<td>(1 - 1/e)</td>
<td>(1 - 1/e)</td>
<td>multilinear ext.</td>
</tr>
<tr>
<td>(k) matroids</td>
<td>(k + \epsilon)</td>
<td>(k / \log k)</td>
<td>local search</td>
</tr>
<tr>
<td>(k) matroids and (O(1)) knapsacks</td>
<td>(O(k))</td>
<td>(k / \log k)</td>
<td>multilinear ext.</td>
</tr>
</tbody>
</table>

Nonmonotone Maximization

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Approximation</th>
<th>Hardness</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained matroid</td>
<td>(1/2)</td>
<td>(1/2)</td>
<td>combinatorial</td>
</tr>
<tr>
<td>(O(1)) knapsacks</td>
<td>(1/e)</td>
<td>0.48</td>
<td>multilinear ext.</td>
</tr>
<tr>
<td>(k) matroids</td>
<td>(k + O(1))</td>
<td>(k / \log k)</td>
<td>local search</td>
</tr>
<tr>
<td>(k) matroids and (O(1)) knapsacks</td>
<td>(O(k))</td>
<td>(k / \log k)</td>
<td>multilinear ext.</td>
</tr>
</tbody>
</table>
Continuous Extensions of Discrete Set Functions

- Any function \(f : 2^V \rightarrow \mathbb{R} \) (equivalently \(f : \{0,1\}^V \rightarrow \mathbb{R} \)) can be extended to a continuous function in the sense \(\tilde{f} : [0,1]^V \rightarrow \mathbb{R} \).
- This may be tight (i.e., \(\tilde{f}(1_A) = f(A) \) for all \(A \)). I.e., the extension \(\tilde{f} \) coincides with \(f \) at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the \(n \)-D hypercube \(\{0,1\}^n \) has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer’11). Example \(n = 1 \),

\[
\begin{align*}
\text{Concave Extensions} & \quad \tilde{f} : [0,1] \rightarrow \mathbb{R} \\
\text{Discrete Function} & \quad f : \{0,1\} \rightarrow \mathbb{R} \\
\text{Convex Extensions} & \quad \tilde{f} : [0,1] \rightarrow \mathbb{R}
\end{align*}
\]

- Since there are an exponential number of vertices \(\{0,1\}^n \), important questions regarding such extensions is:
 1. When are they computationally feasible to obtain or estimate?
 2. When do they have nice mathematical properties?
 3. When are they useful for something practical?

Def: Convex Envelope of a function

- Given any function \(h : \mathbb{R}^n \rightarrow \mathbb{R} \), define new function \(\tilde{h} : \mathbb{R}^n \rightarrow \mathbb{R} \) via:

\[
\tilde{h}(x) = \sup \{ g(x) : g \text{ is convex } \& \ g(y) \leq h(y), \forall y \in \mathbb{R}^n \} \quad (15.10)
\]

- I.e., (1) \(\tilde{h}(x) \) is convex, (2) \(\tilde{h}(x) \leq h(x), \forall x \), and (3) if \(g(x) \) is any convex function having the property that \(g(x) \leq h(x), \forall x \), then \(g(x) \leq \tilde{h}(x) \).
- Alternatively,

\[
\tilde{h}(x) = \inf \{ t : (x,t) \in \text{convexhull(epigraph}(h)) \} \quad (15.11)
\]