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Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.

Wednesday, no in person lecture. Will be posted on youtube during a
makeup class sometime later this quarter (i.e., next time we meet is
one week from today).
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings, conditioning, hardness

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Logistics Review

Review

Message passing on junction tree nodes, definition of messages, divide
out old, multiply in new.

Messages in both directions.

For general tree, we have MPP like in 1-tree case.

Suff condition: locally consistent.

Thm: MPP renders cliques locally consistent between pairs.

In JT (r.i.p.) locally consistent ensures globally consistent.

In JT (r.i.p.), running MPP gives marginals.

Commutative semiring - other algebraic objects can be used.

Time and memory complexity is O(Nrω+1) where ω is the tree-width.
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Logistics Review

Forward/Backward Messages Along Cluster Tree Edge

Summarizing, forward and backwards messages proceed as follows:

U WS

ψU ψWφS
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U ψ∗

W
φ∗
S

ψ∗∗
U ψ∗∗
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φ∗∗
S

co
py
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∗
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Recall: S = U ∩W , and we initialize ψU and ψW with factors that are
contained in U or W .
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Less simple example: general tree

How to ensure any local consistency we achieved not ruined by later
message passing steps?

U WS

C1

C2

D1

D2

E.g. once we send message U → W and then W → U , we know W and
U are consistent. If we next send messages W → D1 and D1 → W , then
W & D1 are consistent, but U & W might no longer be consistent.

Basic problem, future messages might “mess up” achieved local marginal
consistency.
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Ensuring consistency over all marginals

We use same scheme we saw for 1-trees. I.e., recall from earlier lectures:

Definition 9.3.1 (Message passing protocol)

A clique can send a message to a neighboring cluster in a JT only after it
has received messages from all of its other neighbors.

ok ok
ok

error

ok

ok
error

error

We already know collect/distribute evidence is a simple algorithm that
obeys MPP (designate root, and do bottom up messages and then
top-down messages). Does this achieve consistency?
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

MPP renders cliques locally consistent

Theorem 9.3.2

The message passing protocol renders the cliques locally consistent
between all pairs of connected cliques in the tree.

Proof.

Suppose W has received a message from all other neighbors, and is
sending a message to U . There are two possible cases: Case A: U already
sent a message to W before, so U already received message from all
other neighbors, & message renders the two consistent since neither
receives any more messages.

U WS

new
message
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

MPP renders cliques locally consistent

proof continued.

Case B: U has not yet sent a message to W , so W sends to U & waits.
Later, U will have received message from all other neighbors & will send
message back to W , but this will contain appropriate update from W .

U WS

current
message

later
messages

Another way we can see it: If we abide by MPP, the potential functions
will just be scaled, and thanks to commutativity of multiplication, we’ll be
back at the same case that we were before with two cliques.
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

MPP renders cliques locally consistent

For a general Tree, when we send messages abiding by MPP, we get:

Theorem 9.3.3

Sending all messages along a cluster tree following message passing
protocol renders the cliques locally consistent between all pairs of
connected cliques in the tree of clusters.

Note, we need only that it is a cluster tree. Result holds even if r.i.p.
not satisfied!

But we want more than this, we want to ensure that potentials over
any two clusters, with common variables, even if not directly
connected, agree on their common variables.
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Local implies global consistency

Theorem 9.3.4

In any junction tree of clusters, any configuration of cluster functions that
are locally (neighbor) consistent will be globally consistent. I.e., for any
clusters pair C1, C2 with C1 ∩ C2 #= ∅ we have:

∑

xC1\C2

ψC1(xC1) = ψC1(xC1∩C2) = ψC2(xC1∩C2) =
∑

xC2\C1

ψC2(xC2)

(9.1)
for all values xC1∩C2 .

Proof.

Local consistency implies that for neighboring C1, C2, the above equality
holds. For non-neighboring C1, C2, cluster intersection property (r.i.p.)
ensures that intersection C1 ∩ C2 exists along unique path between C1

and C2. Each edge along that path is locally consistent. By transitivity,
each distance-2 pair is consistent. Repeating this argument for any path
length gives the result.
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Consistency gives Marginals

Theorem 9.3.5

Given junction tree of clusters C and separators S, and given above
initialization, after all messages are sent and obey MPP (what we call
“message passing”, or just MP), cluster and separator potentials will
reach the marginal state, i.e.,:

ψC(xC) = p(xC) and φS(xS) = p(xS) (9.2)

Proof.

Separators are marginalizations of clusters, so ensuring clusters are
marginals is sufficient for separators as marginals.
Induction: base case: One cluster is a marginal. Two clusters reach
marginals (we verified above).
Assume true for i− 1 clusters marginals, and show for i. Given JT with
clusters C1, . . . , Ci−1 and add new cluster Ci connecting to Cj and
obeying r.i.p. We have separator Si = Ci ∩ Cj .
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Consistency gives Marginals

... proof continued.

C j C iS i

Si = (C1 ∪ C2 ∪ · · · ∪ Ci−1) ∩ Ci

= Cj ∩ Ci

Hi−1

In current case, we may assume V = Hi and p(x) = p(xV ), so that

p(xV ) = p(xCi\Si
, xSi , xV \Ci

) = p(xCi\Si
|xSi)p(xSi∪(V \Ci)) (9.3)

= p(xCi\Si
|xSi)p(xHi−1) (9.4)

due to conditional independence property of sepator S

XCi\Si
⊥⊥XV \Ci

|XS (9.5)
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Consistency gives Marginals

... proof continued.

We have the representation of p(xV ) = p(xHi) as

p(xV ) =

∏
C∈C ψC(xC)∏

S∈S φS(xS)d(S)−1
(9.6)

When we run message passsing (MP) on a junction tree with i nodes
coresponding to the above, we have both local and global consistency.
Hence, the separator Si is a marginal of the form:

φSi(xSi) =
∑

xCj\Si

ψCj (xCj ) (9.7)
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Consistency gives Marginals

... proof continued.

Assume MP has been run on a JT with i nodes. Then, we have

p(xSi∪(V \Ci
)) =

∑

xCi\Si

p(xV ) =
∑

xCi\Si

∏
C∈C ψC(xC)∏

S∈S φS(xS)d(S)−1
(9.8)

=
∑

xCi\Si

ψCi(xCi)
∏

C %=Ci
ψC(xC)

φSi(xSi)
∏

S∈S φS(xS)d
′(S)−1

(9.9)

=

∑
xCi\Si

ψCi(xCi)

φSi(xSi)

∏
C %=Ci

ψC(xC)∏
S∈S φS(xS)d

′(S)−1
(9.10)

=

∏
C %=Ci

ψC(xC)∏
S∈S φS(xS)d

′(S)−1
(9.11)

since
∑

xCi\Si
ψCi(xCi) = φSi(xSi) and since the only cluster containing

Ci \ Si is Ci. d
′(S) = d(S) except at Si where one less.
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Consistency gives Marginals

... proof continued.

MP on JT with i nodes is a valid MP on a JT with i− 1 nodes.
But with only i− 1 cliques, after message passing is performed, JT will
have cluster functions as marginals (by induction), which gives us
marginals ψCj (xCj ) = p(xCj ) for j < i. In other words, we have that:

p(xSi∪(V \Ci
)) =

∏
C %=Ci

ψC(xC)∏
S∈S φS(xS)d

′(S)−1
=

∏
C %=Ci

pC(xC)∏
S∈S pS(xS)d

′(S)−1
(9.12)

We need to show that ψCi(xCi) is also a valid marginal.

p(xCi\Si
|xSi) =

p(xV )

p(xSi∪(V \Ci))
=

∏
C∈C ψC(xC)∏

S∈S φS(xS)d(S)−1

∏
C $=Ci

ψC(xC)
∏

S∈S φS(xS)d
′(S)−1

, (9.13)

where the first equality follows from Equation (9.4).
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Consistency gives Marginals

... proof continued.

which yields

p(xCi\Si
|xSi) =

ψCi(xCi)

φSi(xSi)
=

ψCi(xCi)

p(xSi)
(9.14)

this then gives that:

ψCi(xCi) = p(xCi\Si
|xSi)p(xSi) = p(xCi) (9.15)

a marginal as desired.
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Redundant Messages

Once all messages have been sent according to MPP, what would
happen if we send more messages?

1-tree formulation:

µi→j(xj) =
∑

xi

ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi) (9.16)

Junction-tree formulation: marginalize and rescale

φnew
S =

∑

U\S

ψU and then ψnew
W =

φnew
S

φold
S

ψW (9.17)

In either case, extra messages would not change functions - they’re
redundant, joint “state” has “converged” since φnew

S = φold
S .

all messages could run in parallel, convergence achieved once we’ve
done D parallel steps where D is tree diameter.
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Distributive Law and Other Objects

Only one property needed for this algorithm to work, namely
distributive law ab+ ac = a(b+ c) along with factorization.

Distributive law allows sending sums inside of factors.

Other objects have distribute law, and in general any set of objects
that is a commutative semiring will work as well
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Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Commutative Semirings

Definition 9.4.1

A commutative semiring is a set K with two binary operators “+” and
“·” having three axioms, for all a, b, c ∈ K.
S1: “+” is commutative (a+ b) = (b+ a) and associative
(a+ b) + c = a+ (b+ c), and ∃ additive identity called “0” such that
k + 0 = k for all k ∈ K. I.e., (K,+) is a commutative monoid.
S2: “·” is also associative, commutative, and ∃ multiplicative identity
called “1” s.t. k · 1 = k for all k ∈ K ((K, ·) is also a comm. monoid).
S3: distributive law holds: (a · b) + (a · c) = a(b+ c) for all a, b, c ∈ K.

This, and factorization w.r.t. a graph G is all that is necessary for the
above message passing algorithms to work. There are many commutative
semirings.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 9 - Oct 27th, 2014 F20/53 (pg.29/120)



Inference on JTs Semirings Recap Conditioning Hardness Approximation Refs

Commutative Semirings

Additive inverse need not exist. If additive inverse exists, then we get
a commutative ring (”semi-ring” since we need not have additive
inverse). Note, in algebra texts, a ring often doesn’t require
multiplicative identity, but we assume it exists here.

Above definition does not mention 0 · k = 0, but this follows from
above properties since k · k = k(k + 0) = k · k + k · 0 so that k0 must
also be an additive identity, meaning that k · 0 = 0. This is useful with
evidence witih delta functions, where the delta functions multiplies by
zero anything that does not obide by the evidence value.

Same message passing protocol and message passing scheme on a
junction tree will work to ensure that all clusters reach a state where
they are the appropriate “marginals”

Marginals in this case dependent on ring.
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Other Semi-Rings

Here, A denotes arbitrary commutative semiring, S is arbitrary finite set,
Λ is arbitrary distributed lattice.

K “(+, 0)” “(·, 1)” short name

1 A (+, 0) (·, 1) semiring

2 A[x] (+, 0) (·, 1) polynomial

3 A[x, y, . . . ] (+, 0) (·, 1) polynomial

4 [0,∞) (+, 0) (·, 1) sum-product

5 (0,∞] (min,∞) (·, 1) min-product

6 [0,∞) (max, 0) (·, 1) max-product

7 [0,∞)+ (kmax, 0) (·, 1) k-max-product

8 (−∞,∞] (min,∞) (+, 0) min-sum

9 [−∞,∞) (max,−∞) (+, 0) max-sum

10 {0, 1} (OR, 0) (AND, 1) Boolean

11 2S (∪, ∅) (∩, S) Set

12 Λ (∨, 0) (∧, 1) Lattice

13 Λ (∧, 1) (∨, 0) Lattice
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Example: Viterbi/MPE

Most-probable explanation (e.g., Viterbi assignment) is just the
max-product ring.

Here, we wish to compute

argmax
xV \E

p(xV \E , x̄E) (9.18)

After message passing with the max-product ring on a junction tree,
cluster functions will reach the “max-marginal” state, where we have:

ψC(xC) = max
xV \C

p(xC , xV \C) (9.19)

What about a “k-max” operation (i.e., finding the k highest scoring
assignments to the variables?) How would we define the operators
“+” and “·”?
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Recap

Message passing on junction tree nodes, definition of messages, divide
out old, multiply in new.

Messages in both directions.

For general tree, we have MPP like in 1-tree case.

Suff condition: locally consistent.

Thm: MPP renders cliques locally consistent between pairs.

In JT (r.i.p.) locally consistent ensures globally consistent.

In JT (r.i.p.), running MPP gives marginals.

Commutative semiring - other algebraic objects can be used.

Time and memory complexity is O(Nrω+1) where ω is the tree-width.
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Forward/Backward Messages Along Cluster Tree Edge

Summarizing, forward and backwards messages proceed as follows:

U WS

ψU ψWφS

ψ∗
U ψ∗

W
φ∗
S

ψ∗∗
U ψ∗∗

W
φ∗∗
S

co
py

copy

multiply

marginali
ze

marginalize

divid
e

multiply

multiply

divide

multiplyφ
∗
S
=
∑

U\S

ψU

φ∗∗
∗S =

∑

W \S
ψW

ψ∗
W =

φ∗
S

φS
ψW

ψ∗∗
W =

φ∗∗
S

φS
ψW∗
∗

=1

Recall: S = U ∩W , and we initialize ψU and ψW with factors that are
contained in U or W .
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Recap

Message passing on junction tree nodes, definition of messages, divide
out old, multiply in new.

Messages in both directions.

For general tree, we have MPP like in 1-tree case.

Suff condition: locally consistent.

Thm: MPP renders cliques locally consistent between pairs.

In JT (r.i.p.) locally consistent ensures globally consistent.

In JT (r.i.p.), running MPP gives marginals.

Commutative semiring - other algebraic objects can be used.

Time and memory complexity is O(Nrω+1) where ω is the tree-width.
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Complexity of Inference

Let ω be the tree-width of the junction tree (size of largest cluster
minus 1).

Then cost is O(Nrω+1), exponential in the tree-width.

Finding the smallest tree-width JT cover is NP-complete as we have
seen. Memory: Storing cluster tables, will also need O(Nrω+1)
memory to store a table with ω + 1 variables.

What if space complexity is most important ? We can compute p(x̄E)
in only O(N) space as follows:

1 α = 0 ; /* α is our accumulator */
2 forall the xV \E ∈ DXV \E do

3 α ← α+ p(x̄E , xV \E)

But problem here is complexity is O(rN )
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Complexity of Inference

What if (online) time complexity was most precious, with ∞ space
available? We can pre-compute p(x̄E) for all possible values of p(x̄E)
and all sets E, and do a table lookup O(N) time (not counting
pre-compute time as that is amortized over many queries), and O(rN )
space.

So we can do inference either with:

1 O(Nrω+1) time and space (via JT),

2 O(rN ) time and O(N) space, or

3 O(N) time and O(rN ) space,

Are there any other useful/practical points in between?
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Conditioning

Other ways of doing inference in discrete networks, not based (as
much) on graph theoretic properties — these methods are based on
methods used in SAT solvers (DPLL) and CSP (constraint satisfaction
problem) solvers (such as map-coloring). These are all search based
methods, and are in one form or another, a form of conditioning.

When we condition on a set of variables, we may treat them as
observed.

During a nested loop over variable values, in an inner loop, the
relative outer loop variables are essentially “conditioned on” and can
be treated as if they are observed at their current values from the
perspective of the inner loops.
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Conditioning

Observed values can cut a network, and induce new independence and
factorization properties that were not there in general (when the
variables were hidden).

Sometimes such factorizations exist only for certain (but not all)
variable values. Therefore, different sets of inner loops can be
performed (even at the same loop nest depth) based on the set of
variable values (and consequent value-specific factorizations) that are
currently active.

Simplest example of this is Pearl’s cutset conditioning.
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Conditioning

Recall, general problem is to compute p(x̄E) as:

p(x̄E) =
∑

xV \E

p(xV \E , x̄E) (9.20)

If graph is a 1-tree, we can do this in O(Nr2), on 1-tree G = (V,E)
with N = |V |. If graph is not a 1-tree, we could “condition” on a set
of nodes such that G′, the remainder non-conditioned-on set, is a
1-tree.

I.e., G′ = (V \ C,E′) where E′ = E ∩ (V \ C × V \ C) is an induced
subgraph, and C is chosen so that G′ is a 1-tree.
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Conditioning

If C ⊂ V (so that xC) is observed, then G′ is a 1-tree from a state
space perspective, solvable in O(Nr2) again.

If xC is not observed, we can consider all values xC ∈ DXC
in turn.

1 foreach xC ∈ DXC
do

2 consider xC to be observed, x̄C
3 compute p(x̄C∪E) using message passing on tree G′ = (V \ C,E′) ;

/* doable in O(Nr2) */
4 Accumulate α = α+ p(x̄C∪E)

When done, result will be p(x̄E) as desired.
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Conditioning

Such a set C is called a cycle-cutset, since it is a cutset that cuts all
cycles (so yields a forest or tree). Overall cost of this is O(r|C|Nr2).

x1

x6

x5

x9

xbxa

x2

x3

x4

x8

x7

x1

x6

x5

x9

xbxa

x2

x3

x4

x8

x7

Cutset condition cost O(rNr2) and elimination on optimal junction
tree cost O(Nr3)

What have we gained here? Memory: Cutset conditioning case (left)
is now O(r2) memory, while original case (right) is O(r3).
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Time-Space Tradeoffs

We already have O(Nrw+1) time/space complexity solution with the
junction-tree or elimination (assuming we can optimally triangulate).

other algorithms exist as well, fall along the time-space tradeoff
frontier. The two extremes we’ve seen perhaps are not useful.

But other algorithms exist that trade-off between time and space
complexity. The above cycle-cutset example exhibited a point along
that trade-off: It was neither O(N) time nor memory but did reduce
memory with the same time cost.

Boundary between what is possible along the time/space complexity
tradeoff.

Achievable region: shows where it is possible to compute exact
inference.

Unachievable region: where not possible to compute exact inference,
where approximate inference lies.
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Time-Space Tradeoffs
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Recursive Conditioning

recursive conditioning generalizes cutset conditioning in that it does
decomposition like before but might not be a cycle cutset, and then
recursively applies the same idea.

It is possible with recursive conditioning to achieve a variety of points
on the time-space tradeoff achievable frontier (as we will see). In each
case, there is at some point an implicit triangulation.

Many ways to formulate it, here is a simple approach that uses
notation similar to what we’ve been using. Consider nodes of
G = (V,E) a JT C1, C2, . . . , CM with Ci ∈ C, ordered arbitrarily.
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Recursive Conditioning: naive approach

Input: Dist. p ∈ F(G,M(f)), JT nodes (clusters) C1:M , evidence
Output: Value of p(x̄E)

1 α ← 0 ;
2 for xC1 ∈ DXC1

do

3 for xC2\C1
∈ DXC2\C1

do

4 for xC3\(C1∪C2) ∈ DXC3\(C1∪C2)
do

5 for . . . do
6 for xCN\C1:N−1

∈ DXCN\C1:N−1
do

7 α+ = p(x)

This is O(N) space and O(rN ) time (same as linear space idea we saw
before), so again not useful since time complexity is exorbitant.
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Recursive Conditioning with good order

Example: 3-cluster version

1 for xC1 ∈ DXC1
do

2 for xC2\C1
∈ DXC2\C1

do

3 α2|1 += p(xC1∪C2)

4 for xC3\C1
∈ DXC3\C1

do

5 α3|1 += p(xC1∪C3)

6 α1 += α2|1α3|1

c1

c2 c3

Outer loop costs O(|DXC1
|). Inner loops each cost O(|DXC2\C1

|)
(assuming C1 and C2 are same size).

Total cost is O(|DXC1∪C2
|), better than O(|DXC1∪C2∪C3

|) = O(rN )

Memory: still linear.
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Recursive Conditioning with good order

We can order the cliques in a different way though. Note that this is
not necessarily a junction tree, although it could easily be. Rather, this
is more akin to the decomposition trees we saw earlier in the course.

Depth of tree is d = O(logN)

c1

c2 c3 c4

c5 c6 c7 c8 c9 c10
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Recursive Conditioning with good order

1 for xC1 ∈ DXC1
do

2 for xC2\C1
∈ DXC2\C1

do

3 for xC5\C1,2
∈ DXC5\C1,2

do

4 α5|1,2 += p(xC1,2,5)

5 for xC6\C1,2
∈ DXC6\C1,2

do

6 α6|1,2 += p(xC1,2,6)

7 for xC7\C1,2
∈ DXC7\C1,2

do

8 α7|1,2 += p(xC1,2,7)

9 α2|1 += α5|1,2α6|1,2α7|1,2

10 Include lines 1-12 here

1 Lines 1-12, include at line 10 above

2 for xC3\C1
∈ DXC3\C1

do

3 for xC8\C1,3
∈ DXC8\C1,3

do

4 α8|1,3 += p(xC1,3,8)

5 α3|1 += α8|1,3

6 for xC4\C1
∈ DXC4\C1

do

7 for xC9\C1,4
∈ DXC9\C1,4

do

8 α9|1,4 += p(xC1,4,9)

9 for xC10\C1,4
∈ DXC10\C1,4

do

10 α10|1,4 += p(xC1,4,10)

11 α4|1 += α9|1,4α10|1,4

12 α1 += α2|1α3|1α4|1
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Recursive Conditioning with good order

When we’re all done, α1 = p(x̄E) (again, assuming evidence is treated
as multiplies by δ(x, x̄)).

How much space is needed? O(N) still since in worst case, depth of
the tree is number of maxcliques (which is O(N)).

How much time? Depends on number of α-accumulates, or number of
leaf-nodes in the tree. Depth is d = logN . Each clique gets run about
rw+1 times, and runs the nodes below it about that many times.

We get a time complexity of:

rw+1rw+1 . . . rw+1
︸ ︷︷ ︸

d times

= r(w+1) logN (9.21)
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Recursive Conditioning with good order

How to get other points on frontier?

Note that in previous algorithm, for each
set of variable values in intersection set
(square boxes), we were solving the
same sub-problem multiple times.

We can cache the solutions for each
value, at the cost of more memory. If
everything is cached, space complexity
will increase to O(Nrw) and time
complexity will decrease to O(Nrw)
(like the JT case).

c1

c2 c3

we need not solve each

entry in this intersection set

multiple times. Instead, we can

cache values. Total number of entries

is O(Nrw)
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Value-specific Caching

Many algorithms use value specific caching. I.e., depending on the
values of some variables currently conditioned on, we might actually
get an entirely different set of maxcliques (or set of sets of
maxcliques) below. Each should ideally be treated differently.

We can construct and memoize the dependency sets, the set of
variables and their values that induce particular sub-computations.
Each sub-computation might be a computation of a sum, or it might
even be a computation of zero (called a no-good, or a conflict). Each
of these can be memoized and re-used whenever the dependency set
becomes active again.

the order of the cliques and the order of the variables in the cliques
might dynamically change depending on previously instantiated values.
We might not even use cliques at all, and do this at the granularity of
variables and their values.
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Value-Elimination

This is the basis of the value elimination algorithm (Bacchus-2003), a
general procedure for probabilistic inference. It gets much of its
inspiration from the techniques used to produce fast SAT and
constraint satisfaction problem (CSP) engines.

This is especially useful if we have many zeros (sparsity) in the
distribution and/or if there is much value specific independence.
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Hardness

Even with conditioning, search, etc. Complexity of exact inference is
always exponential in at least the tree-width of any covering graph.

Indeed, finding the best covering triangulated graph (with minimal
tree-width) is an NP-complete optimization.

Even worse, inference itself is NP-complete. There are some graphs
that can’t be solved in polynomial time unless P=NP.
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Hardness of Inference

Consider the 3-SAT problem (which is a canonical NP-complete
problem). Given list of N variables, and a collection of M clauses
(constraints), where each clause is a disjunction of 3 literals (a variable
or its negation). Clauses are organized in a conjunction. Question: is
there a satisfying truth assignment of the variables (assignment of
variable values that makes the conjunction of disjunctions true).

examples:

(x1 ∨ x4 ∨ x̄5) ∧ (x̄2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄4 ∨ x3) ∧ (x̄3 ∨ x̄4 ∨ x̄5)

∧ (x̄1 ∨ x4 ∨ x2) ∧ (x̄1 ∨ x̄2 ∨ x3)

and also

(x1 ∨ x̄2 ∨ x3) ∧ (x̄3 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x̄6 ∨ x̄7) ∧ (x7 ∨ x8 ∨ x9)

∧ (x̄9 ∨ x10 ∨ x11) ∧ (x̄11 ∨ x̄12 ∨ x̄3)
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Hardness of Inference

In the general case, we have N variables and M clauses, either of
which might be very large. If we can solve this problem in polynomial
time in N , then all NP-complete problems can be solved in polynomial
time.

To show that inference in Bayesian networks is NP-complete, all we
need to do is find a BN or MRF that encodes this problem using the
appropriate commutative semiring (which in our case, we’ll take to be
the max-product semiring).

Let {xi}Ni=1 be the set of variables, and let Cj be the index set of the
variables for clause 0 ≤ j ≤ M .

Define binary-valued functions fj(xCj ) such that fj = 1 iff the clause
is satisfied by the current values of the variables xCj , otherwise fj = 0.
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Hardness of Inference

With this formulation, we get factorization as follows
∏

j

fj(xCj ) (9.22)

which is possible to evaluate to unity iff the logic formula is satisfiable.

Next, consider BN with N binary variables {xi}Ni=1 and M additional

variables {yj}Mj=1 with M CPTS of the form:

p(yj = 1|xCj ) =

{
1 if fj(xCj ) = 1

0 else
, and for xi p(xi = 1) = 0.5

(9.23)

This gives joint distribution that factorizes

p(x1:N , y1:M ) =
∏

i

p(xi)
∏

j

p(yj |xCj )
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Hardness of Inference

Create following BN, as evidence set use yj = 1 for all j ∈ 1 . . .M

Use max-sum semi-ring, so goal is to find the assignment to the x
variables that maximize the joint probability.

Resulting max evaluation is 1 iff original 3-SAT formula is satisfiable.
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Hardness of Inference

Example: N = 5,M = 6 in following 3-SAT formula and BN

(x1∨x4∨x̄5)∧(x̄2∨x̄3∨x̄4)∧(x̄1∨x̄4∨x3)∧(x̄3∨x̄4∨x̄5)∧(x̄1∨x4∨x2)∧(x̄1∨x̄2∨x3)

x1 x2 x3 x4 x5

y1 y2 y4y3 y5 y6

MPE/Viterbi assignment to x1:5 has non-zero probability iff original
formula is SAT, BN inference (in general) NP-complete.

Doesn’t mean exact inference is always intractable, rather can’t hope
for a polynomial solution in all cases unless P = NP .

Moreover, even low tree-width graphs can be computationally
challenging (i.e., large state space or random variable domain size).
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Recap

Time and memory complexity is O(Nrω+1) where ω is the tree-width.

We can use conditioning (e.g., cutset conditioning) to get other
points. E.g., condition on a set that renders the remainder of the set
a tree. Same computation less memory.

Recursive conditioning allows is to get linear memory but a time
complexity of O(r(w+1) logN ).

In general, many time-space tradeoffs for exact inference. Many
algorithms along the achievable/unachievable frontier are SAT/CSP
based, and use conditioning combined with various caching, and
clause learning/deduction (e.g., nogood learning).

To get a better time/space profile, need to do approximation.

For any given degree of distortion, there is a time/space tradeoff
profile.
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Approximation: Two general approaches

exact solution to approximate problem - approximate problem

1 learning with or using a model with a structural restriction, structure
learning, using a k-tree for a lower k than one knows is true. Make sure
k is small enough so that exact inference can be performed, and make
sure that, in that low tree-width model, one has best possible graph

2 Functional restrictions to the model (i.e., use factors or potential
functions that obey certain properties). Then certain fast algorithms
(e.g., graph-cut) can be performed.

approximate solution to exact problem - approximate inference

1 Message or other form of propagation, variational approaches, LP
relaxations

2 sampling
3 etc.

Both methods only guaranteed approximate quality solutions.

No longer in the achievable region in time-space tradoff graph, new
set of time/space tradeoffs to achieve a particular accuracy.
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Sources for Today’s Lecture

Most of this material comes from a variety of sources. Best place to
look is in our standard reading material.
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