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Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.

Homework 1 is out, due next Tuesday (10/21) at 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, the
triangulation process/heuristics

L6 (10/15): multiple queries, junction
trees, intersection graphs,

L7 (10/20):

L8 (10/22):

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Recap

Triangulated graphs: if |V | ≥ 2, always two simplicial nodes.

Triangulated graph iff perfect elimination graph.

All minimal triangulations of a graph can be created using elimination.

k-trees, generalization of trees. Sometimes called hyper-tree. All
min-separators are k-cliques. partial k-trees. Embedding into k-trees.

Any triangulated graph G′ can be embedded into k-tree where k + 1
is the size of the largest clique of G′. Thus any graph can be
embedded into a k-tree for large enough k.

NP-complete: finding smallest k such that G is embeddable into
k-tree, inapproximability results.

Triangulation heuristics: min-fill, min-size, randomization, etc.

MCS can identify a triangulated graph efficiently, produces a reverse
elimination order.
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Logistics Review

MCS

Can also produce an elimination order and triangulate the graphs (but
not particularly good)

will produce a perfect elimination order on triangulated graphs

why called maximum cardinality “search”

Theorem 6.2.13

A graphical G is triangulated iff in the MCS algorithm, at each point
when a vertex is marked, that vertex’s previously marked neighbors form a
complete subgraph of G.

Corollary 6.2.14

Every maximum cardinality search of a triangulated graph G corresponds
to a reverse perfect eliminating order of G.
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Multiple queries Junction Trees Intersection Graphs Refs

Multiple queries

Let C be the set of all cliques in original graph. Often, we want to
compute p(xC) for all C ∈ C.

Do not want to run separate elimination |C| many times.

Recall tree (i.e., 1-tree) case - messages for one query used for other
queries. Message re-use/efficiency only grows with num. queries.

Can
we do the same thing for arbitrary graphs?

Consider only the class of triangulated models since to do otherwise
(for exact inference) is not necessary.

But is one triangulated model optimal for all queries?
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Multiple queries

A triangulated graph is a cover of G

Any clique in G will still be a clique in a triangulation G′: that is,
given clique c ∈ C(G), there exists c′ ∈ C(G′) with c ⊆ c′.

Given p(xc′), can compute p(xc) =
∑

xc′\c
p(xc′) at cost O(r|c

′|).

Same cost triangulated graph.

optimal k-tree embedding for G is one that minimizes the maximum
clique for any triangulation of G, so if we have found this embedding,
this will be optimal for any original-graph clique marginal.

Even if we found a “good” elimination order (one that produces a
maxclique of reasonable size), this order can be shared for other clique
queries.
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Non-clique queries

Recall: 1-tree case, if we want a marginal over a non-sub-tree, we
might be in trouble.

Similarly, if we desire non-clique queries for general graph, then
computation can get worse. Computing p(xL) for arbitrary L could
turn xL into a clique in the worst case (Rose’s theorem).

If xL is not clique in G′, then we can view G′ as not being “valid” for
the query p(xL).

In such case, need to re-triangulate, starting with a graph where xL is
made complete.
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Computing all clique queries efficiently via elimination

Remarkably, in the case of clique queries, we can actually re-use the
elimination order.

We want to share more than just the elimination order.

goal: in non-tree graphs, re-use work of computing marginals for the
sake of getting multiple marginals.

We’ll see an amazing fact: if we find the optimal elimination order for

1 clique query, it is optimal for all clique queries!! !
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Decomposition of G

Definition 6.3.1 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

If G has a decomposition, what dies this mean for the family F(G,M(f))?
Since C separates A from B, this means that XA⊥⊥XB|XC for any
p ∈ F(G,M(f)), which moreover means we can write the joint
distribution in a particular form.

p(x) = p(xA, xB, xC) =
p(xA, xC)p(xB, xC)

p(xC)
(6.1)
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Decomposable models

Definition 6.3.2

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs G[A ∪C]
and G[B ∪ C] are decomposable.

Note that the separator is contained within the subgraphs: i.e.,
G[A ∪ C] rather than, say, G[A].
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Decomposable models
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Graph and two decompositions of this graph.

as we recurse down, if at any point decomposition is not found, graph
is not decomposable.
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Decomposition of G and Decomposable graphs

Repeat of both definitions, but on one page.

Definition 6.3.3 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

Definition 6.3.4

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs
G[A ∪ C] and G[B ∪ C] are decomposable.

Note part 2. It says possesses. Bottom of tree might affect top.
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Decomposable models

Internal nodes in tree are complete graphs that
are also separators.

When G is decomposable, what are implications
for a p ∈ F(G,M(f))?
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=
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p(C,D, F )
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= . . .
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p(C,D, F )p(C,H)p(B,H)p(D, I)p(E, I)p(C,K)p(D,K)
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Decomposable models
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Shattering of a graph

S is a separator, so that G[V \ S] consists of 2 or more connected
components.

We say that S shatters the graph G into those components, and let
d(S) be the number of connected components that S shatters G into.
d(S) is the shattering coefficient of G.

Example: below, d({A,B}) = 3

ABEF

ABCD

AB

ABGH

AB
D C

G

A

E F

B

H

D C

A B

G

A B

H

A

E F

B
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Decomposable models

When d(S) > 2, separator marginal use more than once in the
denominator

The general form of the factorization becomes:

p(x) =

∏
C∈C(G) p(xC)∏

S∈S(G) p(xS)
d(S)−1

(6.2)

Any decomposable model can be written this way

4-cycle is not decomposable. Two independence properties that can’t
be used simultaneously.

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x1, x3, x4)

p(x1, x4)
=

p(x1, x2, x3)p(x2, x3, x4)

p(x2, x3)
(6.3)
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Decomposable models

Proposition 6.3.5

All of the maxcliques in a graph lie on the leaf nodes of the binary
decomposition tree

Proof.

For a decomposable model, the base case (leaf node) is a clique,
otherwise it would not be decomposable. If a leaf was not a maxclique
(and only a clique), then that means it is contained in a maxclique, and
got split by a separator corresponding to that leaf’s parent, but this is
impossible since a maxcliques have no separator.

Proposition 6.3.6

The (nec. unique) set of all minimal separators of graph are included in the
non-leaf nodes of the binary decomposition tree. d(S)− 1 is the number
of times the minimal separator S appears as a given non-leaf node.
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A bit of notation

If C is separator, C shatters G into d(C) connected components

G[V \ C] is the union of these components (not including C)

Let {G1, G2, . . . , G!} be (disjoint) connected components of
G[V \ C], so G1 ∪G2 ∪ · · · ∪G! = G[V \ C]

Given a ∈ V (Gi) for some i, then G[V \ C](a) = Gi.
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Triangulated vs. decomposable

Theorem 6.3.7

A given graph G = (V,E) is triangulated iff it is decomposable.

Proof.

First, recall from Lemma 4.5.6 that a graph is triangulated iff it is
decomposable. To prove the current theorem, we will first show (by
induction) that decomposability implies that the graph is triangulated).
Next, for the converse, we’ll show (also by induction on n = |V |) that
every minimal separator complete in G implies decomposable.
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Triangulated vs. decomposable

Proof of Theorem 6.3.7.

First, assume G is decomposable. If G is complete then it is triangulated.
If it is not complete then there exists a proper decomposition (A,B,C)
into decomposable subgraphs G[A∪C] and G[B ∪C] both of which have
fewer vertices, meaning |A ∪ C| < |V | and |B ∪ C| < |V |. By the
induction hypothesis, both G[A ∪ C] and G[B ∪ C] are chordal. Any
potential chordless cycle, therefore, can’t be contained in one of the
sub-components, so if it exist in G must intersect both A and B. Since C
separates A from B, the purported chordless cycle would intersect C
twice, but C is complete the cycle has a chord. The first part of the
theorem is proven.
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Triangulated vs. decomposable

. . . proof of Theorem 6.3.7 cont.

For the converse, assume all minimum (a, b) separators are complete in
G, and assume (induction hypothesis) that all min. (a, b) separators are
complete implies decomposable for smaller graphs.

If G is complete then it is
decomposable. Otherwise, there exists
two non-adjacent vertices a, b ∈ V in
G with a necessarily complete minimal
separator C forming a partition
G[V \ C](a), G[V \ C](b), and all of
the remaining components of G[V \C].
We merge the connected components
together to form only two components
as follows: let A = G[V \ C](a) ∪D
and B = G[V \ C](b).
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Triangulated vs. decomposable

. . . proof of Theorem 6.3.7 cont.

For the converse, assume all minimum (a, b) separators are complete in
G, and assume (induction hypothesis) that all min. (a, b) separators are
complete implies decomposable for smaller graphs.

If G is complete then it is
decomposable. Otherwise, there exists
two non-adjacent vertices a, b ∈ V in
G with a necessarily complete minimal
separator C forming a partition
G[V \ C](a), G[V \ C](b), and all of
the remaining components of G[V \C].
We merge the connected components
together to form only two components
as follows: let A = G[V \ C](a) ∪D
and B = G[V \ C](b).

C

D

A = G[V \ C](a) ∪D

B = G[V \ C](b

b

)
G[V \ C](a

a

)
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Triangulated vs. decomposable

. . . proof of Theorem 6.3.7 cont.

Since C is complete, we see that (A,B,C) form a decomposition of G,
but we still need that G[A ∪ C] and G[B ∪ C] to be decomposable (see
figure). Lets consider the decomposability if A first.

C

D

A = G[V \ C](a) ∪D

B = G[V \ C](b

b

)
G[V \ C](a

a

)
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Triangulated vs. decomposable

. . . proof of Theorem 6.3.7 cont.

Considering A, let C1 be a
minimal (a1, b1) separator in
G[A ∪ C] (see right). Is C1

also minimal (and thus
complete) in G as well?

C

D

C
1

G[V \ C](a

a

) B = G[V \ C](b

b

)
a
1

b
1

Yes, C1 is also a minimal (a1, b1) separator in G since, once we add B
back to G[A ∪ C] to get G, there are no new paths from a1 to b1
circumventing C1. This is because any such path would involve nodes in
B (the only new nodes) which, to reach B and return, requires going
through C (which is complete) twice. Such a path cannot bypass C1

since if it did, a shorter path not involving B would bypass C1,
contradicting C1 being a separator. Therefore, C1 is complete in G, and
hence complete in G[A ∪ C], and an inductive argument says that
G[A ∪ C] is decomposable.
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Triangulated vs. decomposable

. . . proof of Theorem 6.3.7 cont.

Considering A, let C1 be a
minimal (a1, b1) separator in
G[A ∪ C] (see right). Is C1

also minimal (and thus
complete) in G as well?

C

D
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G[V \ C](a

a

) B = G[V \ C](b

b

)
a
1

b
1

Yes, C1 is also a minimal (a1, b1) separator in G since, once we add B
back to G[A ∪ C] to get G, there are no new paths from a1 to b1
circumventing C1. This is because any such path would involve nodes in
B (the only new nodes) which, to reach B and return, requires going
through C (which is complete) twice. Such a path cannot bypass C1

since if it did, a shorter path not involving B would bypass C1,
contradicting C1 being a separator. Therefore, C1 is complete in G, and
hence complete in G[A ∪ C], and an inductive argument says that
G[A ∪ C] is decomposable.
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Triangulated vs. decomposable

. . . proof of Theorem 6.3.7 cont.

C

D

A = G[V \ C](a) ∪D

B = G[V \ C](b

b

)
G[V \ C](a

a

)

The same argument that held for A also holds for B in the graph
G[B ∪ C]. Therefore, G is decomposable.
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Tree decomposition

Definition 6.3.8 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, F ) is a tree with node index set I, edge
set F , and {Ci}i (one for each i ∈ I) is a collection of subsets of V (G)
such that:

1 ∪i∈ICi = V

2 for any (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci

3 for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a connected subtree of T
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Tree decomposition is also hard

Definition: The tree-width of the tree-decomposition is the size of the
largest Ci minus one (i.e., maxi∈I |Ci|− 1.

Theorem 6.3.9

Given graph G = (V,E), finding the tree decomposition T = (I, F ) of G
that minimizes the tree width (maxi∈I |Ci|− 1) is an NP-complete
optimization problem.

How does this relate to our problem though?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 6 - Oct 15th, 2014 F26/74 (pg.55/183)



Multiple queries Junction Trees Intersection Graphs Refs

Tree decomposition is also hard

Definition: The tree-width of the tree-decomposition is the size of the
largest Ci minus one (i.e., maxi∈I |Ci|− 1.

Theorem 6.3.9

Given graph G = (V,E), finding the tree decomposition T = (I, F ) of G
that minimizes the tree width (maxi∈I |Ci|− 1) is an NP-complete
optimization problem.

How does this relate to our problem though?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 6 - Oct 15th, 2014 F26/74 (pg.56/183)



Multiple queries Junction Trees Intersection Graphs Refs

Tree decomposition is also hard
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→ trees

All roads lead to trees, namely junction trees.

Next set of slides will make the transformation mathematically precise.
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Cluster graphs

Definition 6.4.1 (Cluster graph)

Consider forming a new graph based on G where the new graph has
nodes that correspond to clusters in the original G, and has edges existing
between two (cluster) nodes only when the corresponding clusters have a
non-zero intersection. That is, let C(G) =

{
C1, C2, . . . , C|I|

}
= be a set

of |I| clusters of nodes V (G), where Ci ⊆ V (G), i ∈ I. Consider a new
graph J = (I, E) where each node in J corresponds to a set of nodes in
G, and where edge (i, j) ∈ E if Ci ∩ Cj '= ∅. We will also use
Sij = Ci ∩ Cj as notation.

So two cluster nodes have an edge between them iff there is non-zero
intersection between the nodes.
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Cluster graphs

Definition 6.4.1 (Cluster graph)

Consider forming a new graph based on G where the new graph has
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Cluster Trees

If the graph is a tree, then we have what is called a cluster tree.

Definition 6.4.2 (Cluster Tree)

Let C =
{
C1, C2, . . . , C|I|

}
be a set of node clusters of graph

G = (V,E). A cluster tree is a tree T = (I, ET ) with vertices
corresponding to clusters in C and edges corresponding to pairs of clusters
C1, C2 ∈ C. We can label each vertex in i ∈ I by the set of graph nodes
in the corresponding cluster in G, and we label each edge (i, j) ∈ ET by
the cluster intersection, i.e., Sij = Ci ∩ Cj .
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Cluster Graphs/Trees

H

F G

C

ED

J
I

A B

K

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6

Left: a graph. Right: A cluster graph with |I| = 6 clusters, where
C1 = {F,G,A,B}, C2 = {H,F,A,K,C}, . . . . There is an edge (1, 2)
since C1 ∩C2 = {F,A} '= ∅.

If we remove all but the blue edges, then we
get a cluster tree.
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since C1 ∩C2 = {F,A} '= ∅. If we remove all but the blue edges, then we
get a cluster tree.
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Cluster Intersection Property (c.i.p.)

Important: Cluster graphs and cluster trees are based only on a set of
clusters of nodes of G = (V,E). We haven’t, based on these
definitions, yet used any of the original graph (o.g.) edges of G.

Edges in a cluster graph and cluster tree are not o.g. edges. Instead,
they are based on if two clusters have non-empty intersection.

We want to talk about cluster trees that have certain properties. A
cluster graph might or might not have such properties.
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Cluster Intersection Property (c.i.p.)

Definition 6.4.3 (Cluster Intersection Property)

We are given a cluster tree T = (I, ET ), and let C1, C2 be any two
clusters in the tree. Then the cluster intersection property states that
C1 ∩ C2 ⊆ Ci for all Ci on the (by definition, necessarily) unique path
between C1 and C2 in the tree T .

A given cluster tree might or might not have that property.

Example on the next few slides.
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Examples

Cluster Graph

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Examples

Cluster Tree

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Examples

Cluster Tree that violates the cluster intersection property

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Examples

Cluster Tree that obeys the cluster intersection property

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Running Intersection Property (r.i.p.)

Definition 6.4.4 (Running Intersection Property (r.i.p.))

Let C1, C2, . . . , C! be an ordered sequence of subsets of V (G). Then the
ordering obeys the running intersection property (r.i.p.) property if for all
i > 1, there exists j < i such that Ci ∩ (∪k<iCk) = Ci ∩ Cj .

Cluster j acts as a representative for all of i’s history.

r.i.p. is defined in terms of clusters of nodes in a graph.

r.i.p. holds on an (unordered) set of clusters if such an ordering can be
found.
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Running Intersection Property (r.i.p.)
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Running Intersection Property (r.i.p.)

Given sequence of clusters C1, C2, . . . , C!. Define the history
(accumulation) of sequence at position i:

Hi = C1 ∪ C2 ∪ · · · ∪ Ci. (6.4)

Innovation (residual) or new nodes in Ci not encountered in the previous
history, as:

Ri = Ci \Hi−1. (6.5)

Lastly, define the non-innovation, commonality, or separation elements
between new and previous history:

Si = Ci ∩Hi−1 (6.6)

Note Ci = Ri ∪ Si, i
th clusters consists of the innovation Ri and the

commonality Si.
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Running Intersection Property (r.i.p.)

C j C iS i

Si = (C1 ∪ C2 ∪ · · · ∪ Ci−1) ∩ Ci

= Cj ∩ Ci

Hi

Clusters are in r.i.p. order if the commonality Si between new and history
is fully contained in one element of history. I.e., there exists an j < i such
that Si ⊆ Cj .
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First Two Properties

Lemma 6.4.5

The cluster intersection and running intersection properties are identical.

Proof.

Starting with clusters in r.i.p. order, construct cluster tree by connecting
each i to its corresponding j node. This is a tree. Also, take any Ci, Ck

with k < i. Si summarizes everything between Ci and Hi−1 so
Ci ∩ Ck ⊆ Si. Apply recursively on unique path between Ci and Ck.
Conversely, perform traversal (depth or breadth first search) on cluster
tree. That order will satisfy r.i.p. since any possible intersection between
Ci, Cj on unique path, it must be fully contained in neighbor.
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First Two Properties

Example of a set of node clusters (within the cloud-like shapes) arranged
in a tree that satisfies the r.i.p. and also the cluster intersection property.
The intersections between neighboring node clusters are shown in the
figure as square boxes. Consider the path or
{B,E,H} ∩ {B,D,F} = {B}.
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Induced sub-tree property (i.s.p.)

Definition 6.4.6 (Induced Sub-tree Property)

Given a cluster tree T for graph G, the induced sub-tree property holds
for T if for all v ∈ V , the set of clusters C ∈ C such that v ∈ C induces a
sub-tree T (v) of T .

Note, by definition the sub-tree is necessarily connected.
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Three properties

Lemma 6.4.7

Induced sub-tree property holds iff cluster intersection property holds

Proof.

Assume induced subtree holds. Take all v ∈ Ci ∩ Cj , then each such v induces a
sub-tree of T , and all of these sub-trees overlap on the unique path between Ci

and Cj in T .
Conversely, when cluster intersection property holds, given v ∈ V , consider all
clusters that contain v, C(v) = {C ∈ C : v ∈ C}. For any pair C1, C2 ∈ C(v), we
have that C1 ∩ C2 exists on the unique path between C1 and C2 in T , and since
v ∈ C1 ∩ C2, v always exists on each of these paths. These paths, considered as
a union together, cannot form a cycle (since they are paths on a tree).
Moreover, these paths unioned together form a tree (they’re connected).

Therefore, cluster intersection property, running intersection property, and
induced sub-tree property, are all identical. We’ll henceforth refer them
collectively as r.i.p.
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Tree decomposition

Lets look again at tree decomposition, a cluster tree that satisfies (what
we now know to be the) induced sub-tree property (e.g., r.i.p. and c.i.p.
as well).

Definition 6.4.8 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, ET ) is a tree with node index set I, edge
set ET , and {Ci}i (one for each i ∈ I) is a collection of clusters (subsets)
of V (G) such that:

1 ∪i∈ICi = V

2 for any edge (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci

3 (r.i.p.) for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a (nec.
connected) subtree of T
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Recap

We want all original graph (o.g.) clique marginals. Why?

Finding optimal elimination order is optimal for all o.g. clique
marginals.

Def: decomposition of a graph, and factorization implication.

Def: decomposable graph, and decomposition tree

Thm: triangulated graph ≡ decomposable graph

Def: tree decomposition (vertex and edge cover, and induced
sub-tree).

Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g.
edges. Edges in cluster graph cluster tree via cluster intersection.

Def: cluster intersection property, running intersection property,
induced sub-tree property, r.i.p.

Next def: Junction tree, cluster tree with r.i.p. and edge cover.
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Junction Tree

Definition 6.4.9

Given a graph G = (V,E), a junction tree corresponding to G (if it
exists) is a cluster tree T = (C, ET ) having the r.i.p. over the clusters,
and where any nodes u, v adjacent via edge (u, v) ∈ E(G) are together in
at least one cluster.

So, junction tree (JT), for a given graph G, is a cluster tree that: 1)
satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover).
Not all r.i.p.-satisfying cluster trees need be an edge cover.

Clusters in JT need not be original graph cliques!!

JT could have clusters corresponding to cliques, maxcliques, or neither
of the above.

If clusters correspond to the original graph cliques (resp. maxcliques)
in G, it called a junction tree of cliques (resp. maxcliques).
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Examples junction trees and not

Questions to ask:

cluster graph?

cluster tree?

Junction tree?

Junction tree of cliques?

Junction tree of maxcliques?
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Examples junction trees and not
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Examples junction trees and not
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Examples junction trees and not
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Examples junction trees and not
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Examples junction trees and not
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Examples junction trees and not
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Examples junction trees and not
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Junction Tree Preserving Operations

Lemma 6.4.10

Given a junction tree, form a new cluster tree as follows. For each cluster
C in the JT, choose an order of nodes within C, say c1, c2, . . . , ck, and
hang a chain of clusters off of C consisting of C \ {c1} hanging from C,
C \ {c1, c2} hanging from C \ {c1}, C \ {c1, c2, c3} hanging from
C \ {c1, c2}, and so on. Then the resulting cluster graph is a cluster tree,
and moreover it is still junction tree.

Lemma 6.4.11

Given a junction tree, where (Ci, Cj) are neighboring clusters in the tree,
we can merge these two clusters forming a new cluster Cij = Ci ∪ Cj ,
and where the neighbors of Cij are the set of neighbors of either Ci and
Cj . Then the resulting structure is still junction tree.

If we keep doing the latter, we’ll end up with one complete graph.
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Key theorem: JT of maxcliques ≡ triangulated graphs

Theorem 6.4.12

A graph G = (V,E) is decomposable iff a junction tree of maxcliques for
G exists.

Proof.

Induction on the number of maxcliques. If G has one maxclique, it is
both a junction tree and decomposable. Assume true for ≤ k maxcliques
and show it for k + 1.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
JT implies Decomposable

... proof continued.

a junction tree exists ⇒ decomposable: Let T be a junction tree of
maxcliques C, and let C1, C2 be adjacent in T . The edge C1, C2 in the
tree separates T into two sub-trees T1 and T2, with Vi being the nodes in
Ti, Gi = G[Vi] being the subgraph of G corresponding to Ti, and Ci being
the set of maxcliques in Ti, for i = 1, 2. Thus V (G) = V1 ∪ V2, and
C = C1 ∪ C2. Note that C1 ∩ C2 = ∅. We also let S = V1 ∩ V2 which is the
intersection of all the nodes in each of the two trees.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
JT implies Decomposable

... proof continued.

Also, the nodes in Ti are maxcliques in Gi and Ti is a junction tree for Gi

since r.i.p. still holds in the subtrees of a junction tree. Therefore, by
induction, Gi is decomposable. To show that G is decomposable, we need
to show that: 1) S = V1 ∩ V2 is complete, and 2) that S separates
G[V1 \ S] from G[V2 \ S].
If v ∈ S, then for each Gi (i = 1, 2), there exists a clique C ′

i with v ∈ C ′
i,

and the path in T joining C ′
1 and C ′

2 passes through both C1 and C2.
Because of the r.i.p., we thus have that v ∈ C1 and v ∈ C2 and so
v ∈ C1 ∩ C2. This means that V1 ∩ V2 ⊆ C1 ∩ C2. But Ci ⊆ Vi since Ci

is a clique in the corresponding tree Ti. Therefore
C1 ∩ C2 ⊆ V1 ∩ V2 = S, so that S = C1 ∩ C2. This means that S
contains all nodes that are common among the two subgraphs and
moreover that S is complete as desired.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
JT implies Decomposable

... proof continued.

Next, to show that S is a separator, we take u ∈ V1 \ S and v ∈ V2 \ S
(note that such choices mean u '∈ V2 and v '∈ V1 due to the commonality
property of S). Suppose the contrary that S does not separate V1 from
V2, which means there exists a path u,w1, w2, . . . , wk, v for the given u, v
with wi '∈ S for all i. Therefore, there is a clique C ∈ C containing the
set {u,w1}. We must have C '∈ C2 since u '∈ V2, which means C ∈ C1 or
C ⊆ V1 implying that w1 ∈ V1 and moreover that w1 ∈ V1 \ S. We repeat
this argument with w1 taking the place of u and w2 taking the place of
w1 in the path, and so on until we end up with v ∈ V1 \ S which is a
contradiction. Therefore, S must separate V1 from V2. We have thus
formed a decomposition of G as (V1 \ S, S, V2 \ S) and since Gi is
decomposable (by induction), we have that G is decomposable.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
Decomposable implies JT

... proof continued.

decomposable ⇒ a junction tree exists: Since G is decomposable, let
(W1,W2, S) be a proper decomposition of G into decomposable subsets
G1 = G[V1] and G2 = G[V2] with Vi = Wi ∪ S. By induction, since G1

and G2 are decomposable, there exits a junction tree T1 and T2
corresponding to maxcliques in G1 and G2. Since this is a decomposition,
with separator S, we can form all maxcliques C = C1 ∪ C2 with Ci
maxcliques of Vi for tree Ti. Choose C1 ∈ C1 and C2 ∈ C2 such that
S ⊆ C1 and S ⊆ C2 which is possible since S is complete, and must be
contained in some maxclique in both T1 and T2. We form a new tree T
by linking C1 ∈ T1 with C2 ∈ T2. We need next to ensure that this new
junction tree satisfies r.i.p.

. . .
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Junction tree of maxcliques ≡ triangulated graphs
Decomposable implies JT

... proof continued.

Let v ∈ V . If v '∈ V2, then all cliques containing v are in C1 and those
cliques form a connected tree by the junction tree property since T1 is a
junction tree. The same is true if v '∈ V1. Otherwise, if v ∈ S (meaning
that v ∈ V1 ∩ V2), then the cliques in Ci containing v are connected in Ti
including Ci for i = 1, 2. But by forming T by connecting C1 andC2, and
since v is arbitrary, we have retained the junction tree property. Thus, T
is a junction tree.
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Cliques or Maxcliques

Lemma 6.4.13

A junction tree of maxcliques for graph G = (V,E) exists iff a junction
tree of cliques for graph G = (V,E) exists.

How can we get from one to the other?

Since decomposable is same as triangulated:

Corollary 6.4.14

A graph G is triangulated iff a junction tree of cliques for G exists.
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Cliques or Maxcliques
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Cliques or Maxcliques

Lemma 6.4.13

A junction tree of maxcliques for graph G = (V,E) exists iff a junction
tree of cliques for graph G = (V,E) exists.

How can we get from one to the other?

Since decomposable is same as triangulated:

Corollary 6.4.14

A graph G is triangulated iff a junction tree of cliques for G exists.
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How to build a junction tree

Maximum cardinality search algorithm can do this. If graph is
triangulated, it produces a list of cliques in r.i.p. order.
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Maximum Cardinality Search with maxclique order

Algorithm 2:Maximum Cardinality Search: Determines if a graphG is triangulated.

Input: An undirected graph G = (V,E) with n = |V |.
Result: is triangulated?, if so MCS ordering σ = (v1, . . . , vn), and maxcliques in r.i.p.

order.
1 L ← ∅ ; i ← 1 ; C ← ∅ ;
2 while |V \ L| > 0 do
3 Choose vi ∈ argmaxu∈V \L |δ(u)∩L| ; /* vi’s previously labeled neighbors has max

cardinality. */

4 ci ← δ(vi) ∩ L ; /* ci is vi’s neighbors in the reverse elimination order. */
5 if {vi} ∪ ci is not complete in G then
6 return “not triangulated” ;

7 if |ci| ≤ |ci−1| then
8 C ← (C, {ci−1 ∪ {vi−1}}) ; /* Append the next maxclique to list C. */
9 if i = n then

10 C ← (C, {ci ∪ {vi}}) ; ; /* Append the last maxclique to list C. */
11 L ← L ∪ {vi} i ← i+ 1 ;

12 return “triangulated”, the ordering σ, and the set of maxcliques C which are in r.i.p.
order.
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Maximum Cardinality Search with maxclique order

Algorithm 3:Maximum Cardinality Search: Determines if a graphG is triangulated.

Input: An undirected graph G = (V,E) with n = |V |.
Result: is triangulated?, if so MCS ordering σ = (v1, . . . , vn), and maxcliques in r.i.p.

order.
1 L ← ∅ ; i ← 1 ; C ← ∅ ;
2 while |V \ L| > 0 do
3 Choose vi ∈ argmaxu∈V \L |δ(u)∩L| ; /* vi’s previously labeled neighbors has max

cardinality. */

4 ci ← δ(vi) ∩ L ; /* ci is vi’s neighbors in the reverse elimination order. */
5 if {vi} ∪ ci is not complete in G then
6 return “not triangulated” ;

7 if |ci| ≤ |ci−1| then
8 C ← (C, {ci−1 ∪ {vi−1}}) ; /* Append the next maxclique to list C. */
9 if i = n then

10 C ← (C, {ci ∪ {vi}}) ; ; /* Append the last maxclique to list C. */
11 L ← L ∪ {vi} i ← i+ 1 ;

12 return “triangulated”, the ordering σ, and the set of maxcliques C which are in r.i.p.
order.
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How to build a junction tree

Alternatively, we can construct the maxcliques in any form (say by
running elimination) and find a maximal spanning tree over the
edge-weighted cluster graph, where clusters correspond to maxcliques,
and edge weights correspond to the size of the intersection of the two
adjacent maxcliques.

Prim’s algorithm can run in O(|E|+ |V | log |V |), much better than
|V |2 for sparse graphs.

Theorem 6.4.15

A tree of maxcliques T is a junction tree iff it is a maximum spanning
tree on the maxclique graph, with edge weights set according to the
cardinality of the separator between the two maxcliques.

Note: graph must be triangulated. I.e., maximum spanning tree of a
cluster graph where the clusters are maxcliques but the graph is not
triangulated will clearly not produce a junction tree.
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How to build a junction tree
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and edge weights correspond to the size of the intersection of the two
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Prim’s algorithm can run in O(|E|+ |V | log |V |), much better than
|V |2 for sparse graphs.
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A tree of maxcliques T is a junction tree iff it is a maximum spanning
tree on the maxclique graph, with edge weights set according to the
cardinality of the separator between the two maxcliques.

Note: graph must be triangulated. I.e., maximum spanning tree of a
cluster graph where the clusters are maxcliques but the graph is not
triangulated will clearly not produce a junction tree.
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How to build a junction tree

Alternatively, we can construct the maxcliques in any form (say by
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and edge weights correspond to the size of the intersection of the two
adjacent maxcliques.

Prim’s algorithm can run in O(|E|+ |V | log |V |), much better than
|V |2 for sparse graphs.

Theorem 6.4.15

A tree of maxcliques T is a junction tree iff it is a maximum spanning
tree on the maxclique graph, with edge weights set according to the
cardinality of the separator between the two maxcliques.

Note: graph must be triangulated. I.e., maximum spanning tree of a
cluster graph where the clusters are maxcliques but the graph is not
triangulated will clearly not produce a junction tree.
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Other aspects of JTs

There can be multiple JTs for a given triangulated graph (e.g.,
consider any graph where d(S) ≥ 3 for some separator S).

JTs are not binary decomposition trees (BDTs), but they are related.
Leaf nodes of BDTs correspond to nodes in a JT of maxcliques.
Non-leaf nodes in a BDTs may correspond to edges in a JT.
Therefore, edges in a JT may correspond to all minimal separators in
triangulated graph G′.

Set of maxcliques is unique in a triangulated graph. Set of minimal
separators is unique in a triangulated graph.

Again, JT can be over not just maxcliques. JT can exist over all
cliques, or over some cliques (if they contain all maxcliques)

Different JTs always have same set of nodes and separators, just
different configurations.
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Other aspects of JTs
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Other aspects of JTs
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Therefore, edges in a JT may correspond to all minimal separators in
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different configurations.
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Intersection Graphs

We’re next going to look at seemingly very different way to view
triangulated graphs and junction trees, based on intersection graph
theory.

We’ll see that triangulated graphs are identical to a type of
intersection graph, where the underlying object is a tree (furthering
our connection to trees).

first, lets talk a bit about terminology.
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Edge Clique Covers

Set cover - sets must cover the ground/universal set (ground set
cover)

Vertex cover - vertices must cover the edges (edge vertex cover)

Edge cover - edges must cover the vertices (vertex edge cover)

clique cover - cliques cover the edges (edge clique cover)

The nodes of a junction tree of cliques (or maxcliques) constitute an
edge clique cover for triangulated graph G′ — start with set of nodes
V = ∪C∈CC. Add edge between u, v ∈ V if exists a C ∈ C such that
u, v ∈ C.

Going from G′ to JT and back to the graph yields the same graph.
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Intersection Graphs

Definition 6.5.1 (Intersection Graph)

An intersection graph is a graph G = (V,E) where each vertex v ∈ V (G)
corresponds to a set Uv and each edge (u, v) ∈ E(G) exists only if
Uu ∩ Uv '= ∅.

some underlying set of objects U and a multiset of subsets of U of
the form U = {U1, U2, . . . , Un} with Ui ⊆ U — might have some i, j
where Ui = Uj .

Theorem 6.5.2

Every graph is an intersection graph.

This can be seen informally by consider an arbitrary graph, create a Ui for
every node, and construct the subsets so that the edges will exist when
taking intersection.
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Interval Graphs (a type of intersetion graph)

Interval graphs are intersection graphs where the subsets are
intervals/segments [a, b] in R

Any graph that can be constructed this way is an interval graph

Are all graphs interval graphs?

4-cycle
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Interval Graphs (a type of intersetion graph)

Interval graphs are intersection graphs where the subsets are
intervals/segments [a, b] in R
Any graph that can be constructed this way is an interval graph
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Are all graphs interval graphs?

4-cycle
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Interval Graphs (a type of intersetion graph)

Interval graphs are intersection graphs where the subsets are
intervals/segments [a, b] in R
Any graph that can be constructed this way is an interval graph

a b c d
e

a b c
de

Are all graphs interval graphs? 4-cycle
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Interval Graphs

Theorem 6.5.3

All Interval Graphs are triangulated.

proof sketch.

Given interval graph G = (V,E), consider any cycle
u,w1, w2, . . . , wk, v, u ∈ V (G). Cycle must go (w.l.o.g.) forward and then
backwards along the line in order to connect back to u, so there must be
a chord between some non-adjacent nodes (since they will overlap).

Are all triangulated graphs interval graphs?

No, consider spider graph
(elongated star graph).
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Given interval graph G = (V,E), consider any cycle
u,w1, w2, . . . , wk, v, u ∈ V (G). Cycle must go (w.l.o.g.) forward and then
backwards along the line in order to connect back to u, so there must be
a chord between some non-adjacent nodes (since they will overlap).

Are all triangulated graphs interval graphs? No, consider spider graph
(elongated star graph).
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Sub-tree intersection Graphs

Given underlying tree, create intersection graph, where subsets are
(nec. connected) subtrees of some “ground” tree.
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Sub-tree intersection Graphs

Given underlying tree, create intersection graph, where subsets are
(nec. connected) subtrees of some “ground” tree.

Intersection exists if there are any nodes in common amongst the two
corresponding trees.
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Sub-tree intersection Graphs

Given underlying tree, create intersection graph, where subsets are
(nec. connected) subtrees of some “ground” tree.

Intersection exists if there are any nodes in common amongst the two
corresponding trees.
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Sub-tree intersection Graphs

Given underlying tree, create intersection graph, where subsets are
(nec. connected) subtrees of some “ground” tree.

Intersection exists if there are any nodes in common amongst the two
corresponding trees.

T1
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T
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T5
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T8

T9

T10
T11

T12
Lets zoom in a little
on this
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Sub-tree intersection Graphs
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Intersection exists if there are any nodes in common amongst the two
corresponding trees.
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Sub-tree intersection Graphs
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Intersection exists if there are any nodes in common amongst the two
corresponding trees.

A sub-tree graph corresponds to more than one underlying tree (thus
ground set and underlying subsets).
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Sub-tree intersection Graphs
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Intersection exists if there are any nodes in common amongst the two
corresponding trees.

A sub-tree graph corresponds to more than one underlying tree (thus
ground set and underlying subsets).

What is the difference between left and right trees?
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Sub-tree intersection Graphs
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Intersection exists if there are any nodes in common amongst the two
corresponding trees.

A sub-tree graph corresponds to more than one underlying tree (thus
ground set and underlying subsets).

What is the difference between left and right trees?

Junction tree of cliques and maxcliques vs. junction tree of just
maxcliques.
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Sub-tree intersection Graphs w. Junction Trees
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Sub-tree intersection graphs

Theorem 6.5.4

A graph G = (V,E) is triangulated iff it corresponds to a sub-tree graph
(i.e., an intersection graph on subtrees of some tree).

proof sketch.

We see that any sub-tree graph is such that nodes in the tree correspond
to cliques in G, and by the nature of how the graph is constructed
(subtrees of some underlying tree), the tree corresponds to a cluster tree
that satisfies the induced subtree property. Therefore, any sub-tree graph
corresponds to a junction tree, and any corresponding graph G is
triangulated.
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Sub-tree intersection graphs

All interval graphs are sub-tree intersection graphs (underlying tree is
a chain, subtrees are sub-chains)

Are all sub-tree intersection graphs interval graphs?

So sub-tree intersection graphs capture the “tree-like” nature of
triangulated graphs.

Triangulated graphs are also called hyper-trees (specific type of
hyper-graph, where edges are generalized to be clusters of nodes
rather than 2 nodes in a normal graph). In hyper-tree, the unique
“max-edge” path between any two nodes property is generalized.
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Sources for Today’s Lecture

Most of this material comes from the reading handout
tree inference.pdf
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