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Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.

Homework 1 is out, due Tuesday (10/21) at 11:45pm, electronically
via our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees, semirings

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Logistics Review

Decomposition of G and Decomposable graphs

Repeat of both definitions, but on one page.

Definition 7.2.3 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

Definition 7.2.4 (Decomposable graph)

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs
G[A ∪ C] and G[B ∪ C] are decomposable.

Note part 2. It says possesses. Bottom of tree might affect top.
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Decomposable & numerator/denominator factorization

Internal nodes in tree are complete graphs that
are also separators.

Decomposable models factor in a useful way.

With G decomposable, any p ∈ F(G,M(f)) can
be written as a numerator/denominator of form:
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p(A,B,C,D,E, F,G,H, I, J,K)

=
p(A,C,D, F )p(B,C,D,E, F,G,H, I, J,K)

p(C,D, F )

=
p(A,C,D, F )

p(C,D, F )
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p(B,C,G,H)p(C,D,E, F,H, I, J,K)

p(C,H)

)
= . . .
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p(A,C,D, F )p(B,G,H)p(C,B,H)p(I, E, J)p(E, I,D)p(C,K,H)p(D,K, I)p(D,K, F,C)

p(C,D, F )p(C,H)p(B,H)p(D, I)p(E, I)p(C,K)p(D,K)
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Decomposable models

When d(S) > 2, separator marginal use more than once in the
denominator

The general form of the factorization becomes:

p(x) =

∏
C∈C(G) p(xC)∏

S∈S(G) p(xS)
d(S)−1 (7.2)

where d(S) is the shattering coefficient of separator S.

Any decomposable model can be written this way

4-cycle is not decomposable. Two independence properties that can’t
be used simultaneously.

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x1, x3, x4)

p(x1, x4)
=
p(x1, x2, x3)p(x2, x3, x4)

p(x2, x3)
(7.3)
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Decomposable models

Proposition 7.2.3

All of the maxcliques in a graph lie on the leaf nodes of the binary
decomposition tree

Proof.

For a decomposable model, the base case (leaf node) is a clique,
otherwise it would not be decomposable. If a leaf was not a maxclique
(and only a clique), then that means it is contained in a maxclique, and
got split by a separator corresponding to that leaf’s parent, but this is
impossible since a maxcliques have no separator.

Proposition 7.2.4

The (nec. unique) set of all minimal separators of graph are included in the
non-leaf nodes of the binary decomposition tree. d(S)− 1 is the number
of times the minimal separator S appears as a given non-leaf node.
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Triangulated ≡ decomposable

Theorem 7.2.3

A given graph G = (V,E) is triangulated iff it is decomposable.

Proof.

First, recall from Lemma 4.5.6 that a graph is triangulated iff it is
decomposable. To prove the current theorem, we will first show (by
induction) that decomposability implies that the graph is triangulated).
Next, for the converse, we’ll show (also by induction on n = |V |) that
every minimal separator complete in G implies decomposable.
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Tree decomposition (definition)

Definition 7.2.3 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, F ) is a tree with node index set I, edge
set F , and {Ci}i (one for each i ∈ I) is a collection of subsets of V (G)
such that:

1 ∪i∈ICi = V

2 for any (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci

3 for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a connected subtree of T
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Cluster graphs

Definition 7.2.4 (Cluster graph)

Consider forming a new graph based on G where the new graph has
nodes that correspond to clusters in the original G, and has edges existing
between two (cluster) nodes only when the corresponding clusters have a
non-zero intersection. That is, let C(G) =

{
C1, C2, . . . , C|I|

}
= be a set

of |I| clusters of nodes V (G), where Ci ⊆ V (G), i ∈ I. Consider a new
graph J = (I, E) where each node in J corresponds to a set of nodes in
G, and where edge (i, j) ∈ E if Ci ∩ Cj 6= ∅. We will also use
Sij = Ci ∩ Cj as notation.

So two cluster nodes have an edge between them iff there is non-zero
intersection between the nodes.
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Cluster Trees

If we relax the definition a bit (i.e., drop the requirement for an edge if
there exists intersection), and the graph is a tree, then we have what is
called a cluster tree.

Definition 7.2.4 (Cluster Tree)

Let C =
{
C1, C2, . . . , C|I|

}
be a set of node clusters of graph

G = (V,E). A cluster tree is a tree T = (I, ET ) with vertices
corresponding to clusters in C and edges corresponding to pairs of clusters
C1, C2 ∈ C. We can label each vertex in i ∈ I by the set of graph nodes
in the corresponding cluster in G, and we label each edge (i, j) ∈ ET by
the cluster intersection, i.e., Sij = Ci ∩ Cj .
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Cluster Intersection Property (c.i.p.)

Definition 7.2.4 (Cluster Intersection Property)

We are given a cluster tree T = (I, ET ), and let C1, C2 be any two
clusters in the tree. Then the cluster intersection property states that
C1 ∩ C2 ⊆ Ci for all Ci on the (by definition, necessarily) unique path
between C1 and C2 in the tree T .

A given cluster tree might or might not have that property.

Example on the next few slides.
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Running Intersection Property (r.i.p.)

Definition 7.2.4 (Running Intersection Property (r.i.p.))

Let C1, C2, . . . , C` be an ordered sequence of subsets of V (G). Then the
ordering obeys the running intersection property (r.i.p.) property if for all
i > 1, there exists j < i such that Ci ∩ (∪k<iCk) = Ci ∩ Cj .

Cluster j acts as a representative for all of i’s history.

r.i.p. is defined in terms of clusters of nodes in a graph.

r.i.p. holds on an (unordered) set of clusters if such an ordering can be
found.
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Running Intersection Property (r.i.p.)

Given sequence of clusters C1, C2, . . . , C`. Define the history
(accumulation) of sequence at position i:

Hi = C1 ∪ C2 ∪ · · · ∪ Ci. (7.2)

Innovation (residual) or new nodes in Ci not encountered in the previous
history, as:

Ri = Ci \Hi−1. (7.3)

Lastly, define the non-innovation, commonality, or separation elements
between new and previous history:

Si = Ci ∩Hi−1 (7.4)

Note Ci = Ri ∪ Si, ith cluster consists of the innovation Ri and the
commonality Si.
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Running Intersection Property (r.i.p.)

C j C iS i

Si = (C1 ∪ C2 ∪ · · · ∪ Ci−1) ∩ Ci

= Cj ∩ Ci

Hi

Clusters are in r.i.p. order if the commonality Si between new and history
is fully contained in one element of history. I.e., there exists an j < i such
that Si ⊆ Cj .
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Junction Trees Intersection Graphs Refs

Example: c.i.p. and r.i.p.

ABC

ABD BDF
AB

BD

BCE BEHBE

BC

Example of a set of node clusters (within the cloud-like shapes) arranged
in a tree that satisfies the r.i.p. and also the cluster intersection property.
The intersections between neighboring node clusters are shown in the
figure as square boxes. Consider the path or
{B,E,H} ∩ {B,D,F} = {B}.
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First Two Properties: c.i.p. ≡ r.i.p

Lemma 7.3.1

The cluster intersection and running intersection properties are identical.

Proof.

Starting with clusters in r.i.p. order, construct cluster tree by connecting
each i to its corresponding j node. This is a tree. Also, take any pair
Ck, Ci and assume w.l.o.g. that k < i and hence Ck ⊆ Hi−1. Then
Ci ∩ Ck ⊆ Ci ∩Hi−1 = Si ⊆ Cj . Note that Cj is one node closer to Ck

on the path. Repeat this process, but with pair Ck, Cj (if k < j) or
Cj , Ck (if j < k) which decreases the path by one edge, until we get
adjacent clusters. This shows c.i.p.

. . .
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First Two Properties: c.i.p. ≡ r.i.p

. . . proof of Theorem 7.3.1.

Conversely, perform a tree traversal
(depth or breadth first search) on
cluster tree to produce node ordering.

1

2 3 4

7 8

1211109

5 6

1

2 7 8

9 12

111054

3 6

Then by c.i.p., for any i in that order, and any k < i, Ci ∩ Ck ⊆ Cj for
any j on the unique path between k and i. In particular, Ci ∩ Ck ⊆ Cj

for j < i being i’s neighbor in the tree. Then
⋃

k<i

(
Ci ∩ Ck

)
⊆ Cj

implying Ci ∩
⋃

k<iCk ⊆ Cj and so Ci ∩
⋃

k<iCk ⊆ Ci ∩ Cj . On the
other hand, we always have that Ci ∩ Cj ⊆ Ci ∩

⋃
k<iCk, and the two

together give us r.i.p.
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Induced sub-tree property (i.s.p.)

Definition 7.3.2 (Induced Sub-tree Property)

Given a cluster tree T for graph G, the induced sub-tree property holds
for T if for all v ∈ V , the set of clusters C ∈ C such that v ∈ C induces a
sub-tree T (v) of T .

Note, by definition the sub-tree is necessarily connected.
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Three properties

Lemma 7.3.3

Induced sub-tree property holds iff cluster intersection property holds

Proof.

Assume induced subtree holds. For any pair Ci, Cj , every v ∈ Ci ∩ Cj induces a
sub-tree of T , and all of these sub-trees overlap on the unique path between Ci

and Cj in T .

Conversely, assume c.i.p. holds. For a v ∈ V , consider all clusters
that contain v, C(v) = {C ∈ C : v ∈ C}. For any pair Ci, Cj ∈ C(v), we have
that v ∈ Ci ∩ Cj ⊆ Ck for any Ck on the unique path between Ci and Cj .
Hence, v always exists on each of these paths. These paths, unioned together,
cannot form a cycle (since they are paths on a tree). Moreover, these paths
unioned together form a tree (they’re connected) since any pair Ci, Cj ∈ C(v)
defines a path (within the tree) that is connected to the path corresponding to
another pair of the form Cj , Ck ∈ C(v).

Thus, 1) c.i.p., 2) r.i.p., and 3) the induced sub-tree property are all
identical. We’ll henceforth refer them collectively as r.i.p.
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Three properties
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Three properties
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Tree decomposition and r.i.p.

Recall the definition of tree decomposition from the previous lecture,
repeated again on the next slide.
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Tree decomposition (definition)

Definition 7.3.3 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, F ) is a tree with node index set I, edge
set F , and {Ci}i (one for each i ∈ I) is a collection of subsets of V (G)
such that:

1 ∪i∈ICi = V

2 for any (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci

3 for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a connected subtree of T
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Tree decomposition and r.i.p.

Hence, we see that a tree decomposition (when it exists) is just a cluster
tree that satisfies (what we now know to be the) induced sub-tree
property (e.g., r.i.p. and c.i.p. as well, i.e., property (3) is r.i.p.), as well
as when all nodes and edges are covered (we’ll talk more about the notion
of “covering” a bit later).
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Recap

We want all original graph (o.g.) clique marginals. Why?

Finding optimal elimination order is optimal for all o.g. clique
marginals.

Def: decomposition of a graph, and factorization implication.

Def: decomposable graph, and decomposition tree

Thm: triangulated graph ≡ decomposable graph

Def: tree decomposition (vertex and edge cover, and induced
sub-tree).

Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g.
edges. Edges in cluster graph cluster tree via cluster intersection.

Def: cluster intersection property, running intersection property,
induced sub-tree property, r.i.p.

Next def: Junction tree, cluster tree with r.i.p. and edge cover.
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Def: cluster intersection property, running intersection property,
induced sub-tree property, r.i.p.

Next def: Junction tree, cluster tree with r.i.p. and edge cover.
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Junction Tree

Definition 7.3.4

Given a graph G = (V,E), a junction tree corresponding to G (if it
exists) is a cluster tree T = (C, ET ) having the r.i.p. over the clusters,
and where any nodes u, v adjacent via edge (u, v) ∈ E(G) are together in
at least one cluster.

So, junction tree (JT), for a given graph G, is a cluster tree that: 1)
satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover).
Not all r.i.p.-satisfying cluster trees need be an edge cover.

Edge cover implies node cover when ∃ no isolated nodes.

Clusters in JT need not be original graph cliques!!

JT could have clusters corresponding to cliques, maxcliques, or neither
of the above.

If clusters correspond to the original graph cliques (resp. maxcliques)
in G, it called a junction tree of cliques (resp. maxcliques).
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Examples junction trees and not

A

E

DB

C

ABD

CDE

BCD

D

CD

ABD

CDE

BCD

BD

CD

Questions to answer:

cluster graph?

cluster tree?

Junction tree?

Junction tree of cliques?

Junction tree of maxcliques?
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Examples junction trees and not
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K

Tree of cliques for above graph. Does r.i.p. hold? JT? JT of cliques? JT
of maxcliques?

DKFC EIDCBH

ACDF DKI IEJCKHBGH

CDFCHBH DI EICK DK
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Junction Tree Preserving Operations

Lemma 7.3.5

Given a junction tree, form a new cluster tree as follows. For each cluster
C in the JT, choose an order of nodes within C, say c1, c2, . . . , ck, and
hang a chain of clusters off of C consisting of C \ {c1} hanging from C,
C \ {c1, c2} hanging from C \ {c1}, C \ {c1, c2, c3} hanging from
C \ {c1, c2}, and so on. Then the resulting cluster graph is a cluster tree,
and moreover it is still junction tree.

Lemma 7.3.6

Given a junction tree, where (Ci, Cj) are neighboring clusters in the tree,
we can merge these two clusters forming a new cluster Cij = Ci ∪ Cj ,
and where the neighbors of Cij are the set of neighbors of either Ci or
Cj . Then the resulting structure is still junction tree.

If we keep doing the latter, we’ll end up with one complete graph.
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Key theorem: JT of maxcliques ≡ triangulated graphs

Theorem 7.3.7

A graph G = (V,E) is decomposable iff a junction tree of maxcliques for
G exists.

Proof.

a junction tree exists ⇔ decomposable: Induction on the number of
maxcliques. If G has one maxclique, it is both a junction tree and
decomposable. Assume true for ≤ k maxcliques and show it for k + 1.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
JT of maxcliques implies Decomposable

... proof continued.

a junction tree exists ⇒ decomposable: Let T be a junction tree of
maxcliques C, and let C1, C2 be adjacent in T . The edge C1, C2 in the
tree separates T into two sub-trees T1 and T2, with Vi being the nodes in
Ti, Gi = G[Vi] being the subgraph of G corresponding to Ti, and Ci being
the set of maxcliques in Ti, for i = 1, 2. Thus V (G) = V1 ∪ V2, and
C = C1 ∪ C2. Note that C1 ∩ C2 = ∅. We also let S = V1 ∩ V2 which is the
intersection of all the nodes in each of the two trees.

C1 C2

Tree T1 with nodes V1 forming
graph G1 = G[V1] and max-
cliques C1.

Tree T2 with nodes V2 forming
graph G2 = G[V2] and max-
cliques C2.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
JT of maxcliques implies Decomposable

... proof continued.

Also, the nodes in Ti are maxcliques in Gi and Ti is a junction tree for Gi

since r.i.p. still holds in the subtrees of a junction tree. Therefore, by
induction, Gi is decomposable. To show that G is decomposable, we need
to show that: 1) S = V1 ∩ V2 is complete, and 2) that S separates
G[V1 \ S] from G[V2 \ S].
If v ∈ S, then for each Gi (i = 1, 2), there exists a clique C ′i with v ∈ C ′i,
and the path in T joining C ′1 and C ′2 passes through both C1 and C2.
Because of the r.i.p., we thus have that v ∈ C1 and v ∈ C2 and so
v ∈ C1 ∩ C2. This means that V1 ∩ V2 ⊆ C1 ∩ C2. But Ci ⊆ Vi since Ci

is a clique in the corresponding tree Ti. Therefore
C1 ∩ C2 ⊆ V1 ∩ V2 = S, so that S = C1 ∩ C2. This means that S
contains all nodes that are common among the two subgraphs and
moreover that S is complete as desired.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
JT of maxcliques implies Decomposable

... proof continued.

Next, to show that S is a separator, we take u ∈ V1 \ S and v ∈ V2 \ S
(note that such choices mean u 6∈ V2 and v 6∈ V1 due to the commonality
property of S). Suppose the contrary that S does not separate V1 from
V2, which means there exists a path u,w1, w2, . . . , wk, v for the given u, v
with wi 6∈ S for all i. Therefore, there is a clique C ∈ C containing the
set {u,w1}. We must have C 6∈ C2 since u 6∈ V2, which means C ∈ C1 or
C ⊆ V1 implying that w1 ∈ V1 and moreover that w1 ∈ V1 \ S. We repeat
this argument with w1 taking the place of u and w2 taking the place of
w1 in the path, and so on until we end up with v ∈ V1 \ S which is a
contradiction. Therefore, S must separate V1 from V2. We have thus
formed a decomposition of G as (V1 \ S, V2 \ S, S) and since Gi is
decomposable (by induction), we have that G is decomposable.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
Decomposable implies JT of maxcliques

... proof continued.

decomposable ⇒ a junction tree exists: Since G is decomposable, let
(W1,W2, S) be a proper decomposition of G into decomposable subsets
G1 = G[V1] and G2 = G[V2] with Vi =Wi ∪ S. By induction, since G1

and G2 are decomposable, there exits a junction tree T1 and T2
corresponding to maxcliques in G1 and G2. Since this is a decomposition,
with separator S, we can form all maxcliques C = C1 ∪ C2 with Ci
maxcliques of Vi for tree Ti. Choose C1 ∈ C1 and C2 ∈ C2 such that
S ⊆ C1 and S ⊆ C2 which is possible since S is complete, and must be
contained in some maxclique in both T1 and T2. We form a new tree T
by linking C1 ∈ T1 with C2 ∈ T2. We need next to ensure that this new
junction tree satisfies r.i.p.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
Decomposable implies JT of maxcliques

... proof continued.

Let v ∈ V . If v 6∈ V2, then all cliques containing v are in C1 and those
cliques form a connected tree by the junction tree property since T1 is a
junction tree. The same is true if v 6∈ V1. Otherwise, if v ∈ S (meaning
that v ∈ V1 ∩ V2), then the cliques in Ci containing v are connected in Ti
including Ci for i = 1, 2. But by forming T by connecting C1 and C2,
and since v is arbitrary, we have retained the junction tree property.
Thus, T is a junction tree.
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Cliques or Maxcliques

Lemma 7.3.8

A junction tree of maxcliques for graph G = (V,E) exists iff a junction
tree of cliques for graph G = (V,E) exists.

How can we get from one to the other? (Exercise:)

Since decomposable is same as triangulated:

Corollary 7.3.9

A graph G is triangulated iff a junction tree of cliques for G exists.
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How to build a junction tree

Maximum cardinality search algorithm can do this. If graph is
triangulated, it produces a list of cliques in r.i.p. order.
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Maximum Cardinality Search with maxclique order

Algorithm 1: Maximum Cardinality Search: Determines if a graphG is triangulated.

Input: An undirected graph G = (V,E) with n = |V |.
Result: is triangulated?, if so MCS ordering σ = (v1, . . . , vn), and maxcliques in r.i.p.

order.
1 L← ∅ ; i← 1 ; C ← ∅ ;
2 while |V \ L| > 0 do
3 Choose vi ∈ argmaxu∈V \L |δ(u)∩L| ; /* vi’s previously labeled neighbors has max

cardinality. */

4 ci ← δ(vi) ∩ L ; /* ci is vi’s neighbors in the reverse elimination order. */
5 if {vi} ∪ ci is not complete in G then
6 return “not triangulated” ;

7 if |ci| ≤ |ci−1| then
8 C ← (C, {ci−1 ∪ {vi−1}}) ; /* Append the next maxclique to list C. */
9 if i = n then

10 C ← (C, {ci ∪ {vi}}) ; ; /* Append the last maxclique to list C. */
11 L← L ∪ {vi} i← i+ 1 ;

12 return “triangulated”, the ordering σ, and the set of maxcliques C which are in r.i.p.
order.
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Maximum Cardinality Search with maxclique order

Algorithm 2: Maximum Cardinality Search: Determines if a graphG is triangulated.

Input: An undirected graph G = (V,E) with n = |V |.
Result: is triangulated?, if so MCS ordering σ = (v1, . . . , vn), and maxcliques in r.i.p.

order.
1 L← ∅ ; i← 1 ; C ← ∅ ;
2 while |V \ L| > 0 do
3 Choose vi ∈ argmaxu∈V \L |δ(u)∩L| ; /* vi’s previously labeled neighbors has max

cardinality. */

4 ci ← δ(vi) ∩ L ; /* ci is vi’s neighbors in the reverse elimination order. */
5 if {vi} ∪ ci is not complete in G then
6 return “not triangulated” ;

7 if |ci| ≤ |ci−1| then
8 C ← (C, {ci−1 ∪ {vi−1}}) ; /* Append the next maxclique to list C. */
9 if i = n then

10 C ← (C, {ci ∪ {vi}}) ; ; /* Append the last maxclique to list C. */
11 L← L ∪ {vi} i← i+ 1 ;

12 return “triangulated”, the ordering σ, and the set of maxcliques C which are in r.i.p.
order.
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How to build a junction tree

Alternatively, we can construct the maxcliques in any form (say by
running elimination) and find a maximal spanning tree over the
edge-weighted cluster graph, where clusters correspond to maxcliques,
and edge weights correspond to the size of the intersection of the two
adjacent maxcliques.

Prim’s algorithm can run in O(|E|+ |V | log |V |), much better than
|V |2 for sparse graphs.

Theorem 7.3.10

A tree of maxcliques T is a junction tree iff it is a maximum spanning
tree on the maxclique graph, with edge weights set according to the
cardinality of the separator between the two maxcliques.

Note: graph must be triangulated. I.e., maximum spanning tree of a
cluster graph where the clusters are maxcliques but the graph is not
triangulated will clearly not produce a junction tree.
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Other aspects of JTs

There can be multiple JTs for a given triangulated graph (e.g.,
consider any graph where d(S) ≥ 3 for some separator S).

JTs are not binary decomposition trees (BDTs), but they are related.
Leaf nodes of BDTs correspond to nodes in a JT of maxcliques.
Non-leaf nodes in a BDTs may correspond to edges in a JT.
Therefore, edges in a JT may correspond to all minimal separators in
triangulated graph G′ but also might not (e.g.,
{ABC} − {BCD} − {CDE} with {BCD} repeated).

Set of maxcliques is unique in a triangulated graph. Set of minimal
separators is unique in a triangulated graph.

Again, JT can be over not just maxcliques. JT can exist over all
cliques, or over some cliques (if they contain all maxcliques)

Different JTs of maxcliques always has same set of nodes and
separators, just different configurations.
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Intersection Graphs

We’re next going to look at seemingly very different way to view
triangulated graphs and junction trees, based on intersection graph
theory.

We’ll see that triangulated graphs are identical to a type of
intersection graph, where the underlying object is a tree (furthering
our connection to trees).

first, lets talk a bit about terminology.
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Covers (in general) and Edge Clique Covers

Set cover - sets must cover the ground/universal set (ground set
cover, or a set-based cover of the ground)

Vertex cover - vertices must cover the edges (edge vertex cover, or a
vertex-based cover of edges)

Edge cover - edges must cover the vertices (vertex edge cover, or an
edge-based cover of vertices)

clique cover - cliques cover the edges (edge clique cover, or a
clique-based cover of edges)

The nodes of a junction tree of cliques (or maxcliques) constitute an
edge clique cover for triangulated graph G′ — start with set of nodes
V = ∪C∈CC. Add edge between u, v ∈ V if exists a C ∈ C such that
u, v ∈ C.

Going from G′ to JT and back to the graph yields the same graph.
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Sources for Today’s Lecture

Most of this material comes from the reading handout
tree inference.pdf
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