Submodular Functions, Optimization,

and Applications to Machine Learning
— Fall Quarter, Lecture 13 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring 2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/ bilmes

Nov 16th, 2020

f(A) + f(B) > f(AUB) + f(ANB)
o ®a

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F1/47 (pg.1/186)

Announcements, Assignments, and Reminders

Homework 3, out, due next Wednesday, Nov 25th, 2020, 11:59pm.

Reminder, all lectures are being recorded and posted to youtube. To
get the links, see our announcements
(https://canvas.uw.edu/courses/1397085/announcements).

Office hours this week, Wed & Thur, 10:00pm at our class zoom link.

Next week office hours, Tues (11/24) & Wed (11/25), 10:00pm at our
class zoom link.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F2/47 (pg.2/186)

Logistics

Class Road Map - EE563

@ L1(9/30): Motivation, Applications, @ L11(11/4): Matroids — Polymatroids,
Definitions, Properties Polymatroids

@ L2(10/5): Sums concave(modular), uses @ L12(11/9): Polymatroids, Polymatroids
(diversity/costs, feature selection), and Greedy
information theory @ L—(11/11): Veterans Day, Holiday

® L3(10/7): Monge., Mor'e Definitions, @ L13(11/16): Polymatroids and Greedy,
Graph and Combinatorial Examples, Possible Polytopes, Extreme Points,

@ L4(10/12): Graph & Combinatorial Cardinality Constrained Maximization
Examples, Matrix Rank, Properties, Other :
Defs, llandependence P : tiggigig

@ L5(10/14): _Properties, Defs of o L16(11/25):
Submodularity, Independence o L17(11/30):

@ L6(10/19): Matroids, Matroid Examples, o L18(12/2):
Matroid Rank, :

@ L7(10/21): Matroid Rank, More on o L19(12/7):
Partition Matroid, Laminar Matroids, @ L20(12/9): maximization.

System of Distinct Reps, Transversals
L8(10/26): Transversal Matroid, Matroid
and representation, Dual Matroid
L9(10/28): Other Matroid Properties,
Combinatorial Geometries, Matroid and
Greedy, Polyhedra, Matroid Polytopes
L10(11/2): Matroid Polytopes, Matroids
— Polymatroids

()

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020

ff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, F3/47 (pg.3/186)

Review
[RNRNE

A polymatroid is a polymatroid function's polytope

@ So, when f is a polymatroid function, Pf+ is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = P]T?

Theorem 13.2.1

For any polymatroid P (compact subset of R, zero containing, down-monotone, and
Va € RY any maximal independent subvector y < x has same component sum

y(E) = rank(z)), there is a polymatroid function f : 2F — R (normalized,
monotone non-decreasing, submodular) such that P = ij_ where

P]?L ={zeR” :2>0,2(4) < f(A),YAC E}.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F4/47 (pg.4/186)

R
(L RRRNT

Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € Pf+:

D(y) £ {A: ACE, y(A) = f(A)} (13.1)

Theorem 13.2.1

For any y € P}, with f a polymatroid function, then D(y) is closed under
union and intersection.

We have already proven this as part of Theorem 77 OJ

Also recall the definition of sat(y), the maximal set of tight elements
relative to y €]Rf.

sat(y) € (J{T: T € D(y)} (13.2)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F5/47 (pg.5/186)

Join V and meet A for z,y € RY

e Foruz,y € Rf, define vectors x Ay € Rf and xVy € Rf such that, for all
eckE

(z Vy)(e) = max(x(e), y(e)) (13.1)
(z Ay)(e) = min(z(e), y(e)) (13.2)

Hence,

rVy2 (max(x(el), y(el)) , max(w(eg), y(eg)), .. ,max(x(en), y(en))>

and similarly
TAY = (min(m(el), y(el)) , min (95(62)v y(62)) Y min(av(en), y(en))>

@ From this, we can define things like an lattices, and other constructs.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F6,/47 (pg.6/186)

Vector rank, rank(z), is submodular

@ Recall that the matroid rank function r(A) = max(|I| : I C A: [€ 1)
is submodular.

@ The vector rank function rank(z) = max (y(EF) : y < x,y € P) also
satisfies a form of submodularity, namely one defined on the real lattice.

Theorem 13.2.1 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : RE — R
with rank(z) = max (y(E) : y < z,y € P) satisfies, for all u,v € R¥

rank(u) + rank(v) > rank(u v v) + rank(u A v) (13.1)

o Note what happens when u,v € {0,1}¥ C RE.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F7/47 (pg.7/186)

Polymatroidal polyhedron and the greedy solution

@ What is the greedy solution for max {wx ‘T € P]Z'“} when w € RE?

@ Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,em) with w(er) > w(ez) > -+ > w(em).

@ Let k + 1 be the first point (if any) at which we are non-positive, i.e.,
w(eg) >0 and 0 > w(eg41).

@ Next define partial accumulated sets E;, for i = 0...m, we have w.r.t.
the above sorted order:

Ez‘ ZEf {61,62,...61} (1322)

(note Ey =0, f(Eo) =0, and E and Ej; is always sorted w.r.t w).
@ The greedy solution is the vector x €]Rf with elements defined as:

def

z(e1) = f(E1) = f(e1) = f(e1|Eo) = f(e1|0) (13.23)
2(e) & F(E) - f(Eii) = flei|Bioy) fori=2...k (13.24)
2(e) Eofori=k+1...m=|E| (13.25)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F8/47 (pg.8/186)

R
[NRRRL NI

Polymatroidal Polyhedron and Greedy: Optimality

Theorem 13.2.2

The vector x € Rf as previously defined using the greedy algorithm
maximizes wx over Pf+, with w € RE, if f is submodular.

Proof.
@ Consider the LP strong duality equation:

max(wx : T € PJT) = min(z yaf(A):y € R%FE, Z yalag > w)
ACE ACE
(13.21)

@ Sort E by w descending, and define the following vector y € RiE as
yE; < w(e;) —w(eiqr) fori=1...(m—1), (13.22)

yE < w(en), and (13.23)
ya < 0 otherwise (13.24)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F9/47 (pg.9/186)

Polymatroidal polyhedron and greedy

Theorem 13.2.2

Conversely, suppose PJT is a polytope of form

Pf+ = {z € R : 2(A) < f(A),VA C E}, then the greedy solution to
max(wzx : ¢ € P];") is optimum only if f is submodular.

Proof.

@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,6em), with E; = (e1,ea,...,¢€;), so the following is true:
o For1<p<qg<m, A={ei,ez,...,€x €kt1,...,6p} = E, and
B = {61,62, 56 6 g Earkil o o .,eq} = EkU(Eq\Ep) = (AQB)U(B\A)
o Note, then we have AN B ={ey,...,ex} = Ex, and AUB = E,,.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F10/47 (pg.10/186)

Review from Lecture 9

@ The next slide comes from lecture 9.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F11/47 (pg.11/186)

Matroid and the greedy algorithm

o Let (E,Z) be an independence system, and we are given a non-negative
modular weight function w : £ — R

Algorithm 1: The Matroid Greedy Algorithm

1Set X +0;

2 while v € B\ X s.t. X U{v} €7 do

3 v e argmax {w(v) :ve B\ X, XU{v}eT};
4 X + X U{v};

@ Same as sorting items by decreasing weight w, and then choosing items
in that order that retain independence.

Theorem 13.3.4

Let (E,Z) be an independence system. Then the pair (E,T) is a matroid if
and only if for each weight function w € RY, Algorithm ?? above leads to a
set I € T of maximum weight w(I).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F12/47 (pg.12/186)

Polymatroids and Greedy
(WA]

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 10.3.2)

Theorem 13.3.1

If f : 2 — Ry is given, and P is a polytope in RY of the form
P={zeR¥:z(4) < f(4),YAC E}, the_n the greedy solution to the
problem max(wTz : x € P) is Yw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F13/47 (pg.13/186)

Possible Polytopes
[ARRRAN]

Multiple Polytopes associated with arbitrary f

@ Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F14/47 (pg.14/186)

Multiple Polytopes associated with arbitrary f

e Given an arbitrary submodular function f : 2" — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0)#0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argminy f(A) = argmin 4 f'(A)) so we often assume all functions are

normalized f(0) = 0.

Note that due to constraint z(0) < f(0), we must have f(0) > 0 since if not (i.e., if
f(0) <0), then Pf doesn't exist.

Another form of normalization takes the form:

F(A) = {S(A) :?j i g (13.1)

This preserves submodularity due to f(A) + f(B) > f(AUB) + f(AN B), and if
AN B =0 then r.h.s. only gets smaller when f(()) > 0.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F14/47 (pg.15/186)

P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,

argmin, f(A) = argminy, f'(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C B} (13.1)
P;r:Pfﬁ{ZIJERE cx >0} (13.2)
By =P;n{zeR¥ :2(E) = f(E)} (13.3)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F14/47 (pg.16/186)

P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C E} (13.1)
Pf=Prn{zeR”:z >0} (13.2)
By=P;n{zeR¥ :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as K P;.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F14/47 (pg.17/186)

P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C E} (13.1)
Pf=Prn{zeR”:z >0} (13.2)
By=P;n{zeR¥ :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EPy.

° P]ﬁ' is Py restricted to the positive orthant.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F14/47 (pg.18/186)

P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C E} (13.1)
Pf=Prn{zeR”:z >0} (13.2)
By=P;n{zeR¥ :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EPy.

° PJT is Py restricted to the positive orthant.

@ By is called the base polytope, analogous to the base in matroid.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F14/47 (pg.19/186)

Possible Polytopes
(L ERRAN]

Multiple Polytopes in 2D associated with f

Pt =Pn{zeR?:z>0} (13.4)
Py ={z e R¥ : 2(5) < f(S),VS C E} (13.5)
By=P;n{zr e R :2(E) = f(B)} (13.6)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F15/47 (pg.20/186)

Possible Polytopes
(L ERRAN]

Multiple Polytopes in 2D associated with f

Pt =pPn{zeR”:z>0} (13.4)
Py = {z e R : 2(5) < f(5),VS C E} (13.5)
By=P;n{z e R :2(E) = f(E)} (13.6)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F15/47 (pg.21/186)

Possible Polytopes
(L ERRAN]

Multiple Polytopes in 2D associated with f

Py
Pf=Pin{zeR”:z>0}
Py ={z e RP : 2(S) < £(9),VS C E}

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

By

F15/47 (pg.22/186)

P
[RLERAN]

Base Polytope in 3D

Pp={z e R : 2(5) < f(S),VS C E} (13.7)
By=P;n{z e R¥ : z(E) = f(B)} (13.8)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F16/47 (pg.23/186)

Theorem 13.4.1

Let f be a submodular function defined on subsets of E. For any x € RF,
we have:

rank(x) = max (y(F) : y < z,y € Py) =min (z(A) + f(E\A): ACE)
(13.9)

Essentially the same theorem as Theorem 11.4.1, but note Py rather than
Py Taking z = 0 we get:

Corollary 13.4.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y <0,y € Pr) =min(f(A): ACE) (13.10)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F17/47 (pg.24/186)

Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C E be any subset.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F18/47 (pg.25/186)

Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Pr) = min (z(A) + f(E\ A) : ACE).
@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.
@ Then y*(E) = y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < z(E\ A)).
This is a form of weak duality.

13 - Nov 16th, 2020 F18/47 (pg.26/186)

EE563/Spring 2020/Submodularity - Lecture

P
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).
@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.
@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

@ Forany e € E, if y*(e) < z(e), must be some reason other than
constraint y* < x, namely must be that 37 € D(y*) withe € T (i.e., e
is a member of at least one of the tight sets).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F18/47 (pg.27/186)

Possible Polytopes

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).
@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.
@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y"),
then y*(A4) < f(A)VA 3 e including {e}, hence z(e) < f(e).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F18/47 (pg.28/186)

Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.

@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y*),
then y*(A) < f(A)VA > e including {e}, hence z(e) < f(e).
Conversely, e € sat(y*) means 3T € D(y*), w. e € T & y*(T') = f(T).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F18/47 (pg.29/186)

Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.

@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y*),
then y*(A) < f(A)VA > e including {e}, hence z(e) < f(e).
Conversely, e € sat(y*) means 3T € D(y*), w. e € T & y*(T') = f(T).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover

y*(sat(y*)) = f(sat(y*)) by definition.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F18/47 (pg.30/186)

Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.

@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y*),
then y*(A) < f(A)VA > e including {e}, hence z(e) < f(e).
Conversely, e € sat(y*) means 3T € D(y*), w. e € T & y*(T') = f(T).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover

y*(sat(y*)) = f(sat(y*)) by definition.

o Thus y*(sat(y*)) +y"(E \sat(y*)) = f(sat(y*)) + =(E \ sat(y")),
strong duality, showing that the two sides are equal for y*.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F18/47 (pg.31/186)

Possible Polytopes
[RRRRLY]

Greedy and Py

@ In Theorem 12.4.1 (i.e., greedy solution in P;r) we can relax P+ to Py
(prime and dual feasibiity still hold as does strong duality).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F19/47 (pg.32/186)

Possible Polytopes
[RRRRLY]

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that x € Py in this relaxed case.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F19/47 (pg.33/186)

Possible Polytopes
[RRRRLY]

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wx : © € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F19/47 (pg.34/186)

Possil
11

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wz : x € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

@ Moreover, in either Py, or P} case, since the greedy constructed an z
has z(E) = f(E), we have that the greedy = € By.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F19/47 (pg.35/186)

Possil
11

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wz : x € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

@ Moreover, in either Py, or P} case, since the greedy constructed an z
has (E) = f(E), we have that the greedy = € By.

e We might thus be more interested in max(wx : x € By) when w is an
arbitrary vector.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F19/47 (pg.36/186)

Possil
11

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wz : x € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

@ Moreover, in either Py, or P} case, since the greedy constructed an z
has (E) = f(E), we have that the greedy = € By.

@ We might thus be more interested in max(wz : € By) when w is an
arbitrary vector.

@ In fact, we will see, in the next section, that the full run of the greedy
algorithm producing z is in fact a vertex of By.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F19/47 (pg.37/186)

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) ry<ax,y€ Pf+> = min (z(A) + f(E\ A): AC E)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F20/47 (pg.38/186)

Possible Polytopes
[RRRRAN]

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) y<z,y € PJT) =min (z(A4)+ f(E\A): ACE)

@ Theorem 12.4.1 states that greedy algorithm maximizes wx over Pf+
for w € R¥ with f being submodular.

F20/47 (pg.39/186)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) cy<uwmy€ P}“) =min (z(A)+ f(E\A): ACE)

@ Theorem 12.4.1 states that greedy algorithm maximizes wz over P;r
for w € R¥ with f being submodular.

@ Above implies that Theorem 12.4.1 can be generalized to over Py and
that greedy solution gives a point in By, even for arbitrary finite w.

F20/47 (pg.40/186)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

Polymatroid extreme points
@ The greedy algorithm does more than solve max(wz : = € Py). We
can use it to generate vertices of polymatroidal polytopes.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.41/186)

Polymatroid extreme points
@ The greedy algorithm does more than solve max(wz : = € Py

can use it to generate vertices of polymatroidal polytopes.
o Consider PJZF and also C'JT & {z:2zeR¥ z(e) < f(e),Ve € E}

). We

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.42/186)

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wz : = € Py
can use it to generate vertices of polymatroidal polytopes.

o Consider P/ and also C} def {z:2zeR¥ z(e) < f(e),Ve € E}

© Then ordering A = (a1,...,a)) arbitrarily with A; = {a1,...,a;},
f(A) =3, flai|Ai—1) <>, f(a;), and hence PJ;F C C;r.

). We

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.43/186)

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wz : = € Py
can use it to generate vertices of polymatroidal polytopes.

o Consider P/ and also C} def {z:2zeR¥ z(e) < f(e),Ve € E}

© Then ordering A = (a1,...,a)) arbitrarily with A; = {a1,...,a;},
f(A) =3, flai|Ai—1) <>, f(a;), and hence P;r C CJJ{.

5,

). We

0
Prof. Jeff B EE563/Spring 2020/Sub arity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.44/186)

Polymatroid extreme points

e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.45/186)

Polymatroid extreme points
e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.46/186)

Polymatroid extreme points

e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of Ps. l.e.,

By=P;n{z e RY :2(E) = f(B)} (13.11)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

F21/47 (pg.47/186)

Polymatroid extreme points

e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of Ps. l.e.,

By=P;n{z e RY :2(E) = f(B)} (13.11)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

F21/47 (pg.48/186)

Polymatroid extreme points
e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of Ps. l.e.,
By=P;n{z e RY :2(E) = f(B)} (13.11)

@ Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all E dimensions, we'll reach a vertex in By, and if we
advance only in some dimensions, we'll reach a vertex in
Prn{z e RY : z(A) =0 for some A}.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.49/186)

Polymatroid extreme points

Since w € RY is arbitrary, it may be that any e € E'is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

Recall, base polytope defined as the extreme face of P;. le.,
By=P;n{z e RY :2(E) = f(B)} (13.11)

Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all E dimensions, we'll reach a vertex in By, and if we
advance only in some dimensions, we'll reach a vertex in

Prn{z e RY : z(A) =0 for some A}.

@ We formalize this next:

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.50/186)

Extreme Points

Polymatroid extreme points
o Given any arbitrary order of £ = (e1,e9,...,6e5), define
EZ' = (61,62, e ,62').

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.51/186)

Polymatroid extreme points
o Given any arbitrary order of ' = (ej, €2, ..
EZ' = (61,62, e ,62').

., €m), define

@ As before, a vector x is generated by E; using the greedy procedure as

follows
z(e1) = f(E1) = fle1) (13.12)
x(e;) = f(B;) — f(Bj—1) = flej|Bj—1) for2<j<i (13.13)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.52/186)

Polymatroid extreme points
o Given any arbitrary order of ' = (ej, €2, ..
EZ' = (61,62, e ,62').

., €m), define

@ As before, a vector x is generated by E; using the greedy procedure as
follows

z(e1) = f(E1) = fle1) (13.12)
z(ej) = f(E;) — f(Ej—1) = f(ej|Ej—1) for2<j<i (13.13)

@ An extreme point of Py is a point that is not a convex combination of
two other distinct points in P;. Equivalently, an extreme point
corresponds to setting certain inequalities (|E| of them) in the
specification of Py to be equalities, so that there is a unique single
point solution.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.53/186)

Polymatroid extreme points

Theorem 13.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

F21/47 (pg.54/186)

Polymatroid extreme points

Theorem 13.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.

Proof.
o We already saw that « € P; (Theorem 12.4.1).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.55/186)

Polymatroid extreme points

Theorem 13.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.

Proof.
o We already saw that « € P; (Theorem 12.4.1).

@ To show that x is an extreme point of P, note that it is the unique
solution of the following system of equations

z(Ej)=f(E;) for1<j<i<m (13.14)
z(e) =0foree E\ E; (13.15)

There are ¢ < m equations and ¢ < m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.56/186)

Polymatroid extreme points
@ As an example, we have 2(FE7) = x(e; fler

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.57/186)

o x(Es) = x(e1) + x(e2) = f(e1,e2) so
z(ez) = f(e1,e2) — x(e1) = fle1,e2) — f(e1) = f(ealer).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.58/186)

o x(Es) = x(e1) + x(e2) = f(e1,e2) so

z(e2) = f(e1,e2) —x(e1) = f(e1,e2) — fler) = flezler).
o z(E3) =x(e1) + x(e2) + z(e3) = f(e1,e2,e3) so x(e3) =
f(

e1,e2,e3) — x(e2) —z(e1) = f(e1, ez, e3) — f(e1,e2) = f(esler, ea)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.59/186)

o x(Es) = x(e1) + x(e2) = f(e1,e2) so
z(ez) = f(e1,e2) — x(e1) = fle1,e2) — f(e1) = f(ealer).

o z(E3) = z(e1) +z(e2) + x(e3) = fle, €2, €3) so x(e3) =
fle1,e2,e3) — w(ea) — z(e1) = f(e1, e, e3) — fe1, e2) = f(esler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.60/186)

Extres
(AN

Polymatroid extreme points
@ As an example, we have z(E7) = z(e1) = f(e1
o z(FEy) = x(e1) + x(e2) = f(e1,e2) so

z(e2) = fler, e2) —x(e1) = fler, e2) — f(er) = flezler).
o z(E3) =x(e1) +x(e2) + x(e3) = f(e1,e2,e3) so x(e3) =

fler, e2,e3) — x(e2) — x(e1) = fler, e2,e3) — f(e1, e2) = flesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

2(E;) = f(E;) for1<j<i (13.16)
2(A) < f(A),YAC E (13.17)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.61/186)

Points

Ext
(AN

Polymatroid extreme points
As an example, we have 2(F7) = z(e1) = f(e1
o z(FEy) = x(e1) + x(e2) = f(e1,e2) so

z(e2) = fler, e2) —x(e1) = fler, e2) — f(er) = flezler).
o z(E3) =x(e1) +x(e2) + x(e3) = f(e1,e2,e3) so x(e3) =

fler, e2,e3) — x(e2) — x(e1) = fler, e2,e3) — f(e1, e2) = flesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

x(Ej) = f(Ej) for1<j<i (13.16)
z(A) < f(A),VACE (13.17)
@ Thus, the greedy procedure provides a modular function lower bound

on f that is tight on all points E; in the order. This can be useful in its
own right, as it provides subgradients and subdifferential structure.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.62/186)

Extreme Points

Polymatroid extreme points
some examples

2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.63/186)

Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.64/186)

Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture

10, Theorem 12.3.2)

F21/47 (pg.65/186)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture
10, Theorem 12.3.2)

@ Thus, cl(z) is a tight set.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.66/186)

Points

Ext
(AN

Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture

10, Theorem 12.3.2)
@ Thus, cl(z) is a tight set.
o Also, supp(xz) = {e € E: z(e) # 0} is called the support of z.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.67/186)

Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and

such sets are closed under union and intersection, as seen in Lecture
10, Theorem 12.3.2)

@ Thus, cl(z) is a tight set.
o Also, supp(xz) = {e € E: z(e) # 0} is called the support of z.

e For arbitrary x, supp(z) is not necessarily tight, but for an extreme
point, supp(x) is.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F21/47 (pg.68/186)

Extreme Points

Polymatroid with labeled edge lengths

o Recall
f(el4) = f(A+e)—f(A) e
@ Notice how 2 f(e1|e2) |
submodularity,
f(e|B) < f(e]A) for
A C B, defines the shape
of the polytope.
o In fact, we have E‘\‘
strictness here g -
f(e|B) < f(e|A) for KR
A C B. GJN
@ Also, consider how the | =
greedy algorithm '
proceeds along the edges f(e1) e_l

of the polytope.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F22/47 (pg.69/186)

Extreme Poir
1

Polymatroid with labeled edge lengths

o Recall
fle|A) = f(A+e)—f(A)
@ Notice how
submodularity,
F(elB) < f(e|A) for
A C B, defines the shape e
of the polytope.

@ In fact, we have
strictness here
F(elB) < fe|4) for
ACB.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

(‘3[%2)

(‘32

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F22/47 (pg.70/186)

Intuition: why greedy works with polymatroids

o Given w, the goal is
to find
z = (z(e1), z(e2))
that maximizes
2Tw = z(e1)w(er) +
x(e2)w(eg).

o If w(ez) > w(ey) the
upper extreme point
indicated maximizes
xTw over x € PJZL.

o If w(ez) < w(ep) the
lower extreme point
indicated maximizes
xzTw over x € PJT.

Maximal pointin P
for w in this region.

f(e,le,))

N
<N
\S\

7
&

459

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

F23/47 (pg.71/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.72/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.73/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.74/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

e For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.75/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

e For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

@ Thus, when we do monotone submodular maximization we find the
maximum under some constraint.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.76/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

e For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

@ Thus, when we do monotone submodular maximization we find the
maximum under some constraint.

@ There is also a sort of dual problem that is often considered together
with max, and those are minimum cover problems (to be defined).

Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.77/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(LA R RN RN NRRRRRRNNE

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.78/186)

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.
o Let V={1,2,...,m} be the set of integers.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.79/186)

Polymatroids, Greedy, and Cardinality
(LARRRNARN NN R NRRRARY

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.
o Let V={1,2,...,m} be the set of integers.
o Define f:2V = Zy as f(X) = |U,ex Evl

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.80/186)

Polymatroids, Greedy, and Cardinality Constrai
i [NRRRRRRNRRRNAN

The Set Cover Problem

Let FE be a set and let Ey, Es, ..., E,, be a set of subsets.

Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Z; as f(X) = |Upex Eol

Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.81/186)

Polymatroids, Greedy, and Cardinality Constrains
(LARRRNARN NN R NRRRARY

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.

o Let V={1,2,...,m} be the set of integers.

o Define f:2V = Zy as f(X) = |U,ex Evl

@ Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X | subject to f(X) > |E| (13.18)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.82/186)

Polymatroids, Greedy, and Cardinality Constrains
(LARRRNARN NN R NRRRARY

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.

o Let V={1,2,...,m} be the set of integers.

o Define f:2V = Zy as f(X) = |U,ex Evl

@ Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X | subject to f(X) > |E| (13.18)

@ We might wish to use a more general modular function m(X) rather
than cardinality | X|.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.83/186)

The Set Cover Problem

Let FE be a set and let Ey, Es, ..., E,, be a set of subsets.

Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Z; as f(X) = |Upex Eol

Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X | subject to f(X) > |E| (13.18)

We might wish to use a more general modular function m(X) rather
than cardinality | X|.

This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1 — €)logn unless NP is slightly
superpolynomial (nCUoglogn)),

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F25/47 (pg.84/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(R RN RN RNRRRRRRRNE

What About Non-monotone

@ So even simple case of cardinality constrained submodular function
maximization is NP-hard.

@ This will be true of most submodular max (and related) problems.

@ Hence, the only hope is approximation algorithms. Question is, what is
the tradeoff between running time and approximation quality, and is it
possible to get tight bounds (i.e., an algorithm that achieves an
approximation ratio, and a proof that one can't do better than that
unless some extremely unlike event were to be true, such as P=NP).

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F26/47 (pg.85/186)

Poly eedy, and Car Cor
[RRE RN RNRNRRRRRRRNE

The Max k-Cover Problem

@ Let F beasetandlet E,Es,...,E, be a set of subsets.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F27/47 (pg.86/186)

reedy, and Cardinality Constrai
(RRRRRRRNEAN

The Max k-Cover Problem

@ Let F beasetandlet E,Es,...,E, be a set of subsets.
o Let V ={1,2,...,m} be the set of integers.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F27/47 (pg.87/186)

Polymatroids, Greedy, and Cardinality
(RRR RN RRNRNRRRARY

The Max k-Cover Problem

@ Let F beasetandlet E,Es,...,E, be a set of subsets.
o Let V ={1,2,...,m} be the set of integers.
o Define f:2V = Zy as f(X) = |U,ey Eol

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F27/47 (pg.88/186)

reedy, and Cardinalit
[RRRRRNRNRY]

The Max k-Cover Problem

o
(]
(]
(]

Let E be a set and let Eq, Fs, ..., E,, be a set of subsets.
Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uypey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F27/47 (pg.89/186)

reedy, and Cardinalit
[RRRRRNRNRY]

The Max k-Cover Problem

o
(]
(]
(]

Let E be a set and let Eq, Fs, ..., E,, be a set of subsets.
Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uypey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? l.e., that maximizes f(X) as in:

max f(X) subject to | X| <k (13.19)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F27/47 (pg.90/186)

Polymatroids, Greedy, and Cardinality
[RRR AR ARNRRRNRRY

The Max k-Cover Problem

o
(]
(]
(]

Let E be a set and let Eq, Fs, ..., E,, be a set of subsets.
Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uypey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? l.e., that maximizes f(X) as in:

max f(X) subject to | X| <k (13.19)

This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1 —1/e).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F27/47 (pg.91/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERE RN RRNRNRRRRRRRNE

Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = ., maxaca Sq,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, , is seen as how how good a is as
acting as a representative for v (which might not be the same as s, 4).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F28/47 (pg.92/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERE RN RRNRNRRRRRRRNE

Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = i, maxaca Sqa,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s,).
Example:

[V|=1,000, Gauscmps=5, concn=0.7

10 A

-10

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F28/47 (pg.93/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERE RN RRNRNRRRRRRRNE

Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = i, maxaca Sqa,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s,).
Example:

[V|=1,000, Gauscmps=5, concn=0.7, kpp=10

10 A

-10 4

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F28/47 (pg.94/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERE RN RRNRNRRRRRRRNE

Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = i, maxaca Sqa,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s,).

Example:
|V|=1,000, Gauscmps=5, concn=0.7, ke =10
10 1
J
5 A b
o
0 J
9 o
-5 2 3
8
104
-6 -4 =2 0 2 4 6

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F28/47 (pg.95/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERE RN RRNRNRRRRRRRNE

Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = ., maxaca Sq,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s, 4).
Example:

o Middle example is estimate of max cyja<i f(A), right is
uniformly-at-random randomly chosen set of size k, for k = 10.

1V1=1.000, Gauscmps=$, concn=0.7 [VI=1.000, Gauscmps=5. concn=0.7. kr.=10 IVI=1.000, Gauscmps=5, concn=0.7, kno=10

5 5 4 F 5
o
0 o a 0
9 s
-5 -5 2 3 -5

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F28/47 (pg.96/186)

reedy, and Cardinality Constrai
| (RRRRRRRNEAN

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F29/47 (pg.97/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRE NRNNRRNRNRRRARY

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
@ Given k, goal is: find A* € argmax {f(A) : |A| <k}

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F29/47 (pg.98/186)

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
o Given k, goal is: find A* € argmax {f(A) : |[A| <k}
o w.l.o.g., we can find A* € argmax {f(4) : |A| =k}

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F29/47 (pg.99/186)

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.

o Given k, goal is: find A* € argmax {f(A) : |A| <k}

o w.l.o.g., we can find A* € argmax {f(4) : |A| =k}

@ An important result by Nemhauser et. al. (1978) states that for
normalized (f(0) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple greedy
algorithm.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F29/47 (pg.100/186)

Now we are given an arbitrary polymatroid function f.

Given k, goal is: find A* € argmax {f(A): |A| <k}

w.l.o.g., we can find A* € argmax {f(A) : |A| =k}

An important result by Nemhauser et. al. (1978) states that for
normalized (f(0) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple greedy
algorithm.

Starting with Sy = (), we repeat the following greedy step for
i=0... (k—1):

Siv1 =S U {argmax f(S; U {U})} (13.20)
UEV\Sl‘

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F29/47 (pg.101/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRE ARNRRNRNRRRNRY

The Greedy Algorithm for Submodular Max

A bit more precisely:
Algorithm 1: The Greedy Algorithm

1 Set Sy + 0;
> for i - 0...|E|—1do
3 Choose v; as follows:

v; € argmax,eyg, f({v}] i) = argmax, ey g, f(Si U{v}) ;
4 Set Si+1 <+~ S; U {Ul} ;

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F30/47 (pg.102/186)

Polymatroids, Greedy, and Cardinality
(RERRENI ERRRNRRRRRARY

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F31/47 (pg.103/186)

Polymatroids, Greedy, and Cardinality
(RERRENI ERRRNRRRRRARY

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F31/47 (pg.104/186)

Polymatroids, Greedy, and Cardinality
(RERRENI ERRRNRRRRRARY

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).

e To approximately find A* € argmax {f(A) : |A| <k}, we repeat the
greedy step until £ =i+ 1 in Algorithm 4:

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F31/47 (pg.105/186)

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).

e To approximately find A* € argmax {f(A) : |A| <k}, we repeat the
greedy step until £ =i+ 1 in Algorithm 4:

@ Again, since this generalizes max k-cover, Feige (1998) showed that
this can't be improved. Unless P = N P, no polynomial time algorithm
can do better than (1 — 1/e + €) for any € > 0.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F31/47 (pg.106/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNRY NRRRRNRRRRRRRNE

The Greedy Algorithm: 1 — 1/e intuition.
o At step ¢ < k, greedy chooses v; to maximize f(v]S;).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F32/47 (pg.107/186)

Polymatroids, Greedy, and Cardinality

The Greedy Algorithm: 1 — 1/e intuition.
o At step ¢ < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(5*).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F32/47 (pg.108/186)

Pol
IRERRRNRY NRRRRNRRRRRRRNE

The Greedy Algorithm: 1 — 1/e intuition.
o At step 1 < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jv e V\S;i: f(v]|S;) = f(Si+v]S;) > —(OPT — f(S;)) (13.21)

| =

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F32/47 (pg.109/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization

The Greedy Algorithm: 1 — 1/e intuition.
o At step 1 < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

To e V\ S : F0ISi) = £(S; +v]S:) > %(OPT SRSy (13.21)

L
e os . » Equation (13.30) will show

o (1-7) that Equation (13.21) =

OPT — f(Sit1)

< (1 —1/k)(OPT — £(5i))

— OPT — £(S))

< (1-1/k)*OPT

N < 1/eOPT

= OPT(1—1/e) < f(Sk)

2 3 4 5 6 7 8 Skw

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F32/47 (pg.110/186)

Pol
IRERRRNRY NRRRRNRRRRRRRNE

The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(v]S;).

o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e V\ Si: F0lS)) = £(Si +0|Si) > %(OPT C S (1321)

s\ (1= (1 —1/k)%) < £(S,)/OPT |Equation (13.30) will show
(1=t [EV) < 151/ that Equation (13.21) =

OPT — £(Si+1)
< (1-1/k)(OPT — f(S)))
= OPT — f(S})
< (1-1/k)*OPT
| <1/eOPT
L-1/e = OPT(1—1/e) < f(Sk)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F32/47 (pg.111/186)

Polymatroids, Greedy, and Cardinality Constrained M:
[RERRRNANE ARRRNRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

aximization

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define

{Si};>o to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € 7y, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

EE563/Spring 2020/Submodularity - Lectur:

e 13 - Nov 16th, 2020 F33/47 (pg.112/186)

Polymatroids, Greedy, and Cardinality Constrained M:
[RERRRNANE ARRRNRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

aximization

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define

{Si};>o to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € 7y, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

EE563/Spring 2020/Submodularity - Lectur:

e 13 - Nov 16th, 2020 F33/47 (pg.113/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANE ARRRNRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € Z, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ / is size of set we are choosing (i.e., we choose S; from greedy chain).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F33/47 (pg.114/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANE ARRRNRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define

{Si};>o to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € 7y, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ (is size of set we are choosing (i.e., we choose S; from greedy chain).

@ Bound is how well does S; (of size ¢) do relative to S*, the optimal set of
size k.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F33/47 (pg.115/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANE ARRRNRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € Z, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ (is size of set we are choosing (i.e., we choose S; from greedy chain).

e Bound is how well does Sy (of size ¢) do relative to S*, the optimal set of
size k.

o Intuitively, bound should get worse when ¢ < k and get better when ¢ > k.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F33/47 (pg.116/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNE NRRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F34/47 (pg.117/186)

Polymatroids, Greedy, and Cardinality Constrai
[RERRN (L ERRRRRNNAN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F34/47 (pg.118/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNE NRRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F34/47 (pg.119/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNE NRRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

@ w.l.o.g. assume |S*| = k.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F34/47 (pg.120/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNE NRRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

o w.l.o.g. assume |S*| = k.

@ Order S* = (v],v3,...,v}) arbitrarily.

F34/47 (pg.121/186)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNE NRRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

@ w.l.o.g. assume |S*| = k.

o Order S* = (v}, v3,...,v}) arbitrarily.
@ Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F34/47 (pg.122/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNE NRRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

Set S* € argmax {f(95) : [5] < k}

w.l.o.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.

Then the following inequalities (on the next slide) follow:

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F34/47 (pg.123/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNNL FRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.124/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNNL FRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

e For all : < ¢, we have

f(5%)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.125/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNNL FRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(8%) < f(STUSi)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.126/186)

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(8%) < F(5TUS:) = f(Si) + f(57[50) (13.23)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.127/186)

Pol
IRERRRNANENI FRRRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

F(S%) < f(S*US:) = f(Si) + f(S*ISs) (13.23)
k

= f(S) +>_ f@31Siu {vf,v3,..., 031 }) (13.24)
J=1

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.128/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNANENI FRRRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(S%) < f(STUS:) = f(Si) + f(S™[Ss) (13.23)
k
= £(S) + Y F@;1SiU {vf,25,...,v5_1}) (13.24)
j=1
< f(S)+) f(olS) (13.25)
VES*

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.129/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNANENI FRRRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(87) < f(STUS:) = £(Si) + F(57]5)) (13.23)
= £(S;) + zk:lf(vﬂsi U {v},v3,...,v51}) (13.24)
< f(S) + ES:* f(v]Si) (13.25)
< f(S) + i: f(vit1]Ss)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.130/186)

Poly
IRERRRNANENI FRRRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

F(S*) < £(S*US) = £(Si) + £(S7|S3) (13.23)
(S;) + zk:lf(vﬂsi U {v},v3,...,v51}) (13.24)
+ i £(0]Sy) (13.25)
;: Fwisa]Ss) = F(S) + D f(SitalSi) (13.26)
ves” ves*

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.131/186)

Poly
IRERRRNANENI FRRRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(87) < f(STUS:) = £(Si) + F(57]5)) (13.23)
= £(S;) + zk:lf(vﬂsi U {v},v3,...,v51}) (13.24)
< f(S) + ES:* f(v]S:) (13.25)
< £(S5) +UEZ Foir]Si) = F(Si) + Y f(SiralSi) (1326
= f(Si) + ZZ}HH&) - (13.27)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.132/186)

dy, an
IRERRRNANENI FRRRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have
f(87) < fF(STUS:) = f(Si) + £(57[S:) (13.23)
k
= £(S) + Y F@;1SiU {vf,25,...,v5_1}) (13.24)
j=1
< f(S)+) f(vlS) (13.25)
vES*
< F(S) + Y fwinalSi) = f(S) + > f(SinalSi) (13.26)
veS* vES*
= f(8i) + kf(Sit1]Si) (13.27)
@ Therefore, we have Equation 13.21, i.e.,:
f(S*) — f(Si) < kf(Sit1]S:) = k(f(Six1) — f(Si)) (13.28)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.133/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNARNENL ARRRRRRY

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.134/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRNARNENL ARRRRRRY

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

@ Define gap 0; = f(S*) — f(Si), 50 6; — 841 = f(Siv1) — £(Sy),

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.135/186)

Pol
[RERRRNARNAR ARRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 841 = f(Siz1) — £(S;), giving
8 < k(8 — div1) (13.29)

or

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.136/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNARNAR ARRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap &; £ f(S*) — f(Si), s0 & — Six1 = f(Si+1) — f(S:), giving
8i < k(i — Si1) (13.29)
or

Sir1 < (1—)5 (13.30)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.137/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNARNAR ARRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 81 = f(Siv1) — f(S;), giving

0; < k(0; — diy1) (13.29)
or .
div1 < (1 — %)62- (13.30)
@ The relationship between §y and dy is then
- 1.
n<(1- Z) 0o (13.31)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.138/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNARNAR ARRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 81 = f(Siv1) — f(S;), giving
8; < k(6; — 6;41) (13.29)

or

Sia1 < (1— %)&- (13.30)

@ The relationship between &g and §, is then

& < (1-— %)% (13.31)

e Now, dp = f(S*) — f(0) < f(S*) since f > 0.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.139/186)

Poly
[RERRRNARNAR ARRRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 81 = f(Siv1) — f(S;), giving
8; < k(6; — 6;41) (13.29)

or

Sia1 < (1— %)&- (13.30)

@ The relationship between &g and §, is then

& < (1-— %)% (13.31)

e Now, dg = f(S5*) — f(0) < f(S*) since f > 0.

@ Also, by variational bound 1 — 2 < e~ * for z € R, we have

50 < (1— %)@50 < etk F(S7) (13.32)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.140/186)

Pol
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) > (1—e %) f(57) (13.33)

]

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F37/47 (pg.141/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) > (1—e %) f(57) (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S}, is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F37/47 (pg.142/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) > (1—e %) f(57) (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

@ What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F37/47 (pg.143/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e /R (57 (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) =~ 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7 Set 0.95 = (1 — e~ /%), which gives
¢=]-kIn(1—0.95)] = 4k.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F37/47 (pg.144/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e /R (57 (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k? Set 0.95 = (1 — e~%/*), which gives
¢ = [—kIn(1 — 0.95)] = 4k. And [In(1 — 0.999)] = 7.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F37/47 (pg.145/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e /R (57 (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k? Set 0.95 = (1 — e~t/F), which gives
¢=]-kIn(1 —0.95)] =4k. And [—In(1 —0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F37/47 (pg.146/186)

Poly eedy, and Car Co
[RERRRNANNARNAR ARRRRNRNE

Greedy running time

@ Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F38/47 (pg.147/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNAR ARRRRNRNE

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F38/47 (pg.148/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNAR ARRRRNRNE

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F38/47 (pg.149/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNAR ARRRRNRNE

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy”), and runs much faster
while still producing same answer.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F38/47 (pg.150/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNAR ARRRRNRNE

Greedy running time

Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy"), and runs much faster
while still producing same answer.

We describe it next:

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F38/47 (pg.151/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANN ARRRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, + f(v|S;) in sorted priority queue.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F39/47 (pg.152/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANN ARRRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F39/47 (pg.153/186)

Polymatroids, Greedy, and
[RERRRRARRRRNAN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.
@ Once we choose a max v, then set S;11 + S; + v.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F39/47 (pg.154/186)

Polymatroids, Greedy, and Cardinality
(RERRRRARNNRNANN ARRRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

@ Once we choose a max v, then set S;11 + S; + v.

e For v ¢ S;11 we have f(v]|Si+1) < f(v|S;) by submodularity.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F39/47 (pg.155/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANN ARRRN

Minoux's Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 <+ S; + v.

For v ¢ Siy1 we have f(v]Sit1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/[Si+1) > «, for all v # v/, then
since

f('Si+1) > aw = f(v]Si) > f(v]Si41) (13.34)

we have the true max, and we need not re-evaluate gains of other
elements again.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F39/47 (pg.156/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANN ARRRN

Minoux's Accelerated Greedy for Submodular Functions

e 6 6 o

At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 <+ S; + v.

For v ¢ Siy1 we have f(v]Sit1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/[Si+1) > a, for all v # v/, then
since

f'[Sit1) = aw = f(v|S) = f(v]Sisa) (13.34)

we have the true max, and we need not re-evaluate gains of other
elements again.

Strategy is: find the argmax, ey g,,, @, and then compute the real
f('|S;i+1). If it is greater than all other «,'s then that's the next
greedy step. Otherwise, replace o, with its real value, resort
(O(logn)), and repeat.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F39/47 (pg.157/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNRRRRNRNNY RRRRRNE

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F40/47 (pg.158/186)

Polymatroids, Greedy, and
[RERRRRARRRRNAN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F40/47 (pg.159/186)

Polymatroids, Greedy, and
[RERRRRARRRRNAN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but

accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F40/47 (pg.160/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANNY RRRN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F40/47 (pg.161/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANNY RRRN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

o Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for "big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F40/47 (pg.162/186)

Polymatroids, Greedy, and Cardinality Constrains
(RERRRRARNNRNANNY RRRN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

o Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for "big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

@ Very good if there are many elements v with f(v) < f(u|V \ {u}) for
enough u elements (gain of v is evaluated only once).

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F40/47 (pg.163/186)

Polymatroids, Greedy, and Cardinality Constrained Maxi
IRERRRNANNNRNRNNNY ARRRNE

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F41/47 (pg.164/186)

Poly eedy, and Car Cor
IRERRRNANNNRNRNNNY ARRRNE

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, a)) (13.35)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F41/47 (pg.165/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNANNNRNRNNNY ARRRNE

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)

e Pop the item (v,) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F41/47 (pg.166/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNANNNRNRNNNY ARRRNE

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)
o Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
o Query the value of the max item in the queue

max(Q) € R (13.37)

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F41/47 (pg.167/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNANNNRNRNNNY ARRRNE

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)
o Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
o Query the value of the max item in the queue

max(Q) € R (13.37)

@ On next slide, we call a popped item “fresh” if the value (v, a) popped has
the correct value a = f(v]S;). Use extra “bit" to store this info

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F41/47 (pg.168/186)

Polymatroids, Greedy, and
[RERRRRARRRRNAN

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)

o Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
o Query the value of the max item in the queue

max(Q) € R (13.37)

@ On next slide, we call a popped item “fresh” if the value (v,) popped has
the correct value o = f(v]S;). Use extra “bit" to store this info

o If a popped item is fresh, it must be the maximum — this can happen if, at
given iteration, v was first popped and neither fresh nor maximum so placed
back in the queue, and it then percolates back to the top at which point it
is fresh — thereby avoid extra queue check.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F41/47 (pg.169/186)

Algorithm 2: Minoux's Accelerated Greedy Algorithm

Set Sp + 0 ; i < 0 ; Initialize priority queue Q ;
for v € F do

| INSERT(Q, f(v))
repeat

(v, @) <= pop(Q) ;
if a not “fresh” then
L recompute o < f(v|S;)

if (popped « in line 5 was “fresh”) OR (ov > max(Q®)) then
Set Si+1 «— S; U {’U} X
14— 1+1;

else

L insert(Q, (v, a))

until i = |E|;

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F42/47 (pg.170/186)

Polymatroids, Greedy, and
[RERRRRARRRRNAN

(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
Nak

where « is a “cover’ requirement.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F43/47 (pg.171/186)

Polymatroids, Greedy, and Card
(RERRRRARRRRNRNRNN

(Minimum) Submodular Set Cover

e Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
scv
where « is a “cover’ requirement.

e Normally take o = f(V) but defining f'(A) = min {f(A), a} we can
take any «. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f(V) (13.39)
Scv

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F43/47 (pg.172/186)

Polymatroids, Greedy, and Cardinality
(RERRRRARNNRNANRRRNE b

(Minimum) Submodular Set Cover

e Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
Nak

where « is a “cover’ requirement.

o Normally take o = (V) but defining f/(A) = min {f(A), a} we can
take any . Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f/(V) (13.39)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F43/47 (pg.173/186)

Polymatroids, Greedy, and Card
(RERRRRARRRRNRNRNN

(Minimum) Submodular Set Cover

e Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
scv
where « is a “cover’ requirement.

o Normally take o = (V) but defining f/(A) = min {f(A), a} we can
take any . Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f/(V) (13.39)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Greedy Algorithm: Pick the first chain item S; chosen by
aforementioned greedy algorithm such that f(S;) > « and output that
as solution.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F43/47 (pg.174/186)

(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S© be greedy solution, then

1561 < |71 H (max £ ({5})) = 570og, (max f({s}))) ~ (13.40)

where H is the harmonic function, i.e., H(d) = Zf’zl(l/i).

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F44/47 (pg.175/186)

Polymatroids, Greedy, and Cardinali
[RRRRRRANRREN

(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

1SC1 < |71 H (max £ ({5})) = 570og, (max f({s}))) ~ (13.40)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/z’).

@ If f is not integral value, then bounds we get are of the form:

(V))
fOV) = f(Sr-1)

wehre St is the final greedy solution that occurs at step 7.

156 < \S*\(l +log, (13.41)

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F44/47 (pg.176/186)

Pol
[RRRRRRANRRRERNRY

(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

1SC1 < |71 H (max £ ({5})) = 570og, (max f({s}))) ~ (13.40)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/z’).
o If f is not integral value, then bounds we get are of the form:

(V)
SO < 18%(1 + log, 13.41
57 < |< & f(V)—f(ST—l)) ()
wehre St is the final greedy solution that occurs at step T

@ Set cover is hard to approximate with a factor better than (1 — ¢€) log «,
where « is the desired cover constraint.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F44/47 (pg.177/186)

Poly eedy, and Car Cor
IRERRRNARRRNRNRRRRRNY NE

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F45/47 (pg.178/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNARRRNRNRRRRRNY NE

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

@ We discussed cardinality constraint

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F45/47 (pg.179/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNARRRNRNRRRRRNY NE

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F45/47 (pg.180/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNARRRNRNRRRRRNY NE

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

e Simple greedy algorithm gets 1 — e ~*/* approximation, where & is size

of optimal set we compare against, and £ is size of set greedy algorithm

chooses.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F45/47 (pg.181/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNARRRNRNRRRRRNY NE

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover

problem.
—0/k

Simple greedy algorithm gets 1 — e approximation, where k is size
of optimal set we compare against, and £ is size of set greedy algorithm
chooses.

@ Submodular cover: min. |S|s.t. f(S) > a.

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F45/47 (pg.182/186)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRERRRNARRRNRNRRRRRNY NE

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e—¢/% approximation, where k is size

of optimal set we compare against, and £ is size of set greedy algorithm
chooses.

Submodular cover: min. |S| s.t. f(.5) > a.

Minoux's accelerated greedy trick.

Prof. Jeff Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F45/47 (pg.183/186)

Pol
(RERRRNARR RN RRRRRNARN

The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(v]S;).

o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e V\ Si: F0lS)) = £(Si +0|Si) > %(OPT C S (1321)

s\ (1= (1 —1/K)%) < £(S,)/OPT |Equation (13.30) will show
(=4 /EN) < 1S/ that Equation (13.21) =

OPT — f(Si+1)
< (1-1/k)(OPT — f(S)))
= OPT — £(S)
< (1-1/k)*OPT
, < 1/eOPT
L-1/e = OPT(1—1/e) < f(Sk)

1 2 3 4 5 6 7 8 skm

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F46/47 (pg.184/186)

Poly eedy, and Car Co
[RERRR AR AR NR RN |

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1 /e guarantee?

Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F47/47 (pg.185/186)

Polymatroids, Greedy, and Card
(RERRRRARRRRNRNRNN

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:
f(OPT) — f(Ai)

p (13.42)

E[f(ai1|A:)] >

where A; = (a1, az,...,a;) are the first ¢ elements chosen by the
strategy.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F47/47 (pg.186/186)

	Logistics & Review
	Logistics
	

	Review
	

	Current Lecture Part
	Current Lecture
	Polymatroids and Greedy
	

	Possible Polytopes
	

	Extreme Points
	

	Polymatroids, Greedy, and Cardinality Constrained Maximization
	

