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Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.

Slides from previous time this course was offered are at our previous
web page (http:
//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2011/)
and even earlier at
http://melodi.ee.washington.edu/~bilmes/ee512fa09/.
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): Triangulated Graphs,
Triangulation, Multiple queries, Junction
Trees

L6 (10/15):

L7 (10/20):

L8 (10/22):

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Today

To tree, or not to tree, that is the question:

Whether ’tis nobler in the mind to suffer
The slings and arrows of nontriangulated models,
Or to take arms against a sea of cycles,
And by opposing chord them?
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Neighbors of v same in original and reconstituted graph

Lemma 5.2.2

When elimination is run for a second time on the reconstituted graph
with the same order, the set of neighbors v at the time v is eliminated is
the same in both the original and in the reconstituted graph.

Proof.

Any neighbor of v in the reconstituted graph must be either an
original-graph edge, or it must be due to a fill-in edge between v and
some other node that is not an original graph neighbor. All of the fill-in
neighbors must be due to elimination of nodes before v since after v is
eliminated no new neighbors can be added to v. But the point at which v
is eliminated in the original graph and the point at which it v is
eliminated in the reconstituted graph, the same previous set of nodes
have been eliminated, so any neighbors of v in the reconstituted graph
will have been already added to the original graph when v is eliminated in
the original graph.
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Complexity of elimination process

Lemma 5.2.2

Given an elimination order, the computational complexity of the
elimination process is O(rk+1) where k is the largest set of neighbors
encountered during elimination. This is the size of the largest clique in
the reconstituted graph.

Proof.

First, when we eliminate σi in Gi−1, eliminating variable v when it is in
the context of its current neighbors will cost O(r`) where
` = |δGi−1(v) + 1| — thus, the overall cost will be O(rk+1).
Next, we show that largest clique in the reconstituted graph is equal to
the complexity. Consider the reconstituted graph, and assume its largest
clique is of size k + 1. When we re-run elimination on this graph, there
will be no fill in. . . .
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Perfect elimination graphs

Since such graphs are inevitable, lets define them and give them a
name

Definition 5.2.2 (perfect elimination graph)

A graph G = (V,E) is a perfect elimination graph if there exists an
ordering σ of the nodes such that eliminating nodes in G based on σ
produces no fill-in edges.

any perfect elimination ordering on a perfect elimination graph will
have complexity exponential in the size of the largest clique in that
graph
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Maxcliques of perfect elimination graphs

Lemma 5.2.2

When running the elimination algorithm, all maxcliques in the resulting
reconstituted graph are encountered as elimination cliques during
elimination.

Proof.

Each elimination step produces a clique, but not necessarily a maxclique. Set of
maxcliques in the resulting reconstituted perfect elimination graph is a subset of
the set of cliques encountered during elimination. This is because of the
neighbor property proven above in Lemma ?? — if there was a maxclique in the
reconstituted graph that was not one of the elimination cliques, that maxclique
would be encountered on a run of elimination with the same order on the
reconstituted graph, but for the first variable to encounter this maxclique, it
would have the same set of neighbors in original graph, contradicting the fact
that it was not one of the elimination cliques.
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Finding the maxcliques of G′

Lemma 5.2.2

Given a graph G, an order σ, and a reconstituted graph G′, the
elimination algorithm can produce the set of maxcliques in G′.

Proof.

Consider node v’s elimination clique cv (i.e., v along with its neighbors
δ(v) at the time of elimination of v). Since cv is complete, either cv is a
maxclique or a subset of some maxclique. cv can not be a subset of any
subsequently encountered maxcliques since all such future maxcliques
would not involve v. Therefore cv must be a maxclique or a subset of
some previously encountered maxclique. If cv is not a subset of some
previously encountered maxclique, it must be a maxclique (we add cv to a
list of maxcliques). Since all maxcliques are encountered as elimination
cliques, all maxcliques are discovered in this way.
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Embedding

Definition 5.2.3 (embedding)

Any graph G = (V,E) can be embedded into a graph G′ = (V,E′) if G is
a spanning subgraph of G′, meaning that E ⊆ E′.

Embedding never shrinks family of distributions

Any G may be embedded into Gσ.

We wish to embed G into the class of perfect elimination graphs (this
is a subset of all undirected graphs).

Does this restrict us in any way? (e.g., remove family members?)

Does it change values of resulting queries we wish to compute?

No, only potential issue is computation.

Graphical model structure learning would be: start with
p ∈ F(G,M(f)), find some spanning subgraph G′ = (V,E′) where
E′ ⊂ E, and solve inference there for a p′ ∈ F(G′,M(f)) that is as
close as possible to p. We defer this topic until later in the course.
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Triangulated Graphs

Definition 5.2.3 (Triangulated graph)

A graph G is triangulated (equivalently chordal) if all cycles have a chord.

in triangulated graph: any cycles of length > 3 must have a chord.

Cycles of length 3 have no non-adjacent vertices

Triangulated graphs include
1 a clique is a triangulated graph (all cycles have chord).
2 a tree is a triangulated graph, since there are no cycles that could

disobey the chordal requirement.
3 a chain is a triangulated graph, since it is a tree.
4 a set of disconnected vertices is triangulated (since there are no cycles).
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Triangulated Graphs

Theorem 5.2.5

Given graph G, elimination order σ, and perfect elimination graph
G′ = Gσ obtained by elimination on G. We may reconstruct a perfect
elimination order (w.r.t. Gσ) from Gσ by repeatedly choosing any
simplicial node and eliminating it. Call this new order σ′. Now σ′ might
not be the same order as σ, but both are perfect elimination orders for G′.

Proof.

If there is more than one possible order, we must reach a point at which
there are two possible simplicial nodes u, v ∈ G′. Eliminating u does not
render v non-simplicial since no edges are added and thus v has if
anything only a reduced set of neighbors. Each time we eliminate a
simplicial node, any other node that was simplicial in the original
elimination order stays simplicial when it comes time to eliminate it.
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Triangulated graphs and minimal separators

Lemma 5.2.6

A graph G = (V,E) is triangulated iff all minimal separators are
complete.

Proof.

First, suppose all minimal separators in G = (V,E) are complete.
Consider any cycle u, v, w, x1, x2, . . . , xk, u starting and ending at node u,
where k ≥ 1. Then the pair v, xi for some i ∈ {1, . . . , k} must be part of
a minimal (u,w)-separator, which is complete, so v and that xi are
connected thereby creating a chord in the cycle. The cycle is arbitrary, so
all cycles are chorded. . . .
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Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Triangulated graphs have at least two simplicial nodes.

We also have the following important theorem.

Lemma 5.3.1

A triangulated graph on n ≥ 2 nodes is either a clique, or there are two
non-adjacent nodes that are simplicial.

Note that this appears to be very much like the property of a tree where a
simplicial node takes the role of a leaf-node. Is this a coincidence?
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Triangulated graphs have at least two simplicial nodes.

Proof of Theorem 5.3.1.

Any clique is triangulated and all nodes are simplicial, so assume the
graph is not a clique. Induction on n = |V (G)|: any graph with
1 < n ≤ 3 is triangulated and has two simplicial nodes. Assume true for
n− 1 nodes, and show for n nodes. Let a and b be two non-adjacent
vertices, let S be a minimal (a, b)-separator which must be complete. Let
GA and GB be the connected components of G[V \ S] containing
respectively a and b. Let A = V (GA) and B = V (GB). By induction,
G[A ∪ S] and G[B ∪ S] are either cliques, or contain two non-adjacent
simplicial vertices. First case, all nodes are simplicial, second case both
simplicial non-adjacent vertices cannot be in S since S is complete. In all
cases, we may choose two non-adjacent simplicial vertices, one each in A
and B, and these vertices are adjacent to no nodes other than A ∪ S and
B ∪ S respectively. These nodes remain simplicial and non-adjacent in
G.
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Recap so far

Non-tree graphs: effectively doing inference on perfect elimination
graph.

After elimination, we’ve got a perfect (fill-in free) elimination graph.

We encounter the maxcliques when we run elimination.

Elimination cliques are supserset of set of maxcliques.

We may embed any G = (V,E) into any G = (V,E ∪ F ).
Given perfect elimination graph, easy to find perfect elimination order.

Triangulated graphs (chordal), all cycles are chorded.

Various definitions of separators.

Triangulated iff all min separators are complete.

Any triangulated graph on ≥ 2 nodes has two simplicial nodes.
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Triangulated/Elimination

In a triangulated graphs, all nodes simplicial?

If G is triangulated and v simplicial, if we eliminate v, is G[V \ v] still
triangulated?

Therefore:

Corollary 5.3.2

For any triangulated graph, there exists an elimination order that does
not produce any fill in.

So if we know the graph is triangulated, we can easily find a perfect
elimination order. Why? We can strengthen the above in fact:
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Triangulated vs. Perfect elimination graphs

Lemma 5.3.3

If G is a graph and there exists a perfect elimination order, then G is
triangulated.

Proof.

By induction. It is obviously true for 1 and 2 nodes. Assume true for n
nodes, and we are given an n+ 1 node graph. Since there exists an
elimination order without fill-in, there exists a simplicial node, where
chordless cycles can not exist through that node since all of its neighbors
are connected. Once we eliminate that node, no fill-in is created, and
induction step applies.

We summarize the bijection as follows:

Theorem 5.3.4

A graph G is triangulated iff there exists a perfect elimination order over
the nodes in G.
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Triangulated vs. Perfect elimination graphs

Corollary 5.3.5

Take any graph G and an elimination order σ, then the reconstituted
graph G′ = (V,E ∪ Fσ) is triangulated.
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Triangulated vs. Perfect elimination graphs
Generating triangulated graphs

Therefore, we can generate a reconstituted elimination graph (or any
triangulated graph) using a reverse elimination order.

Algorithm 1: Regenerate triangulated graph.

Input: A triangulated graph G = (V,E) and a perfect elimination order σ
Result: A new graph G′ identical to G.

1 Recall that δGi−1(σi) are neighbors of σi in G at the point σi is
eliminated. ;

2 Start out with V (G′) empty ;
3 Add σN to V (G′) ;
4 for i = N − 1 . . . 1 do
5 Add σi to V (G′) ;
6 Add δGi−1(σi) to E(G′) ; /* at this δGi−1(σi) is complete */
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Triangulated vs. Perfect elimination graphs

Trees can be generated this way (recall one of the definitions)

Does elimination span the space of all possible triangulations of a
graph? (i.e., can any triangulation of G be obtained by some
elimination order?)

Theorem 5.3.6

Let G = (V,E) be a graph and let G′ = (V,E ∪ F ) be a triangulation of
G with F the required edge fill-in. If the triangulated graph is minimal in
the sense that for any F ′ ⊂ F , the graph G′′ = (V,E ∪ F ′) is no longer
triangulated, then F can be obtained by the result of an elimination
order. That is, the elimination algorithm and the various variable
orderings may produce all minimal triangulations of a graph G.

Minimal triangulations are state-space optimal for positive
distributions only!
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Triangulated vs. Perfect elimination graphs

Minimal triangulations are state-space optimal for positive distributions
only. Let d be a deterministic function of a and b. All variables have r
values but d has r2 − 1 values.
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a b

c e

d

a b

Moralized already
chordal, perfect
elim. order
(c, a, b, d). One
clique at O(r2),
two at O(r4).

Elimination order
(a, c, b, d), cost is
still O(r4)

Start by
eliminating d, cost
is still O(r4)

Triangulation
unobtainable with
elimination, cost
O(r3).
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re-cap

To compute marginals, we must run elimination of nodes.

Doing so necessarily produces a triangulated graph.

Complexity of this process is exponential in largest clique in result.

We encounter the cliques (and the largest) during elimination so we
get the complexity while we are doing elimination

Elimination adds edges, we can embed original graph into resulting
triangulated graph (triangulated graph “covers” original graph)

can’t avoid a triangulated graph — always dealing with triangulated
graphs implicitly or explicitly when doing elimination.

want to find minimally triangulated covering graph, one with smallest
largest maxclique

i.e., find optimal elimination order

there are n! elimination orders

is this easy or hard?

We shall see . . .
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k-trees

Generalizations of a tree as defined as follows:

Definition 5.3.7 (k-tree)

A complete graph with k + 1 nodes is a k-tree. To construct a k tree
with n+ 1 nodes starting from a k-tree with n nodes, choose some size k
complete sub-graph of the n-node k-tree and connect the n+ 1’st node
to all nodes in the k-node complete sub-graph.

Any complete n-graph is an n− 1-tree

a regular tree is a 1-tree.

all k-trees are triangulated
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Example of 2-trees
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Example of 3-trees

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F26/82 (pg.60/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

k-trees

In a tree, all minimal separators are size 1

In a k-tree, all minimal separators are size k (and thus a k-clique).

In a k-tree, all maxcliques are size k + 1, so maximum clique size is
k + 1.

In a k-tree, complexity of inference will be O(rk+1).

even stronger:

Lemma 5.3.8

A graph G = (V,E) is a k-tree iff

G is connected

G’s maximum clique is of size k + 1

Every minimal separator of G is a k-clique.
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k-trees

Definition 5.3.9 (partial k-tree)

Any spanning sub-graph of a k-tree is a partial k-tree.

Any partial k-tree is embeddable into a k-tree.

Inference in a partial k-tree is at most O(rk+1).

k-trees are triangulated, but arbitrary triangulated graph not
necessarily a k-tree

any triangulated graph can be embedded into a k tree for large
enough k — silly example, set k = (n− 1).

But is it possible for smaller k?
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k-trees and embeddings

Lemma 5.3.10

If G is a triangulated graph with at least k + 1 vertices and has a
maximum clique of size at most k + 1, then G can be embedded into a
k-tree.

Proof.

Let σ = (σ1, . . . , σn) be perfect elim. order for G. We embed G into
k-tree by adding edges to G so that same ordering is perfect in the
k-tree. Induction.
Base case, any set of k + 1 vertices can be embedded into a k tree by
making those vertices a clique. Thus, add edges to last k + 1 eliminated
vertices, i.e., make {σn−k, σn−k+1, . . . , σn} a k + 1-clique. ...
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cont.

... proof continued.

Induction: assume the subgraph with vertices {σi+1, . . . , σn} has been
embedded into a k-tree Ti+1. Since the maximum clique size of G is
k + 1, in G vertex σi is adjacent to a clique c with no more than k
vertices in {σi+1, . . . , σn}. In the k-tree Ti+1, c is contained in a k-clique
c′. When we make σi adjacent to all of the vertices of c′, we obtain a
k-tree Ti since σi is still simplicial in Ti. Repeating to σ1 and result is
supergraph of G with same order being perfect.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F30/82 (pg.73/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

k-trees and embeddings

Therefore, reconstituted elimination graph can be embedded into a
k-tree for large enough k.

Note: in k-tree all cliques are size k + 1. In our reconstituted perfect
elimination graph, might only have one clique that is of size k + 1, so
k-tree embedding migth add a lot of k + 1 cliques (but this doen’t
change exponential cost dependence on largest clique size).

Goal: We want to find the elimination order σ that results in the
smallest k such that G′ = (V,E ∪ Fσ) can be embedded into a k-tree.

i.e.,find best “Chordal cover”
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k-trees and embeddings

Goal: We want to find the elimination order σ that results in the
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Theorem 5.3.11

For an arbitrary graph G = (V,E), finding the smallest k such that G can
be embedded into a k-tree is an NP-complete optimization problem (i.e.,
the decision version of the problem, asking if G can be embedded into a
k-tree of size k, is NP-complete).

consider again elimination as summing out variables - not possible to
guarantee optimal summation in poly-time order unless P=NP.

We resort to heuristics (min fill, min size, random chose from top `
with random restarts, etc. work well).

Inapproximability result: (see below)
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Heuristics for elimination

Since we can’t expect to find a perfect elimination order, we have
heuristics:

1 min fill-in heuristic:. Eliminate next the node n that would result in
the smallest number of fill-in edges at that step. Break ties arbitrarily.

2 min size heuristic: Eliminate next the node that would result in the
smallest clique when eliminated (i.e., choose the node as one with the
smallest edge degree). Break ties arbitrarily.

3 min weight heuristic: If the nodes have non-uniform domain sizes,
then we choose next the node that would result in the clique with the
smallest state space, which is defined as the product of the domain
sizes. Break ties arbitrarily.
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Better Heuristics for elimination

Variants and improvements to the above heuristics.

1 tie-breaking: When one heuristic has tie, choose one of the other
heuristics to break tie.

2 non-greedy: Rather than greedily choosing best vertex, take the
m-best vertices (e.g., the m < n nodes that would result in, say, the
smallest fill-in) and eliminate one of them.

3 random next step: Create a distribution over those m-best vertices,
where the probability formed by either: 1) uniform, or 2) inversely
proportional to the greedy score (e.g., inverse fill-in). Draw from this
distribution to choose node to eliminate.

4 random repeats: Run above heuristics multiple times, producing
different elimination orders. Choose one that results in the smallest
maximum clique size.
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k-trees and embeddings

Goal: We want to find the elimination order σ that results in the
smallest k such that G′ = (V,E ∪ Fσ) can be embedded into a k-tree,
i.e.,find best “Chordal cover”

Theorem 5.3.11

For an arbitrary graph G = (V,E), finding the smallest k such that G can
be embedded into a k-tree is an NP-complete optimization problem (i.e.,
the decision version of the problem, asking if G can be embedded into a
k-tree of size k, is NP-complete).

consider again elimination as summing out variables - not possible to
guarantee optimal summation in poly-time order unless P=NP.

We resort to heuristics (min fill, min size, random chose from top `
with random restarts, etc. work well).

Inapproximability result: (see below)
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Other views of the difficulty

Class of related problems that indicate the difficulty were are in.

Theorem 5.4.1 (Maximum Clique)

Given an arbitrary graph G = (V,E), find the largest clique C ⊆ V (G)
(where large is measured in terms of |C|) is an NP-complete optimization
problem.

We have an f(n) approximation algorithm if a solution of an
algorithm provides a value that is always at least the size of the
largest clique divided by f(n), i.e., SOL ≥ OPT/f(n).

Good news: possible to do no worse than O(|V |/(log |V |)2) times size
of true maximum size clique (Boppana & Halldórsson).

Bad news: inapproximability, not possible to do better than O(|V |1−ε)
for any ε > 0 (Håstad 1999).

If we could find the smallest k such that it could be embedded it a k
tree, we could identify the maximum clique in the graph. How?
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Another view of the difficulty

While we’re at it, even finding best chordal fill-in is hard

Theorem 5.4.2

Given an arbitrary graph G = (V,E), and G′ = (V,E ∪ F ) is a
triangulation of G, finding the smallest such F is an NP-complete
optimization problem.

Thus, to summarize, finding the optimal elimination order is likely
computationally hard, as are other problems associated with graphs.
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Some good news ,- at least we can identify triangulated graphs

We know that if there is a perfect elim order, the graph is triangulated.

keep eliminating simplicial nodes as long as you can, and output “not
triangulated” if ever there is no simplicial node.

näıve implementation: find fill in of each node, eliminate the one with
no fill-in O(n3).

There is a smart algorithm, maximum cardinality search (MCS), that
can do this in O(|V |+ |E|)
Basic idea of MCS: produce a perfect elimination order, if it exists, in
reverse. Construct it by looking at previously labeled neighbors.
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Maximum Cardinality Search (MCS)

Input: An undirected graph G = (V,E) with n = |V |.
Result: triangulated or not, MCS ordering σ = (v1, . . . , vn)

1 L← ∅ ; i← 1 ;
2 while |V \ L| > 0 do
3 Choose vi ∈ argmaxu∈V \L |δ(u) ∩ L| ; /* vi’s previously labeled

neighbors has max cardinality. */

4 ci ← δ(vi) ∩ L ; /* ci is vi’s neighbors in the reverse elimination
order. */

5 if {vi} ∪ ci is not complete in G then
6 return “not triangulated” ;

7 L← L ∪ {vi} ; i← i+ 1 ;

8 return “triangulated”, and the node ordering σ
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Ex: Run MCS on one of these graphs
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Ex: Run MCS on one of these graphs
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MCS

Can also produce an elimination order and triangulate the graphs (but
not particularly good)

will produce a perfect elimination order on triangulated graphs

why called maximum cardinality “search”

Theorem 5.4.3

A graphical G is triangulated iff in the MCS algorithm, at each point
when a vertex is marked, that vertex’s previously marked neighbors form a
complete subgraph of G.

Corollary 5.4.4

Every maximum cardinality search of a triangulated graph G corresponds
to a reverse perfect eliminating order of G.
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Recap

Triangulated graphs: if |V | ≥ 2, always two simplicial nodes.

Triangulated graph iff perfect elimination graph.

All minimal triangulations of a graph can be created using elimination.

k-trees, generalization of trees. Sometimes called hyper-tree. All
min-separators are k-cliques. partial k-trees. Embedding into k-trees.

Any triangulated graph G′ can be embedded into k-tree where k + 1
is the size of the largest clique of G′. Thus any graph can be
embedded into a k-tree for large enough k.

NP-complete: finding smallest k such that G is embeddable into
k-tree.

Triangulation heuristics: min-fill, etc.

MCS can identify a triangulated graph efficiently.
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Triangulated graphs: if |V | ≥ 2, always two simplicial nodes.

Triangulated graph iff perfect elimination graph.

All minimal triangulations of a graph can be created using elimination.

k-trees, generalization of trees. Sometimes called hyper-tree. All
min-separators are k-cliques. partial k-trees. Embedding into k-trees.

Any triangulated graph G′ can be embedded into k-tree where k + 1
is the size of the largest clique of G′. Thus any graph can be
embedded into a k-tree for large enough k.

NP-complete: finding smallest k such that G is embeddable into
k-tree.

Triangulation heuristics: min-fill, etc.

MCS can identify a triangulated graph efficiently.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F43/82 (pg.112/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Multiple queries

Let C be the set of all cliques in original graph. Often, we want to
compute p(xC) for all C ∈ C.

Do not want to run separate elimination |C| many times.

Recall tree (i.e., 1-tree) case - messages for one query used for other
queries. Message re-use/efficiency only grows with num. queries.

Can
we do the same thing for arbitrary graphs?

Consider only the class of triangulated models since to do otherwise
(for exact inference) is not necessary.

But is one triangulated model optimal for all queries?
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Multiple queries

A triangulated graph is a cover of G

Any clique in G will still be a clique in a triangulation G′: that is,
given clique c ∈ C(G), there exists c′ ∈ C(G′) with c ⊆ c′.
Given p(xc′), can compute p(xc) =

∑
xc′\c

p(xc′) at O(r|c
′|), same

cost triangulated graph.

optimal k-tree embedding for G is one that minimizes the maximum
clique for any triangulation of G, so if we have found this embedding,
this will be optimal for any original-graph clique marginal.

Even if we found a “good” elimination order (one that produces a
maxclique of reasonable size), this order can be shared for other clique
queries.
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A triangulated graph is a cover of G

Any clique in G will still be a clique in a triangulation G′: that is,
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Given p(xc′), can compute p(xc) =
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optimal k-tree embedding for G is one that minimizes the maximum
clique for any triangulation of G, so if we have found this embedding,
this will be optimal for any original-graph clique marginal.

Even if we found a “good” elimination order (one that produces a
maxclique of reasonable size), this order can be shared for other clique
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Non-clique queries

Recall: 1-tree case, if we want a marginal over a non-sub-tree, we
might be in trouble.

Similarly, if we desire non-clique queries for general graph, then
computation can get worse. Computing p(xL) for arbitrary L could
turn xL into a clique in the worst case (Rose’s theorem).

If xL is not clique in G′, then we can view G′ as not being “valid” for
the query p(xL).

In such case, need to re-triangulate, starting with a graph where xL is
made complete.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F46/82 (pg.124/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Non-clique queries

Recall: 1-tree case, if we want a marginal over a non-sub-tree, we
might be in trouble.

Similarly, if we desire non-clique queries for general graph, then
computation can get worse. Computing p(xL) for arbitrary L could
turn xL into a clique in the worst case (Rose’s theorem).

If xL is not clique in G′, then we can view G′ as not being “valid” for
the query p(xL).

In such case, need to re-triangulate, starting with a graph where xL is
made complete.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F46/82 (pg.125/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Non-clique queries

Recall: 1-tree case, if we want a marginal over a non-sub-tree, we
might be in trouble.

Similarly, if we desire non-clique queries for general graph, then
computation can get worse. Computing p(xL) for arbitrary L could
turn xL into a clique in the worst case (Rose’s theorem).

If xL is not clique in G′, then we can view G′ as not being “valid” for
the query p(xL).

In such case, need to re-triangulate, starting with a graph where xL is
made complete.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F46/82 (pg.126/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Non-clique queries

Recall: 1-tree case, if we want a marginal over a non-sub-tree, we
might be in trouble.

Similarly, if we desire non-clique queries for general graph, then
computation can get worse. Computing p(xL) for arbitrary L could
turn xL into a clique in the worst case (Rose’s theorem).

If xL is not clique in G′, then we can view G′ as not being “valid” for
the query p(xL).

In such case, need to re-triangulate, starting with a graph where xL is
made complete.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F46/82 (pg.127/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Computing all clique queries efficiently via elimination

Remarkably, in the case of clique queries, we can actually re-use the
elimination order.

We want to share more than just the elimination order.

goal: in non-tree graphs, re-use work of computing marginals for the
sake of getting multiple marginals.

We’ll see an amazing fact: if we find the optimal elimination order for

1 clique query, it is optimal for all clique queries!! ,
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Decomposition of G

Definition 5.5.1 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

If G has a decomposition, what dies this mean for the family F(G,M(f))?
Since C separates A from B, this means that XA⊥⊥XB|XC for any
p ∈ F(G,M(f)), which moreover means we can write the joint
distribution in a particular form.

p(x) = p(xA, xB, xC) =
p(xA, xC)p(xB, xC)

p(xC)
(5.1)
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Decomposable models

Definition 5.5.2

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs G[A ∪C]
and G[B ∪ C] are decomposable.

Note that the separator is contained within the subgraphs: i.e.,
G[A ∪ C] rather than, say, G[A].
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Decomposable models
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Graph and two decompositions of this graph.

as we recurse down, if at any point decomposition is not found, graph
is not decomposable.
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Decomposable models
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Decomposable models
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Decomposition of G and Decomposable graphs

Summarizing both:

Definition 5.5.3 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

Definition 5.5.4

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs
G[A ∪ C] and G[B ∪ C] are decomposable.

Note part 2. It says possesses. Bottom of tree might affect top.
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Decomposable models

Internal nodes in tree are complete graphs that are also separators.

With G is decomposable, what are implications for a p ∈ F(G,M(f))?

p(A,B,C,D,E, F,G,H, I, J,K)

=
p(A,C,D, F )p(B,C,D,E, F,G,H, I, J,K)

p(C,D, F )

=
p(A,C,D, F )

p(C,D, F )

(
p(B,C,G,H)p(C,D,E, F,H, I, J,K)

p(C,H)

)
= . . .

=
p(A,C,D, F )p(B,G,H)p(C,B,H)p(I, E, J)p(E, I,D)p(C,K,H)p(D,K, I)p(D,K, F,C)

p(C,D, F )p(C,H)p(B,H)p(D, I)p(E, I)p(C,K)p(D,K)
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Decomposable models

S is a separator, so that G[V \ S] consists of 2 or more connected
components.

We say that S shatters the graph G into those components, and let
d(S) be the number of connected components that S shatters G into.
d(S) is the shattering coefficient of G.

Example: below, d({A,B}) = 3

ABEF

ABCD
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ABGH

AB
D C

G

A

E F

B

H

D C

A B

G

A B

H

A

E F

B
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Decomposable models

When d(S) > 2, separator marginal use more than once in the
denominator

The general form of the factorization becomes:

p(x) =

∏
C∈C(G) p(xC)∏

S∈S(G) p(xS)
d(S)−1 (5.2)

Any decomposable model can be written this way

4-cycle is not decomposable. Two independence properties that can’t
be used simultaneously.

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x1, x3, x4)

p(x1, x4)
=
p(x1, x2, x3)p(x2, x3, x4)

p(x2, x3)
(5.3)
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Decomposable models

Proposition 5.5.5

All of the maxcliques in a graph lie on the leaf nodes of the binary
decomposition tree

Proof.

For a decomposable model, the base case (leaf node) is a clique,
otherwise it would not be decomposable. If a leaf was not a maxclique,
then that means it is contained in a maxclique, and got split by a
separator corresponding to that leaf’s parent, but this is impossible since
a maxcliques have no separator.

Proposition 5.5.6

The (nec. unique) set of all minimal separators of graph are included in
the non-leaf nodes of the binary decomposition tree, with d(S)− 1 being
the number of times the minimal separator S appears as a given non-leaf
node.
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A bit of notation

If C is separator, C shatters G into d(C) connected components

G[V \ C] is the union of these components (not including C)

Let {G1, G2, . . . , G`} be (disjoint) connected components of
G[V \ C], so G1 ∪G2 ∪ · · · ∪G` = G[V \ C]
Given a ∈ V (Gi) for some i, then G[V \ C](a) = Gi.
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Triangulated vs. decomposable

Theorem 5.5.7

A given graph G = (V,E) is triangulated iff it is decomposable.

Proof.

First, recall from Lemma 4.5.6 that a graph is triangulated iff it is
decomposable. To prove the current theorem, we will first show (by
induction) that decomposability implies that the graph is triangulated).
Next, for the converse, we’ll show that every minimal separator complete
in G implies decomposable.
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Triangulated vs. decomposable

Proof of Theorem 5.5.7.

First, assume G is decomposable. If G is complete then it is triangulated.
If it is not complete then there exists a proper decomposition (A,B,C)
into decomposable subgraphs G[A∪C] and G[B ∪C] both of which have
fewer vertices, meaning |A ∪ C| < |V | and |B ∪ C| < |V |. By the
induction hypothesis, both G[A ∪ C] and G[B ∪ C] are chordal. Any
potential chordless cycle, therefore, can’t be contained in one of the
sub-components, so if it exist in G must intersect both A and B. Since C
separates A from B, the purported chordless cycle would intersect C
twice, but C is complete the cycle has a chord. The first part of the
theorem is proven.
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Triangulated vs. decomposable

. . . proof of Theorem 5.5.7 cont.

Next (to show the converse), assume that all minimum (a, b) separators
are complete in G. If G is complete then it is decomposable. Otherwise,
there exists two non-adjacent vertices a, b ∈ V in G with a necessarily
complete minimal separator C forming a partition G[V \ C](a),
G[V \ C](b), and all of the remaining components of G[V \ C]. We
merge the connected components together to form only two components
as follows: let A = G[V \ C](a) ∪D and B = G[V \ C](b). Since C is
complete, we see that (A,B,C) form a decomposition of G, but we still
need that G[A ∪ C] and G[B ∪ C] to be decomposable (see figure).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 5 - Oct 13th, 2014 F59/82 (pg.146/197)



Triangulated Graphs Triangulation Multiple queries Junction Trees Refs

Triangulated vs. decomposable

. . . proof of Theorem 5.5.7 cont.

C

D

C

D

C
1

G[V \ C](a

a

)

A = G[V \ C](a) ∪D

B = G[V \ C](b

b
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b
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b
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Triangulated vs. decomposable

. . . proof of Theorem 5.5.7 cont.

Let C1 be a minimal (a1, b1) separator in G[A∪C]. But then C1 is also a
minimal (a1, b1) separator in G since, once we add B back to G[A ∪ C]
to regenerate G, there still cannot be any new paths from a1 to b1
circumventing C1. This is because any such path would involve nodes in
B (the only new nodes) which, to reach B and return, requires going
through C (which is complete) twice. Such a path cannot bypass C1

since if it did, a shorter path not involving B would bypass C1. Therefore,
C1 is complete in G, and an inductive argument says that G[A ∪ C] is
decomposable. The same argument holds for G[B ∪ C]. Therefore, G is
decomposable.
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Tree decomposition

Definition 5.5.8 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, F ) is a tree with node index set I, edge
set F , and {Ci}i (one for each i ∈ I) is a collection of subsets of V (G)
such that:

1 ∪i∈ICi = V

2 for any (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci
3 for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a connected subtree of T
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Tree decomposition is also hard

The tree-width of the tree-decomposition is the size of the largest Ci
minus one (i.e., maxi∈I |Ci| − 1.

Theorem 5.5.9

Given graph G = (V,E), finding the tree decomposition T = (I, F ) of G
that minimizes the tree width (maxi∈I |Ci| − 1) is an NP-complete
optimization problem.

Multiplicatively approximable within O(log |V |), but not possible to
additively do better than |V |1−ε for any ε > 0.

How does this relate to our problem though?
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→ trees

All roads lead to trees, namely junction trees.

Next set of slides will make the transformation mathematically precise.
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Cluster graphs

Definition 5.6.1 (Cluster graph)

Consider forming a new graph based on G where the new graph has
nodes that correspond to clusters in the original G, and has edges existing
between two (cluster) nodes only when the corresponding clusters have a
non-zero intersection. That is, let C(G) =

{
C1, C2, . . . , C|I|

}
= be a set

of |I| clusters of nodes V (G), where Ci ⊆ V (G), i ∈ I. Consider a new
graph J = (I, E) where each node in J corresponds to a set of nodes in
G, and where edge (i, j) ∈ E if Ci ∩ Cj 6= ∅. We will also use
Sij = Ci ∩ Cj as notation.

So two cluster nodes have an edge between them iff there is non-zero
intersection between the nodes.
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Cluster Trees

If the graph is a tree, then we have what is called a cluster tree.

Definition 5.6.2 (Cluster Tree)

Let C =
{
C1, C2, . . . , C|I|

}
be a set of node clusters of graph

G = (V,E). A cluster tree is a tree T = (I, ET ) with vertices
corresponding to clusters in C and edges corresponding to pairs of clusters
C1, C2 ∈ C. We can label each vertex in i ∈ I by the set of graph nodes
in the corresponding cluster in G, and we label each edge (i, j) ∈ ET by
the cluster intersection, i.e., Sij = Ci ∩ Cj .
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Cluster Graphs/Trees

H

F G

C

ED

J
I

A B

K

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6

Left: a graph. Right: A cluster graph with |I| = 6 clusters, where
C1 = {F,G,A,B}, C2 = {H,F,A,K,C}, . . . . There is an edge (1, 2)
since C1 ∩C2 = {F,A} 6= ∅. If we remove all but the blue edges, then we
get a cluster tree.
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Cluster Intersection Property (c.i.p.)

Important: Cluster graphs and cluster trees are based only on a set of
clusters of nodes of G = (V,E). We haven’t, based on these
definitions, yet used any of the o.g. edges of G.

Edges in a cluster graph and cluster tree are not o.g. edges. Instead,
they are based on if two clusters have non-empty intersection.

We want to talk about cluster trees that have certain properties. A
cluster graph might or might not have such properties.
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Cluster Intersection Property (c.i.p.)

Definition 5.6.3 (Cluster Intersection Property)

We are given a cluster tree T = (I, ET ), and let C1, C2 be any two
clusters in the tree. Then the cluster intersection property states that
C1 ∩ C2 ⊆ Ci for all Ci on the (by definition, necessarily) unique path
between C1 and C2 in the tree T .

A given cluster tree might or might not have that property.

Example on the next few slides.
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Examples

Cluster Graph

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Examples

Cluster Tree

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Examples

Cluster Tree that violates the cluster intersection property

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Examples

Cluster Tree that obeys the cluster intersection property

F,G,A,B H,F,A,K,C

ABKF

H,C,I

D,K,E,J
C,D,K

1 2 3

4 5 6
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Running Intersection Property (r.i.p.)

Definition 5.6.4 (Running Intersection Property (r.i.p.))

Let C1, C2, . . . , C` be an ordered sequence of subsets of V (G). Then the
ordering obeys the running intersection property (r.i.p.) property if for all
i > 1, there exists j < i such that Ci ∩ (∪k<iCk) = Ci ∩ Cj .

r.i.p. is defined in terms of clusters of nodes in a graph. r.i.p. holds if
such an ordering can be found.

Cluster j acts as a representative for all of i’s history.
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Running Intersection Property (r.i.p.)

Given sequence of clusters C1, C2, . . . , C`. Define the history
(accumulation) of sequence at position i:

Hi = C1 ∪ C2 ∪ · · · ∪ Ci. (5.4)

Innovation (residual) or new nodes in Ci not encountered in the previous
history, as:

Ri = Ci \Hi−1. (5.5)

Lastly, define the non-innovation, commonality, or separation elements
between new and previous history:

Si = Ci ∩Hi−1 (5.6)

Note Ci = Ri ∪ Si, ith clusters consists of the innovation Ri and the
commonality Si.
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Running Intersection Property (r.i.p.)

C j C iS i

Si = (C1 ∪ C2 ∪ · · · ∪ Ci−1) ∩ Ci

= Cj ∩ Ci

Hi

Clusters are in r.i.p. order if the commonality Si between new and history
is fully contained in one element of history. I.e., there exists an j < i such
that Si ⊆ Cj .
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First Two Properties

Lemma 5.6.5

The cluster intersection and running intersection properties are identical.

Proof.

Starting with clusters in r.i.p. order, construct cluster tree by connecting
each i to its corresponding j node. This is a tree. Also, take any Ci, Ck
with i > k. Si summarizes everything between Ci and Hi−1 so
Ci ∩ Ck ⊆ Si. Apply recursively on unique path between Ci and Cj .
Conversely, perform traversal (depth or breadth first search) on cluster
tree. That order will satisfy r.i.p. since any possible intersection between
Ci, Cj on unique path, it must be fully contained in neighbor.
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First Two Properties

ABC

ABD BDF
AB

BD

BCE BEHBE

BC

Example of a set of node clusters (within the cloud-like shapes) arranged
in a tree that satisfies the r.i.p. and also the cluster intersection property.
The intersections between neighboring node clusters are shown in the
figure as square boxes. Consider the path or
{B,E,H} ∩ {B,D,F} = {B}.
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Induced sub-tree property (i.s.p.)

Definition 5.6.6 (Induced Sub-tree Property)

Given a cluster tree T for graph G, the induced sub-tree property holds
for T if for all v ∈ V , the set of clusters C ∈ C such that v ∈ C induces a
sub-tree T (v) of T .

Note, by definition the sub-tree is necessarily connected.
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Three properties

Lemma 5.6.7

Induced sub-tree property holds iff cluster intersection property holds

Proof.

Assume induced subtree holds. Take all v ∈ Ci ∩ Cj , then each such v induces a
sub-tree of T , and all of these sub-trees overlap on the unique path between Ci

and Cj in T .
Conversely, when cluster intersection property holds, given v ∈ V , consider all
clusters that contain v, C(v) = {C ∈ C : v ∈ C}. For any pair C1, C2 ∈ C(v), we
have that C1 ∩ C2 exists on the unique path between C1 and C2 in T , and since
v ∈ C1 ∩ C2, v always exists on each of these paths. These paths, considered as
a union together, cannot form a cycle (since they are paths on a tree).
Moreover, these paths unioned together form a tree (they’re connected).

Therefore, cluster intersection property, running intersection property, and
induced sub-tree property, are all identical. We’ll henceforth refer them
collectively as r.i.p.
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Tree decomposition

Lets look again at tree decomposition, a cluster tree that satisfies (what
we now know to be the) induced sub-tree property (e.g., r.i.p. and c.i.p.
as well).

Definition 5.6.8 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, ET ) is a tree with node index set I, edge
set ET , and {Ci}i (one for each i ∈ I) is a collection of clusters (subsets)
of V (G) such that:

1 ∪i∈ICi = V

2 for any edge (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci
3 (r.i.p.) for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a (nec.

connected) subtree of T
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Recap

We want all original graph (o.g.) clique marginals. Why?

Finding optimal elimination order is optimal for all o.g. clique
marginals.

Def: decomposition of a graph, and factorization implication.

Def: decomposable graph, and decomposition tree

Thm: triangulated graph ≡ decomposable graph

Def: tree decomposition (vertex and edge cover, and induced
sub-tree).

Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g.
edges. Edges in cluster graph cluster tree via cluster intersection.

Def: cluster intersection property, running intersection property,
induced sub-tree property, r.i.p.

Next def: Junction tree, cluster tree with r.i.p. and edge cover.
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Def: tree decomposition (vertex and edge cover, and induced
sub-tree).

Def: cluster graph, cluster tree, based only on o.g. nodes, not o.g.
edges. Edges in cluster graph cluster tree via cluster intersection.

Def: cluster intersection property, running intersection property,
induced sub-tree property, r.i.p.

Next def: Junction tree, cluster tree with r.i.p. and edge cover.
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Junction Tree

Definition 5.6.9

Given a graph G = (V,E), a junction tree corresponding to G (if it
exists) is a cluster tree T = (C, ET ) having the r.i.p. over the clusters,
and where the nodes u, v adjacent to every edge (u, v) ∈ E(G) are
together in at least one cluster.

So, junction tree (JT), for a given graph G, is a cluster tree that: 1)
satisfies r.i.p. over the clusters, and 2) includes all edges (edge cover).
Not all r.i.p.-satisfying cluster trees need be an edge cover.

Clusters in JT need not be original graph cliques!!

JT could have clusters corresponding to cliques, maxcliques, or neither
of the above.

If clusters correspond to the original graph cliques (resp. maxcliques)
in G, it called a junction tree of cliques (resp. maxcliques).
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Junction Tree Preserving Operations

Lemma 5.6.10

Given a junction tree, form a new cluster tree as follows. For each cluster
C in the JT, choose an order of nodes within C, say c1, c2, . . . , ck, and
hang a chain of clusters off of C consisting of C \ {c1} hanging from C,
C \ {c1, c2} hanging from C \ {c1}, C \ {c1, c2, c3} hanging from
C \ {c1, c2}, and so on. Then the resulting cluster graph is a cluster tree,
and moreover it is still junction tree.

Lemma 5.6.11

Given a junction tree, where (Ci, Cj) are neighboring clusters in the tree,
we can merge these two clusters forming a new cluster Cij = Ci ∪ Cj ,
and where the neighbors of Cij are the set of neighbors of either Ci and
Cj . Then the resulting structure is still junction tree.

If we keep doing the latter, we’ll end up with one complete graph.
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Sources for Today’s Lecture

Most of this material comes from the reading handout
tree inference.pdf
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