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Announcements, Assignments, and Reminders

Homework 3, out, due next Wednesday, Nov 25th, 2020, 11:59pm.

Reminder, all lectures are being recorded and posted to youtube. To
get the links, see our announcements
(https://canvas.uw.edu/courses/1397085/announcements).

Office hours this week, Wed & Thur, 10:00pm at our class zoom link.

Next week office hours, Tues (11/24) & Wed (11/25), 10:00pm at our
class zoom link.
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Logistics

Class Road Map - EE563

@ L1(9/30): Motivation, Applications, @ L11(11/4): Matroids — Polymatroids,
Definitions, Properties Polymatroids

@ L2(10/5): Sums concave(modular), uses @ L12(11/9): Polymatroids, Polymatroids
(diversity/costs, feature selection), and Greedy
information theory @ L—(11/11): Veterans Day, Holiday

® L3(10/7): Monge., Mor'e Definitions, @ L13(11/16): Polymatroids and Greedy,
Graph and Combinatorial Examples, Possible Polytopes, Extreme Points,

@ L4(10/12): Graph & Combinatorial Cardinality Constrained Maximization
Examples, Matrix Rank, Properties, Other :
Defs, llandependence P : tiggigig

@ L5(10/14): _Properties, Defs of o L16(11/25):
Submodularity, Independence o L17(11/30):

@ L6(10/19): Matroids, Matroid Examples, o L18(12/2):
Matroid Rank, :

@ L7(10/21): Matroid Rank, More on o L19(12/7):
Partition Matroid, Laminar Matroids, @ L20(12/9): maximization.

System of Distinct Reps, Transversals
L8(10/26): Transversal Matroid, Matroid
and representation, Dual Matroid
L9(10/28): Other Matroid Properties,
Combinatorial Geometries, Matroid and
Greedy, Polyhedra, Matroid Polytopes
L10(11/2): Matroid Polytopes, Matroids
— Polymatroids

()

Last day of instruction, Fri. Dec 11th. Finals Week: Dec 12-18, 2020
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Review
[ RNRNE

A polymatroid is a polymatroid function's polytope

@ So, when f is a polymatroid function, Pf+ is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = P]T?

Theorem 13.2.1

For any polymatroid P (compact subset of R, zero containing, down-monotone, and
Va € RY any maximal independent subvector y < x has same component sum

y(E) = rank(z)), there is a polymatroid function f : 2F — R (normalized,
monotone non-decreasing, submodular) such that P = ij_ where

P]?L ={zeR” :2>0,2(4) < f(A),YAC E}.
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R
(L RRRNT

Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € Pf+:

D(y) £ {A: ACE, y(A) = f(A)} (13.1)

Theorem 13.2.1

For any y € P}, with f a polymatroid function, then D(y) is closed under
union and intersection.

We have already proven this as part of Theorem 77 OJ

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € ]Rf.

sat(y) € (J{T: T € D(y)} (13.2)
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Join V and meet A for z,y € RY

e Foruz,y € Rf, define vectors x Ay € Rf and xVy € Rf such that, for all
eckE

(z Vy)(e) = max(x(e), y(e)) (13.1)
(z Ay)(e) = min(z(e), y(e)) (13.2)

Hence,

rVy2 (max(x(el), y(el)) , max(w(eg), y(eg)), .. ,max(x(en), y(en))>

and similarly
TAY = (min(m(el), y(el)) , min (95(62)v y(62)) Y min(av(en), y(en))>

@ From this, we can define things like an lattices, and other constructs.
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Vector rank, rank(z), is submodular

@ Recall that the matroid rank function r(A) = max(|I| : I C A: [ € 1)
is submodular.

@ The vector rank function rank(z) = max (y(EF) : y < x,y € P) also
satisfies a form of submodularity, namely one defined on the real lattice.

Theorem 13.2.1 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : RE — R
with rank(z) = max (y(E) : y < z,y € P) satisfies, for all u,v € R¥

rank(u) + rank(v) > rank(u v v) + rank(u A v) (13.1)

o Note what happens when u,v € {0,1}¥ C RE.
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Polymatroidal polyhedron and the greedy solution

@ What is the greedy solution for max {wx ‘T € P]Z'“} when w € RE?

@ Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,em) with w(er) > w(ez) > -+ > w(em).

@ Let k + 1 be the first point (if any) at which we are non-positive, i.e.,
w(eg) >0 and 0 > w(eg41).

@ Next define partial accumulated sets E;, for i = 0...m, we have w.r.t.
the above sorted order:

Ez‘ ZEf {61,62,...61} (1322)

(note Ey =0, f(Eo) =0, and E and Ej; is always sorted w.r.t w).
@ The greedy solution is the vector x € ]Rf with elements defined as:

def

z(e1) = f(E1) = f(e1) = f(e1|Eo) = f(e1|0) (13.23)
2(e) & F(E) - f(Eii) = flei|Bioy) fori=2...k  (13.24)
2(e) Eofori=k+1...m=|E| (13.25)
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R
[NRRRL NI

Polymatroidal Polyhedron and Greedy: Optimality

Theorem 13.2.2

The vector x € Rf as previously defined using the greedy algorithm
maximizes wx over Pf+, with w € RE, if f is submodular.

Proof.
@ Consider the LP strong duality equation:

max(wx : T € PJT) = min(z yaf(A):y € R%FE, Z yalag > w)
ACE ACE
(13.21)

@ Sort E by w descending, and define the following vector y € RiE as
yE; < w(e;) —w(eiqr) fori=1...(m—1), (13.22)

yE < w(en), and (13.23)
ya < 0 otherwise (13.24)
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Polymatroidal polyhedron and greedy

Theorem 13.2.2

Conversely, suppose PJT is a polytope of form

Pf+ = {z € R : 2(A) < f(A),VA C E}, then the greedy solution to
max(wzx : ¢ € P];") is optimum only if f is submodular.

Proof.

@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,6em), with E; = (e1,ea,...,¢€;), so the following is true:
o For1<p<qg<m, A={ei,ez,...,€x €kt1,...,6p} = E, and
B = {61,62, 56 6 g Earkil o o .,eq} = EkU(Eq\Ep) = (AQB)U(B\A)
o Note, then we have AN B ={ey,...,ex} = Ex, and AUB = E,,.
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Review from Lecture 9

@ The next slide comes from lecture 9.
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Matroid and the greedy algorithm

o Let (E,Z) be an independence system, and we are given a non-negative
modular weight function w : £ — R

Algorithm 1: The Matroid Greedy Algorithm

1Set X +0;

2 while v € B\ X s.t. X U{v} €7 do

3 v e argmax {w(v) :ve B\ X, XU{v}eT};
4 X + X U{v};

@ Same as sorting items by decreasing weight w, and then choosing items
in that order that retain independence.

Theorem 13.3.4

Let (E,Z) be an independence system. Then the pair (E,T) is a matroid if
and only if for each weight function w € RY, Algorithm ?? above leads to a
set I € T of maximum weight w(I).
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Polymatroids and Greedy
(WA ]

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 10.3.2)

Theorem 13.3.1

If f : 2 — Ry is given, and P is a polytope in RY of the form
P={zeR¥:z(4) < f(4),YAC E}, the_n the greedy solution to the
problem max(wTz : x € P) is Yw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Possible Polytopes
[ARRRAN]

Multiple Polytopes associated with arbitrary f

@ Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).
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Multiple Polytopes associated with arbitrary f

e Given an arbitrary submodular function f : 2" — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0)#0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argminy f(A) = argmin 4 f'(A)) so we often assume all functions are

normalized f(0) = 0.

Note that due to constraint z(0) < f(0), we must have f(0) > 0 since if not (i.e., if
f(0) <0), then Pf doesn't exist.

Another form of normalization takes the form:

F(A) = {S(A) :?j i g (13.1)

This preserves submodularity due to f(A) + f(B) > f(AUB) + f(AN B), and if
AN B =0 then r.h.s. only gets smaller when f(()) > 0.
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P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,

argmin, f(A) = argminy, f'(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C B} (13.1)
P;r:Pfﬁ{ZIJERE cx >0} (13.2)
By =P;n{zeR¥ :2(E) = f(E)} (13.3)
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P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C E} (13.1)
Pf=Prn{zeR”:z >0} (13.2)
By=P;n{zeR¥ :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as K P;.
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P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C E} (13.1)
Pf=Prn{zeR”:z >0} (13.2)
By=P;n{zeR¥ :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EPy.

° P]ﬁ' is Py restricted to the positive orthant.
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P
[ARRRAN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Py ={x e R” : 2(5) < f(9),VS C E} (13.1)
Pf=Prn{zeR”:z >0} (13.2)
By=P;n{zeR¥ :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EPy.

° PJT is Py restricted to the positive orthant.

@ By is called the base polytope, analogous to the base in matroid.
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Possible Polytopes
(L ERRAN]

Multiple Polytopes in 2D associated with f

Pt =Pn{zeR?:z>0} (13.4)
Py ={z e R¥ : 2(5) < f(S),VS C E} (13.5)
By=P;n{zr e R :2(E) = f(B)} (13.6)
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Possible Polytopes
(L ERRAN]

Multiple Polytopes in 2D associated with f

Pt =pPn{zeR”:z>0} (13.4)
Py = {z e R : 2(5) < f(5),VS C E} (13.5)
By=P;n{z e R :2(E) = f(E)} (13.6)
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Possible Polytopes
(L ERRAN]

Multiple Polytopes in 2D associated with f

Py
Pf=Pin{zeR”:z>0}
Py ={z e RP : 2(S) < £(9),VS C E}
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P
[RLERAN]

Base Polytope in 3D

Pp={z e R : 2(5) < f(S),VS C E} (13.7)
By=P;n{z e R¥ : z(E) = f(B)} (13.8)
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Theorem 13.4.1

Let f be a submodular function defined on subsets of E. For any x € RF,
we have:

rank(x) = max (y(F) : y < z,y € Py) =min (z(A) + f(E\A): ACE)
(13.9)

Essentially the same theorem as Theorem 11.4.1, but note Py rather than
Py Taking z = 0 we get:

Corollary 13.4.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y <0,y € Pr) =min(f(A): ACE) (13.10)
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Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C E be any subset.
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Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Pr) = min (z(A) + f(E\ A) : ACE).
@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.
@ Then y*(E) = y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < z(E\ A)).
This is a form of weak duality.

13 - Nov 16th, 2020 F18/47 (pg.26/186)
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[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).
@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.
@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

@ Forany e € E, if y*(e) < z(e), must be some reason other than
constraint y* < x, namely must be that 37 € D(y*) withe € T (i.e., e
is a member of at least one of the tight sets).
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Possible Polytopes

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).
@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.
@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y"),
then y*(A4) < f(A)VA 3 e including {e}, hence z(e) < f(e).
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Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.

@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y*),
then y*(A) < f(A)VA > e including {e}, hence z(e) < f(e).
Conversely, e € sat(y*) means 3T € D(y*), w. e € T & y*(T') = f(T).
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Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.

@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y*),
then y*(A) < f(A)VA > e including {e}, hence z(e) < f(e).
Conversely, e € sat(y*) means 3T € D(y*), w. e € T & y*(T') = f(T).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover

y*(sat(y*)) = f(sat(y*)) by definition.
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Possible Polytopes
[RERL N

Proof of Theorem 13.4.1

Proof Thm 13.4.1:max (y(E) : y < x,y € Py) = min (z(A) + f(E\ A): ACE).

@ Let y* be optimal solution of the l.h.s. and let A C F be any subset.

@ Then y*(E) =y*(A) +y*(E\ A) < f(A)+z(E\ A) (since if y* € Py
then y*(A) < f(A), and since y* < z then y*(E \ A) < x(E\ A)).
This is a form of weak duality.

e Forany e € E, if y*(e) < x(e), must be some reason other than
constraint y* < z, namely must be that 37" € D(y*) with e € T (i.e., e
is a member of at least one of the tight sets). l.e., given e ¢ sat(y*),
then y*(A) < f(A)VA > e including {e}, hence z(e) < f(e).
Conversely, e € sat(y*) means 3T € D(y*), w. e € T & y*(T') = f(T).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover

y*(sat(y*)) = f(sat(y*)) by definition.

o Thus y*(sat(y*)) +y"(E \sat(y*)) = f(sat(y*)) + =(E \ sat(y")),
strong duality, showing that the two sides are equal for y*.
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Possible Polytopes
[RRRRLY]

Greedy and Py

@ In Theorem 12.4.1 (i.e., greedy solution in P;r) we can relax P+ to Py
(prime and dual feasibiity still hold as does strong duality).
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Possible Polytopes
[RRRRLY]

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that x € Py in this relaxed case.
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Possible Polytopes
[RRRRLY]

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wx : © € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.
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Possil
11

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wz : x € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

@ Moreover, in either Py, or P} case, since the greedy constructed an z
has z(E) = f(E), we have that the greedy = € By.
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Possil
11

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wz : x € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

@ Moreover, in either Py, or P} case, since the greedy constructed an z
has (E) = f(E), we have that the greedy = € By.

e We might thus be more interested in max(wx : x € By) when w is an
arbitrary vector.
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Possil
11

Greedy and Py

o In Theorem 12.4.1 (i.e., greedy solution in P;"), we can relax P} to Py
(prime and dual feasibiity still hold as does strong duality). That is, the
proof still shows that « € Py in this relaxed case.

e If Je such that w(e) < 0, however, then max(wz : x € Pf) = oo since
we can let x, — oo, unless we ignore the negative elements or assume
w > 0.

@ Moreover, in either Py, or P} case, since the greedy constructed an z
has (E) = f(E), we have that the greedy = € By.

@ We might thus be more interested in max(wz : € By) when w is an
arbitrary vector.

@ In fact, we will see, in the next section, that the full run of the greedy
algorithm producing z is in fact a vertex of By.
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Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) ry<ax,y€ Pf+> = min (z(A) + f(E\ A): AC E)
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Possible Polytopes
[RRRRAN ]

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) y<z,y € PJT) =min (z(A4)+ f(E\A): ACE)

@ Theorem 12.4.1 states that greedy algorithm maximizes wx over Pf+
for w € R¥ with f being submodular.

F20/47 (pg.39/186)
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Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) cy<uwmy€ P}“) =min (z(A)+ f(E\A): ACE)

@ Theorem 12.4.1 states that greedy algorithm maximizes wz over P;r
for w € R¥ with f being submodular.

@ Above implies that Theorem 12.4.1 can be generalized to over Py and
that greedy solution gives a point in By, even for arbitrary finite w.

F20/47 (pg.40/186)
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Polymatroid extreme points
@ The greedy algorithm does more than solve max(wz : = € Py ). We
can use it to generate vertices of polymatroidal polytopes.
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Polymatroid extreme points
@ The greedy algorithm does more than solve max(wz : = € Py

can use it to generate vertices of polymatroidal polytopes.
o Consider PJZF and also C'JT & {z:2zeR¥ z(e) < f(e),Ve € E}

). We
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Polymatroid extreme points

@ The greedy algorithm does more than solve max(wz : = € Py
can use it to generate vertices of polymatroidal polytopes.

o Consider P/ and also C} def {z:2zeR¥ z(e) < f(e),Ve € E}

© Then ordering A = (a1,...,a)) arbitrarily with A; = {a1,...,a;},
f(A) =3, flai|Ai—1) <>, f(a;), and hence PJ;F C C;r.

). We
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Polymatroid extreme points

@ The greedy algorithm does more than solve max(wz : = € Py
can use it to generate vertices of polymatroidal polytopes.

o Consider P/ and also C} def {z:2zeR¥ z(e) < f(e),Ve € E}

© Then ordering A = (a1,...,a)) arbitrarily with A; = {a1,...,a;},
f(A) =3, flai|Ai—1) <>, f(a;), and hence P;r C CJJ{.

5,

). We
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Polymatroid extreme points

e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).
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Polymatroid extreme points
e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.
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Polymatroid extreme points

e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of Ps. l.e.,

By=P;n{z e RY :2(E) = f(B)} (13.11)
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Polymatroid extreme points

e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of Ps. l.e.,

By=P;n{z e RY :2(E) = f(B)} (13.11)
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Polymatroid extreme points
e Since w € RY is arbitrary, it may be that any e € £/ is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of Ps. l.e.,
By=P;n{z e RY :2(E) = f(B)} (13.11)

@ Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all E dimensions, we'll reach a vertex in By, and if we
advance only in some dimensions, we'll reach a vertex in
Prn{z e RY : z(A) =0 for some A}.
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Polymatroid extreme points

Since w € RY is arbitrary, it may be that any e € E'is max (i.e., is
such that w(e) > w(e) for ¢’ € E\ {e}).

Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

Recall, base polytope defined as the extreme face of P;. le.,
By=P;n{z e RY :2(E) = f(B)} (13.11)

Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all E dimensions, we'll reach a vertex in By, and if we
advance only in some dimensions, we'll reach a vertex in

Prn{z e RY : z(A) =0 for some A}.

@ We formalize this next:
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Extreme Points

Polymatroid extreme points
o Given any arbitrary order of £ = (e1,e9,...,6e5), define
EZ' = (61,62, e ,62').
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Polymatroid extreme points
o Given any arbitrary order of ' = (ej, €2, ..
EZ' = (61,62, e ,62').

., €m), define

@ As before, a vector x is generated by E; using the greedy procedure as

follows
z(e1) = f(E1) = fle1) (13.12)
x(e;) = f(B;) — f(Bj—1) = flej|Bj—1) for2<j<i  (13.13)
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Polymatroid extreme points
o Given any arbitrary order of ' = (ej, €2, ..
EZ' = (61,62, e ,62').

., €m), define

@ As before, a vector x is generated by E; using the greedy procedure as
follows

z(e1) = f(E1) = fle1) (13.12)
z(ej) = f(E;) — f(Ej—1) = f(ej|Ej—1) for2<j<i  (13.13)

@ An extreme point of Py is a point that is not a convex combination of
two other distinct points in P;. Equivalently, an extreme point
corresponds to setting certain inequalities (|E| of them) in the
specification of Py to be equalities, so that there is a unique single
point solution.
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Polymatroid extreme points

Theorem 13.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.
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Polymatroid extreme points

Theorem 13.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.

Proof.
o We already saw that « € P; (Theorem 12.4.1).
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Polymatroid extreme points

Theorem 13.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.

Proof.
o We already saw that « € P; (Theorem 12.4.1).

@ To show that x is an extreme point of P, note that it is the unique
solution of the following system of equations

z(Ej)=f(E;) for1<j<i<m (13.14)
z(e) =0foree E\ E; (13.15)

There are ¢ < m equations and ¢ < m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!
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Polymatroid extreme points
@ As an example, we have 2(FE7) = x(e; fler
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o x(Es) = x(e1) + x(e2) = f(e1,e2) so
z(ez) = f(e1,e2) — x(e1) = fle1,e2) — f(e1) = f(ealer).
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o x(Es) = x(e1) + x(e2) = f(e1,e2) so

z(e2) = f(e1,e2) —x(e1) = f(e1,e2) — fler) = flezler).
o z(E3) =x(e1) + x(e2) + z(e3) = f(e1,e2,e3) so x(e3) =
f(

e1,e2,e3) — x(e2) —z(e1) = f(e1, ez, e3) — f(e1,e2) = f(esler, ea)
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o x(Es) = x(e1) + x(e2) = f(e1,e2) so
z(ez) = f(e1,e2) — x(e1) = fle1,e2) — f(e1) = f(ealer).

o z(E3) = z(e1) +z(e2) + x(e3) = fle, €2, €3) so x(e3) =
fle1,e2,e3) — w(ea) — z(e1) = f(e1, e, e3) — fe1, e2) = f(esler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.
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Polymatroid extreme points
@ As an example, we have z(E7) = z(e1) = f(e1
o z(FEy) = x(e1) + x(e2) = f(e1,e2) so

z(e2) = fler, e2) —x(e1) = fler, e2) — f(er) = flezler).
o z(E3) =x(e1) +x(e2) + x(e3) = f(e1,e2,e3) so x(e3) =

fler, e2,e3) — x(e2) — x(e1) = fler, e2,e3) — f(e1, e2) = flesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

2(E;) = f(E;) for1<j<i (13.16)
2(A) < f(A),YAC E (13.17)
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Polymatroid extreme points
As an example, we have 2(F7) = z(e1) = f(e1
o z(FEy) = x(e1) + x(e2) = f(e1,e2) so

z(e2) = fler, e2) —x(e1) = fler, e2) — f(er) = flezler).
o z(E3) =x(e1) +x(e2) + x(e3) = f(e1,e2,e3) so x(e3) =

fler, e2,e3) — x(e2) — x(e1) = fler, e2,e3) — f(e1, e2) = flesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

x(Ej) = f(Ej) for1<j<i (13.16)
z(A) < f(A),VACE (13.17)
@ Thus, the greedy procedure provides a modular function lower bound

on f that is tight on all points E; in the order. This can be useful in its
own right, as it provides subgradients and subdifferential structure.
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Extreme Points

Polymatroid extreme points
some examples
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Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.
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Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture

10, Theorem 12.3.2)

F21/47 (pg.65/186)
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Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture
10, Theorem 12.3.2)

@ Thus, cl(z) is a tight set.
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Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture

10, Theorem 12.3.2)
@ Thus, cl(z) is a tight set.
o Also, supp(xz) = {e € E: z(e) # 0} is called the support of z.
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Polymatroid extreme points
@ Moreover, we can show that

Corollary 13.5.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:z(e) #0} C B CU(A: z(A) = f(A)) = sat(z), then
x is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and

such sets are closed under union and intersection, as seen in Lecture
10, Theorem 12.3.2)

@ Thus, cl(z) is a tight set.
o Also, supp(xz) = {e € E: z(e) # 0} is called the support of z.

e For arbitrary x, supp(z) is not necessarily tight, but for an extreme
point, supp(x) is.
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Extreme Points

Polymatroid with labeled edge lengths

o Recall
f(el4) = f(A+e)—f(A) e
@ Notice how 2 f(e1|e2) |
submodularity,
f(e|B) < f(e]A) for
A C B, defines the shape
of the polytope.
o In fact, we have E‘\‘
strictness here g -
f(e|B) < f(e|A) for KR
A C B. GJN
@ Also, consider how the | =
greedy algorithm '
proceeds along the edges f(e1) e_l

of the polytope.

EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F22/47 (pg.69/186)



Extreme Poir
1

Polymatroid with labeled edge lengths

o Recall
fle|A) = f(A+e)—f(A)
@ Notice how
submodularity,
F(elB) < f(e|A) for
A C B, defines the shape e
of the polytope.

@ In fact, we have
strictness here
F(elB) < fe|4) for
ACB.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

(‘3[%2)

(‘32
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Intuition: why greedy works with polymatroids

o Given w, the goal is
to find
z = (z(e1), z(e2))
that maximizes
2Tw = z(e1)w(er) +
x(e2)w(eg).

o If w(ez) > w(ey) the
upper extreme point
indicated maximizes
xTw over x € PJZL.

o If w(ez) < w(ep) the
lower extreme point
indicated maximizes
xzTw over x € PJT.

Maximal pointin P
for w in this region.

f(e,le,) )

N
<N
\S\

7
&

459
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

e For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F24/47 (pg.75/186)



Polymatroids, Greedy, and Cardinality Constrained Maximization
[ AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

e For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

@ Thus, when we do monotone submodular maximization we find the
maximum under some constraint.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ AR AR R AR AY]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ f in this case is a model of dispersion, diversity, representativeness, or
information.

e For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

@ Thus, when we do monotone submodular maximization we find the
maximum under some constraint.

@ There is also a sort of dual problem that is often considered together
with max, and those are minimum cover problems (to be defined).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(LA R RN RN NRRRRRRNNE

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.
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The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.
o Let V={1,2,...,m} be the set of integers.
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Polymatroids, Greedy, and Cardinality
(LARRRNARN NN R NRRRARY

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.
o Let V={1,2,...,m} be the set of integers.
o Define f:2V = Zy as f(X) = |U,ex Evl
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Polymatroids, Greedy, and Cardinality Constrai
i [NRRRRRRNRRRNAN

The Set Cover Problem

Let FE be a set and let Ey, Es, ..., E,, be a set of subsets.

Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Z; as f(X) = |Upex Eol

Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).
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Polymatroids, Greedy, and Cardinality Constrains
(LARRRNARN NN R NRRRARY

The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.

o Let V={1,2,...,m} be the set of integers.

o Define f:2V = Zy as f(X) = |U,ex Evl

@ Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X | subject to f(X) > |E| (13.18)
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The Set Cover Problem

o Let F be aset and let Fy, Es, ..., E,, be a set of subsets.

o Let V={1,2,...,m} be the set of integers.

o Define f:2V = Zy as f(X) = |U,ex Evl

@ Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X | subject to f(X) > |E| (13.18)

@ We might wish to use a more general modular function m(X) rather
than cardinality | X|.
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The Set Cover Problem

Let FE be a set and let Ey, Es, ..., E,, be a set of subsets.

Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Z; as f(X) = |Upex Eol

Then f is the set cover function. As we say, f is monotone submodular
(a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X | subject to f(X) > |E| (13.18)

We might wish to use a more general modular function m(X) rather
than cardinality | X|.

This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1 — €)logn unless NP is slightly
superpolynomial (nCUoglogn)),
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What About Non-monotone

@ So even simple case of cardinality constrained submodular function
maximization is NP-hard.

@ This will be true of most submodular max (and related) problems.

@ Hence, the only hope is approximation algorithms. Question is, what is
the tradeoff between running time and approximation quality, and is it
possible to get tight bounds (i.e., an algorithm that achieves an
approximation ratio, and a proof that one can't do better than that
unless some extremely unlike event were to be true, such as P=NP).
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The Max k-Cover Problem

@ Let F beasetandlet E,Es,...,E, be a set of subsets.
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The Max k-Cover Problem

@ Let F beasetandlet E,Es,...,E, be a set of subsets.
o Let V ={1,2,...,m} be the set of integers.
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The Max k-Cover Problem

@ Let F beasetandlet E,Es,...,E, be a set of subsets.
o Let V ={1,2,...,m} be the set of integers.
o Define f:2V = Zy as f(X) = |U,ey Eol
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The Max k-Cover Problem

o
(]
(]
(]

Let E be a set and let Eq, Fs, ..., E,, be a set of subsets.
Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uypey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).
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The Max k-Cover Problem

o
(]
(]
(]

Let E be a set and let Eq, Fs, ..., E,, be a set of subsets.
Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uypey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? l.e., that maximizes f(X) as in:

max f(X) subject to | X| <k (13.19)
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The Max k-Cover Problem

o
(]
(]
(]

Let E be a set and let Eq, Fs, ..., E,, be a set of subsets.
Let V ={1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uypey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? l.e., that maximizes f(X) as in:

max f(X) subject to | X| <k (13.19)

This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1 —1/e).
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Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = ., maxaca Sq,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, , is seen as how how good a is as
acting as a representative for v (which might not be the same as s, 4).
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Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = i, maxaca Sqa,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s, ).
Example:

[V|=1,000, Gauscmps=5, concn=0.7

10 A

-10
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Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = i, maxaca Sqa,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s, ).
Example:

[V|=1,000, Gauscmps=5, concn=0.7, kpp=10

10 A

-10 4
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Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = i, maxaca Sqa,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s, ).

Example:
|V|=1,000, Gauscmps=5, concn=0.7, ke =10
10 1
J
5 A b
o
0 J
9 o
-5 2 3
8
104
-6 -4 =2 0 2 4 6

Prof. Jeff Bilmes EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F28/47 (pg.95/186)



Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERE RN RRNRNRRRRRRRNE

Cardinality Constrained Max. of Facility Location

@ Recall facility location function f(A) = ., maxaca Sq,0 Where 54,
is the similarity between a and v. Alternatively, we can think of this as
a representativeness matrix, where s, ,, is seen as how how good a is as
acting as a representative for v (which might not be the same as s, 4).
Example:

o Middle example is estimate of max cyja<i f(A), right is
uniformly-at-random randomly chosen set of size k, for k = 10.

1V1=1.000, Gauscmps=$, concn=0.7 [VI=1.000, Gauscmps=5. concn=0.7. kr.=10 IVI=1.000, Gauscmps=5, concn=0.7, kno=10

5 5 4 F 5
o
0 o a 0
9 s
-5 -5 2 3 -5
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Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
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Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
@ Given k, goal is: find A* € argmax {f(A) : |A| <k}
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Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
o Given k, goal is: find A* € argmax {f(A) : |[A| <k}
o w.l.o.g., we can find A* € argmax {f(4) : |A| =k}
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Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.

o Given k, goal is: find A* € argmax {f(A) : |A| <k}

o w.l.o.g., we can find A* € argmax {f(4) : |A| =k}

@ An important result by Nemhauser et. al. (1978) states that for
normalized (f(0) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple greedy
algorithm.
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Now we are given an arbitrary polymatroid function f.

Given k, goal is: find A* € argmax {f(A): |A| <k}

w.l.o.g., we can find A* € argmax {f(A) : |A| =k}

An important result by Nemhauser et. al. (1978) states that for
normalized (f(0) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple greedy
algorithm.

Starting with Sy = (), we repeat the following greedy step for
i=0... (k—1):

Siv1 =S U {argmax f(S; U {U})} (13.20)
UEV\Sl‘
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The Greedy Algorithm for Submodular Max

A bit more precisely:
Algorithm 1: The Greedy Algorithm

1 Set Sy + 0;
> for i - 0...|E|—1do
3 Choose v; as follows:

v; € argmax,eyg, f({v}] i) = argmax, ey g, f(Si U{v}) ;
4 Set Si+1 <+~ S; U {Ul} ;
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Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee
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Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).
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Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).

e To approximately find A* € argmax {f(A) : |A| <k}, we repeat the
greedy step until £ =i+ 1 in Algorithm 4:
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Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).

e To approximately find A* € argmax {f(A) : |A| <k}, we repeat the
greedy step until £ =i+ 1 in Algorithm 4:

@ Again, since this generalizes max k-cover, Feige (1998) showed that
this can't be improved. Unless P = N P, no polynomial time algorithm
can do better than (1 — 1/e + €) for any € > 0.
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The Greedy Algorithm: 1 — 1/e intuition.
o At step ¢ < k, greedy chooses v; to maximize f(v]S;).
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The Greedy Algorithm: 1 — 1/e intuition.
o At step ¢ < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(5*).
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The Greedy Algorithm: 1 — 1/e intuition.
o At step 1 < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jv e V\S;i: f(v]|S;) = f(Si+v]S;) > —(OPT — f(S;)) (13.21)

| =
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The Greedy Algorithm: 1 — 1/e intuition.
o At step 1 < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

To e V\ S : F0ISi) = £(S; +v]S:) > %(OPT SRSy (13.21)

L
e os . » Equation (13.30) will show

o (1-7) that Equation (13.21) =

OPT — f(Sit1)

< (1 —1/k)(OPT — £(5i))

— OPT — £(S))

< (1-1/k)*OPT

N < 1/eOPT

= OPT(1—1/e) < f(Sk)

2 3 4 5 6 7 8 Skw
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The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(v]S;).

o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e V\ Si: F0lS)) = £(Si +0|Si) > %(OPT C S (1321)

s\ (1= (1 —1/k)%) < £(S,)/OPT |Equation (13.30) will show
(1=t [EV) < 151/ that Equation (13.21) =

OPT — £(Si+1)
< (1-1/k)(OPT — f(S)))
= OPT — f(S})
< (1-1/k)*OPT
| <1/eOPT
L-1/e = OPT(1—1/e) < f(Sk)
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Cardinality Constrained Polymatroid Max Theorem

aximization

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define

{Si};>o to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € 7y, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).
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Cardinality Constrained Polymatroid Max Theorem

aximization

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define

{Si};>o to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € 7y, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
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Cardinality Constrained Polymatroid Max Theorem

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € Z, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ / is size of set we are choosing (i.e., we choose S; from greedy chain).
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Cardinality Constrained Polymatroid Max Theorem

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define

{Si};>o to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € 7y, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ ( is size of set we are choosing (i.e., we choose S; from greedy chain).

@ Bound is how well does S; (of size ¢) do relative to S*, the optimal set of
size k.
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Cardinality Constrained Polymatroid Max Theorem

Theorem 13.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R_, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (13.20)).
Then for all k,¢ € Z, we have:

f(Se) = (1 e_g/k)sg};lwgkf(S) (13.22)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ ( is size of set we are choosing (i.e., we choose S; from greedy chain).

e Bound is how well does Sy (of size ¢) do relative to S*, the optimal set of
size k.

o Intuitively, bound should get worse when ¢ < k and get better when ¢ > k.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

@ w.l.o.g. assume |S*| = k.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

o w.l.o.g. assume |S*| = k.

@ Order S* = (v],v3,...,v}) arbitrarily.

F34/47 (pg.121/186)
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

@ w.l.o.g. assume |S*| = k.

o Order S* = (v}, v3,...,v}) arbitrarily.
@ Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.6.2.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

Set S* € argmax {f(95) : [5] < k}

w.l.o.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.

Then the following inequalities (on the next slide) follow:
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F35/47 (pg.124/186)



Polymatroids, Greedy, and Cardinality Constrains
(RERRRNANNNL FRRRRRRRY

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

e For all : < ¢, we have

f(5%)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(8%) < f(STUSi)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(8%) < F(5TUS:) = f(Si) + f(57[50) (13.23)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

F(S%) < f(S*US:) = f(Si) + f(S*ISs) (13.23)
k

= f(S) +>_ f@31Siu {vf,v3,..., 031 }) (13.24)
J=1
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(S%) < f(STUS:) = f(Si) + f(S™[Ss) (13.23)
k
= £(S) + Y F@;1SiU {vf,25,...,v5_1}) (13.24)
j=1
< f(S)+ ) f(olS) (13.25)
VES*
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(87) < f(STUS:) = £(Si) + F(57]5)) (13.23)
= £(S;) + zk:lf(vﬂsi U {v},v3,...,v51}) (13.24)
< f(S) + ES:* f(v]Si) (13.25)
< f(S) + i: f(vit1]Ss)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

F(S*) < £(S*US) = £(Si) + £(S7|S3) (13.23)
(S;) + zk:lf(vﬂsi U {v},v3,...,v51}) (13.24)
+ i £(0]Sy) (13.25)
;: Fwisa]Ss) = F(S) + D f(SitalSi)  (13.26)
ves” ves*
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have

f(87) < f(STUS:) = £(Si) + F(57]5)) (13.23)
= £(S;) + zk:lf(vﬂsi U {v},v3,...,v51}) (13.24)
< f(S) + ES:* f(v]S:) (13.25)
< £(S5) +UEZ Foir]Si) = F(Si) + Y f(SiralSi) (1326
= f(Si) + ZZ}HH&) - (13.27)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o For all ¢ < ¢, we have
f(87) < fF(STUS:) = f(Si) + £(57[S:) (13.23)
k
= £(S) + Y F@;1SiU {vf,25,...,v5_1}) (13.24)
j=1
< f(S)+ ) f(vlS) (13.25)
vES*
< F(S) + Y fwinalSi) = f(S) + > f(SinalSi)  (13.26)
veS* vES*
= f(8i) + kf(Sit1]Si) (13.27)
@ Therefore, we have Equation 13.21, i.e.,:
f(S*) — f(Si) < kf(Sit1]S:) = k(f(Six1) — f(Si)) (13.28)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

@ Define gap 0; = f(S*) — f(Si), 50 6; — 841 = f(Siv1) — £(Sy),
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 841 = f(Siz1) — £(S;), giving
8 < k(8 — div1) (13.29)

or
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap &; £ f(S*) — f(Si), s0 & — Six1 = f(Si+1) — f(S:), giving
8i < k(i — Si1) (13.29)
or

Sir1 < (1— )5 (13.30)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 81 = f(Siv1) — f(S;), giving

0; < k(0; — diy1) (13.29)
or .
div1 < (1 — %)62- (13.30)
@ The relationship between §y and dy is then
- 1.
n<(1- Z) 0o (13.31)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 81 = f(Siv1) — f(S;), giving
8; < k(6; — 6;41) (13.29)

or

Sia1 < (1— %)&- (13.30)

@ The relationship between &g and §, is then

& < (1-— %)% (13.31)

e Now, dp = f(S*) — f(0) < f(S*) since f > 0.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 81 = f(Siv1) — f(S;), giving
8; < k(6; — 6;41) (13.29)

or

Sia1 < (1— %)&- (13.30)

@ The relationship between &g and §, is then

& < (1-— %)% (13.31)

e Now, dg = f(S5*) — f(0) < f(S*) since f > 0.

@ Also, by variational bound 1 — 2 < e~ * for z € R, we have

50 < (1— %)@50 < etk F(S7) (13.32)

EES563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F36/47 (pg.140/186)




Pol
[RERRRNANNARNR ARRRRRRRNE

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) > (1—e %) f(57) (13.33)

]
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) > (1—e %) f(57) (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S}, is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) > (1—e %) f(57) (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

@ What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e /R (57 (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) =~ 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7 Set 0.95 = (1 — e~ /%), which gives
¢=]-kIn(1—0.95)] = 4k.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e /R (57 (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k? Set 0.95 = (1 — e~%/*), which gives
¢ = [—kIn(1 — 0.95)] = 4k. And [ In(1 — 0.999)] = 7.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e /R (57 (13.33)

]

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) ~ 0.6321f(S™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k? Set 0.95 = (1 — e~t/F), which gives
¢=]-kIn(1 —0.95)] =4k. And [—In(1 —0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.
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Greedy running time

@ Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

Bilmes EE563/Spring 2020/Submodularity - Lecture 13 - Nov 16th, 2020 F38/47 (pg.147/186)



Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRNANNARNAR ARRRRNRNE

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.
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Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.
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Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy”), and runs much faster
while still producing same answer.
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Greedy running time

Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy"), and runs much faster
while still producing same answer.

We describe it next:
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, + f(v|S;) in sorted priority queue.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.
@ Once we choose a max v, then set S;11 + S; + v.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

@ Once we choose a max v, then set S;11 + S; + v.

e For v ¢ S;11 we have f(v]|Si+1) < f(v|S;) by submodularity.
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Minoux's Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 <+ S; + v.

For v ¢ Siy1 we have f(v]Sit1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/[Si+1) > «, for all v # v/, then
since

f('Si+1) > aw = f(v]Si) > f(v]Si41) (13.34)

we have the true max, and we need not re-evaluate gains of other
elements again.
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Minoux's Accelerated Greedy for Submodular Functions

e 6 6 o

At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, < f(v]S;) in sorted priority queue.

Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 <+ S; + v.

For v ¢ Siy1 we have f(v]Sit1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/[Si+1) > a, for all v # v/, then
since

f'[Sit1) = aw = f(v|S) = f(v]Sisa) (13.34)

we have the true max, and we need not re-evaluate gains of other
elements again.

Strategy is: find the argmax, ey g,,, @, and then compute the real
f('|S;i+1). If it is greater than all other «,'s then that's the next
greedy step. Otherwise, replace o, with its real value, resort
(O(logn)), and repeat.
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but

accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

o Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for "big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(nlogn + k), so this limits
the speedup.

o Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for "big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

@ Very good if there are many elements v with f(v) < f(u|V \ {u}) for
enough u elements (gain of v is evaluated only once).
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Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
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Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, a)) (13.35)
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Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)

e Pop the item (v, ) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
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Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)
o Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
o Query the value of the max item in the queue

max(Q) € R (13.37)
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Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)
o Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
o Query the value of the max item in the queue

max(Q) € R (13.37)

@ On next slide, we call a popped item “fresh” if the value (v, a) popped has
the correct value a = f(v]S;). Use extra “bit" to store this info
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Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, @)) (13.35)

o Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.36)
o Query the value of the max item in the queue

max(Q) € R (13.37)

@ On next slide, we call a popped item “fresh” if the value (v, ) popped has
the correct value o = f(v]S;). Use extra “bit" to store this info

o If a popped item is fresh, it must be the maximum — this can happen if, at
given iteration, v was first popped and neither fresh nor maximum so placed
back in the queue, and it then percolates back to the top at which point it
is fresh — thereby avoid extra queue check.
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Algorithm 2: Minoux's Accelerated Greedy Algorithm

Set Sp + 0 ; i < 0 ; Initialize priority queue Q ;
for v € F do

| INSERT(Q, f(v))
repeat

(v, @) <= pop(Q) ;
if a not “fresh” then
L recompute o < f(v|S;)

if (popped « in line 5 was “fresh”) OR (ov > max(Q®)) then
Set Si+1 «— S; U {’U} X
14— 1+1;

else

L insert(Q, (v, a))

until i = |E|;
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(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
Nak

where « is a “cover’ requirement.
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(Minimum) Submodular Set Cover

e Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
scv
where « is a “cover’ requirement.

e Normally take o = f(V) but defining f'(A) = min {f(A), a} we can
take any «. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f(V) (13.39)
Scv
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(Minimum) Submodular Set Cover

e Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
Nak

where « is a “cover’ requirement.

o Normally take o = (V) but defining f/(A) = min {f(A), a} we can
take any . Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f/(V) (13.39)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
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(Minimum) Submodular Set Cover

e Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (13.38)
scv
where « is a “cover’ requirement.

o Normally take o = (V) but defining f/(A) = min {f(A), a} we can
take any . Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f/(V) (13.39)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Greedy Algorithm: Pick the first chain item S; chosen by
aforementioned greedy algorithm such that f(S;) > « and output that
as solution.
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(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S© be greedy solution, then

1561 < |71 H (max £ ({5})) = 570og, (max f({s}))) ~ (13.40)

where H is the harmonic function, i.e., H(d) = Zf’zl(l/i).
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(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

1SC1 < |71 H (max £ ({5})) = 570og, (max f({s}))) ~ (13.40)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/z’).

@ If f is not integral value, then bounds we get are of the form:

(V) )
fOV) = f(Sr-1)

wehre St is the final greedy solution that occurs at step 7.

156 < \S*\(l +log, (13.41)
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(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

1SC1 < |71 H (max £ ({5})) = 570og, (max f({s}))) ~ (13.40)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/z’).
o If f is not integral value, then bounds we get are of the form:

(V)
SO < 18%(1 + log, 13.41
57 < |< & f(V)—f(ST—l)) ( )
wehre St is the final greedy solution that occurs at step T

@ Set cover is hard to approximate with a factor better than (1 — ¢€) log «,
where « is the desired cover constraint.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

@ We discussed cardinality constraint
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

e Simple greedy algorithm gets 1 — e ~*/* approximation, where & is size

of optimal set we compare against, and £ is size of set greedy algorithm

chooses.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover

problem.
—0/k

Simple greedy algorithm gets 1 — e approximation, where k is size
of optimal set we compare against, and £ is size of set greedy algorithm
chooses.

@ Submodular cover: min. |S|s.t. f(S) > a.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e—¢/% approximation, where k is size

of optimal set we compare against, and £ is size of set greedy algorithm
chooses.

Submodular cover: min. |S| s.t. f(.5) > a.

Minoux's accelerated greedy trick.
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The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(v]S;).

o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e V\ Si: F0lS)) = £(Si +0|Si) > %(OPT C S (1321)

s\ (1= (1 —1/K)%) < £(S,)/OPT |Equation (13.30) will show
(=4 /EN) < 1S/ that Equation (13.21) =

OPT — f(Si+1)
< (1-1/k)(OPT — f(S)))
= OPT — £(S)
< (1-1/k)*OPT
, < 1/eOPT
L-1/e = OPT(1—1/e) < f(Sk)

1 2 3 4 5 6 7 8 skm
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Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1 /e guarantee?
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Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:
f(OPT) — f(Ai)

p (13.42)

E[f(ai1|A:)] >

where A; = (a1, az,...,a;) are the first ¢ elements chosen by the
strategy.
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