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Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees, semirings

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Logistics Review

Today

JT is the tree that all graphs can be transformed up into. Once we
have the tree, we have a variety of options of message passing that
generalize the message passing on trees we’ve already seen.
Moreover, we can reduce that down to a 1-tree again if we wish.
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Logistics Review

Brief Review

Three views of r.i.p. (c.i.p., induced sub-tree, or order-based
constraint).

A JT is a cluster tree that satisfies the r.i.p.

A JT can be tree of cliques w.r.t. an o.g. iff the graph is triangulated.

Equivalence of triangulated graphs, decomposable graphs, perfect
elimination graphs, JT of cliques exists, and (soon) sub-tree graphs.

Inference on JTs: goal, clusters as marginals p(xC)
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Intersection Graphs Inference on JTs Semirings Refs

Intersection Graphs

Definition 8.3.1 (Intersection Graph)

An intersection graph is a graph G = (V,E) where each vertex v ∈ V (G)
corresponds to a set Uv and each edge (u, v) ∈ E(G) exists only if
Uu ∩ Uv 6= ∅.

some underlying set of objects U and a multiset of subsets of U of
the form U = {U1, U2, . . . , Un} with Ui ⊆ U — multiset, so allowed
to have some i, j where Ui = Uj .

Theorem 8.3.2

Every graph is an intersection graph.

This can be seen informally by consider an arbitrary graph, create a Ui for
every node, and construct the subsets so that the edges will exist when
taking intersection.
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Intersection Graphs Inference on JTs Semirings Refs

Interval Graphs (a type of intersection graph)

Interval graphs are intersection graphs where the subsets are
intervals/segments [a, b] in R

Any graph that can be constructed this way is an interval graph

a b c d
e

a b c
de

Are all graphs interval graphs?

4-cycle
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Intersection Graphs Inference on JTs Semirings Refs

Interval Graphs

Theorem 8.3.3

All Interval Graphs are triangulated.

proof sketch.

Given interval graph G = (V,E), consider any cycle
u,w1, w2, . . . , wk, v, u ∈ V (G). Cycle must go (w.l.o.g.) forward and then
backwards along the line in order to connect back to u, so there must be
a chord between some non-adjacent nodes (since they will overlap).

Are all triangulated graphs interval
graphs?

No, consider spider graph
(elongated star graph).

a b

fc
g

h

d

ei
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Sub-tree intersection Graphs

Given underlying tree, create intersection graph, where subsets Uv for
v ∈ V (G) are (nec. connected) subtrees of some “ground” tree.

Intersection exists (Uu ∩ Uv 6= ∅) if there are any nodes in common
amongst the two corresponding trees.

T1

T2

T3

T

T4

T5

T6

T7

T8

T9

T10
T11

T12
Lets zoom in a little
on this
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Ex: Sub-tree intersection Graph

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10
T11

T12
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Sub-tree intersection Graphs

T1

T2

T3

T

T4

T5

T6

T7

T8

T9

T10
T11

T12

T1

T2 T3

T4 T5

T6

T7

T8

T9

T10

T11

T12

1

2

4 5

7 9

10 11
8

12

6

3

Intersection exists if there are any nodes in common amongst the two
corresponding trees.

A sub-tree graph corresponds to more than one underlying tree (thus
ground set and underlying subsets).

What is the difference between left and right trees?

Junction tree of cliques and maxcliques (left) vs. junction tree of just
maxcliques (right).
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Sub-tree intersection Graphs w. Junction Trees
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Sub-tree intersection graphs

Theorem 8.3.4

A graph G = (V,E) is triangulated iff it corresponds to a sub-tree graph
(i.e., an intersection graph on subtrees of some tree).

proof sketch.

We see that any sub-tree graph is such that nodes in the tree correspond
to cliques in G, and by the nature of how the graph is constructed
(subtrees of some underlying tree), the tree corresponds to a cluster tree
that satisfies the induced subtree property. Therefore, any sub-tree graph
corresponds to a junction tree, and any corresponding graph G is
triangulated.
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Sub-tree intersection graphs

All interval graphs are sub-tree intersection graphs (underlying tree is
a chain, subtrees are sub-chains)

Are all sub-tree intersection graphs interval graphs?

So sub-tree intersection graphs capture the “tree-like” nature of
triangulated graphs.

Triangulated graphs are also called hyper-trees (specific type of
hyper-graph, where edges are generalized to be clusters of nodes
rather than 2 nodes in a normal graph). In hyper-tree, the unique
“max-edge” path between any two nodes property is generalized.
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Inference on JTs.

We can define an inference procedure on junction trees that
corresponds to our inference procedure on trees.

We are given p ∈ F(G′,M(f)), where G′ is triangulated. It might be
naturally triangulated, might be an MRF for which we’ve found a
good elimination order, or might even have come from a triangulated
moralized Bayesian network. In either case, if we solve inference for
the family F(G′,M(f)) we’ve solved it for the original graph.

Let G be the original graph with cliques C(G), and let C(G′) be the
cliques of the triangulated graph.

We know we have factorization:

p(x) =
∏

C∈C(G)

ψC(xC) (8.1)
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Inference on JTs.

Every clique C ∈ C(G) is contained in at least one clique C ′ ∈ C(G′).

Therefore, each factor ψC(xC) for C ∈ C(G) can be assigned to a
new factor ψC′(xC′) for some C ′ ∈ C(G′).

Given that we have a junction tree of maxcliques, we are going to
allocate “storage” for maxclique potentials ψC′(xC′) for all
C ′ ∈ C(G′) (equivalently all nodes in the junction tree).

We are also going to allocate storage for all separators in the junction
tree. That is, we will have a function φS(xS) for all S ∈ S(G′) where
S(G′) are the set of separators in the junction tree corresponding to
triangulated graph G′.

We need to know how to initialize these separators.
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Inference on JTs - table initialization

Initialization Step: For each C ′ ∈ C(G′), assign ψC′(xC′) = 1.

For each clique C ∈ C(G), find one C ′ ∈ C(G′) such that C ⊆ C ′,
and update ψC′(xC′) as follows:

ψC′(xC′)← ψC′(xC′)ψC(xC) (8.2)

Crucial: Only do this once, otherwise, we’ll be double counting the
clique ψC(xC) (i.e., a C ∈ C(G) gets assigned only one C ′ ∈ C(G′))
We now have the following representation of p ∈ F(G,M(f)):

p(x) =
∏

C′∈C(G′)
ψC′(xC′) (8.3)

We also initialize all separators by doing φS(xS) = 1 ∀S.
Once this is done, we have

p(x) =

∏
C′∈C(G′) ψC′(xC′)∏

S∈S(G′) φS(xS)d(S)−1
(8.4)
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Maxclique marginals as the goal

Since G′ is triangulated, and is decomposable, we know it is possible
to represent p as:

p(x) =
∏

C′∈C(G′)
ψC′(xC′) =

∏
C∈C′ p(xC′)∏

S∈S(G′) p(xS)d(S)−1
(8.5)

where d(S) is the shattering coefficient of separator S.

If we set φS(xS) = 1 for all S, then

p(x) =

∏
C∈C(G′) ψC(xC)

∏
S∈S(G′) φS(xS)d(S)−1

(8.6)

In Equation (8.5), we have the functions at each maxclique and at
each separator equal to the marginal distribution over the
corresponding nodes.
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Maxclique marginals as the goal

With the marginals, we can easily compute any desired original-graph
clique marginal for any C ∈ C(G).

Our goal is to efficiently go from the representation at Equation (??)
to the representation at the right of Equation (8.5).

Can we do this using a similar message passing procedure to what
we’ve already seen?
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Maxclique marginals as the goal

Start out (after initialization) with the expression

p(x) =

∏
C′∈C(G′) ψC′(xC′)∏

S∈S(G′) φS(xS)d(S)−1
(8.7)

where ∀S, φS(xS) = 1, and ψC′(xC′) is initialized as described earlier.

Do message passing, so that we end up with

p(x) =

∏
C′∈C(G′) ψC′(xC′)∏

S∈S(G′) φS(xS)d(S)−1
=

∏
C∈C′ p(xC′)∏

S∈S(G) p(xS)d(S)−1
(8.8)

Meaning, ψC′(xC′) = p(xC′) for all C ′ and φS(xS) = p(xS) for all S,
marginals.
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Marginal Agreement for Agreeable Marginals

We do this using a junction tree (which we know to exist over the
cliques and/or maxcliques of G′). So form a junction tree.

Goal (again) is for the clique and separator functions to equal
marginals.

What must be true of clique functions if they are marginals?

They
must (at least) agree with what they have in common.

Consider pair of neighboring cliques in a JT. Given maxclique C ′1 and
C ′2 of C, with S = C ′1 ∩ C ′2, they must agree, i.e.,:

∑

xC′1\S

ψC′1(xC′1) =
∑

xC′2\S

ψC′2(xC′2) (8.9)

Such marginal agreement is a critical idea that also lies at the heart of
the approximate inference methods we’ll be later covering.
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Local Marginal Aggrement

This is a necessary condition for the clique/separator functions to be
marginals because

∑

xC′1\S

ψC′1(xC′1) =
∑

xC′1\S

p(xC′1) =
∑

xC′2\S

p(xC′2) =
∑

xC′2\S

ψC′2(xC′2)

(8.10)

Given two maxcliques U and W with separator S = U ∩W , and
potential functions ψU , ψW , and φS , arranged in small JT as follows:

ψU ψW

φS

U WS
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Maxclique marginals as the goal

Shorthand notation: φ∗S =
∑

U\S ψU — represents new potential over
separator S obtained from ψU where all but S has been marginalized
away.

Thus,

∑

U\S
ψU ,

∑

xU\S

ψU (xU ) =
∑

xU\S

ψU (xU\S , xS) = φ∗S(xS)

which is a function only of xS .
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Maxclique marginals as the goal: shorthand notation

More shorthand notation: table multiplication

ψ∗W =
φ∗S
φS
ψW (8.11)

Let WS = W \ S, so that W = S ∪WS . then

ψW = ψW (xW ) = ψW (xS , xWS
), φS = φS(xS) (8.12)

and

ψ∗W = ψ∗W (xW ) = ψ∗W (xS , xWS
), φ∗S = φ∗S(xS) (8.13)

so to expand everything out, we get

φ∗S
φS
ψW = ψ∗W = ψ∗W (xS , xWS

) =
φ∗S(xS)

φS(xS)
ψW (xS , xWS

) (8.14)
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Towards Marginal Aggrement

Suppose, JT potentials start out inconsistent. i.e.,

∑

U\S
ψU 6=

∑

W\S
ψW and φS = 1 (8.15)

but we still have that p(xU , xW ) = p(xH , x̄E) = ψUψW /φS .

Note (again) that we may treat evidence x̄E as additional factors
contained within a clique and that any summation would only sum
over corresponding evidence value, so we can avoid mentioning
evidence for now.

What we’ll do: exchange information between cliques via separators to
achieve consistency.
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New separator potential to obtain new marginal

Marginalize U :

φ∗S =
∑

U\S
ψU (8.16)

which leads to a new separator potential φ∗S and can be seen as a
partial message, as shown in the following figure

ψU ψW

φS

U WS
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Updated W marginal based on separator

Rescale W :

ψ∗W =
φ∗S
φS
ψW (8.17)

This produces a new potential on W based on the updated separator
potential at S. This can also be seen as a partial message.

ψU ψW

φS

U WS
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Updated distribution unchanged

After these operations, joint has not changed: define ψ∗U = ψU for
convenience, we get:

ψ∗Uψ
∗
W

φ∗S
=
ψUψWφ

∗
S

φSφ∗S
=
ψUψW
φS

(8.18)

Don’t yet (nec.) have consistency since could have

∑

U\S
ψ∗U =

∑

U\S
ψU = φ∗S 6=

∑

W\S
ψ∗W =

φ∗S
φS

∑

W\S
ψW (8.19)

which follows because we still could have that

φS 6=
∑

W\S
ψW (8.20)
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Progress towards marginals

We do at least have one marginal at ψ∗W . This is because we started
with:

p(x) = p(xU , xW ) =
ψUψW
φS

(8.21)

and

ψ∗W =
φ∗S
φS
ψW = ψW

∑

U\S
ψU =

∑

xU\S

p(xH , x̄E) = p(xW ) (8.22)

is one of the marginals that we desire.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 8 - Oct 22nd, 2014 F31/63 (pg.81/138)



Intersection Graphs Inference on JTs Semirings Refs

Message in a junction tree

We see this as a message passing procedure, passing a message
between two nodes in a cluster (or junction) tree.

Message from cluster U through S and to W is the message directly
from U to W (but done in two steps).

U WS

ψ∗
Wφ∗

SψU
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Send message back

What if we were to do the same set of operations in reverse, i.e., send
a message from W back to U using the new state of the potential
functions. I.e., we first

Marginalize W :

φ∗∗S =
∑

W\S
ψ∗W (8.23)

resulting in still another separator potential. And then
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Update initial marginal at U

Rescale U :

ψ∗∗U =
φ∗∗S
φ∗S

ψ∗U (8.24)

resulting in a new potential on U .

Intuition: φ∗∗S and ψ∗U both “contain” φ∗S so we divide it out in the
computation of ψ∗∗U so that ψ∗∗U doesn’t end up double counting φ∗S .
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Maxclique marginals as the goal

The new joint p(xU , xW ) has again not changed. Define ψ∗∗W = ψ∗W
for convenience, we get:

ψ∗∗U ψ
∗∗
W

φ∗∗S
=
ψUφ

∗∗
S ψWφ

∗
S

φ∗∗S φSφ
∗
S

=
ψUψW
φS

(8.25)
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Maxclique marginals as the goal

More importantly, after backwards message, we indeed have
consistency guaranteed.

In particular, ψ∗∗U and ψ∗∗W are now consistent since:

∑

U\S
ψ∗∗U =

∑

U\S

φ∗∗S
φ∗S

ψ∗U =
φ∗∗S
φ∗S

∑

U\S
ψ∗U =

φ∗∗S
φ∗S

φ∗S = φ∗∗S =
∑

W\S
ψ∗∗W

(8.26)
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Forward/Backward Messages Along Cluster Tree Edge

Summarizing, forward and backwards messages proceed as follows:

U WS

ψU ψWφS

ψ∗
U ψ∗

W
φ∗
S

ψ∗∗
U ψ∗∗

W
φ∗∗
S

co
py

copy

multiply

marginali
ze

marginalize

divid
e

multiply

multiply

divide

multiplyφ
∗
S
=
∑

U\S
ψU

φ∗∗ ∗S =
∑

W \S
ψW

ψ∗
W =

φ∗
S

φS
ψW

ψ∗∗
W =

φ∗∗
S

φS
ψW∗
∗

=1

Recall: S = U ∩W , and we initialize ψU and ψW with factors that are
contained in U or W .
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Marginal at U achieved

We moreover have the other marginal we want at ψ∗∗U since:

ψ∗∗U =
φ∗∗S
φ∗S

ψU = ψU

∑
W\S ψ

∗
W∑

U\S ψU

= ψU

∑
W\S

φ∗S
φS
ψW∑

U\S ψU

= ψU

∑
W\S ψW

∑
U\S ψU∑

U\S ψU
= ψU

∑

W\S
ψW =

∑

W\S
p(xU , xW )

= p(xU )
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BN Example: A→ B → C with evidence

CA B AB BCB

Bayesian network, three state Markov chain.

After moralization and triangulation (which is vacuous), we get
maxclique functions ψAB(xA, xB) and ψBC(xB, xC).

With evidence, we have xC = 1. We initialize clique and separator
functions as follows:

ψAB(xA, xB) = p(xB|xA)p(xA) = p(xA, xB) (8.27)

ψBC(xB, xC) = p(xC |xB)δ(xC , 1) (8.28)

φB(xB) = 1 (8.29)
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BN Example: A→ B → C with evidence

CA B AB BCB

Forward (left-to-right) message:

φ∗B(xB) =
∑

xA

p(xA, xB) = p(xB) (8.30)

ψ∗BC(xB, xC) =
p(xB)

1
p(xC |xB)δ(xC , 1) (8.31)

= p(xB, xC)δ(xC , 1) (8.32)

= p(xB, xC = 1) (8.33)
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BN Example: A→ B → C with evidence

CA B AB BCB

Backwards (right-to-left) message

φ∗∗B (xB) =
∑

xC

p(xB, xC)δ(xC , 1) = p(xB, xC = 1) (8.34)

ψ∗∗AB(xA, xB) =
φ∗∗B
φ∗B

ψ∗AB (8.35)

=
p(B,C = 1)

p(B)
p(A,B) = p(A|B)

p(B)

p(B)
p(B,C = 1)

(8.36)

= p(A|B,C = 1)p(B,C = 1) = p(A,B,C = 1)
(8.37)
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BN Example: A→ B → C with evidence

CA B AB BCB

We are left with the maxclique functions as marginals, i.e., we have:

ψ∗BC(xB, xC) = p(xB, xC = 1) (8.38)

ψ∗∗AB(xA, xB) = p(xA, xB, xC = 1) (8.39)

... from which it is easy to construct, say, maxclique conditionals, e.g.,
p(xB|xC = 1), p(xA, xB|C = 1), etc.
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Less simple example: general tree

How to ensure any local consistency we achieved not ruined by later
message passing steps?

U WS

C1

C2

D1

D2

E.g. once we send message U →W and then W → U , we know W and
U are consistent. If we next send messages W → D1 and D1 →W , then
W & D1 are consistent, but U & W might no longer be consistent.

Basic problem, future messages might mess up achieved local marginal
consistency.
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Ensuring consistency over all marginals

We use same scheme we saw for 1-trees. I.e., recall from earlier lectures:

Definition 8.4.1 (Message passing protocol)

A clique can send a message to a neighboring cluster in a JT only after it
has received messages from all of its other neighbors.

ok ok
ok

error

ok

ok
error

error

We already know collect/distribute evidence is a simple algorithm that
obeys MPP (designate root, and do bottom up messages and then
top-down messages). Does this achieve consistency?
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Maxclique marginals as the goal
general trees

Theorem 8.4.2

The message passing protocol renders the cliques locally consistent
between all pairs of connected cliques in the tree.

Proof.

Suppose W has received a message from all other neighbors, and is
sending a message to U . There are two possible cases: Case A: U already
sent a message to W before, so U already received message from all
other neighbors, & message renders the two consistent since neither
receives any more messages.

U WS

new
message
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Maxclique marginals as the goal
general trees

proof continued.

Case B: U has not yet sent a message to W , so W sends to U & waits.
Later, U will have received message from all other neighbors & will send
message back to W , but this will contain appropriate update from W .

U WS

current
message

later
messages

Another way we can see it: If we abide by the message passing protocol,
the potential functions will just be scaled by a constant, and we’ll get
back to the same case that we were before with two cliques.
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Maxclique marginals as the goal

Above procedure works for two cliques (clique functions are marginals)

For a general Junction Tree, when we send messages abiding MPP, we
get:

Theorem 8.4.3

Sending all messages along a cluster tree following message passing
protocol renders the cliques locally consistent between all pairs of
connected cliques in the tree.

Note, we need only that it is a cluster tree. Result holds even if r.i.p.
not satisfied.

But we want more than this, we want to ensure that potentials over
any two clusters, with common variables, agree on their common
variables.
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get:

Theorem 8.4.3

Sending all messages along a cluster tree following message passing
protocol renders the cliques locally consistent between all pairs of
connected cliques in the tree.

Note, we need only that it is a cluster tree. Result holds even if r.i.p.
not satisfied.

But we want more than this, we want to ensure that potentials over
any two clusters, with common variables, agree on their common
variables.
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Local implies global consistency

Theorem 8.4.4

In any JT of clusters, any configuration of cluster functions that are
locally (neighbor) consistent will be globally consistent. I.e., for any
clusters pair C1, C2 with C1 ∩ C2 6= ∅ we have:

ψC1(xC1∩C2) = ψC2(xC1∩C2) (8.40)

for all values xC1∩C2 .

Proof.

Local consistency implies that for neighboring C1, C2, the above equality
holds. For non-neighboring C1, C2, cluster intersection property (r.i.p.)
ensures that intersection C1 ∩ C2 exists along unique path between C1

and C2. Each edge along that path is locally consistent. By transitivity,
each distance-2 pair is consistent. Repeating this argument for any path
length gives the result.
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Consistency gives Marginals

Theorem 8.4.5

Given junction tree of clusters C and separators S, and given above
initialization, after all messages are sent and obey MPP, cluster and
separator potentials will reach the marginal state:

ψC(xC) = p(xC) and φS(xS) = p(xS) (8.41)

Proof.

Separators are marginalizations of clusters, so ensuring clusters are
marginals is sufficient for separators as marginals.
Induction: base case: One cluster is a marginal. Two clusters reach
marginals (we verified above).
Assume true for i− 1 clusters marginals, and show for i. Given JT with
clusters C1, . . . , Ci−1 and add new cluster Ci connecting to Cj and
obeying r.i.p. We have separator Si = Ci ∩ Cj .
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Consistency gives Marginals

... proof continued.

C j C iS i

Si = (C1 ∪ C2 ∪ · · · ∪ Ci−1) ∩ Ci

= Cj ∩ Ci

Hi

We have (as always) p(x) = p(xV ) and that

p(xV ) = p(xCi\Si
, xSi , xV \Ci

) = p(xCi\Si
|xSi)p(xSi∪(V \Ci)) (8.42)

due to conditional independence property of sepator S

XCi\Si
⊥⊥XV \Ci

|XS (8.43)
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Consistency gives Marginals

... proof continued.

We have:

p(xSi∪(V \Ci
)) =

∑

xCi\Si

p(xV ) =
∑

xCi\Si

∏
C∈C ψC(xC)∏

S∈S φS(xS)d(S)−1
(8.44)

=
∑

xCi\Si

ψCi(xCi)
∏
C 6=Ci

ψC(xC)

φSi(xSi)
∏
S∈S φS(xS)d′(S)−1

(8.45)

=

∑
xCi\Si

ψCi(xCi)

φSi(xSi)

∏
C 6=Ci

ψC(xC)
∏
S∈S φS(xS)d′(S)−1

(8.46)

=

∏
C 6=Ci

ψC(xC)
∏
S∈S φS(xS)d′(S)−1

(8.47)

since
∑

xCi\Si
ψCi(xCi) = φSi(xSi) and since the only cluster containing

Ci \ Si is Ci. d
′(S) = d(S) except at Si where one less.
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Consistency gives Marginals

... proof continued.

With only i− 1 cliques, after message passing is performed, JT will have
cluster functions as marginals (by induction). We need to show that
ψCi(xCi) is also a valid marginal. After MP, we have local and global
consistency, so

φSi(xSi) =
∑

xCj\Si

ψCj (xCj ) (8.48)

and by induction we have that ψCj (xCj ) = p(xCj ) giving:

p(xCi\Si
|xSi) =

p(x)

p(xSi∪(V \Ci))
=

∏
C∈C ψC(xC)∏

S∈S φS(xS)
d(S)−1∏

C 6=Ci
ψC(xC)∏

S∈S φS(xS)
d′(S)−1

, (8.49)

where the first equality follows from Equation (8.42).
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Consistency gives Marginals

... proof continued.

which yields

p(xCi\Si
|xSi) =

ψCi(xCi)

φSi(xSi)
=
ψCi(xCi)

p(xSi)
(8.50)

this then gives that:

ψCi(xCi) = p(xCi\Si
|xSi)p(xSi) = p(xCi) (8.51)

a marginal as desired.
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Redundant Messages

Once all messages have been sent according to MPP, what would
happen if we send more messages?

1-tree formulation:

µi→j(xj) =
∑

xi

ψi,j(xi, xj)
∏

k∈δ(i)\{j}
µk→i(xi) (8.52)

Junction-tree formulation: marginalize and rescale

φnew
S =

∑

U\S
ψU and then ψnew

W =
φnew
S

φold
S

ψW (8.53)

In either case, extra messages would not change functions - they’re
redundant, joint “state” has “converged” since φnew

S = φold
S .

all messages could run in parallel, convergence achieved once we’ve
done D parallel steps where D is tree diameter.
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Distributive Law and Other Objects

Only one property needed for this algorithm to work, namely
distributive law ab+ ac = a(b+ c) along with factorization.

Distributive law allows sending sums inside of factors.

Other objects have distribute law, and in general any set of objects
that is a commutative semiring will work as well
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Commutative Semirings

Definition 8.5.1

A commutative semiring is a set K with two binary operators “+” and
“·” having three axioms, for all a, b, c ∈ K.
S1: “+” is commutative (a+ b) = (b+ a) and associative
(a+ b) + c = a+ (b+ c), and ∃ additive identity called “0” such that
k + 0 = k for all k ∈ K. I.e., (K,+) is a commutative monoid.
S2: “·” is also associative, commutative, and ∃ multiplicative identity
called “1” s.t. k · 1 = k for all k ∈ K ((K, ·) is also a comm. monoid).
S3: distributive law holds: (a · b) + (a · c) = a(b+ c) for all a, b, c ∈ K.

This, and factorization w.r.t. a graph G is all that is necessary for the
above message passing algorithms to work. There are many commutative
semirings.
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Commutative Semirings

Additive inverse need not exist. If additive inverse exists, then we get
a commutative ring (”semi-ring” since we need not have additive
inverse). Note, in algebra texts, a ring often doesn’t require
multiplicative identity, but we assume it exists here.

Above definition does not mention 0 · k = 0, but this follows from
above properties since k · k = k(k + 0) = k · k + k · 0 so that k0 must
also be an additive identity, meaning that k · 0 = 0. This is useful with
evidence witih delta functions, where the delta functions multiplies by
zero anything that does not obide by the evidence value.

Same message passing protocol and message passing scheme on a
junction tree will work to ensure that all clusters reach a state where
they are the appropriate “marginals”

Marginals in this case dependent on ring.
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Other Semi-Rings

Here, A denotes arbitrary commutative semiring, S is arbitrary finite set,
Λ is arbitrary distributed lattice.

K “(+, 0)” “(·, 1)” short name

1 A (+, 0) (·, 1) semiring

2 A[x] (+, 0) (·, 1) polynomial

3 A[x, y, . . . ] (+, 0) (·, 1) polynomial

4 [0,∞) (+, 0) (·, 1) sum-product

5 (0,∞] (min,∞) (·, 1) min-product

6 [0,∞) (max, 0) (·, 1) max-product

7 [0,∞)+ (kmax, 0) (·, 1) k-max-product

8 (−∞,∞] (min,∞) (+, 0) min-sum

9 [−∞,∞) (max,−∞) (+, 0) max-sum

10 {0, 1} (OR, 0) (AND, 1) Boolean

11 2S (∪, ∅) (∩, S) Set

12 Λ (∨, 0) (∧, 1) Lattice

13 Λ (∧, 1) (∨, 0) Lattice
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Example: Viterbi/MPE

Most-probable explanation (e.g., Viterbi assignment) is just the
max-product ring.

Here, we wish to compute

argmax
xV \E

p(xV \E , x̄E) (8.54)

After message passing with the max-product ring on a junction tree,
cluster functions will reach the “max-marginal” state, where we have:

ψC(xC) = max
xV \C

p(xC , xV \C) (8.55)

What about a “k-max” operation (i.e., finding the k highest scoring
assignments to the variables?) How would we define the operators
“+” and “·”?
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Recap

Message passing on junction tree nodes, definition of messages, divide
out old, multiply in new.

Messages in both directions.

For general tree, we have MPP like in 1-tree case.

Suff condition: locally consistent.

Thm: MPP renders cliques locally consistent between pairs.

In JT (r.i.p.) locally consistent ensures globally consistent.

In JT (r.i.p.), running MPP gives marginals.

Commutative semiring - other algebraic objects can be used.

Time and memory complexity is O(Nrω+1) where ω is the tree-width.
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Forward/Backward Messages Along Cluster Tree Edge

Summarizing, forward and backwards messages proceed as follows:

U WS

ψU ψWφS

ψ∗
U ψ∗

W
φ∗
S

ψ∗∗
U ψ∗∗

W
φ∗∗
S

co
py

copy

multiply

marginali
ze

marginalize

divid
e

multiply

multiply

divide

multiplyφ
∗
S
=
∑

U\S
ψU

φ∗∗ ∗S =
∑

W \S
ψW

ψ∗
W =

φ∗
S

φS
ψW

ψ∗∗
W =

φ∗∗
S

φS
ψW∗
∗

=1

Recall: S = U ∩W , and we initialize ψU and ψW with factors that are
contained in U or W .
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Recap

Message passing on junction tree nodes, definition of messages, divide
out old, multiply in new.
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Time and memory complexity is O(Nrω+1) where ω is the tree-width.
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Sources for Today’s Lecture

Most of this material comes from the reading handout
tree inference.pdf
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