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Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.

Slides from previous time this course was offered are at our previous
web page (http:
//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2011/)
and even earlier at
http://melodi.ee.washington.edu/~bilmes/ee512fa09/.
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, Inference on Trees

L3 (10/6): Tree inference, more general
queries, non-trees.

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs, multiple queries

L5 (10/13):

L6 (10/15):

L7 (10/20):

L8 (10/22):

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Generic form of message

µi→j(xj) =
∑

xi



ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi)



 (4.5)

Message is of form:

1 First, collect messages from all neighbors of i other than j,

2 next, incorporate these incoming messages by multiplying them in
along with the factor ψi,j(xi, xj),

3 the factor ψi,j(xi, xj) relates xi and xj , and can be seen as a
representation of a “communications channel” relating how the
information xi transforms into the information in xj , thus motivating
the terminology of a “message”, and

4 then finally marginalizing away xi thus yielding the desired message to
be delivered at the destination node xj .
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Multiple Tree Queries: Variable elimination

For p(x1, x2), the variable elimination ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 3) would
suffice

13 messages: µ14→8(x8), µ7→3(x3),
µ8→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4),
µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6),
µ5→2(x2), µ6→2(x2), and µ3→1(x1).

x1
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x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

For p(x1, x3), the variable ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 2) would suffice

messages: µ14→8(x8), µ7→3(x3), µ8→3(x3), µ9→3(x3), µ15→10(x10),
µ10→4(x4), µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6), µ5→2(x2),
µ6→2(x2), and µ2→1(x1).

First 12 of variables in each order are identical! Results in marginal
p(x1, x2, x3) from which both results are easy.
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Multiple Tree Queries
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.

Another look: Left tree rooted at (1, 3), right rooted at (1, 2).

Red arrows are messages are for (1, 3), blue arrows are messages for
(1, 2).

most messages are the same.
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All edge Queries

As number of queries increases, so does efficiency (queries/message)

Consider computing p(xi, xj) for all (i, j) ∈ E(G).

Naive case, N − 1 edges O(N2r2).

Smart case, only O(Nr2) still.

consider: root tree at all (i, j) ∈ E(G) in turn

mark edge with arrow only once (so don’t redundantly send message)

result is each edge has two arrows in each direction
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Collect/Distribute Evidence and MPP

At the collect evidence stage, a message is not sent to a node’s
(single) parent until it has received messages from all its children, so
there is only one node it has not yet received a message from, namely
the parent.

At the distribute evidence stage, once a node has received a message
from its parent, it has received a message from all of its neighbors
(since it received a message from all its children earlier, during the
collect evidence phase) so it is free to send a message to any child
that it likes.

All messages obey the message passing protocol.

Collect Evidence: a post-order tree traversal.

Distribute Evidence: a pre-order tree traversal.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F8/85 (pg.8/195)



Logistics Review

Tree queries with arbitrary S
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subtree

Above, S = {1, 2, 3, 4, 6} which induces a sub-tree in G, so all
messages sent towards nearest node inside of S.

Once we have p(xS) we have efficient representation for it, using only
r2 tables.
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Tree queries with arbitrary S

We eliminate xV \S , which might introduce edges.

Let σ = (σ1,σ2, . . . ,σN ) be an ordering of the nodes. Also σ−1(v) for
v ∈ V (G) gives number that node v is eliminated by order σ. We
have following theorem

Theorem 4.2.2 (Rose’s Entanglement Theorem (Lemma 4 of Rose 1976))

Let G = (V,E) be an undirected graph with a given elimination ordering
σ that maps G to G′ = (V,E′) where E′ = E ∪Fσ, and where Fσ are the
fill-in edges added during elimination with order σ. Then (v, w) ∈ E′ is an
edge in G′ iff there is a path in G with endpoints v and w, and where any
nodes on the path other than v and w are eliminated before v and w in
order σ. I.e., if there is a path (v = v1, v2, . . . , vk+1 = w) in G such that

σ−1(vi) < min(σ−1(v),σ−1(w)), for 2 ≤ i ≤ k (4.11)
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Rose’s theorem: figure

vw1

w2

w3 . . .
wk

u

This red edge exists in the graph
G’  i!  there exists a path in G of
the form on the left (blue)
where all vertices in the path are 
eliminated before either v or u.

If we eliminate all of w1, w2, . . . , wk before we eliminate u and v, then
we will necessarily have an edge between u and v.
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Perfect elimination orders

Definition 4.2.2 (perfect elimination order)

Order σ is called perfect for G if when we eliminate nodes in G according
to σ, there are zero fill edges in the resulting reconstituted graph.

For a tree, there is always a perfect elimination order. Why? Because
there are always leaf nodes available.

For arbitrary graphs, must there be a perfect elimination order?
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Non-trees: is there always a perfect elimination order?

x1

x4

x5

x6 x7

x2

x3

x1

x4

x5

x6 x7

x2

x3

Left: Eliminating x4 is bad, but other nodes are better.

Left: No node results in zero fill in! !
Right: Is there a perfect elimination order?

For exact inference and some queries, inevitable that we work with a
larger family since F((V,E),M(f)) ⊂ F((V,E ∪ F ),M(f)).

Appears to be computational equivalence classes of families of models.
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Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Non-tree graphs

Lemma 4.3.1

From a computational perspective, the reconstituted graph on which
elimination has been run is the family on which we are running inference.
If fill-in is caused by elimination, inference is solved on a family larger
than that specified by the original graph, and we might as well have
started with that family to begin with. If an elimination order produces
no fill-in, we are solving the inference query optimally.

Also, ordering σ matters. Using σ a second time results in a perfect
elimination order.
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Non-tree graphs

Lemma 4.3.2

When elimination is run for a second time on the reconstituted graph
with the same order, the set of neighbors v at the time v is eliminated is
the same in both the original and in the reconstituted graph.

Proof.

Any neighbor of v in the reconstituted graph must be either an
original-graph edge, or it must be due to a fill-in edge between v and
some other node that is not an original graph neighbor. All of the fill-in
neighbors must be due to elimination of nodes before v since after v is
eliminated no new neighbors can be added to v. But the point at which v
is eliminated in the original graph and the point at which it v is
eliminated in the reconstituted graph, the same previous set of nodes
have been eliminated, so any neighbors of v in the reconstituted graph
will have been already added to the original graph when v is eliminated in
the original graph.
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Non-tree graphs

Lemma 4.3.3

Given an elimination order, the computational complexity of the
elimination process is O(rk+1) where k is the largest set of neighbors
encountered during elimination. This is the size of the largest clique in
the reconstituted graph.

Proof.

First, when we eliminate σi in Gi−1, eliminating variable v when it is in
the context of its current neighbors will cost O(r#) where
# = |δGi−1(v) + 1| — thus, the overall cost will be O(rk+1).
Next, we show that largest clique in the reconstituted graph is equal to
the complexity. Consider the reconstituted graph, and assume its largest
clique is of size k + 1. When we re-run elimination on this graph, there
will be no fill in. . . .
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Proof cont.

. . . continued.

However, the cost of the elimination step upon reaching the first vertex v
of the clique of size k + 1 will be O(rk+1) since k of the variables of the
clique will be neighbors of v, but no other nodes will be neighbors since it
is a perfect elimination order in the reconstituted graph. This will be the
same cost as what was incurred during the initial elimination procedure
since v has the same set of neighbors. Therefore, the largest clique in the
reconstituted graph is the complexity of doing elimination.

This means that any perfect elimination ordering on a
perfect-elimination graph will have complexity exponential in the size
of the largest clique in that graph.
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Non-tree graphs

Summarizing what we’ve got so far:

G′ = (V,E ∪ Fσ) always has at least one perfect elimination order

When we run elimination algorithm, we will always end up with such a
graph - inevitable

Perhaps we should deal only with such graphs?

Is finding the order that minimizes fill-in optimal? (we shall see)

We can characterize the complexity of a given elimination order.
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Perfect elimination graphs

Since such graphs are inevitable, lets define them and give them a
name

Definition 4.4.1 (perfect elimination graph)

A graph G = (V,E) is a perfect elimination graph if there exists an
ordering σ of the nodes such that eliminating nodes in G based on σ
produces no fill-in edges.

any perfect elimination ordering on a perfect elimination graph will
have complexity exponential in the size of the largest clique in that
graph
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Perfect elimination graphs?
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Perfect elimination graphs?
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Perfect elimination graphs?
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Perfect elimination graphs?
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Maxcliques of perfect elimination graphs

Lemma 4.4.2

When running the elimination algorithm, all maxcliques in the resulting
reconstituted graph are encountered as elimination cliques during
elimination.

Proof.

Each elimination step produces a clique, but not necessarily a maxclique. Set of
maxcliques in the resulting reconstituted perfect elimination graph is a subset of
the set of cliques encountered during elimination. This is because of the
neighbor property proven above in Lemma 4.3.2 — if there was a maxclique in
the reconstituted graph that was not one of the elimination cliques, that
maxclique would be encountered on a run of elimination with the same order on
the reconstituted graph, but for the first variable to encounter this maxclique, it
would have the same set of neighbors in original graph, contradicting the fact
that it was not one of the elimination cliques.
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Finding the maxcliques

Lemma 4.4.3

Given a graph G, an order σ, and a reconstituted graph G′, the
elimination algorithm can produce the set of maxcliques in G′.

Proof.

Consider node v’s elimination clique cv (i.e., v along with its neighbors
δ(v) at the time of elimination of v). Since cv is complete, either cv is a
maxclique or a subset of some maxclique. cv can not be a subset of any
subsequently encountered maxcliques since all such future maxcliques
would not involve v. Therefore cv must be a maxclique or a subset of
some previously encountered maxclique. If cv is not a subset of some
previously encountered maxclique, it must be a maxclique (we add cv to a
list of maxcliques). Since all maxcliques are encountered as elimination
cliques, all maxcliques are discovered in this way.
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Finding maxcliques

Corollary 4.4.4

The first node eliminated in a graph, along with its neighbors, forms a
maxclique.

A node can be a member of more than 1 maxclique. Example, 4-cycle
with diagonal edge. Is there a bound on the number of maxcliques a
node might be a member of?

Consider star tree graph.

Inevitability: We have p ∈ F((V,E),M(f)). We must work with
F((V,E ∪ Fσ),M

(f)).

Q1: Can we identify the smallest such larger family (best elimination
order σ) in which inference is solved?

Q2: Does there exist a property (other than having a perfect
elimination order) that characterizes this family of graphs?
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Embedding

Definition 4.4.5 (embedding)

Any graph G = (V,E) can be embedded into a graph G′ = (V,E′) if G is
a spanning subgraph of G′, meaning that E ⊆ E′.

Embedding never shrinks family of distributions

Any G may be embedded into Gσ.

We wish to embed G into the class of perfect elimination graphs (this
is a subset of all undirected graphs).

Does this restrict us in any way? (e.g., remove family members?)

Does it change values of resulting queries we wish to compute?

No, only potential issue is computation.

Graphical model structure learning would be: start with
p ∈ F(G,M(f)), find some spanning subgraph G′ = (V,E′) where
E′ ⊂ E, and solve inference there for a p′ ∈ F(G′,M(f)) that is as
close as possible to p. We defer this topic until later in the course.
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close as possible to p. We defer this topic until later in the course.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F24/85 (pg.38/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Embedding

Definition 4.4.5 (embedding)

Any graph G = (V,E) can be embedded into a graph G′ = (V,E′) if G is
a spanning subgraph of G′, meaning that E ⊆ E′.

Embedding never shrinks family of distributions

Any G may be embedded into Gσ.

We wish to embed G into the class of perfect elimination graphs (this
is a subset of all undirected graphs).

Does this restrict us in any way? (e.g., remove family members?)

Does it change values of resulting queries we wish to compute?

No, only potential issue is computation.

Graphical model structure learning would be: start with
p ∈ F(G,M(f)), find some spanning subgraph G′ = (V,E′) where
E′ ⊂ E, and solve inference there for a p′ ∈ F(G′,M(f)) that is as
close as possible to p. We defer this topic until later in the course.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F24/85 (pg.39/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Embedding

Definition 4.4.5 (embedding)

Any graph G = (V,E) can be embedded into a graph G′ = (V,E′) if G is
a spanning subgraph of G′, meaning that E ⊆ E′.

Embedding never shrinks family of distributions

Any G may be embedded into Gσ.

We wish to embed G into the class of perfect elimination graphs (this
is a subset of all undirected graphs).

Does this restrict us in any way? (e.g., remove family members?)

Does it change values of resulting queries we wish to compute?

No, only potential issue is computation.

Graphical model structure learning would be: start with
p ∈ F(G,M(f)), find some spanning subgraph G′ = (V,E′) where
E′ ⊂ E, and solve inference there for a p′ ∈ F(G′,M(f)) that is as
close as possible to p. We defer this topic until later in the course.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F24/85 (pg.40/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Embedding

Definition 4.4.5 (embedding)

Any graph G = (V,E) can be embedded into a graph G′ = (V,E′) if G is
a spanning subgraph of G′, meaning that E ⊆ E′.

Embedding never shrinks family of distributions

Any G may be embedded into Gσ.

We wish to embed G into the class of perfect elimination graphs (this
is a subset of all undirected graphs).

Does this restrict us in any way? (e.g., remove family members?)

Does it change values of resulting queries we wish to compute?

No, only potential issue is computation.

Graphical model structure learning would be: start with
p ∈ F(G,M(f)), find some spanning subgraph G′ = (V,E′) where
E′ ⊂ E, and solve inference there for a p′ ∈ F(G′,M(f)) that is as
close as possible to p. We defer this topic until later in the course.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F24/85 (pg.41/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Triangulated Graphs

Triangulated graphs are also sometimes referred to either as chordal,
rigid-circuit, monotone transitive, or (as we saw above) perfect
elimination graphs.

A chord, with respect to a cycle in a graph G, is an edge that directly
connects two non-adjacent nodes in that cycle.

A chord
 (b

old blue)

w.r.t
. th

e cycle

(bold black)
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Triangulated Graphs

Definition 4.5.1 (Triangulated graph)

A graph G is triangulated (equivalently chordal) if all cycles have a chord.

in triangulated graph: any cycles of length > 3 must have a chord.

Cycles of length 3 have no non-adjacent vertices

Triangulated graphs include

1 a clique is a triangulated graph (all cycles have chord).
2 a tree is a triangulated graph, since there are no cycles that could

disobey the chordal requirement.
3 a chain is a triangulated graph, since it is a tree.
4 a set of disconnected vertices is triangulated (since there are no cycles).
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Triangulated Graphs

Lemma 4.5.2 (Hereditary property of triangulated graphs)

Any node-induced sub-graph of a triangulated graph is a triangulated
graph.

Proof.

If a graph has no chordless cycles, then it has no chordless cycles
involving any node v, and removing v only removes cycles involving v and
so does not create any new chordless cycles.
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Triangulated Graphs

Which of the following graphs are triangulated?
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I J

E
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Triangulated Graphs

Which of the following graphs are triangulated?

E

D
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A

B
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Triangulated Graphs

Nodes that have no fill-in have a special name

Definition 4.5.3 (Simplicial)

Let δ(v) = {u : (u, v) ∈ E(G)} be the set of node neighbors of v in
G = (V,E). Then we say that v is simplicial if the vertex induced
subgraph G[δ(v)] is a complete graph.
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Triangulated Graphs

Theorem 4.5.4

Given graph G, elimination order σ, and perfect elimination graph
G′ = Gσ obtained by elimination on G. We may reconstruct a perfect
elimination order (w.r.t. Gσ) from Gσ by repeatedly choosing any
simplicial node and eliminating it. Call this new order σ′. Now σ′ might
not be the same order as σ, but both are perfect elimination orders for G′.

Proof.

If there is more than one possible order, we must reach a point at which
there are two possible simplicial nodes u, v ∈ G′. Eliminating u does not
render v non-simplicial since no edges are added and thus v has if
anything only a reduced set of neighbors. Each time we eliminate a
simplicial node, any other node that was simplicial in the original
elimination order stays simplicial when it comes time to eliminate it.
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Graph separators

Given a, b ∈ V , a '= b, a set S ⊆ V is an (a, b)-separator in G, if all
paths from a to b must intersect some node in S.

A minimal (a, b)-separator S is an (a, b)-separator such that any
strict subset S′ ⊂ S is no longer an (a, b)-separator.

A set S is a separator in G = (V,E) if there exists a, b ∈ V such that
S is an (a, b)-separator.

a set S is a minimal separator if there exists an a, b ∈ V such that S
is a minimal (a, b)-separator.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F32/85 (pg.55/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Graph separators

Given a, b ∈ V , a '= b, a set S ⊆ V is an (a, b)-separator in G, if all
paths from a to b must intersect some node in S.

A minimal (a, b)-separator S is an (a, b)-separator such that any
strict subset S′ ⊂ S is no longer an (a, b)-separator.

A set S is a separator in G = (V,E) if there exists a, b ∈ V such that
S is an (a, b)-separator.

a set S is a minimal separator if there exists an a, b ∈ V such that S
is a minimal (a, b)-separator.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F32/85 (pg.56/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Graph separators

Given a, b ∈ V , a '= b, a set S ⊆ V is an (a, b)-separator in G, if all
paths from a to b must intersect some node in S.

A minimal (a, b)-separator S is an (a, b)-separator such that any
strict subset S′ ⊂ S is no longer an (a, b)-separator.

A set S is a separator in G = (V,E) if there exists a, b ∈ V such that
S is an (a, b)-separator.

a set S is a minimal separator if there exists an a, b ∈ V such that S
is a minimal (a, b)-separator.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F32/85 (pg.57/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Graph separators

Given a, b ∈ V , a '= b, a set S ⊆ V is an (a, b)-separator in G, if all
paths from a to b must intersect some node in S.

A minimal (a, b)-separator S is an (a, b)-separator such that any
strict subset S′ ⊂ S is no longer an (a, b)-separator.

A set S is a separator in G = (V,E) if there exists a, b ∈ V such that
S is an (a, b)-separator.

a set S is a minimal separator if there exists an a, b ∈ V such that S
is a minimal (a, b)-separator.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F32/85 (pg.58/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Graph separators - examples

x4

x5x2

x3

x1

x6

x4

x2

x3x1

x7x5x4

x5x2

x3

x1

Left: both {x3, x4} and {x2, x3, x4} a (x1, x5)-separator, only
{x3, x4} is a minimal (x1, x5)-separator.

Middle: {x3, x4} no longer a separator. {x2, x3, x4} now a minimal
(x1, x5)-separator.

Right: {x2, x4, x6} minimal (x1, x3)-separator, {x4, x6} is a minimal
(x5, x7)-separator.
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Graph separators - examples
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Left: A,F,K is a minimal (B,E)-separator.

Middle: D,F,K is a non-minimal (B,E)-separator

Right: C,K is a minimal (B,E)-separator
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Graph separators - examples

Lemma 4.5.5

Let S be a minimal (a, b)-separator in G = (V,E) and let GA, GB be the
connected components of G once S is removed containing a and b (i.e.,
(GA, GB) ⊆ G[V \ S]) where a ∈ V (GA) and b ∈ V (GB). Then each
s ∈ S is adjacent both to some node in GA and some node in GB.

Proof.

Suppose the contrary, that there exists an s ∈ S not adjacent to any
v ∈ GA. In such case, S \ {s} is still an (a, b)-separator since no path
from GA can get directly through s, contradicting the minimality of
S.
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Triangulated graphs and separators

Lemma 4.5.6

A graph G = (V,E) is triangulated iff all minimal separators are complete.

Proof.

First, suppose all minimal separators in G = (V,E) are complete.
Consider any cycle u, v, w, x1, x2, . . . , xk, u starting and ending at node u,
where k ≥ 1. Then the pair v, xi for some i ∈ {1, . . . , k} must be part of
a minimal (u,w)-separator, which is complete, so v and that xi are
connected thereby creating a chord in the cycle. The cycle is arbitrary, so
all cycles are chorded. . . .
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Triangulated graphs and separators

... proof continued.

Next, suppose G = (V,E) is triangulated, and let S be a minimal
(a, b)-separator in G, and let GA and GB be the connected components
of G[V \ S] containing respectively a and b. Each s ∈ S is connected to
some u ∈ V (GA) and v ∈ V (GB). Therefore, since the components are
connected, for each s, t ∈ S, there is a shortest path s, a1, a2, . . . , am, t
with ai ∈ V (GA) for i ∈ {1, . . . ,m}, and a shortest path
t, b1, b2, . . . , bn, s with bj ∈ V (GB) for j ∈ {1, . . . , n}, as in the following:

S
GA

GB

t

sa
b

a b b

bn

a

am

... ...

. . .
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Triangulated graphs and separators

... proof continued.

S
GA

GB

t

sa
b

a b b

bn

a

am

... ...

Only successive ai’s in the path, and also s, a1 and am, t, are adjacent as
otherwise the path could be made shorter. The corresponding property is
also true for the bi’s. Also, no ai is adjacent to any bi since S is a
separator. A cycle is formed by s, a1, a2, . . . , am, t, b1, a2, . . . , an, s which
must have a chord, and the only candidate chord left is s, t. Since s, t are
chosen arbitrarily from S, all pairs of nodes in the minimal separator are
connected, and it is thus complete.
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Triangulated graphs and separators
G triangulated means all (a, b)-separators are complete.

We also have the following important theorem.

Lemma 4.5.7

A triangulated graph on n ≥ 2 nodes is either a clique, or there are two
non-adjacent nodes that are simplicial.

Note that this appears to be very much like the property of a tree where a
simplicial node takes the role of a leaf-node. Is this a coincidence?
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Triangulated graphs have at least two simplicial nodes.

Proof.

Any clique is triangulated and all nodes are simplicial, so assume the
graph is not a clique. Induction on n = |V (G)|: any graph with
1 < n ≤ 3 is triangulated and has two simplicial nodes. Assume true for
n− 1 nodes, and show for n nodes. Let a and b be two non-adjacent
vertices, let S be a minimal (a, b)-separator which must be complete. Let
GA and GB be the connected components of G[V \ S] containing
respectively a and b. Let A = V (GA) and B = V (GB). By induction,
G[A ∪ S] and G[B ∪ S] are either cliques, or contain two non-adjacent
simplicial vertices. First case, all nodes are simplicial, second case both
simplicial non-adjacent vertices cannot be in S since S is complete. In all
cases, we may choose two non-adjacent simplicial vertices, one each in A
and B, and these vertices are adjacent to no nodes other than A ∪ S and
B ∪ S respectively. These nodes remain simplicial and non-adjacent in
G.
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Recap

Non-tree graphs: effectively doing inference on perfect elimination
graph.

After elimination, we’ve got a perfect (fill-in free) elimination graph.

We encounter the maxcliques when we run elimination.

Elimination cliques are supserset of set of maxcliques.

We may embed any G = (V,E) into any G = (V,E ∪ F ).

Given perfect elimination graph, easy to find perfect elimination order.

Triangulated graphs (chordal), all cycles are chorded.

Various definitions of separators.

Triangulated iff all min separators are complete.

Any triangulated graph on ≥ 2 nodes has two simplicial nodes.
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We encounter the maxcliques when we run elimination.

Elimination cliques are supserset of set of maxcliques.

We may embed any G = (V,E) into any G = (V,E ∪ F ).

Given perfect elimination graph, easy to find perfect elimination order.

Triangulated graphs (chordal), all cycles are chorded.

Various definitions of separators.

Triangulated iff all min separators are complete.

Any triangulated graph on ≥ 2 nodes has two simplicial nodes.
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Triangulated/Elimination

In a triangulated graphs, all nodes simplicial?

If G is triangulated and v simplicial, if we eliminate v, is G[V \ v] still
triangulated?

Therefore:

Corollary 4.5.8

For any triangulated graph, there exists an elimination order that does
not produce any fill in.

So if we know the graph is triangulated, we can easily find a perfect
elimination order. Why? We can strengthen the above in fact:
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triangulated?

Therefore:
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Triangulated vs. Perfect elimination graphs

Lemma 4.5.9

If G is a graph and there exists a perfect elimination order, then G is
triangulated.

Proof.

By induction. It is obviously true for 1 and 2 nodes. Assume true for n
nodes, and we are given an n+ 1 node graph. Since there exists an
elimination order without fill-in, there exists a simplicial node, where
chordless cycles can not exist through that node since all of its neighbors
are connected. Once we eliminate that node, no fill-in is created, and
induction step applies.

We summarize the bijection as follows:

Theorem 4.5.10

A graph G is triangulated iff there exists a perfect elimination order over
the nodes in G.
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nodes, and we are given an n+ 1 node graph. Since there exists an
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Triangulated vs. Perfect elimination graphs

Corollary 4.5.11

Take any graph G and an elimination order σ, then the reconstituted
graph G′ = (V,E ∪ Fσ) is triangulated.
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Triangulated vs. Perfect elimination graphs
Generating triangulated graphs

Therefore, we can generate a reconstituted elimination graph (or any
triangulated graph) using a reverse elimination order.

Algorithm 9: Regenerate triangulated graph.

Input: A triangulated graph G = (V,E) and a perfect elimination order σ
Result: A new graph G′ identical to G.

1 Recall that δGi−1(σi) are neighbors of σi in G at the point σi is
eliminated. ;

2 Start out with V (G′) empty ;
3 Add σN to V (G′) ;
4 for i = N − 1 . . . 1 do
5 Add σi to V (G′) ;
6 Add δGi−1(σi) to E(G′) ; /* at this δGi−1(σi) is complete */
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Triangulated vs. Perfect elimination graphs

Trees can be generated this way (recall one of the definitions)

Does elimination span the space of all possible triangulations of a
graph? (i.e., can any triangulation of G be obtained by some
elimination order?)

Theorem 4.5.12

Let G = (V,E) be a graph and let G′ = (V,E ∪ F ) be a triangulation of
G with F the required edge fill-in. If the triangulated graph is minimal in
the sense that for any F ′ ⊂ F , the graph G′′ = (V,E ∪ F ′) is no longer
triangulated, then F can be obtained by the result of an elimination
order. That is, the elimination algorithm and the various variable
orderings may produce all minimal triangulations of a graph G.

Minimal triangulations are state-space optimal for positive
distributions only!
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Triangulated vs. Perfect elimination graphs

Minimal triangulations are state-space optimal for positive distributions
only. Let d be a deterministic function of a and b. All variables have r
values but d has r2 − 1 values.
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Moralized already
chordal, perfect
elim. order
(c, a, b, d). One
clique at O(r2),
two at O(r4).

Elimination order
(a, c, b, d), cost is
still O(r4)

Start by
eliminating d, cost
is still O(r4)

Triangulation
unobtainable with
elimination, cost
O(r3).
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re-cap

We wish to run elimination

Doing so produces a triangulated graph

Complexity is its largest clique in result

We encounter the cliques (and the largest) during elimination so we
get the complexity while we are doing elimination

Elimination adds edges, we can embed original graph into resulting
triangulated graph (triangulated graph covers original graph)

can’t avoid a triangulated graph — always dealing with triangulated
graphs implicitly or explicitly

want to find covering minimally triangulated graph with smallest
largest maxclique

i.e., find optimal elimination order

there are n! elimination orders

is this easy or hard?

We shall see . . .
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k-trees

Generalizations of a tree as defined as follows:

Definition 4.5.13 (k-tree)

A complete graph with k + 1 nodes is a k-tree. To construct a k tree
with n+ 1 nodes starting from a k-tree with n nodes, choose some size k
complete sub-graph of the n-node k-tree and connect the n+ 1’st node
to all nodes in the k-node complete sub-graph.

Any complete n-graph is an n− 1-tree

a regular tree is a 1-tree.

all k-trees are triangulated
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Example of 2-trees
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Example of 3-trees
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k-trees

In a tree, all minimal separators are size 1

In a k-tree, all minimal separators are size k (and thus a k-clique).

In a k-tree, all maxcliques are size k + 1, so maximum clique size is
k + 1.

In a k-tree, complexity of inference will be O(rk+1).

even stronger:

Lemma 4.5.14

A graph G = (V,E) is a k-tree iff

G is connected

G’s maximum clique is of size k + 1

Every minimal separator of G is a k-clique.
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k-trees

Definition 4.5.15 (partial k-tree)

Any spanning sub-graph of a k-tree is a partial k-tree.

Any partial k-tree is embeddable into a k-tree.

Inference in a partial k-tree is at most O(rk+1).

k-trees are triangulated, but arbitrary triangulated graph not
necessarily a k-tree

any triangulated graph can be embedded into a k tree for large
enough k — silly example, set k = (n− 1).

But is it possible for smaller k?
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k-trees and embeddings

Lemma 4.5.16

If G is a triangulated graph with at least k + 1 vertices and has a
maximum clique of size at most k + 1, then G can be embedded into a
k-tree.

Proof.

Let σ = (σ1, . . . ,σn) be perfect elim. order for G. We embed G into
k-tree by adding edges to G so that same ordering is perfect in the
k-tree. Induction.
Base case, any set of k + 1 vertices can be embedded into a k tree by
making those vertices a clique. Thus, add edges to last k + 1 eliminated
vertices, i.e., make {σn−k,σn−k+1, . . . ,σn} a k + 1-clique. ...
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cont.

... proof continued.

Induction: assume the subgraph with vertices {σi+1, . . . ,σn} has been
embedded into a k-tree Ti+1. Since the maximum clique size of G is
k + 1, in G vertex σi is adjacent to a clique c with no more than k
vertices in {σi+1, . . . ,σn}. In the k-tree Ti+1, c is contained in a k-clique
c′. When we make σi adjacent to all of the vertices of c′, we obtain a
k-tree Ti since σi is still simplicial in Ti. Repeating to σ1 and result is
supergraph of G with same order being perfect.
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k-trees and embeddings

Therefore, reconstituted elimination graph can be embedded into a
k-tree for large enough k.

Note: in k-tree all cliques are size k + 1 but in our reconstituted

perfect elimination graph, might only have one clique that is of size

k + 1 (but even given this, we will still show a negative result on the

next slide !)

Goal: We want to find the elimination order that results in the
smallest k such that G′ = (V,E ∪ Fσ) can be embedded into a k-tree.

i.e.,find best “Chordal cover”

Unfortunately:
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k-trees and embeddings

Goal: We want to find the elimination order that results in the
smallest k such that G′ = (V,E ∪ Fσ) can be embedded into a k-tree,
i.e.,find best “Chordal cover”

Theorem 4.5.17

For an arbitrary graph G = (V,E), finding the smallest k such that G can
be embedded into a k-tree is an NP-complete optimization problem (i.e.,
the decision version of the problem, asking if G can be embedded into a
k-tree of size k, is NP-complete).

consider again elimination as summing out variables - not possible to
guarantee optimal summation in poly-time order unless P=NP.

We resort to heuristics (min fill, min size, random chose from top #
with random restarts, etc. work well).

Inapproximability result: (see below)
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Heuristics for elimination

Since we can’t expect to find a perfect elimination order, we have
heuristics:

1 min fill-in heuristic:. Eliminate next the node n that would result in
the smallest number of fill-in edges at that step. Break ties arbitrarily.

2 min size heuristic: Eliminate next the node that would result in the
smallest clique when eliminated (i.e., choose the node as one with the
smallest edge degree). Break ties arbitrarily.

3 min weight heuristic: If the nodes have non-uniform domain sizes,
then we choose next the node that would result in the clique with the
smallest state space, which is defined as the product of the domain
sizes. Break ties arbitrarily.
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Better Heuristics for elimination

Variants and improvements to the above heuristics.

1 tie-breaking: When one heuristic has tie, choose one of the other
heuristics to break tie.

2 non-greedy: Rather than greedily choosing best vertex, take the
m-best vertices (e.g., the m < n nodes that would result in, say, the
smallest fill-in) and eliminate one of them.

3 random next step: Create a distribution over those m-best vertices,
where the probability formed by either: 1) uniform, or 2) inversely
proportional to the greedy score (e.g., inverse fill-in). Draw from this
distribution to choose node to eliminate.

4 random repeats: Run above heuristics multiple times, producing
different elimination orders. Choose one that results in the smallest
maximum clique size.
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k-trees and embeddings

Goal: We want to find the elimination order that results in the
smallest k such that G′ = (V,E ∪ Fσ) can be embedded into a k-tree,
i.e.,find best “Chordal cover”

Theorem 4.5.17

For an arbitrary graph G = (V,E), finding the smallest k such that G can
be embedded into a k-tree is an NP-complete optimization problem (i.e.,
the decision version of the problem, asking if G can be embedded into a
k-tree of size k, is NP-complete).

consider again elimination as summing out variables - not possible to
guarantee optimal summation in poly-time order unless P=NP.

We resort to heuristics (min fill, min size, random chose from top #
with random restarts, etc. work well).

Inapproximability result: (see below)
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Other views of the difficulty

There are a class of related problems that equivalently indicate the
difficulty were are in.

Theorem 4.6.1

Given an arbitrary graph G = (V,E), find the largest clique C ⊆ V (G),
where large is measured in terms of |C| is an NP-complete optimization
problem.

Approximation algorithms - possible to do no worse than
O((log |V |)2/|V |) times size of true maximum size clique.

Inapproximable |V |1/2−ε for any ε > 0.

If we could find the smallest k such that it could be embedded it a k
tree, we could identify the maximum clique in the graph. How?
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Another view of the difficulty

While we’re at it, even finding best chordal fill-in is hard

Theorem 4.6.2

Given an arbitrary graph G = (V,E), and G′ = (V,E ∪ F ) is a
triangulation of G, finding the smallest such F is an NP-complete
optimization problem.

Thus, to summarize, finding the optimal elimination order is likely
computationally hard, as are other problems associated with graphs.
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Some good news "- at least we can identify triangulated graphs

We know that if there is a perfect elim order, the graph is triangulated.

keep eliminating simplicial nodes as long as you can, and output “not
triangulated” if ever there is no simplicial node.

näıve implementation: find fill in of each node, eliminate the one with
no fill-in O(n3).

There is a smart algorithm, maximum cardinality search (MCS), that
can do this in O(|V |+ |E|)
Basic idea of MCS: produce a perfect elimination order, if it exists, in
reverse. Construct it by looking at previously labeled neighbors.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 4 - Oct 8th, 2014 F62/85 (pg.141/195)



Non-Tree Graphs Perfect elimination Triangulated Graphs Triangulation Multiple queries Refs

Some good news "- at least we can identify triangulated graphs

We know that if there is a perfect elim order, the graph is triangulated.

keep eliminating simplicial nodes as long as you can, and output “not
triangulated” if ever there is no simplicial node.
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MCS

Input: An undirected graph G = (V,E) with n = |V |.
Result: triangulated or not, MCS ordering σ = (v1, . . . , vn)

1 L ← ∅ ; i ← 1 ;
2 while |V \ L| > 0 do
3 Choose vi ∈ argmaxu∈V \L |δ(u) ∩ L| ; /* vi’s previously labeled

neighbors has max cardinality. */

4 ci ← δ(vi) ∩ L ; /* ci is vi’s neighbors in the reverse elimination
order. */

5 if {vi} ∪ ci is not complete in G then
6 return “not triangulated” ;

7 L ← L ∪ {vi} i ← i+ 1 ;

8 return “triangulated”, the node ordering σ
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MCS

Can also produce an elimination order and triangulate the graphs (but
not particularly good)

will produce a perfect elimination order on triangulated graphs

why called maximum cardinality “search”

Theorem 4.6.3

A graphical G is triangulated iff in the MCS algorithm, at each point
when a vertex is marked, that vertex’s previously marked neighbors form a
complete subgraph of G.

Corollary 4.6.4

Every maximum cardinality search of a triangulated graph G corresponds
to a reverse perfect eliminating order of G.
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Recap

Triangulated graphs: if |V | ≥ 2, always two simplicial nodes.

Triangulated graph iff perfect elimination graph.

All minimal triangulations of a graph can be created using elimination.

k-trees, generalization of trees. Sometimes called hyper-tree. All
min-separators are k-cliques. partial k-trees. Embedding into k-trees.

Any triangulated graph G′ can be embedded into k-tree where k + 1
is the size of the largest clique of G′. Thus any graph can be
embedded into a k-tree for large enough k.

NP-complete: finding smallest k such that G is embeddable into
k-tree.

Triangulation heuristics: min-fill, etc.

MCS can identify a triangulated graph efficiently.
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Multiple queries

Let C be the set of all cliques in original graph. Often, we want to
compute p(xC) for all C ∈ C.

Do not want to run separate elimination |C| many times.

Tree (1-tree) case - messages for one query used for other queries.
Message re-use only grows with num. queries. Can we do the same
thing for arbitrary graphs?

Consider only the class of triangulated models since to do otherwise
(for exact inference) is not necessary.

But is one triangulated model optimal for all queries?
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Multiple queries

A triangulated graph is a cover of G

Any clique in G will still be a clique in a triangulation G′: that is,
given clique c ∈ C(G), there exists c′ ∈ C(G′) with c ⊆ c′.

Given p(xc′), can compute p(xc) =
∑

xc′\c
p(xc′) at O(r|c

′|), same

cost triangulated graph.

optimal k-tree embedding for G is one that minimizes the maximum
clique for any triangulation of G, so if we have found this embedding,
this will be optimal for any original-graph clique marginal.

Even if we found a “good” elimination order (one that produces a
maxclique of reasonable size), this order can be shared for other clique
queries.
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Non-clique queries

Recall: 1-tree case, if we want a marginal over a non-sub-tree, we
might be in trouble.

Similarly, if we desire non-clique queries for general graph, then
computation can get worse. Computing p(xL) for arbitrary L could
turn xL into a clique in the worst case (Rose’s theorem).

If xL is not clique in G′, then we can view G′ as not being “valid” for
the query p(xL).

In such case, need to re-triangulate, starting with a graph where xL is
made complete.
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clique queries

Remarkably, in the case of clique queries, we can actually re-use the
elimination order.

We want to share more than just the elimination order.

goal: in non-tree graphs, re-use work of computing marginals for the
sake of getting multiple marginals.

We’ll see an amazing fact: if we find the optimal elimination order for

1 clique query, it is optimal for all clique queries!! "
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Decomposition of G

Definition 4.7.1 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

If G has a decomposition, what dies this mean for the family F(G,M(f))?
Since C separates A from B, this means that XA⊥⊥XB|XC for any
p ∈ F(G,M(f)), which moreover means we can write the joint
distribution in a particular form.

p(x) = p(xA, xB, xC) =
p(xA, xC)p(xB, xC)

p(xC)
(4.1)
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Decomposable models

Definition 4.7.2

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs G[A ∪C]
and G[B ∪ C] are decomposable.

Note that the separator is contained within the subgraphs: i.e.,
G[A ∪ C] rather than, say, G[A].
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Decomposable models
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Graph and two decompositions of this graph.

as we recurse down, if at any point decomposition is not found, graph
is not decomposable.
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Decomposable models
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Decomposition of G and Decomposable graphs

Summarizing both:

Definition 4.7.3 (Decomposition of G)

A decomposition of a graph G = (V,E) (if it exists) is a partition
(A,B,C) of V such that:

C separates A from B in G.

C is a clique.

if A and B are both non-empty, then the decomposition is called proper.

Definition 4.7.4

A graph G = (V,E) is decomposable if either: 1) G is a clique, or 2) G
possesses a proper decomposition (A,B,C) s.t. both subgraphs
G[A ∪ C] and G[B ∪ C] are decomposable.

Note part 2. It says possesses. Bottom of tree might affect top.
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Decomposable models

Internal nodes in tree are complete graphs that are also separators.

With G is decomposable, what are implications for a p ∈ F(G,M(f))?

p(A,B,C,D,E, F,G,H, I, J,K)

=
p(A,C,D, F )p(B,C,D,E, F,G,H, I, J,K)

p(C,D, F )

=
p(A,C,D, F )

p(C,D, F )

(
p(B,C,G,H)p(C,D,E, F,H, I, J,K)

p(C,H)

)

= . . .

=
p(A,C,D, F )p(B,G,H)p(C,B,H)p(I, E, J)p(E, I,D)p(C,K,H)p(D,K, I)p(D,K, F, C)

p(C,D, F )p(C,H)p(B,H)p(D, I)p(E, I)p(C,K)p(D,K)
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Decomposable models

S is a separator, so that G[V \ S] consists of 2 or more connected
components.

We say that S shatters the graph G into those components, and let
d(S) be the number of connected components that S shatters G into.
d(S) is the shattering coefficient of G.

Example: below, d({A,B}) = 3

ABEF

ABCD

AB

ABGH

AB
D C

G

A

E F

B

H

D C

A B

G

A B

H

A

E F

B
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Decomposable models

When d(S) > 2, separator marginal use more than once in the
denominator

The general form of the factorization becomes:

p(x) =

∏
C∈C(G) p(xC)∏

S∈S(G) p(xS)
d(S)−1

(4.2)

Any decomposable model can be written this way

4-cycle is not decomposable. Two independence properties that can’t
be used simultaneously.

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x1, x3, x4)

p(x1, x4)
=

p(x1, x2, x3)p(x2, x3, x4)

p(x2, x3)
(4.3)
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Decomposable models

Proposition 4.7.5

All of the maxcliques in a graph lie on the leaf nodes of the binary
decomposition tree

Proof.

For a decomposable model, the base case (leaf node) is a clique,
otherwise it would not be decomposable. If a leaf was not a maxclique,
then that means it is contained in a maxclique, and got split by a
separator corresponding to that leaf’s parent, but this is impossible since
a maxcliques have no separator.

Proposition 4.7.6

The (nec. unique) set of all minimal separators of graph are included in
the non-leaf nodes of the binary decomposition tree, with d(S)− 1 being
the number of times the minimal separator S appears as a given non-leaf
node.
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A bit of notation

If C is separator, C shatters G into d(C) connected components

G[V \ C] is the union of these components

Let {G1, G2, . . . , G#} be (disjoint) connected components of
G[V \ C], so G1 ∪G2 ∪ · · · ∪G# = G[V \ C]

Given a ∈ V (Gi) for some i, then G[V \ C](a) = Gi.
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Triangulated vs. decomposable

Theorem 4.7.7

A given graph G = (V,E) is triangulated iff it is decomposable.

Proof.
First: decomposability implies triangulated (induction). Next: every minimal separator complete in G implies decomposable.

Assume G is decomposable. If G is complete then it is triangulated. If it
is not complete then there exists a proper decomposition (A,B,C) into
decomposable subgraphs G[A ∪ C] and G[B ∪ C] both of which have
fewer vertices, meaning |A ∪ C| < |V | and |B ∪ C| < |V |. By the
induction hypothesis, both G[A ∪ C] and G[B ∪ C] are chordal. Any
potential chordless cycle, therefore, can’t be contained in one of the
sub-components, so if it exist in G must intersect both A and B. Since C
separates A from B, the purported chordless cycle would intersect C
twice, but C is complete the cycle has a chord. ...
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Triangulated vs. decomposable

... proof continued.

Next, assume that all minimum (a, b) separators are complete in G. If G
is complete then it is decomposable. Otherwise, there exists two
non-adjacent vertices a, b ∈ V in G with a necessarily complete minimal
separator C forming a partition G[V \ C](a), G[V \ C](b), and all of the
remaining components of G[V \ C]. We merge the connected
components together to form only two components as follows: let
A = G[V \C](a) ∪D and B = G[V \C](b). Since C is complete, we see
that (A,B,C) form a decomposition of G, but we still need that
G[A ∪ C] and G[B ∪ C] to be decomposable (see figure).
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Triangulated vs. decomposable
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Triangulated vs. decomposable

... proof continued.

Let C1 be a minimal (a1, b1) separator in G[A∪C]. But then C1 is also a
minimal (a1, b1) separator in G since, once we add B back to G[A ∪ C]
to regenerate G, there still cannot be any new paths from a1 to b1
circumventing C1. This is because any such path would involve nodes in
B (the only new nodes) which, to reach B and return, requires going
through C (which is complete) twice. Such a path cannot bypass C1

since if it did, a shorter path not involving B would bypass C1. Therefore,
C1 is complete in G, and an inductive argument says that G[A ∪ C] is
decomposable. The same argument holds for G[B ∪ C]. Therefore, G is
decomposable.
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Tree decomposition

Definition 4.7.8 (tree decomposition)

Given a graph G = (V,E), a tree-decomposition of a graph is a pair
({Ci : i ∈ I}, T ) where T = (I, F ) is a tree with node index set I, edge
set F , and {Ci}i (one for each i ∈ I) is a collection of subsets of V (G)
such that:

1 ∪i∈ICi = V

2 for any (u, v) ∈ E(G), there exists i ∈ I with u, v ∈ Ci

3 for any v ∈ V , the set {i ∈ I : v ∈ Ci} forms a connected subtree of T
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Tree decomposition is also hard

The tree-width of the tree-decomposition is the size of the largest Ci

minus one (i.e., maxi∈I |Ci|− 1.

Theorem 4.7.9

Given graph G = (V,E), finding the tree decomposition T = (I, F ) of G
that minimizes the tree width (maxi∈I |Ci|− 1) is an NP-complete
optimization problem.

Multiplicatively approximable within O(log |V |), but not possible to
additively do better than |V |1−ε for any ε > 0.

How does this relate to our problem though?
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Sources for Today’s Lecture

Most of this material comes from the reading handout
tree inference.pdf
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