EE512A - Advanced Inference in Graphical Models

- Fall Quarter, Lecture 7 -
http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Oct 20th, 2014

Announcements

- Reading assignments, posted to our canvas announcements page (https://canvas.uw.edu/courses/914697/announcements): intro.pdf, ugms.pdf on undirected graphical models, and tree_inference.pdf on trees.
- Homework 1 is out, due Tuesday (10/21) at 11:45pm, electronically via our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, k-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees, semirings
- L9 (10/27):
- L10 (10/29):

Finals Week: Dec 8th-12th, 2014.

Decomposition of G and Decomposable graphs

Repeat of both definitions, but on one page.

Definition 7.2.3 (Decomposition of G)

A decomposition of a graph $G=(V, E)$ (if it exists) is a partition (A, B, C) of V such that:

- C separates A from B in G.
- C is a clique.
if A and B are both non-empty, then the decomposition is called proper.

Definition 7.2.4 (Decomposable graph)

A graph $G=(V, E)$ is decomposable if either: 1) G is a clique, or 2) G possesses a proper decomposition (A, B, C) s.t. both subgraphs $G[A \cup C]$ and $G[B \cup C]$ are decomposable.

Note part 2. It says possesses. Bottom of tree might affect top.

Decomposable \& numerator/denominator factorization

- Internal nodes in tree are complete graphs that are also separators.
- Decomposable models factor in a useful way.
- With G decomposable, any $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ can be written as a numerator/denominator of form:

$$
\begin{aligned}
& p(A, B, C, D, E, F, G, H, I, J, K) \\
&=\frac{p(A, C, D, F) p(B, C, D, E, F, G, H, I, J, K)}{p(C, D, F)} \\
& \quad=\frac{p(A, C, D, F)}{p(C, D, F)}\left(\frac{p(B, C, G, H) p(C, D, E, F, H, I, J, K)}{p(C, H)}\right) \\
&=\ldots \\
&= \frac{p(A, C, D, F) p(B, G, H) p(C, B, H) p(I, E, J) p(E, I, D) p(C, K, H) p(D, K, I) p(D, K, F, C)}{p(C, D, F) p(C, H) p(B, H) p(D, I) p(E, I) p(C, K) p(D, K)}
\end{aligned}
$$

Decomposable models

- When $d(S)>2$, separator marginal use more than once in the denominator
- The general form of the factorization becomes:

$$
\begin{equation*}
p(x)=\frac{\prod_{C \in \mathcal{C}(G)} p\left(x_{C}\right)}{\prod_{S \in \mathcal{S}(G)} p\left(x_{S}\right)^{d(S)-1}} \tag{7.2}
\end{equation*}
$$

where $d(S)$ is the shattering coefficient of separator S.

- Any decomposable model can be written this way
- 4-cycle is not decomposable. Two independence properties that can't be used simultaneously.

$$
\begin{equation*}
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{p\left(x_{1}, x_{2}, x_{4}\right) p\left(x_{1}, x_{3}, x_{4}\right)}{p\left(x_{1}, x_{4}\right)}=\frac{p\left(x_{1}, x_{2}, x_{3}\right) p\left(x_{2}, x_{3}, x_{4}\right)}{p\left(x_{2}, x_{3}\right)} \tag{7.3}
\end{equation*}
$$

Decomposable models

Proposition 7.2.3

All of the maxcliques in a graph lie on the leaf nodes of the binary decomposition tree

Proof.

For a decomposable model, the base case (leaf node) is a clique, otherwise it would not be decomposable. If a leaf was not a maxclique (and only a clique), then that means it is contained in a maxclique, and got split by a separator corresponding to that leaf's parent, but this is impossible since a maxcliques have no separator.

Proposition 7.2.4

The (nec. unique) set of all minimal separators of graph are included in the non-leaf nodes of the binary decomposition tree. $d(S)-1$ is the number of times the minimal separator S appears as a given non-leaf node.

Triangulated = decomposable

Theorem 7.2.3

A given graph $G=(V, E)$ is triangulated iff it is decomposable.

Proof.

First, recall from Lemma 4.5.6 that a graph is triangulated iff it is decomposable. To prove the current theorem, we will first show (by induction) that decomposability implies that the graph is triangulated). Next, for the converse, we'll show (also by induction on $n=|V|$) that every minimal separator complete in G implies decomposable.

Tree decomposition (definition)

Definition 7.2.3 (tree decomposition)

Given a graph $G=(V, E)$, a tree-decomposition of a graph is a pair ($\left\{C_{i}: i \in I\right\}, T$) where $T=(I, F)$ is a tree with node index set I, edge set F, and $\left\{C_{i}\right\}_{i}$ (one for each $i \in I$) is a collection of subsets of $V(G)$ such that:
(1) $\cup_{i \in I} C_{i}=V$
(2) for any $(u, v) \in E(G)$, there exists $i \in I$ with $u, v \in C_{i}$
(3) for any $v \in V$, the set $\left\{i \in I: v \in C_{i}\right\}$ forms a connected subtree of T

Cluster graphs

Definition 7.2.4 (Cluster graph)

Consider forming a new graph based on G where the new graph has nodes that correspond to clusters in the original G, and has edges existing between two (cluster) nodes only when the corresponding clusters have a non-zero intersection. That is, let $\mathcal{C}(G)=\left\{C_{1}, C_{2}, \ldots, C_{|I|}\right\}=$ be a set of $|I|$ clusters of nodes $V(G)$, where $C_{i} \subseteq V(G), i \in I$. Consider a new graph $\mathcal{J}=(I, \mathcal{E})$ where each node in \mathcal{J} corresponds to a set of nodes in G, and where edge $(i, j) \in \mathcal{E}$ if $C_{i} \cap C_{j} \neq \emptyset$. We will also use $S_{i j}=C_{i} \cap C_{j}$ as notation.

So two cluster nodes have an edge between them iff there is non-zero intersection between the nodes.

Cluster Trees

If we relax the definition a bit (i.e., drop the requirement for an edge if there exists intersection), and the graph is a tree, then we have what is called a cluster tree.

Definition 7.2.4 (Cluster Tree)

Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{|I|}\right\}$ be a set of node clusters of graph $G=(V, E)$. A cluster tree is a tree $\mathcal{T}=\left(I, \mathcal{E}_{T}\right)$ with vertices corresponding to clusters in \mathcal{C} and edges corresponding to pairs of clusters $C_{1}, C_{2} \in \mathcal{C}$. We can label each vertex in $i \in I$ by the set of graph nodes in the corresponding cluster in G, and we label each edge $(i, j) \in \mathcal{E}_{T}$ by the cluster intersection, i.e., $S_{i j}=C_{i} \cap C_{j}$.

Cluster Intersection Property (c.i.p.)

Definition 7.2.4 (Cluster Intersection Property)

We are given a cluster tree $\mathcal{T}=\left(I, \mathcal{E}_{T}\right)$, and let C_{1}, C_{2} be any two clusters in the tree. Then the cluster intersection property states that $C_{1} \cap C_{2} \subseteq C_{i}$ for all C_{i} on the (by definition, necessarily) unique path between C_{1} and C_{2} in the tree \mathcal{T}.

- A given cluster tree might or might not have that property.
- Example on the next few slides.

Running Intersection Property (r.i.p.)

Definition 7.2.4 (Running Intersection Property (r.i.p.))

Let $C_{1}, C_{2}, \ldots, C_{\ell}$ be an ordered sequence of subsets of $V(G)$. Then the ordering obeys the running intersection property (r.i.p.) property if for all $i>1$, there exists $j<i$ such that $C_{i} \cap\left(\cup_{k<i} C_{k}\right)=C_{i} \cap C_{j}$.

- Cluster j acts as a representative for all of i 's history.
- r.i.p. is defined in terms of clusters of nodes in a graph.
- r.i.p. holds on an (unordered) set of clusters if such an ordering can be found.

Running Intersection Property (r.i.p.)

Given sequence of clusters $C_{1}, C_{2}, \ldots, C_{\ell}$. Define the history (accumulation) of sequence at position i :

$$
\begin{equation*}
H_{i}=C_{1} \cup C_{2} \cup \cdots \cup C_{i} . \tag{7.2}
\end{equation*}
$$

Innovation (residual) or new nodes in C_{i} not encountered in the previous history, as:

$$
\begin{equation*}
R_{i}=C_{i} \backslash H_{i-1} . \tag{7.3}
\end{equation*}
$$

Lastly, define the non-innovation, commonality, or separation elements between new and previous history:

$$
\begin{equation*}
S_{i}=C_{i} \cap H_{i-1} \tag{7.4}
\end{equation*}
$$

Note $C_{i}=R_{i} \cup S_{i}, i^{\text {th }}$ cluster consists of the innovation R_{i} and the commonality S_{i}.

Running Intersection Property (r.i.p.)

Clusters are in r.i.p. order if the commonality S_{i} between new and history is fully contained in one element of history. I.e., there exists an $j<i$ such that $S_{i} \subseteq C_{j}$.

Example: c.i.p. and r.i.p.

Example of a set of node clusters (within the cloud-like shapes) arranged in a tree that satisfies the r.i.p. and also the cluster intersection property. The intersections between neighboring node clusters are shown in the figure as square boxes. Consider the path or $\{B, E, H\} \cap\{B, D, F\}=\{B\}$.

First Two Properties: c.i.p. \equiv r.i.p

Lemma 7.3.1

The cluster intersection and running intersection properties are identical.

Proof.

Starting with clusters in r.i.p. order, construct cluster tree by connecting each i to its corresponding j node. This is a tree. Also, take any pair C_{k}, C_{i} and assume w.l.o.g. that $k<i$ and hence $C_{k} \subseteq H_{i-1}$. Then $C_{i} \cap C_{k} \subseteq C_{i} \cap H_{i-1}=S_{i} \subseteq C_{j}$. Note that C_{j} is one node closer to C_{k} on the path. Repeat this process, but with pair C_{k}, C_{j} (if $k<j$) or C_{j}, C_{k} (if $j<k$) which decreases the path by one edge, until we get adjacent clusters. This shows c.i.p.

First Two Properties: c.i.p. \equiv r.i.p

. . . proof of Theorem 7.3.1.

Conversely, perform a tree traversal (depth or breadth first search) on cluster tree to produce node ordering.

Then by c.i.p., for any i in that order, and any $k<i, C_{i} \cap C_{k} \subseteq C_{j}$ for any j on the unique path between k and i. In particular, $C_{i} \cap C_{k} \subseteq C_{j}$ for $j<i$ being i 's neighbor in the tree. Then $\bigcup_{k<i}\left(C_{i} \cap C_{k}\right) \subseteq C_{j}$ implying $C_{i} \cap \bigcup_{k<i} C_{k} \subseteq C_{j}$ and so $C_{i} \cap \bigcup_{k<i} C_{k} \subseteq C_{i} \cap C_{j}$. On the other hand, we always have that $C_{i} \cap C_{j} \subseteq C_{i} \cap \bigcup_{k<i} C_{k}$, and the two together give us r.i.p.

Induced sub-tree property (i.s.p.)

Definition 7.3.2 (Induced Sub-tree Property)

Given a cluster tree \mathcal{T} for graph G, the induced sub-tree property holds for \mathcal{T} if for all $v \in V$, the set of clusters $C \in \mathcal{C}$ such that $v \in C$ induces a sub-tree $\mathcal{T}(v)$ of \mathcal{T}.

Note, by definition the sub-tree is necessarily connected.

Three properties

Lemma 7.3.3

Induced sub-tree property holds iff cluster intersection property holds

Proof.

Assume induced subtree holds. For any pair C_{i}, C_{j}, every $v \in C_{i} \cap C_{j}$ induces a sub-tree of \mathcal{T}, and all of these sub-trees overlap on the unique path between C_{i} and C_{j} in \mathcal{T}.

Three properties

Lemma 7.3.3

Induced sub-tree property holds iff cluster intersection property holds

Proof.

Assume induced subtree holds. For any pair C_{i}, C_{j}, every $v \in C_{i} \cap C_{j}$ induces a sub-tree of \mathcal{T}, and all of these sub-trees overlap on the unique path between C_{i} and C_{j} in \mathcal{T}. Conversely, assume c.i.p. holds. For a $v \in V$, consider all clusters that contain $v, \mathcal{C}(v)=\{C \in \mathcal{C}: v \in C\}$. For any pair $C_{i}, C_{j} \in \mathcal{C}(v)$, we have that $v \in C_{i} \cap C_{j} \subseteq C_{k}$ for any C_{k} on the unique path between C_{i} and C_{j}. Hence, v always exists on each of these paths. These paths, unioned together, cannot form a cycle (since they are paths on a tree). Moreover, these paths unioned together form a tree (they're connected) since any pair $C_{i}, C_{j} \in \mathcal{C}(v)$ defines a path (within the tree) that is connected to the path corresponding to another pair of the form $C_{j}, C_{k} \in \mathcal{C}(v)$.

Three properties

Lemma 7.3.3

Induced sub-tree property holds iff cluster intersection property holds

Proof.

Assume induced subtree holds. For any pair C_{i}, C_{j}, every $v \in C_{i} \cap C_{j}$ induces a sub-tree of \mathcal{T}, and all of these sub-trees overlap on the unique path between C_{i} and C_{j} in \mathcal{T}. Conversely, assume c.i.p. holds. For a $v \in V$, consider all clusters that contain $v, \mathcal{C}(v)=\{C \in \mathcal{C}: v \in C\}$. For any pair $C_{i}, C_{j} \in \mathcal{C}(v)$, we have that $v \in C_{i} \cap C_{j} \subseteq C_{k}$ for any C_{k} on the unique path between C_{i} and C_{j}. Hence, v always exists on each of these paths. These paths, unioned together, cannot form a cycle (since they are paths on a tree). Moreover, these paths unioned together form a tree (they're connected) since any pair $C_{i}, C_{j} \in \mathcal{C}(v)$ defines a path (within the tree) that is connected to the path corresponding to another pair of the form $C_{j}, C_{k} \in \mathcal{C}(v)$.

Thus, 1) c.i.p., 2) r.i.p., and 3) the induced sub-tree property are all identical. We'll henceforth refer them collectively as r.i.p.

Tree decomposition and r.i.p.

Recall the definition of tree decomposition from the previous lecture, repeated again on the next slide.

Tree decomposition (definition)

Definition 7.3.3 (tree decomposition)

Given a graph $G=(V, E)$, a tree-decomposition of a graph is a pair ($\left\{C_{i}: i \in I\right\}, T$) where $T=(I, F)$ is a tree with node index set I, edge set F, and $\left\{C_{i}\right\}_{i}$ (one for each $i \in I$) is a collection of subsets of $V(G)$ such that:
(1) $\cup_{i \in I} C_{i}=V$
(2) for any $(u, v) \in E(G)$, there exists $i \in I$ with $u, v \in C_{i}$
(0) for any $v \in V$, the set $\left\{i \in I: v \in C_{i}\right\}$ forms a connected subtree of T

Tree decomposition and r.i.p.

Hence, we see that a tree decomposition (when it exists) is just a cluster tree that satisfies (what we now know to be the) induced sub-tree property (e.g., r.i.p. and c.i.p. as well, i.e., property (3) is r.i.p.), as well as when all nodes and edges are covered (we'll talk more about the notion of "covering" a bit later).

Recap

- We want all original graph (o.g.) clique marginals. Why?

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.
- Def: decomposable graph, and decomposition tree

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.
- Def: decomposable graph, and decomposition tree
- Thm: triangulated graph \equiv decomposable graph

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.
- Def: decomposable graph, and decomposition tree
- Thm: triangulated graph \equiv decomposable graph
- Def: tree decomposition (vertex and edge cover, and induced sub-tree).

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.
- Def: decomposable graph, and decomposition tree
- Thm: triangulated graph \equiv decomposable graph
- Def: tree decomposition (vertex and edge cover, and induced sub-tree).
- Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g. edges. Edges in cluster graph cluster tree via cluster intersection.

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.
- Def: decomposable graph, and decomposition tree
- Thm: triangulated graph \equiv decomposable graph
- Def: tree decomposition (vertex and edge cover, and induced sub-tree).
- Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g. edges. Edges in cluster graph cluster tree via cluster intersection.
- Def: cluster intersection property, running intersection property, induced sub-tree property, r.i.p.

Recap

- We want all original graph (o.g.) clique marginals. Why?
- Finding optimal elimination order is optimal for all o.g. clique marginals.
- Def: decomposition of a graph, and factorization implication.
- Def: decomposable graph, and decomposition tree
- Thm: triangulated graph \equiv decomposable graph
- Def: tree decomposition (vertex and edge cover, and induced sub-tree).
- Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g. edges. Edges in cluster graph cluster tree via cluster intersection.
- Def: cluster intersection property, running intersection property, induced sub-tree property, r.i.p.
- Next def: Junction tree, cluster tree with r.i.p. and edge cover.

Junction Tree

Definition 7.3.4

Given a graph $G=(V, E)$, a junction tree corresponding to G (if it exists) is a cluster tree $\mathcal{T}=\left(\mathcal{C}, E_{T}\right)$ having the r.i.p. over the clusters, and where any nodes u, v adjacent via edge $(u, v) \in E(G)$ are together in at least one cluster.

Junction Tree

Definition 7.3.4

Given a graph $G=(V, E)$, a junction tree corresponding to G (if it exists) is a cluster tree $\mathcal{T}=\left(\mathcal{C}, E_{T}\right)$ having the r.i.p. over the clusters, and where any nodes u, v adjacent via edge $(u, v) \in E(G)$ are together in at least one cluster.

- So, junction tree (JT), for a given graph G, is a cluster tree that: 1) satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover). Not all r.i.p.-satisfying cluster trees need be an edge cover.

Junction Tree

Definition 7.3.4

Given a graph $G=(V, E)$, a junction tree corresponding to G (if it exists) is a cluster tree $\mathcal{T}=\left(\mathcal{C}, E_{T}\right)$ having the r.i.p. over the clusters, and where any nodes u, v adjacent via edge $(u, v) \in E(G)$ are together in at least one cluster.

- So, junction tree (JT), for a given graph G, is a cluster tree that: 1) satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover). Not all r.i.p.-satisfying cluster trees need be an edge cover.
- Edge cover implies node cover when \exists no isolated nodes.

Junction Tree

Definition 7.3.4

Given a graph $G=(V, E)$, a junction tree corresponding to G (if it exists) is a cluster tree $\mathcal{T}=\left(\mathcal{C}, E_{T}\right)$ having the r.i.p. over the clusters, and where any nodes u, v adjacent via edge $(u, v) \in E(G)$ are together in at least one cluster.

- So, junction tree (JT), for a given graph G, is a cluster tree that: 1) satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover). Not all r.i.p.-satisfying cluster trees need be an edge cover.
- Edge cover implies node cover when \exists no isolated nodes.
- Clusters in JT need not be original graph cliques!!

Junction Tree

Definition 7.3.4

Given a graph $G=(V, E)$, a junction tree corresponding to G (if it exists) is a cluster tree $\mathcal{T}=\left(\mathcal{C}, E_{T}\right)$ having the r.i.p. over the clusters, and where any nodes u, v adjacent via edge $(u, v) \in E(G)$ are together in at least one cluster.

- So, junction tree (JT), for a given graph G, is a cluster tree that: 1) satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover). Not all r.i.p.-satisfying cluster trees need be an edge cover.
- Edge cover implies node cover when \exists no isolated nodes.
- Clusters in JT need not be original graph cliques!!
- JT could have clusters corresponding to cliques, maxcliques, or neither of the above.

Junction Tree

Definition 7.3.4

Given a graph $G=(V, E)$, a junction tree corresponding to G (if it exists) is a cluster tree $\mathcal{T}=\left(\mathcal{C}, E_{T}\right)$ having the r.i.p. over the clusters, and where any nodes u, v adjacent via edge $(u, v) \in E(G)$ are together in at least one cluster.

- So, junction tree (JT), for a given graph G, is a cluster tree that: 1) satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover). Not all r.i.p.-satisfying cluster trees need be an edge cover.
- Edge cover implies node cover when \exists no isolated nodes.
- Clusters in JT need not be original graph cliques!!
- JT could have clusters corresponding to cliques, maxcliques, or neither of the above.
- If clusters correspond to the original graph cliques (resp. maxcliques) in G, it called a junction tree of cliques (resp. maxcliques).

Examples junction trees and not

Questions to answer:

Examples junction trees and not

Questions to answer:

- cluster graph?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?
- Junction tree of maxcliques?

Examples junction trees and not

Questions to answer:

Examples junction trees and not

Questions to answer:

- cluster graph?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?
- Junction tree of maxcliques?

Examples junction trees and not

Questions to answer:

Examples junction trees and not

Questions to answer:

- cluster graph?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?
- Junction tree of maxcliques?

Examples junction trees and not

Questions to answer:

Examples junction trees and not

Questions to answer:

- cluster graph?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?

Examples junction trees and not

Questions to answer:

- cluster graph?
- cluster tree?
- Junction tree?
- Junction tree of cliques?
- Junction tree of maxcliques?

Examples junction trees and not

Tree of cliques for above graph. Does r.i.p. hold? JT? JT of cliques? JT of maxcliques?

Junction Tree Preserving Operations

Lemma 7.3.5

Given a junction tree, form a new cluster tree as follows. For each cluster C in the JT, choose an order of nodes within C, say $c_{1}, c_{2}, \ldots, c_{k}$, and hang a chain of clusters off of C consisting of $C \backslash\left\{c_{1}\right\}$ hanging from C, $C \backslash\left\{c_{1}, c_{2}\right\}$ hanging from $C \backslash\left\{c_{1}\right\}, C \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ hanging from $C \backslash\left\{c_{1}, c_{2}\right\}$, and so on. Then the resulting cluster graph is a cluster tree, and moreover it is still junction tree.

Junction Tree Preserving Operations

Lemma 7.3.5

Given a junction tree, form a new cluster tree as follows. For each cluster C in the JT, choose an order of nodes within C, say $c_{1}, c_{2}, \ldots, c_{k}$, and hang a chain of clusters off of C consisting of $C \backslash\left\{c_{1}\right\}$ hanging from C, $C \backslash\left\{c_{1}, c_{2}\right\}$ hanging from $C \backslash\left\{c_{1}\right\}, C \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ hanging from $C \backslash\left\{c_{1}, c_{2}\right\}$, and so on. Then the resulting cluster graph is a cluster tree, and moreover it is still junction tree.

Lemma 7.3.6

Given a junction tree, where $\left(C_{i}, C_{j}\right)$ are neighboring clusters in the tree, we can merge these two clusters forming a new cluster $C_{i j}=C_{i} \cup C_{j}$, and where the neighbors of $C_{i j}$ are the set of neighbors of either C_{i} or C_{j}. Then the resulting structure is still junction tree.

Junction Tree Preserving Operations

Lemma 7.3.5

Given a junction tree, form a new cluster tree as follows. For each cluster C in the JT, choose an order of nodes within C, say $c_{1}, c_{2}, \ldots, c_{k}$, and hang a chain of clusters off of C consisting of $C \backslash\left\{c_{1}\right\}$ hanging from C, $C \backslash\left\{c_{1}, c_{2}\right\}$ hanging from $C \backslash\left\{c_{1}\right\}, C \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ hanging from $C \backslash\left\{c_{1}, c_{2}\right\}$, and so on. Then the resulting cluster graph is a cluster tree, and moreover it is still junction tree.

Lemma 7.3.6

Given a junction tree, where $\left(C_{i}, C_{j}\right)$ are neighboring clusters in the tree, we can merge these two clusters forming a new cluster $C_{i j}=C_{i} \cup C_{j}$, and where the neighbors of $C_{i j}$ are the set of neighbors of either C_{i} or C_{j}. Then the resulting structure is still junction tree.

If we keep doing the latter, we'll end up with one complete graph.

Key theorem: JT of maxcliques \equiv triangulated graphs

Theorem 7.3.7

A graph $G=(V, E)$ is decomposable iff a junction tree of maxcliques for G exists.

Proof.

a junction tree exists \Leftrightarrow decomposable: Induction on the number of maxcliques. If G has one maxclique, it is both a junction tree and decomposable. Assume true for $\leq k$ maxcliques and show it for $k+1$.

Junction tree of maxcliques \equiv triangulated graphs

 JT of maxcliques implies Decomposable
... proof continued.

a junction tree exists \Rightarrow decomposable: Let \mathcal{T} be a junction tree of maxcliques \mathcal{C}, and let C_{1}, C_{2} be adjacent in \mathcal{T}. The edge C_{1}, C_{2} in the tree separates \mathcal{T} into two sub-trees \mathcal{T}_{1} and \mathcal{T}_{2}, with V_{i} being the nodes in $\mathcal{T}_{i}, G_{i}=G\left[V_{i}\right]$ being the subgraph of G corresponding to \mathcal{T}_{i}, and \mathcal{C}_{i} being the set of maxcliques in \mathcal{T}_{i}, for $i=1,2$. Thus $V(G)=V_{1} \cup V_{2}$, and $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$. Note that $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$. We also let $S=V_{1} \cap V_{2}$ which is the intersection of all the nodes in each of the two trees.

Tree \mathcal{T}_{1} with nodes V_{1} forming graph $G_{1}=G\left[V_{1}\right]$ and maxcliques \mathcal{C}_{1}.

Tree \mathcal{T}_{2} with nodes V_{2} forming graph $G_{2}=G\left[V_{2}\right]$ and maxcliques \mathcal{C}_{2}.

Junction tree of maxcliques \equiv triangulated graphs

 JT of maxcliques implies Decomposable
... proof continued.

Also, the nodes in \mathcal{T}_{i} are maxcliques in G_{i} and \mathcal{T}_{i} is a junction tree for G_{i} since r.i.p. still holds in the subtrees of a junction tree. Therefore, by induction, G_{i} is decomposable. To show that G is decomposable, we need to show that: 1) $S=V_{1} \cap V_{2}$ is complete, and 2) that S separates $G\left[V_{1} \backslash S\right]$ from $G\left[V_{2} \backslash S\right]$.
If $v \in S$, then for each $G_{i}(i=1,2)$, there exists a clique C_{i}^{\prime} with $v \in C_{i}^{\prime}$, and the path in \mathcal{T} joining C_{1}^{\prime} and C_{2}^{\prime} passes through both C_{1} and C_{2}. Because of the r.i.p., we thus have that $v \in C_{1}$ and $v \in C_{2}$ and so $v \in C_{1} \cap C_{2}$. This means that $V_{1} \cap V_{2} \subseteq C_{1} \cap C_{2}$. But $C_{i} \subseteq V_{i}$ since C_{i} is a clique in the corresponding tree \mathcal{T}_{i}. Therefore $C_{1} \cap C_{2} \subseteq V_{1} \cap V_{2}=S$, so that $S=C_{1} \cap C_{2}$. This means that S contains all nodes that are common among the two subgraphs and moreover that S is complete as desired.

Junction tree of maxcliques \equiv triangulated graphs JT of maxcliques implies Decomposable

... proof continued.

Next, to show that S is a separator, we take $u \in V_{1} \backslash S$ and $v \in V_{2} \backslash S$ (note that such choices mean $u \notin V_{2}$ and $v \notin V_{1}$ due to the commonality property of S). Suppose the contrary that S does not separate V_{1} from V_{2}, which means there exists a path $u, w_{1}, w_{2}, \ldots, w_{k}, v$ for the given u, v with $w_{i} \notin S$ for all i. Therefore, there is a clique $C \in \mathcal{C}$ containing the set $\left\{u, w_{1}\right\}$. We must have $C \notin \mathcal{C}_{2}$ since $u \notin V_{2}$, which means $C \in \mathcal{C}_{1}$ or $C \subseteq V_{1}$ implying that $w_{1} \in V_{1}$ and moreover that $w_{1} \in V_{1} \backslash S$. We repeat this argument with w_{1} taking the place of u and w_{2} taking the place of w_{1} in the path, and so on until we end up with $v \in V_{1} \backslash S$ which is a contradiction. Therefore, S must separate V_{1} from V_{2}. We have thus formed a decomposition of G as ($V_{1} \backslash S, V_{2} \backslash S, S$) and since G_{i} is decomposable (by induction), we have that G is decomposable.

Junction tree of maxcliques \equiv triangulated graphs

 Decomposable implies JT of maxcliques... proof continued.
decomposable \Rightarrow a junction tree exists: Since G is decomposable, let (W_{1}, W_{2}, S) be a proper decomposition of G into decomposable subsets $G_{1}=G\left[V_{1}\right]$ and $G_{2}=G\left[V_{2}\right]$ with $V_{i}=W_{i} \cup S$. By induction, since G_{1} and G_{2} are decomposable, there exits a junction tree \mathcal{T}_{1} and \mathcal{T}_{2} corresponding to maxcliques in G_{1} and G_{2}. Since this is a decomposition, with separator S, we can form all maxcliques $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ with \mathcal{C}_{i} maxcliques of V_{i} for tree \mathcal{T}_{i}. Choose $C_{1} \in \mathcal{C}_{1}$ and $C_{2} \in \mathcal{C}_{2}$ such that $S \subseteq C_{1}$ and $S \subseteq C_{2}$ which is possible since S is complete, and must be contained in some maxclique in both \mathcal{T}_{1} and \mathcal{T}_{2}. We form a new tree \mathcal{T} by linking $C_{1} \in \mathcal{T}_{1}$ with $C_{2} \in \mathcal{T}_{2}$. We need next to ensure that this new junction tree satisfies r.i.p.

Junction tree of maxcliques \equiv triangulated graphs

 Decomposable implies JT of maxcliques
... proof continued.

Let $v \in V$. If $v \notin V_{2}$, then all cliques containing v are in \mathcal{C}_{1} and those cliques form a connected tree by the junction tree property since \mathcal{T}_{1} is a junction tree. The same is true if $v \notin V_{1}$. Otherwise, if $v \in S$ (meaning that $v \in V_{1} \cap V_{2}$), then the cliques in \mathcal{C}_{i} containing v are connected in \mathcal{T}_{i} including C_{i} for $i=1,2$. But by forming \mathcal{T} by connecting C_{1} and C_{2}, and since v is arbitrary, we have retained the junction tree property. Thus, \mathcal{T} is a junction tree.

Cliques or Maxcliques

Lemma 7.3.8

A junction tree of maxcliques for graph $G=(V, E)$ exists iff a junction tree of cliques for graph $G=(V, E)$ exists.

Cliques or Maxcliques

Lemma 7.3.8

A junction tree of maxcliques for graph $G=(V, E)$ exists iff a junction tree of cliques for graph $G=(V, E)$ exists.

- How can we get from one to the other? (Exercise:)

Cliques or Maxcliques

Lemma 7.3.8

A junction tree of maxcliques for graph $G=(V, E)$ exists iff a junction tree of cliques for graph $G=(V, E)$ exists.

- How can we get from one to the other? (Exercise:)

Since decomposable is same as triangulated:

Corollary 7.3.9

A graph G is triangulated iff a junction tree of cliques for G exists.

How to build a junction tree

- Maximum cardinality search algorithm can do this. If graph is triangulated, it produces a list of cliques in r.i.p. order.

Maximum Cardinality Search with maxclique order

Algorithm 1: Maximum Cardinality Search: Determines if a graph G is triangulated.

Input: An undirected graph $G=(V, E)$ with $n=|V|$.
Result: is triangulated?, if so MCS ordering $\sigma=\left(v_{1}, \ldots, v_{n}\right)$, and maxcliques in r.i.p. order.
$L \leftarrow \emptyset ; i \leftarrow 1 ; \mathcal{C} \leftarrow \emptyset ;$
while $|V \backslash L|>0$ do
Choose $v_{i} \in \operatorname{argmax}_{u \in V \backslash L}|\delta(u) \cap L| ; / * v_{i}$'s previously labeled neighbors has max cardinality. */
$c_{i} \leftarrow \delta\left(v_{i}\right) \cap L ; \quad / * c_{i}$ is v_{i} 's neighbors in the reverse elimination order. ${ }^{*} /$ if $\left\{v_{i}\right\} \cup c_{i}$ is not complete in G then
return "not triangulated";
if $\left|c_{i}\right| \leq\left|c_{i-1}\right|$ then
$\left\lfloor\mathcal{C} \leftarrow\left(\mathcal{C},\left\{c_{i-1} \cup\left\{v_{i-1}\right\}\right\}\right) ; \quad / *\right.$ Append the next maxclique to list $\mathcal{C} .{ }^{*} /$ if $i=n$ then
$\mathcal{C} \leftarrow\left(\mathcal{C},\left\{c_{i} \cup\left\{v_{i}\right\}\right\}\right) ; ; \quad / *$ Append the last maxclique to list $\mathcal{C} .{ }^{*} /$ $L \leftarrow L \cup\left\{v_{i}\right\} i \leftarrow i+1 ;$
return "triangulated", the ordering σ, and the set of maxcliques \mathcal{C} which are in r.i.p. order.

Maximum Cardinality Search with maxclique order

Algorithm 2: Maximum Cardinality Search: Determines if a graph G is triangulated.

Input: An undirected graph $G=(V, E)$ with $n=|V|$.
Result: is triangulated?, if so MCS ordering $\sigma=\left(v_{1}, \ldots, v_{n}\right)$, and maxcliques in r.i.p. order.
$L \leftarrow \emptyset ; i \leftarrow 1 ; \mathcal{C} \leftarrow \emptyset$;
while $|V \backslash L|>0$ do
Choose $v_{i} \in \operatorname{argmax}_{u \in V \backslash L}|\delta(u) \cap L| ; / * v_{i}$'s previously labeled neighbors has max cardinality. */
$c_{i} \leftarrow \delta\left(v_{i}\right) \cap L ; \quad / * c_{i}$ is v_{i} 's neighbors in the reverse elimination order. ${ }^{*} /$ if $\left\{v_{i}\right\} \cup c_{i}$ is not complete in G then
return "not triangulated";
if $\left|c_{i}\right| \leq\left|c_{i-1}\right|$ then
$\left\lfloor\mathcal{C} \leftarrow\left(\mathcal{C},\left\{c_{i-1} \cup\left\{v_{i-1}\right\}\right\}\right) ; \quad / *\right.$ Append the next maxclique to list $\mathcal{C} .^{*} /$ if $i=n$ then
$\mathcal{C} \leftarrow\left(\mathcal{C},\left\{c_{i} \cup\left\{v_{i}\right\}\right\}\right) ; ; \quad / *$ Append the last maxclique to list $\mathcal{C} .{ }^{*} /$ $L \leftarrow L \cup\left\{v_{i}\right\} i \leftarrow i+1 ;$
return "triangulated", the ordering σ, and the set of maxcliques \mathcal{C} which are in r.i.p. order.

How to build a junction tree

- Alternatively, we can construct the maxcliques in any form (say by running elimination) and find a maximal spanning tree over the edge-weighted cluster graph, where clusters correspond to maxcliques, and edge weights correspond to the size of the intersection of the two adjacent maxcliques.

How to build a junction tree

- Alternatively, we can construct the maxcliques in any form (say by running elimination) and find a maximal spanning tree over the edge-weighted cluster graph, where clusters correspond to maxcliques, and edge weights correspond to the size of the intersection of the two adjacent maxcliques.
- Prim's algorithm can run in $O(|E|+|V| \log |V|)$, much better than $|V|^{2}$ for sparse graphs.

How to build a junction tree

- Alternatively, we can construct the maxcliques in any form (say by running elimination) and find a maximal spanning tree over the edge-weighted cluster graph, where clusters correspond to maxcliques, and edge weights correspond to the size of the intersection of the two adjacent maxcliques.
- Prim's algorithm can run in $O(|E|+|V| \log |V|)$, much better than $|V|^{2}$ for sparse graphs.

Theorem 7.3.10

A tree of maxcliques \mathcal{T} is a junction tree iff it is a maximum spanning tree on the maxclique graph, with edge weights set according to the cardinality of the separator between the two maxcliques.

How to build a junction tree

- Alternatively, we can construct the maxcliques in any form (say by running elimination) and find a maximal spanning tree over the edge-weighted cluster graph, where clusters correspond to maxcliques, and edge weights correspond to the size of the intersection of the two adjacent maxcliques.
- Prim's algorithm can run in $O(|E|+|V| \log |V|)$, much better than $|V|^{2}$ for sparse graphs.

Theorem 7.3.10

A tree of maxcliques \mathcal{T} is a junction tree iff it is a maximum spanning tree on the maxclique graph, with edge weights set according to the cardinality of the separator between the two maxcliques.

- Note: graph must be triangulated. I.e., maximum spanning tree of a cluster graph where the clusters are maxcliques but the graph is not triangulated will clearly not produce a junction tree.

Other aspects of JTs

- There can be multiple JTs for a given triangulated graph (e.g., consider any graph where $d(S) \geq 3$ for some separator S).

Other aspects of JTs

- There can be multiple JTs for a given triangulated graph (e.g., consider any graph where $d(S) \geq 3$ for some separator S).
- JTs are not binary decomposition trees (BDTs), but they are related. Leaf nodes of BDTs correspond to nodes in a JT of maxcliques. Non-leaf nodes in a BDTs may correspond to edges in a JT. Therefore, edges in a JT may correspond to all minimal separators in triangulated graph G^{\prime} but also might not (e.g., $\{A B C\}-\{B C D\}-\{C D E\}$ with $\{B C D\}$ repeated).

Other aspects of JTs

- There can be multiple JTs for a given triangulated graph (e.g., consider any graph where $d(S) \geq 3$ for some separator S).
- JTs are not binary decomposition trees (BDTs), but they are related. Leaf nodes of BDTs correspond to nodes in a JT of maxcliques. Non-leaf nodes in a BDTs may correspond to edges in a JT. Therefore, edges in a JT may correspond to all minimal separators in triangulated graph G^{\prime} but also might not (e.g., $\{A B C\}-\{B C D\}-\{C D E\}$ with $\{B C D\}$ repeated).
- Set of maxcliques is unique in a triangulated graph. Set of minimal separators is unique in a triangulated graph.

Other aspects of JTs

- There can be multiple JTs for a given triangulated graph (e.g., consider any graph where $d(S) \geq 3$ for some separator S).
- JTs are not binary decomposition trees (BDTs), but they are related. Leaf nodes of BDTs correspond to nodes in a JT of maxcliques. Non-leaf nodes in a BDTs may correspond to edges in a JT. Therefore, edges in a JT may correspond to all minimal separators in triangulated graph G^{\prime} but also might not (e.g., $\{A B C\}-\{B C D\}-\{C D E\}$ with $\{B C D\}$ repeated).
- Set of maxcliques is unique in a triangulated graph. Set of minimal separators is unique in a triangulated graph.
- Again, JT can be over not just maxcliques. JT can exist over all cliques, or over some cliques (if they contain all maxcliques)

Other aspects of JTs

- There can be multiple JTs for a given triangulated graph (e.g., consider any graph where $d(S) \geq 3$ for some separator S).
- JTs are not binary decomposition trees (BDTs), but they are related. Leaf nodes of BDTs correspond to nodes in a JT of maxcliques. Non-leaf nodes in a BDTs may correspond to edges in a JT. Therefore, edges in a JT may correspond to all minimal separators in triangulated graph G^{\prime} but also might not (e.g., $\{A B C\}-\{B C D\}-\{C D E\}$ with $\{B C D\}$ repeated).
- Set of maxcliques is unique in a triangulated graph. Set of minimal separators is unique in a triangulated graph.
- Again, JT can be over not just maxcliques. JT can exist over all cliques, or over some cliques (if they contain all maxcliques)
- Different JTs of maxcliques always has same set of nodes and separators, just different configurations.

Intersection Graphs

- We're next going to look at seemingly very different way to view triangulated graphs and junction trees, based on intersection graph theory.

Intersection Graphs

- We're next going to look at seemingly very different way to view triangulated graphs and junction trees, based on intersection graph theory.
- We'll see that triangulated graphs are identical to a type of intersection graph, where the underlying object is a tree (furthering our connection to trees).

Intersection Graphs

- We're next going to look at seemingly very different way to view triangulated graphs and junction trees, based on intersection graph theory.
- We'll see that triangulated graphs are identical to a type of intersection graph, where the underlying object is a tree (furthering our connection to trees).
- first, lets talk a bit about terminology.

Covers (in general) and Edge Clique Covers

- Set cover - sets must cover the ground/universal set (ground set cover, or a set-based cover of the ground)

Covers (in general) and Edge Clique Covers

- Set cover - sets must cover the ground/universal set (ground set cover, or a set-based cover of the ground)
- Vertex cover - vertices must cover the edges (edge vertex cover, or a vertex-based cover of edges)

Covers (in general) and Edge Clique Covers

- Set cover - sets must cover the ground/universal set (ground set cover, or a set-based cover of the ground)
- Vertex cover - vertices must cover the edges (edge vertex cover, or a vertex-based cover of edges)
- Edge cover - edges must cover the vertices (vertex edge cover, or an edge-based cover of vertices)

Covers (in general) and Edge Clique Covers

- Set cover - sets must cover the ground/universal set (ground set cover, or a set-based cover of the ground)
- Vertex cover - vertices must cover the edges (edge vertex cover, or a vertex-based cover of edges)
- Edge cover - edges must cover the vertices (vertex edge cover, or an edge-based cover of vertices)
- clique cover - cliques cover the edges (edge clique cover, or a clique-based cover of edges)

Covers (in general) and Edge Clique Covers

- Set cover - sets must cover the ground/universal set (ground set cover, or a set-based cover of the ground)
- Vertex cover - vertices must cover the edges (edge vertex cover, or a vertex-based cover of edges)
- Edge cover - edges must cover the vertices (vertex edge cover, or an edge-based cover of vertices)
- clique cover - cliques cover the edges (edge clique cover, or a clique-based cover of edges)
- The nodes of a junction tree of cliques (or maxcliques) constitute an edge clique cover for triangulated graph G^{\prime} - start with set of nodes $V=\cup_{C \in \mathcal{C}} C$. Add edge between $u, v \in V$ if exists a $C \in \mathcal{C}$ such that $u, v \in C$.

Covers (in general) and Edge Clique Covers

- Set cover - sets must cover the ground/universal set (ground set cover, or a set-based cover of the ground)
- Vertex cover - vertices must cover the edges (edge vertex cover, or a vertex-based cover of edges)
- Edge cover - edges must cover the vertices (vertex edge cover, or an edge-based cover of vertices)
- clique cover - cliques cover the edges (edge clique cover, or a clique-based cover of edges)
- The nodes of a junction tree of cliques (or maxcliques) constitute an edge clique cover for triangulated graph G^{\prime} - start with set of nodes $V=\cup_{C \in \mathcal{C}} C$. Add edge between $u, v \in V$ if exists a $C \in \mathcal{C}$ such that $u, v \in C$.
- Going from G^{\prime} to JT and back to the graph yields the same graph.

Sources for Today's Lecture

- Most of this material comes from the reading handout tree_inference.pdf

