
EE512A – Advanced Inference in Graphical Models
— Fall Quarter, Lecture 3 —

http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

Oct 6th, 2014

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F1/61 (pg.1/117)

Logistics Review

Announcements

Reading assignments, posted to our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements):
intro.pdf, ugms.pdf on undirected graphical models, and
tree inference.pdf on trees.

Slides from previous time this course was offered are at our previous
web page (http:
//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2011/)
and even earlier at
http://melodi.ee.washington.edu/~bilmes/ee512fa09/.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F2/61 (pg.2/117)

Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, Inference on Trees

L3 (10/6):

L4 (10/8):

L5 (10/13):

L6 (10/15):

L7 (10/20):

L8 (10/22):

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F3/61 (pg.3/117)

Logistics Review

Comparisons of families

How do F(G,M(cf)) and F(G,M(mcf)) compare?

Lemma 3.2.1

F(G,M(cf)) ⊆ F(G,M(mcf))

Lemma 3.2.2

F(G,M(cf)) ⊇ F(G,M(mcf))

Therefore

Corollary 3.2.3

F(G,M(cf)) = F(G,M(mcf))

Since rules are identical, we use M(f) for clique factorization, and
family F(G,M(f)).
Often, it is not so obvious that different families are identical.
Equally often, different families are indeed different.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F4/61 (pg.4/117)

Logistics Review

Trees defined in many ways

Theorem 3.2.2 (Trees, Berge)

Let G = (V,E) be an undirected graph with |V | = n > 2. Then each of
the following properties are equivalent and each can be used to define
when G is a tree:

G is connected and has no cycles

G has n− 1 edges and has no cycles,

G is connected and contains exactly n− 1 edges,

G has no cycles. Exactly one cycle created if edge added to G.

G is connected, and if any edge is removed, the remaining graph is
not connected,

Every pair of vertices of G is connected by one unique path.

G can be generated as follows: Start with v, repeatedly choose next
vertex, and connect it with edge to exactly one previous vertex.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F5/61 (pg.5/117)

Logistics Review

Trees, inference, and distributive law

Size of any maxclique in tree is two. Any set S ⊂ V (T) with |S| > 2
induces a forest.

Any p ∈ F(T,M(f)) has factors of size at most two.

This has important consequences for inference.

A chain is a set of nodes connected in succession.

A chain is a tree but not vice verse

If p factors w.r.t. a chain then

p(x) =

N−1∏

i=1

ψi,i+1(xi, xi+1) (3.8)

Suppose we wish to compute p(x3, x4). then

p(x3, x4) =
∑

x1

∑

x2

∑

x5

∑

x6

· · ·
∑

xN

p(x1, x2, . . . , xN) (3.9)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F6/61 (pg.6/117)

Logistics Review

Summing, Marginalization, and variable elimination

Problem: Sum over x2 in Eq. ?? has cost O(r3). Total complexity is
O(r3) which is unboundedly worse than O(r2).

Some orders inextricably couple together factors, others don’t.

How do we ensure the best (fastest) elimination order? Graph tells us.

Key Problem: there exist no functions g(a) and h(c) that constitute
a factorization of a sum as in:

g(a)h(c) =
∑

b

f1(a, b)f2(b, c) (3.17)

In general, for disjoint variables A,B,C ⊆ V , the function

f(xA, xC) =
∑

xB

f1(xA, xB)f2(xB, xC) (3.18)

does not factor, exists no g, h such that f(xA, xC) = g(xA)h(xC).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F7/61 (pg.7/117)

Logistics Review

Elimination

Existence of f1(xA, xB) suggests that G[A ∪B] should be a clique,
and existence of f2(xB, xC) suggests G[B ∪ C] should be a clique.

After summation, existence of f(xA, xC) suggests that G[A ∪ C]
should also be a clique (if it is not already).

Graph-theoretic operation for eliminating a variable in a graph:

Definition 3.2.2

Elimination: To eliminate a node v ∈ V in an undirected graph G, we
first connect all neighbors of v and then remove v and all v’s incident
edges from the graph.

Once eliminated, former neighbors of v form a clique.

Additional edges added (if any) are called fill-in edges. We’ll use
F ⊆ V × V for these.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F8/61 (pg.8/117)

Logistics Review

Review: graph theoretic node elimination

Let δG(v) denote the neighbors of node v ∈ V in graph G.

Elimination of a node v ∈ V (G) from G forms graph G1

G1 = (V1, E1) where V1 = V \ {v}, and where
E1 = (E ∩ V1 × V1) ∪ δG(v)× δG(v).

In G1, δG(v) forms a clique.

Any edges in G1 not in G are part of the fill-in edges F .

We can say that G1 = Gσ1 is the result of eliminating σ1 from G

Also, that G2 = (Gσ1)σ2
is the result of eliminating σ2 starting from

Gσ1 , that G3 = ((Gσ1)σ2
)
σ3

is the result of eliminating σ3 starting
from G2 and so on.

Therefore, the ordering σ defines a sequence of graphs
(G0, G1, G2, . . . , GN−1) where G0 = G and where GN−1 consists of
only one node σN .

Reconstituted graph is G′ = (V,E ∪ F).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F9/61 (pg.9/117)

Logistics Review

Example elimination on graphs

x1
x2

x3x4

x1
x2

x3

x4Eliminate

x1
x2

x3x4

Reconstitute

x3

x1

x4

x1

x3

x4Eliminate

x1

x3x4

Reconstitute

X2

X1

X3

X4
X6

X5 X7

X9
X8

X10

X1

X3

X4
X6

X5 X7

X9
X8

X10

x2Eliminate

X2

X1

X3

X4
X6

X5 X7

X9
X8

X10

Reconstitute

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F10/61 (pg.10/117)

Logistics Review

Review: Other facts about node elimination

A tree always has ≥ 2 leaf nodes.

Eliminating leaf node always yields sub-tree

Can continue eliminating nodes in a tree graph.

Eliminating leaf-nodes never produce fill-in edges.

data-structure for leaf nodes is easy

Computation corresponding to tree-elimination is fast O(Nr2).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F11/61 (pg.11/117)

Logistics Review

Morphing from elimination to belief propagation

elimination can be seen as a message passing scheme on a graph

Tree on left, goal is to produce computation for p(x1, x2). We rooted
at edge (1, 2) on the right

, ,

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 2(x1 x2)

x2

x3 x5

x1

x 1
4

x8

x4

x9

x10 x
11

x 1
5

x6
x 1
2

x7

x13

x2

x3

x5

blue arrows show elimination steps starting at leaf nodes and
continuing until we have reached the root.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F12/61 (pg.12/117)

Logistics Review

Computations for marginal “rooted” at edge (x1, x2)
, ,

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 2(x1 x2)

x2

x3 x5

φ !14,8(x8) =
∑

x14

ψ8,14(x8, x14) (3.19a)

φ !7,3(x3) =
∑

x7

ψ7,3(x7, x3) (3.19b)

φ !8, !14,3(x3) =
∑

x8

ψ8,3(x8, x3)φ !14,8(x8) (3.19c)

φ !9,3(x3) =
∑

x9

φ9,3(x9, x3) (3.19d)

φ !7, !14, !8, !9, !3,1(x1) =
∑

x3

ψ1,3(x1, x3)φ !7,3(x3)φ !8, !14,3(x3)φ !9,3(x3) (3.19e)

φ !15,10(x10) =
∑

x15

ψ10,15(x10, x15) (3.19f)

φ !15, !10,4(x4) =
∑

x10

ψ4,10(x4, x10)φ !15,10(x10) (3.19g)

φ !11,4(x4) =
∑

x11

ψ4,11(x4, x11) (3.19h)

φ !10, !11, !15, !4,1(x1) =
∑

x4

ψ1,4(x1, x4)φ !15, !10,4(x4)φ !11,4(x4) (3.19i)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F13/61 (pg.13/117)

Logistics Review

Elimination → message passing

Each node receives a “message” from children in rooted tree, once
received enough “messages” can send a “message” to parent.

General, node i may send message to parent j when i has received
message from all of i’s children

at that point, i has become a leaf node in the tree (all children
eliminated)

The parent is chosen arbitrarily (it depends on root).

There is a general pattern that is true regardless of root designation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F14/61 (pg.14/117)

Logistics Review

Message passing protocol

Definition 3.2.4

Message passing protocol (MPP): A message may be sent from node i
to a neighbor node j only when node i has received a message from all its
other neighbors besides j.

Notationally, if i → j indicates a message from i to j, then the
protocol may be written as i → j only when ∀k ∈ δ(i) \ {j}, k → i,
where δ(i) are the neighbors of node i in G.

If MPP is followed but otherwise the ordering of the messages is
arbitrary, then we are guaranteed that the end result will be the
correct marginal. That is, the protocol specifies only a partial (rather
than a total) order on messages.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F15/61 (pg.15/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Message passing protocol examples

ok ok
ok

error

ok

ok
error

error

Examples of valid and invalid messages. Yellow arrows correspond to
incoming messages. Green outgoing arrows correspond to messages
that obey MPP, and red outgoing arrows are messages that disobey
MPP.

Note that the 2nd from left example on top row corresponds to what
happens at the root of a tree.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F16/61 (pg.16/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Better notation

Notation is unwieldy. Rather than keep track of entire history, as in
φ #15, #10,4(x4), use notation that only indicates neighbors in a message

We use µi→j(xj) to indicate a message coming from node i going to
node j along the edge (i, j) and which is a function only of xj (since
xi has been eliminated).
Before

φ !14,8(x8) =
∑

x14

ψ8,14(x8, x14) (3.1)

After
µ14→8(x8) =

∑

x14

ψ8,14(x8, x14) (3.2)

Before

φ !7, !14, !8, !9, !3,1(x1) =
∑

x3

ψ1,3(x1, x3)φ !7,3(x3)φ !8, !14,3(x3)φ !9,3(x3) (3.3)

After

µ3→1(x1) =
∑

x3

ψ1,3(x1, x3)µ7→3(x3)µ8→3(x3)µ9→3(x3) (3.4)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F17/61 (pg.17/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Better notation

Notation is unwieldy. Rather than keep track of entire history, as in
φ #15, #10,4(x4), use notation that only indicates neighbors in a message
We use µi→j(xj) to indicate a message coming from node i going to
node j along the edge (i, j) and which is a function only of xj (since
xi has been eliminated).

Before
φ !14,8(x8) =

∑

x14

ψ8,14(x8, x14) (3.1)

After
µ14→8(x8) =

∑

x14

ψ8,14(x8, x14) (3.2)

Before

φ !7, !14, !8, !9, !3,1(x1) =
∑

x3

ψ1,3(x1, x3)φ !7,3(x3)φ !8, !14,3(x3)φ !9,3(x3) (3.3)

After

µ3→1(x1) =
∑

x3

ψ1,3(x1, x3)µ7→3(x3)µ8→3(x3)µ9→3(x3) (3.4)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F17/61 (pg.18/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Better notation

Notation is unwieldy. Rather than keep track of entire history, as in
φ #15, #10,4(x4), use notation that only indicates neighbors in a message
We use µi→j(xj) to indicate a message coming from node i going to
node j along the edge (i, j) and which is a function only of xj (since
xi has been eliminated).
Before

φ !14,8(x8) =
∑

x14

ψ8,14(x8, x14) (3.1)

After
µ14→8(x8) =

∑

x14

ψ8,14(x8, x14) (3.2)

Before

φ !7, !14, !8, !9, !3,1(x1) =
∑

x3

ψ1,3(x1, x3)φ !7,3(x3)φ !8, !14,3(x3)φ !9,3(x3) (3.3)

After

µ3→1(x1) =
∑

x3

ψ1,3(x1, x3)µ7→3(x3)µ8→3(x3)µ9→3(x3) (3.4)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F17/61 (pg.19/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Better notation

Notation is unwieldy. Rather than keep track of entire history, as in
φ #15, #10,4(x4), use notation that only indicates neighbors in a message
We use µi→j(xj) to indicate a message coming from node i going to
node j along the edge (i, j) and which is a function only of xj (since
xi has been eliminated).
Before

φ !14,8(x8) =
∑

x14

ψ8,14(x8, x14) (3.1)

After
µ14→8(x8) =

∑

x14

ψ8,14(x8, x14) (3.2)

Before

φ !7, !14, !8, !9, !3,1(x1) =
∑

x3

ψ1,3(x1, x3)φ !7,3(x3)φ !8, !14,3(x3)φ !9,3(x3) (3.3)

After

µ3→1(x1) =
∑

x3

ψ1,3(x1, x3)µ7→3(x3)µ8→3(x3)µ9→3(x3) (3.4)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F17/61 (pg.20/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Generic form of message

µi→j(xj) =
∑

xi



ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi)



 (3.5)

Message is of form:

1 First, collect messages from all neighbors of i other than j,

2 next, incorporate these incoming messages by multiplying them in
along with the factor ψi,j(xi, xj),

3 the factor ψi,j(xi, xj) relates xi and xj , and can be seen as a
representation of a “communications channel” relating how the
information xi transforms into the information in xj , thus motivating
the terminology of a “message”, and

4 then finally marginalizing away xi thus yielding the desired message to
be delivered at the destination node xj .

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F18/61 (pg.21/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Rather than one S we may have {S1, S2, . . . , Sk} = S and wish to
compute p(xSi) for all i ∈ {1, 2, . . . , k}. Ex: all cliques/edges.

Naive way: Do the above k times leading to O(kNr2) computation.

We can reduce this to O(Nr2) when Si are cliques by removing
redundant computations.

this is done using dynamic programming - re-use already computed
partial solutions to one problem to help solve other problems, and vice
verse.

Example: compute both
p(x1, x2) and p(x1, x3) as
before.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F19/61 (pg.22/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Rather than one S we may have {S1, S2, . . . , Sk} = S and wish to
compute p(xSi) for all i ∈ {1, 2, . . . , k}. Ex: all cliques/edges.
Naive way: Do the above k times leading to O(kNr2) computation.

We can reduce this to O(Nr2) when Si are cliques by removing
redundant computations.

this is done using dynamic programming - re-use already computed
partial solutions to one problem to help solve other problems, and vice
verse.

Example: compute both
p(x1, x2) and p(x1, x3) as
before.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F19/61 (pg.23/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Rather than one S we may have {S1, S2, . . . , Sk} = S and wish to
compute p(xSi) for all i ∈ {1, 2, . . . , k}. Ex: all cliques/edges.
Naive way: Do the above k times leading to O(kNr2) computation.

We can reduce this to O(Nr2) when Si are cliques by removing
redundant computations.

this is done using dynamic programming - re-use already computed
partial solutions to one problem to help solve other problems, and vice
verse.

Example: compute both
p(x1, x2) and p(x1, x3) as
before.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F19/61 (pg.24/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Rather than one S we may have {S1, S2, . . . , Sk} = S and wish to
compute p(xSi) for all i ∈ {1, 2, . . . , k}. Ex: all cliques/edges.
Naive way: Do the above k times leading to O(kNr2) computation.

We can reduce this to O(Nr2) when Si are cliques by removing
redundant computations.

this is done using dynamic programming - re-use already computed
partial solutions to one problem to help solve other problems, and vice
verse.

Example: compute both
p(x1, x2) and p(x1, x3) as
before.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F19/61 (pg.25/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Rather than one S we may have {S1, S2, . . . , Sk} = S and wish to
compute p(xSi) for all i ∈ {1, 2, . . . , k}. Ex: all cliques/edges.
Naive way: Do the above k times leading to O(kNr2) computation.

We can reduce this to O(Nr2) when Si are cliques by removing
redundant computations.

this is done using dynamic programming - re-use already computed
partial solutions to one problem to help solve other problems, and vice
verse.

Example: compute both
p(x1, x2) and p(x1, x3) as
before.

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F19/61 (pg.26/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries: Variable elimination

For p(x1, x2), the variable elimination ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 3) would
suffice

13 messages: µ14→8(x8), µ7→3(x3),
µ8→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4),
µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6),
µ5→2(x2), µ6→2(x2), and µ3→1(x1).

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

For p(x1, x3), the variable ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 2) would suffice

messages: µ14→8(x8), µ7→3(x3), µ8→3(x3), µ9→3(x3), µ15→10(x10),
µ10→4(x4), µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6), µ5→2(x2),
µ6→2(x2), and µ2→1(x1).

First 12 of variables in each order are identical! Results in marginal
p(x1, x2, x3) from which both results are easy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F20/61 (pg.27/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries: Variable elimination

For p(x1, x2), the variable elimination ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 3) would
suffice

13 messages: µ14→8(x8), µ7→3(x3),
µ8→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4),
µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6),
µ5→2(x2), µ6→2(x2), and µ3→1(x1).

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

For p(x1, x3), the variable ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 2) would suffice

messages: µ14→8(x8), µ7→3(x3), µ8→3(x3), µ9→3(x3), µ15→10(x10),
µ10→4(x4), µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6), µ5→2(x2),
µ6→2(x2), and µ2→1(x1).

First 12 of variables in each order are identical! Results in marginal
p(x1, x2, x3) from which both results are easy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F20/61 (pg.28/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries: Variable elimination

For p(x1, x2), the variable elimination ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 3) would
suffice

13 messages: µ14→8(x8), µ7→3(x3),
µ8→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4),
µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6),
µ5→2(x2), µ6→2(x2), and µ3→1(x1).

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

For p(x1, x3), the variable ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 2) would suffice

messages: µ14→8(x8), µ7→3(x3), µ8→3(x3), µ9→3(x3), µ15→10(x10),
µ10→4(x4), µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6), µ5→2(x2),
µ6→2(x2), and µ2→1(x1).

First 12 of variables in each order are identical! Results in marginal
p(x1, x2, x3) from which both results are easy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F20/61 (pg.29/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries: Variable elimination

For p(x1, x2), the variable elimination ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 3) would
suffice

13 messages: µ14→8(x8), µ7→3(x3),
µ8→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4),
µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6),
µ5→2(x2), µ6→2(x2), and µ3→1(x1).

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

For p(x1, x3), the variable ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 2) would suffice

messages: µ14→8(x8), µ7→3(x3), µ8→3(x3), µ9→3(x3), µ15→10(x10),
µ10→4(x4), µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6), µ5→2(x2),
µ6→2(x2), and µ2→1(x1).

First 12 of variables in each order are identical! Results in marginal
p(x1, x2, x3) from which both results are easy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F20/61 (pg.30/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries: Variable elimination

For p(x1, x2), the variable elimination ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 3) would
suffice

13 messages: µ14→8(x8), µ7→3(x3),
µ8→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4),
µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6),
µ5→2(x2), µ6→2(x2), and µ3→1(x1).

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

, ,

, ,

For p(x1, x3), the variable ordering
(14, 7, 8, 9, 15, 10, 11, 4, 12, 13, 5, 6, 2) would suffice

messages: µ14→8(x8), µ7→3(x3), µ8→3(x3), µ9→3(x3), µ15→10(x10),
µ10→4(x4), µ11→4(x4), µ4→1(x1), µ12→6(x6), µ13→6(x6), µ5→2(x2),
µ6→2(x2), and µ2→1(x1).

First 12 of variables in each order are identical! Results in marginal
p(x1, x2, x3) from which both results are easy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F20/61 (pg.31/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 3(x1 x3)

ψ1 3(x1 x3)

ψ1 2(x1 x2)

x2

x3 x5

x1

x14

x8

x4

x9

x10

x
11

x
15

x6
x 1
2

x7

x13

x2

x3

x5

, , , ,

, ,

.

Another look: Left tree rooted at (1, 3), right rooted at (1, 2).

Red arrows are messages are for (1, 3), blue arrows are messages for
(1, 2).

most messages are the same.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F21/61 (pg.32/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Amount of available re-use depends on the desired queries

Ex: compute p(x8, x14) and p(x6, x13).
both may start with order (7, 9, 15, 10, 11, 4, 5, 12), messages:
µ7→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4), µ11→4(x4), µ4→1(x1),
µ5→2(x2), and µ12→6(x6) leaving chain x14, x8, x3, x1, x2, x6, x13.

remaining messages, from x14 to x13 and from x13 back to x14.
Chain has least re-use for these queries (since they are on ends)
Still, have saved quite a bit by “trimming” off branches tree relative
to naive strategy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F22/61 (pg.33/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Amount of available re-use depends on the desired queries
Ex: compute p(x8, x14) and p(x6, x13).

both may start with order (7, 9, 15, 10, 11, 4, 5, 12), messages:
µ7→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4), µ11→4(x4), µ4→1(x1),
µ5→2(x2), and µ12→6(x6) leaving chain x14, x8, x3, x1, x2, x6, x13.

remaining messages, from x14 to x13 and from x13 back to x14.
Chain has least re-use for these queries (since they are on ends)
Still, have saved quite a bit by “trimming” off branches tree relative
to naive strategy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F22/61 (pg.34/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Amount of available re-use depends on the desired queries
Ex: compute p(x8, x14) and p(x6, x13).
both may start with order (7, 9, 15, 10, 11, 4, 5, 12), messages:
µ7→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4), µ11→4(x4), µ4→1(x1),
µ5→2(x2), and µ12→6(x6) leaving chain x14, x8, x3, x1, x2, x6, x13.

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

x2

x3 x5

remaining messages, from x14 to x13 and from x13 back to x14.
Chain has least re-use for these queries (since they are on ends)
Still, have saved quite a bit by “trimming” off branches tree relative
to naive strategy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F22/61 (pg.35/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Amount of available re-use depends on the desired queries
Ex: compute p(x8, x14) and p(x6, x13).
both may start with order (7, 9, 15, 10, 11, 4, 5, 12), messages:
µ7→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4), µ11→4(x4), µ4→1(x1),
µ5→2(x2), and µ12→6(x6) leaving chain x14, x8, x3, x1, x2, x6, x13.

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

x2

x3 x5

remaining messages, from x14 to x13 and from x13 back to x14.

Chain has least re-use for these queries (since they are on ends)
Still, have saved quite a bit by “trimming” off branches tree relative
to naive strategy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F22/61 (pg.36/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Amount of available re-use depends on the desired queries
Ex: compute p(x8, x14) and p(x6, x13).
both may start with order (7, 9, 15, 10, 11, 4, 5, 12), messages:
µ7→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4), µ11→4(x4), µ4→1(x1),
µ5→2(x2), and µ12→6(x6) leaving chain x14, x8, x3, x1, x2, x6, x13.

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

x2

x3 x5

remaining messages, from x14 to x13 and from x13 back to x14.
Chain has least re-use for these queries (since they are on ends)

Still, have saved quite a bit by “trimming” off branches tree relative
to naive strategy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F22/61 (pg.37/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Multiple Tree Queries

Amount of available re-use depends on the desired queries
Ex: compute p(x8, x14) and p(x6, x13).
both may start with order (7, 9, 15, 10, 11, 4, 5, 12), messages:
µ7→3(x3), µ9→3(x3), µ15→10(x10), µ10→4(x4), µ11→4(x4), µ4→1(x1),
µ5→2(x2), and µ12→6(x6) leaving chain x14, x8, x3, x1, x2, x6, x13.

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

x2

x3 x5

remaining messages, from x14 to x13 and from x13 back to x14.
Chain has least re-use for these queries (since they are on ends)
Still, have saved quite a bit by “trimming” off branches tree relative
to naive strategy.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F22/61 (pg.38/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge Queries

As number of queries increases, so does efficiency (queries/message)

Consider computing p(xi, xj) for all (i, j) ∈ E(G).

Naive case, N − 1 edges O(N2r2).

Smart case, only O(Nr2) still.

consider: root tree at all (i, j) ∈ E(G) in turn

mark edge with arrow only once (so don’t redundantly send message)

result is each edge has two arrows in each direction

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F23/61 (pg.39/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge Queries

When done, each edge (i, j) ∈ E(G) is now in possession of
ψi,j(xi, xj) as well as µk→i(xi) for all k ∈ δ(i) \ {j} as well as
µk→j(xj) for all k ∈ δ(j) \ {i}.
Thus, can compute the marginals

p(xi, xj) = ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi)
∏

k∈δ(j)\{i}

µk→j(xj) (3.6)

Overall computation O(Nr2).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F24/61 (pg.40/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge Queries

Theorem 3.3.1

Given a tree G = (V,E) and some p ∈ F(G,M(f)), if messages are sent
obeying the message passing protocol so that all edges have two messages
across them in each direction, then the computation given above will
correctly produce all marginals for all edges in E(G).

Proof.

Consider any edge (i, j) ∈ E(G) and consider rooting the graph at that
edge, as described above. Since all messages obey the MPP, the
messages correspond to eliminating the variables in an order from leaf to
root, which precisely gives p(xi, xj).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F25/61 (pg.41/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge queries - algorithm

How do we ensure that all edges have messages in both directions
applied, and all in the right order?

Choose arbitrary root node (node root rather than edge)

Send messages from leaves up to root

Once root has received all messages from children, start sending
messages back out to children.

when done all nodes have all messages, MPP obeyed, and any
marginal can be computed.

This procedure is formalized by algorithms collect evidence and
distribute evidence as follows

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F26/61 (pg.42/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge queries - algorithm

How do we ensure that all edges have messages in both directions
applied, and all in the right order?

Choose arbitrary root node (node root rather than edge)

Send messages from leaves up to root

Once root has received all messages from children, start sending
messages back out to children.

when done all nodes have all messages, MPP obeyed, and any
marginal can be computed.

This procedure is formalized by algorithms collect evidence and
distribute evidence as follows

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F26/61 (pg.43/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge queries - algorithm

How do we ensure that all edges have messages in both directions
applied, and all in the right order?

Choose arbitrary root node (node root rather than edge)

Send messages from leaves up to root

Once root has received all messages from children, start sending
messages back out to children.

when done all nodes have all messages, MPP obeyed, and any
marginal can be computed.

This procedure is formalized by algorithms collect evidence and
distribute evidence as follows

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F26/61 (pg.44/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge queries - algorithm

How do we ensure that all edges have messages in both directions
applied, and all in the right order?

Choose arbitrary root node (node root rather than edge)

Send messages from leaves up to root

Once root has received all messages from children, start sending
messages back out to children.

when done all nodes have all messages, MPP obeyed, and any
marginal can be computed.

This procedure is formalized by algorithms collect evidence and
distribute evidence as follows

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F26/61 (pg.45/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge queries - algorithm

How do we ensure that all edges have messages in both directions
applied, and all in the right order?

Choose arbitrary root node (node root rather than edge)

Send messages from leaves up to root

Once root has received all messages from children, start sending
messages back out to children.

when done all nodes have all messages, MPP obeyed, and any
marginal can be computed.

This procedure is formalized by algorithms collect evidence and
distribute evidence as follows

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F26/61 (pg.46/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

All edge queries - algorithm

How do we ensure that all edges have messages in both directions
applied, and all in the right order?

Choose arbitrary root node (node root rather than edge)

Send messages from leaves up to root

Once root has received all messages from children, start sending
messages back out to children.

when done all nodes have all messages, MPP obeyed, and any
marginal can be computed.

This procedure is formalized by algorithms collect evidence and
distribute evidence as follows

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F26/61 (pg.47/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect Evidence

Algorithm 1: CollectEvidence(c → p)

Input: A rooted tree G = (V,E) with a child node c ∈ V and its parent
p ∈ V .

Result: A message propagated from c to p that obeys the message
passing protocol.

1 foreach u ∈ child(c) do
2 call CollectEvidence(u → c)

3 Compute

µc→p(xp) =
∑

xc

ψc,p(xc, xp)
∏

u∈child(c)

µu→c(xc)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F27/61 (pg.48/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Distribute Evidence

Algorithm 2: DistributeEvidence(p → c)

Input: A rooted tree G = (V,E) with a parent node p ∈ V and a child
c ∈ child(p).

Result: A message propagated from p to c that obeys the message
passing protocol.

1 Compute

µp→c(xc) =
∑

xp

ψp,c(xp, xc)
∏

u∈δ(p)\{c}

µu→p(xp)

2 foreach u ∈ child(c) do
3 call DistributeEvidence(c → u)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F28/61 (pg.49/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Algorithm 3: CollectDistributeEvidence

Input: A tree graph G = (V,E)
Result: All messages propagated between all pairs of nodes so that we

may compute the marginals on all edges (i, j) ∈ E(G) as shown
in Equation 3.6.

1 Designate an arbitrary node r ∈ V as the root.
2 foreach c ∈ child(r) do
3 call CollectEvidence(c → r)

4 foreach c ∈ child(r) do
5 call DistributeEvidence(r → c)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F29/61 (pg.50/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence and MPP

All messages obey the message passing protocol.

At the collect evidence stage, a message is not sent to a node’s
(single) parent until it has received messages from all its children, so
there is only one node it has not yet received a message from, namely
the parent.

At the distribute evidence stage, once a node has received a message
from its parent, it has received a message from all of its neighbors
(since it received a message from all its children earlier, during the
collect evidence phase) so it is free to send a message to any child
that it likes.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F30/61 (pg.51/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence and MPP

All messages obey the message passing protocol.

At the collect evidence stage, a message is not sent to a node’s
(single) parent until it has received messages from all its children, so
there is only one node it has not yet received a message from, namely
the parent.

At the distribute evidence stage, once a node has received a message
from its parent, it has received a message from all of its neighbors
(since it received a message from all its children earlier, during the
collect evidence phase) so it is free to send a message to any child
that it likes.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F30/61 (pg.52/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence and MPP

All messages obey the message passing protocol.

At the collect evidence stage, a message is not sent to a node’s
(single) parent until it has received messages from all its children, so
there is only one node it has not yet received a message from, namely
the parent.

At the distribute evidence stage, once a node has received a message
from its parent, it has received a message from all of its neighbors
(since it received a message from all its children earlier, during the
collect evidence phase) so it is free to send a message to any child
that it likes.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F30/61 (pg.53/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

x1

x14

x8

x4

x9

x10
x11

x
15

x6

x 1
2

x7

x13

x2x3

x5

1

2
3

4

5

6

8

7
9

10

11
12

13
142

3

1

4

5
9

14

7
8

6

10

13

11

12

x1

x14

x8

x4

x9

x10
x11

x
15

x6

x 1
2

x7

x13

x2x3

x5

22

28 26

27

23

16

32

188
24

20, 25

29

21

30

319

12

1

2

13
19

15

6
17

3

4

14
11

10
5

x1

x14

x8

x4

x9

x10
x11

x
15

x6

x 1
2

x7

x13

x2x3

x5

1

10
11

12

7

2

4

3
5

6

8
9

13
147

9

1

8

13
14

12

5
6

2

4

11

3

10 7

Pictures show messages to compute all edge queries.

Blue arrows indicate messages towards the root (node 1)

Red arrow indicate messages away from the root.

The numbers next to each arrow indicate the order of the message.

Messages abide by MPP? Correspond to collect/distribute evidence?

We’ll next zoom into each one ...

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F31/61 (pg.54/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

x1

x14

x8

x4

x9

x10
x11

x
15

x6

x 1
2

x7

x13

x2x3

x5

1

10
11

12

7

2

4

3
5

6

8
9

13
147

9

1

8

13
14

12

5
6

2

4

11

3

10

Picture shows messages to compute all edge queries.
Blue arrows indicate messages towards the root (node 1)
Red arrow indicate messages away from the root.
The numbers next to each arrow indicate the order of the message.
Messages abide by MPP? Correspond to collect/distribute evidence?

We’ll next zoom into each one ...

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F31/61 (pg.55/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

x1

x14

x8

x4

x9

x10
x11

x
15

x6

x 1
2

x7

x13

x2x3

x5

1

2
3

4

5

6

8

7
9

10

11
12

13
142

3

1

4

5
9

14

7
8

6

10

13

11

12

Picture shows messages to compute all edge queries.
Blue arrows indicate messages towards the root (node 1)
Red arrow indicate messages away from the root.
The numbers next to each arrow indicate the order of the message.
Messages abide by MPP? Correspond to collect/distribute evidence?

We’ll next zoom into each one ...

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F31/61 (pg.56/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

x1

x14

x8

x4

x9

x10
x11

x
15

x6

x 1
2

x7

x13

x2x3

x5

22

28 26

27

23

16

32

188
24

20, 25

29

21

30

319

12

1

2

13
19

15

6
17

3

4

14
11

10
57

Picture shows messages to compute all edge queries.
Blue arrows indicate messages towards the root (node 1)
Red arrow indicate messages away from the root.
The numbers next to each arrow indicate the order of the message.
Messages abide by MPP? Correspond to collect/distribute evidence?

We’ll next zoom into each one ...

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F31/61 (pg.57/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Why called Collect/Distribute Evidence??

Evidence is implicit via the
delta (or generalized delta) functions.

The marginals we obtain really are p(xi, xj , x̄E)

easy to obtain conditionals p(xi, xj |x̄E)
Current framework is consistent with the fact that
p(xi, x̄j) = p(xi, xj)δ(xj , x̄j), so the delta functions annihilate excess
terms.

Collect/Distribute Evidence allows many orders, different roots,
different orders too/from the roots, and also parallel implementations.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F32/61 (pg.58/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Why called Collect/Distribute Evidence?? Evidence is implicit via the
delta (or generalized delta) functions.

The marginals we obtain really are p(xi, xj , x̄E)

easy to obtain conditionals p(xi, xj |x̄E)
Current framework is consistent with the fact that
p(xi, x̄j) = p(xi, xj)δ(xj , x̄j), so the delta functions annihilate excess
terms.

Collect/Distribute Evidence allows many orders, different roots,
different orders too/from the roots, and also parallel implementations.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F32/61 (pg.59/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Why called Collect/Distribute Evidence?? Evidence is implicit via the
delta (or generalized delta) functions.

The marginals we obtain really are p(xi, xj , x̄E)

easy to obtain conditionals p(xi, xj |x̄E)
Current framework is consistent with the fact that
p(xi, x̄j) = p(xi, xj)δ(xj , x̄j), so the delta functions annihilate excess
terms.

Collect/Distribute Evidence allows many orders, different roots,
different orders too/from the roots, and also parallel implementations.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F32/61 (pg.60/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Why called Collect/Distribute Evidence?? Evidence is implicit via the
delta (or generalized delta) functions.

The marginals we obtain really are p(xi, xj , x̄E)

easy to obtain conditionals p(xi, xj |x̄E)

Current framework is consistent with the fact that
p(xi, x̄j) = p(xi, xj)δ(xj , x̄j), so the delta functions annihilate excess
terms.

Collect/Distribute Evidence allows many orders, different roots,
different orders too/from the roots, and also parallel implementations.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F32/61 (pg.61/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Why called Collect/Distribute Evidence?? Evidence is implicit via the
delta (or generalized delta) functions.

The marginals we obtain really are p(xi, xj , x̄E)

easy to obtain conditionals p(xi, xj |x̄E)
Current framework is consistent with the fact that
p(xi, x̄j) = p(xi, xj)δ(xj , x̄j), so the delta functions annihilate excess
terms.

Collect/Distribute Evidence allows many orders, different roots,
different orders too/from the roots, and also parallel implementations.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F32/61 (pg.62/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Collect/Distribute Evidence

Why called Collect/Distribute Evidence?? Evidence is implicit via the
delta (or generalized delta) functions.

The marginals we obtain really are p(xi, xj , x̄E)

easy to obtain conditionals p(xi, xj |x̄E)
Current framework is consistent with the fact that
p(xi, x̄j) = p(xi, xj)δ(xj , x̄j), so the delta functions annihilate excess
terms.

Collect/Distribute Evidence allows many orders, different roots,
different orders too/from the roots, and also parallel implementations.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F32/61 (pg.63/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Associated storage with message propagation

x8

x9

x7

x3 x1

...
µ3→1(x1) =

∑

x3

ψ1,3(x1, x3)µ7→3(x3)µ8→3(x3)µ9→3(x3)

µ
7→

3 (x
3)

µ8→3(x3)

µ9→
3
(x3

)

, ,ψ1 2(x1 x2)

storage
associated
with

storage
associated
with µ7→3(x3)

µ8→3(x3)
µ1→3(x3)

µ9→3(x3)
and

,
,

,

for each edge (i, j), is storage associated with edge itself, ψi,j(xi, xj),
and all incoming messages, µk→i(xi) for all k ∈ δ(i) \ {j}.
O(|E|(2r + r2)) total storage.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F33/61 (pg.64/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Alternatively, incorporate in and then forget message as soon as it
arrives

Result of message would be new edge table:

ψ′
i,j(xi, xj) ← ψi,j(xi, xj)µk→i(xi) (3.7)

Final factor, after incorporating all messages, has value ψ′
i,j(xi, xj)

where:

ψ′
i,j(xi, xj) = ψi,j(xi, xj)

∏

k∈δ(i)\{j}

µk→i(xi) (3.8)

Outgoing message to j depends only on the edge function, and
becomes

µi→j(xj) =
∑

xi

ψ′
i,j(xi, xj). (3.9)

Never require storage at only node i

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F34/61 (pg.65/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Never require storage at only nodes, only at edges.

This can be good for certain queries. For example, for computing just
p(xi), or p(xi, xj) for (i, j) ∈ E(G), this works out fine.

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

ψ1 2(x1 x2)

x2

x3 x5

, ,

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F35/61 (pg.66/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Ultimately, messages will start arriving at xj via nodes k ∈ δ(j) \ {i}.

Problem: Updated table no longer valid for sending message back to i
and δ(i) \ {j}.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F36/61 (pg.67/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Ultimately, messages will start arriving at xj via nodes k ∈ δ(j) \ {i}.
Problem: Updated table no longer valid for sending message back to i
and δ(i) \ {j}.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F36/61 (pg.68/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Ultimately, messages will start arriving at xj via nodes k ∈ δ(j) \ {i}.
Problem: Updated table no longer valid for sending message back to i
and δ(i) \ {j}.

x1
x14

x8

x4

x9
x10

x
11

x
15

x6

x12

x7

x13

x2

x3
x5

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F36/61 (pg.69/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Intuitively, we want to avoid double-counting the information sent
from i to j, when a message is sent from j back to i — i (and the
subtree rooted at i when the (i, j) edge is severed) already has that
information, it doesn’t need it again.

Mathematically, from the elimination perspective, this would be
equivalent to squaring the marginal functions after they have been
constructed (i.e., φ2 rather than φ).

∴ need somehow to divide out first set of messages before sending
back, but can’t do that if lost that info.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F37/61 (pg.70/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Intuitively, we want to avoid double-counting the information sent
from i to j, when a message is sent from j back to i — i (and the
subtree rooted at i when the (i, j) edge is severed) already has that
information, it doesn’t need it again.

Mathematically, from the elimination perspective, this would be
equivalent to squaring the marginal functions after they have been
constructed (i.e., φ2 rather than φ).

∴ need somehow to divide out first set of messages before sending
back, but can’t do that if lost that info.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F37/61 (pg.71/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Intuitively, we want to avoid double-counting the information sent
from i to j, when a message is sent from j back to i — i (and the
subtree rooted at i when the (i, j) edge is severed) already has that
information, it doesn’t need it again.

Mathematically, from the elimination perspective, this would be
equivalent to squaring the marginal functions after they have been
constructed (i.e., φ2 rather than φ).

∴ need somehow to divide out first set of messages before sending
back, but can’t do that if lost that info.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F37/61 (pg.72/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Solution 1: divide out the outgoing message from an edge as soon as
it is ready, when it comes back it is multiplied back in and counted
one time.

During the first phase of message passing (e.g., collect evidence) we
re-define our message definition as follows:

Algorithm 4: First phase message update µi→j(xj)

1 µi→j(xj) =
∑

xi
ψi,j(xi, xj)

∏
k∈δ(i)\{j} µk→i(xi) ; /* message as normal

*/
2 ψ′

i,j(xi, xj) ← ψi,j(xi, xj)/µi→j(xj) ; /* table update - divide outgoing

message out */
3 if j is not the root then
4 Let k ∈ δ(j) be the neighbor of j towards the root ;
5 ψ′

j,k(xj , xk) ← ψj,k(xj , xk)µi→j(xj) ; /* table update - multiply in

incoming message */

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F38/61 (pg.73/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

By dividing out µi→j(xj) from ψi,j(xi, xj), we are sure that the
µi→j(xj) will not be double counted once it is multiplied back in from
the message coming back from k in µk→j(xj).

when root has received all messages, start propagating messages
towards leaves using standard message definition.

No longer valid to send multiple messages along an edge in same
direction

new scheme is asymmetric, different message definitions during the
collect vs. the distribute evidence phase of message passing.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F39/61 (pg.74/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Solution 2: maintain distinct node separator functions

x8

x9

x7
x4

x2

x3

x3

x3

x3

x1

x1

x1

x1

x3

x3

x3

x1

every pair of edges that shares a common node has an extra node
potential (shown as a square node) corresponding to that common
node.

common node separates tree into two separate sub-trees.

edge (7, 3) and (3, 1) share the common node 3 and so there is a
distinct square x3 node corresponding to the edge pair ((7, 3), (3, 1))
and separator potential function φ7,3,1(x3).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F40/61 (pg.75/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Use only two extra tables per separator (square) node i ∈ V , which
store incoming messages at i

The two tables φn
ijk(xj) (new) and φp

ijk(xj) (previous) at each
separator node, which keeps track of incoming messages.

At start, initialize both tables to unity φn
ijk(xj) = 1, φp

ijk(xj) = 1
∀xj ∈ DXj .

Always update “new” table and divide out previous. Once “new” is
used, it becomes “previous”.

we follow the collect/distribute evidence schedule for sending messages

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F41/61 (pg.76/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Algorithm 5: collect evidence message update µi→j(xj)

1 φn
i,j,k(xj) =

∑
xi
ψi,j(xi, xj) ; /* message as normal stored in node */

2 ψj,k(xj , xk) ← ψj,k(xj , xk)
φn
i,j,k(xj)

φp
i,j,k(xj)

; /* update (j, k) edge potential. */

At this point, step 2 same as ψj,k(xj , xk) ← ψj,k(xj , xk)φ
n
i,j,k(xj)

we must ensure that there is no double counting of φi,j,k(xj) when we
do the distribute evidence phase, which is given in the next messages
for the distribute evidence phase of the algorithm.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F42/61 (pg.77/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Algorithm 6: distribute evidence message update µi→j(xj)

1 φn
i,j,k(xj) =

∑
xi
ψi,j(xi, xj) ; /* message as normal stored in node */

2 ψj,k(xj , xk) ← ψj,k(xj , xk)
φn
i,j,k(xj)

φp
i,j,k(xj)

; /* update (j, k) edge potential. */

Line 2 is where the double counting is avoided, divide out the previous
separator potential table when we update the (j, k) edge function.

General principle: at destination, multiply in new, and divide out old.

uniform message style, and can once again send multiple messages
along an edge if we want. !
If divide same cost as multiply, less compute than previous style. !
On the other hand, once again more storage, even more than
originally!! "

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F43/61 (pg.78/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Alternative propagation styles

Algorithm 7: collect evidence message update µi→j(xj)

1 φi,j,k(xj) =
∑

xi
ψi,j(xi, xj) ; /* message as normal stored in node */

2 ψj,k(xj , xk) ← ψj,k(xj , xk)φi,j,k(xj) ; /* update (j, k) edge potential. */

Algorithm 8: asymmetric distribute evidence message update µi→j(xj)

1 foreach xj ∈ DXj do
2 φi,j,k(xj) ← 1

φi,j,k(xj)

∑
xi
ψi,j(xi, xj) ; /* message as normal stored

in node */
3 ψj,k(xj , xk) ← ψj,k(xj , xk)φi,j,k(xj) ; /* update (j, k) edge

potential. */

One table per separator.

Recovered some storage ! but lost uniformity " and multiple
message sends ".

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F44/61 (pg.79/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Three propagation styles

The three different message styles we have described are called,
respectively, the Shenoy-Shafer, the Lauritzen-Speigelhalter, and the
Hugin message passing strategies.

Normally given w.r.t. a junction tree (which we have not yet defined)

Style of message can have practical consequences in an
implementation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F45/61 (pg.80/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So far, we have said that S ⊂ E so each query p(xS), S = (i, j) ∈ E.

Ex: 4-node Markov chain: G = x1 x2 x3 x4 with
p(x1, x2, x3, x4) ∈ F(G,M(f)), goal is p(x1, x2, x3)

We eliminate x4 in

∑

x4

ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4) (3.10)

O(r2) computation.

General property: if S is a sub-tree in G = (V,E) then can do the
trick above, resulting p(xS) can be obtained by “rooting” the tree at
the subtree S, and still have O(r2) computation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F46/61 (pg.81/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So far, we have said that S ⊂ E so each query p(xS), S = (i, j) ∈ E.

Ex: 4-node Markov chain: G = x1 x2 x3 x4 with
p(x1, x2, x3, x4) ∈ F(G,M(f)), goal is p(x1, x2, x3)

We eliminate x4 in

∑

x4

ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4) (3.10)

O(r2) computation.

General property: if S is a sub-tree in G = (V,E) then can do the
trick above, resulting p(xS) can be obtained by “rooting” the tree at
the subtree S, and still have O(r2) computation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F46/61 (pg.82/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So far, we have said that S ⊂ E so each query p(xS), S = (i, j) ∈ E.

Ex: 4-node Markov chain: G = x1 x2 x3 x4 with
p(x1, x2, x3, x4) ∈ F(G,M(f)), goal is p(x1, x2, x3)

We eliminate x4 in

∑

x4

ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4) (3.10)

O(r2) computation.

General property: if S is a sub-tree in G = (V,E) then can do the
trick above, resulting p(xS) can be obtained by “rooting” the tree at
the subtree S, and still have O(r2) computation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F46/61 (pg.83/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So far, we have said that S ⊂ E so each query p(xS), S = (i, j) ∈ E.

Ex: 4-node Markov chain: G = x1 x2 x3 x4 with
p(x1, x2, x3, x4) ∈ F(G,M(f)), goal is p(x1, x2, x3)

We eliminate x4 in

∑

x4

ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4) (3.10)

O(r2) computation.

General property: if S is a sub-tree in G = (V,E) then can do the
trick above, resulting p(xS) can be obtained by “rooting” the tree at
the subtree S, and still have O(r2) computation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F46/61 (pg.84/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So far, we have said that S ⊂ E so each query p(xS), S = (i, j) ∈ E.

Ex: 4-node Markov chain: G = x1 x2 x3 x4 with
p(x1, x2, x3, x4) ∈ F(G,M(f)), goal is p(x1, x2, x3)

We eliminate x4 in

∑

x4

ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4) (3.10)

O(r2) computation.

General property: if S is a sub-tree in G = (V,E) then can do the
trick above, resulting p(xS) can be obtained by “rooting” the tree at
the subtree S, and still have O(r2) computation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F46/61 (pg.85/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

x1

x 1
4

x8

x4

x9

x10 x
11

x 1
5

x6

x 1
2

x7

x13

x2

x3

x5

x1

x14

x8

x4

x9 x10
x
11

x
15

x6

x 1
2x7

x13

x2

x3 x5

“root” at
subtree

Above, S = {1, 2, 3, 4, 6} which induces a sub-tree in G, so all
messages sent towards nearest node inside of S.

Once we have p(xS) we have efficient representation for it, using only
r2 tables.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F47/61 (pg.86/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

what if S is not a sub-tree?

Ex: 3-node Markov chain: G = x1 x2 x3 with
p(x1, x2, x3) ∈ F(G,M(f)), goal is p(x1, x3)

Only choice is to eliminate x2 in

∑

x2

ψ1,2(x1, x2)ψ2,3(x2, x3) (3.11)

O(r3) computation.

fill-in edge has occurred (might as well have started with larger family
with additional edge x1 x3.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F48/61 (pg.87/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

We eliminate xV \S , which might introduce edges.

Let σ = (σ1,σ2, . . . ,σN) be an ordering of the nodes. Also σ−1(v) for
v ∈ V (G) gives number that node v is eliminated by order σ. We
have following theorem

Theorem 3.4.1

Let G = (V,E) be an undirected graph with a given elimination ordering
σ that maps G to G′ = (V,E′) where E′ = E ∪Fσ, and where Fσ are the
fill-in edges added during elimination with order σ. Then (v, w) ∈ E′ is an
edge in G′ iff there is a path in G with endpoints v and w, and where any
nodes on the path other than v and w are eliminated before v and w in
order σ. I.e., if there is a path (v = v1, v2, . . . , vk+1 = w) in G such that

σ−1(vi) < min(σ−1(v),σ−1(w)), for 2 ≤ i ≤ k (3.12)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F49/61 (pg.88/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

Proof.

First part: Induction on ! = min(σ−1(v),σ−1(w)) that given any
(v, w) ∈ G′ the equation holds. If ! = 1 then (v, w) ∈ E and (v, w) ∈ E′.
Suppose holds for ! ≤ !0 and consider ! = !0 + 1. If (v, w) ∈ E then the
equation holds. Otherwise, (v, w) ∈ Fσ, and by definition, we have an
x ∈ V with σ−1(x) ≤ min(σ−1(v),σ−1(w)) and x v, x w in G′.
Induction hypothesis implies existence of x, v and x,w paths in G
satisfying the equation, combining these chains gives the required v, w
path.
Converse: Induction on k, length of path. If k = 1 clearly (v, w) ∈ E′.
Suppose holds for k ≤ k0 and consider k = k0 + 1. From path
(v = v1, v2, . . . , vk+1 = w), choose x = vi where
σ−1(vi) = max

{
σ−1(vj)|2 ≤ j ≤ k

}
. Induction hypothesis implies v x

and x w in G′. Therefore v w in G′.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F50/61 (pg.89/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So if there are v, w ∈ S that are connected by a path strictly within
V \ S, then v, w will be connected once elimination has run.

Worst case, S can become a clique, and computation will be
exponential in |S|.
Best case, for any v, w ∈ S there is no path between them outside of
S — this is the case where S induces a tree.

typical case: somewhere in between, depends on the query.

Bad news for scientists who want to do exact inference! !

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F51/61 (pg.90/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So if there are v, w ∈ S that are connected by a path strictly within
V \ S, then v, w will be connected once elimination has run.

Worst case, S can become a clique, and computation will be
exponential in |S|.

Best case, for any v, w ∈ S there is no path between them outside of
S — this is the case where S induces a tree.

typical case: somewhere in between, depends on the query.

Bad news for scientists who want to do exact inference! !

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F51/61 (pg.91/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So if there are v, w ∈ S that are connected by a path strictly within
V \ S, then v, w will be connected once elimination has run.

Worst case, S can become a clique, and computation will be
exponential in |S|.
Best case, for any v, w ∈ S there is no path between them outside of
S — this is the case where S induces a tree.

typical case: somewhere in between, depends on the query.

Bad news for scientists who want to do exact inference! !

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F51/61 (pg.92/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So if there are v, w ∈ S that are connected by a path strictly within
V \ S, then v, w will be connected once elimination has run.

Worst case, S can become a clique, and computation will be
exponential in |S|.
Best case, for any v, w ∈ S there is no path between them outside of
S — this is the case where S induces a tree.

typical case: somewhere in between, depends on the query.

Bad news for scientists who want to do exact inference! !

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F51/61 (pg.93/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Tree queries with arbitrary S

So if there are v, w ∈ S that are connected by a path strictly within
V \ S, then v, w will be connected once elimination has run.

Worst case, S can become a clique, and computation will be
exponential in |S|.
Best case, for any v, w ∈ S there is no path between them outside of
S — this is the case where S induces a tree.

typical case: somewhere in between, depends on the query.

Bad news for scientists who want to do exact inference! !

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F51/61 (pg.94/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Perfect elimination orders

Definition 3.5.1 (perfect elimination order)

Order σ is called perfect for G if when we eliminate nodes in G according
to σ, there are zero fill edges in the resulting reconstituted graph.

For a tree, there is always a perfect elimination order.

Why? Because
there are always leaf nodes available.

For arbitrary graphs, must there be a perfect elimination order?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F52/61 (pg.95/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Perfect elimination orders

Definition 3.5.1 (perfect elimination order)

Order σ is called perfect for G if when we eliminate nodes in G according
to σ, there are zero fill edges in the resulting reconstituted graph.

For a tree, there is always a perfect elimination order.

Why? Because
there are always leaf nodes available.

For arbitrary graphs, must there be a perfect elimination order?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F52/61 (pg.96/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Perfect elimination orders

Definition 3.5.1 (perfect elimination order)

Order σ is called perfect for G if when we eliminate nodes in G according
to σ, there are zero fill edges in the resulting reconstituted graph.

For a tree, there is always a perfect elimination order. Why?

Because
there are always leaf nodes available.

For arbitrary graphs, must there be a perfect elimination order?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F52/61 (pg.97/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Perfect elimination orders

Definition 3.5.1 (perfect elimination order)

Order σ is called perfect for G if when we eliminate nodes in G according
to σ, there are zero fill edges in the resulting reconstituted graph.

For a tree, there is always a perfect elimination order. Why? Because
there are always leaf nodes available.

For arbitrary graphs, must there be a perfect elimination order?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F52/61 (pg.98/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Perfect elimination orders

Definition 3.5.1 (perfect elimination order)

Order σ is called perfect for G if when we eliminate nodes in G according
to σ, there are zero fill edges in the resulting reconstituted graph.

For a tree, there is always a perfect elimination order. Why? Because
there are always leaf nodes available.

For arbitrary graphs, must there be a perfect elimination order?

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F52/61 (pg.99/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

If not tree, might not be a fill-in-free elimination order. Example:

Any node will produce a fill in. O(r3) query seems unavoidable.

There are no leaf nodes, and no node v such that δ(v) induces a
clique in G.

Might as well have started with graph on the right, no penalty for
eliminating x1 first (but there is for x2).

Consider message passing on this graph, could oscillate.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F53/61 (pg.100/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

4-cycle states both X1⊥⊥X4|{X2, X3} and X2⊥⊥X3|{X1, X4}, while
right graph only requires first property.

extra independence properties of the 4-cycle does not help us
computationally.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F54/61 (pg.101/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

x1

x4

x5

x6

x7

x2

x3

x1

x4

x5

x6

x7

x2

x3

Left: Eliminating x4 is bad, but other nodes are better.

Left: No node results in zero fill in! !
Right: Is there a perfect elimination order?

For exact inference and some queries, inevitable that we work with a
larger family since F((V,E),M(f)) ⊂ F((V,E ∪ F),M(f)).

Appears to be computational equivalence classes of families of models.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F55/61 (pg.102/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

x1

x4

x5

x6

x7

x2

x3

x1

x4

x5

x6

x7

x2

x3

Left: Eliminating x4 is bad, but other nodes are better.

Left: No node results in zero fill in! !

Right: Is there a perfect elimination order?

For exact inference and some queries, inevitable that we work with a
larger family since F((V,E),M(f)) ⊂ F((V,E ∪ F),M(f)).

Appears to be computational equivalence classes of families of models.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F55/61 (pg.103/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

x1

x4

x5

x6

x7

x2

x3

x1

x4

x5

x6

x7

x2

x3

Left: Eliminating x4 is bad, but other nodes are better.

Left: No node results in zero fill in! !
Right: Is there a perfect elimination order?

For exact inference and some queries, inevitable that we work with a
larger family since F((V,E),M(f)) ⊂ F((V,E ∪ F),M(f)).

Appears to be computational equivalence classes of families of models.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F55/61 (pg.104/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

x1

x4

x5

x6

x7

x2

x3

x1

x4

x5

x6

x7

x2

x3

Left: Eliminating x4 is bad, but other nodes are better.

Left: No node results in zero fill in! !
Right: Is there a perfect elimination order?

For exact inference and some queries, inevitable that we work with a
larger family since F((V,E),M(f)) ⊂ F((V,E ∪ F),M(f)).

Appears to be computational equivalence classes of families of models.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F55/61 (pg.105/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

x1

x4

x5

x6

x7

x2

x3

x1

x4

x5

x6

x7

x2

x3

Left: Eliminating x4 is bad, but other nodes are better.

Left: No node results in zero fill in! !
Right: Is there a perfect elimination order?

For exact inference and some queries, inevitable that we work with a
larger family since F((V,E),M(f)) ⊂ F((V,E ∪ F),M(f)).

Appears to be computational equivalence classes of families of models.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F55/61 (pg.106/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Lemma 3.5.2

The reconstituted graph on which elimination has been run is the family
on which we are running inference. If fill-in is caused by elimination,
inference is solved on a family larger than that specified by the original
graph, and we might as well have started with that family to begin with.
If an elimination order produces no fill-in, we are solving the inference
query optimally.

Also, ordering σ matters. Using σ a second time results in a perfect
elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F56/61 (pg.107/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Lemma 3.5.2

The reconstituted graph on which elimination has been run is the family
on which we are running inference. If fill-in is caused by elimination,
inference is solved on a family larger than that specified by the original
graph, and we might as well have started with that family to begin with.
If an elimination order produces no fill-in, we are solving the inference
query optimally.

Also, ordering σ matters. Using σ a second time results in a perfect
elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F56/61 (pg.108/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Lemma 3.5.3

When elimination is run for a second time on the reconstituted graph
with the same order, the set of neighbors v at the time v is eliminated is
the same in both the original and in the reconstituted graph.

Proof.

Any neighbor of v in the reconstituted graph must be either an
original-graph edge, or it must be due to a fill-in edge between v and
some other node that is not an original graph neighbor. All of the fill-in
neighbors must be due to elimination of nodes before v since after v is
eliminated no new neighbors can be added to v. But the point at which v
is eliminated at the original graph and the point at which it v is
eliminated in the reconstituted graph, the same previous set of nodes
have been eliminated, so any neighbors of v in the reconstituted graph
will have been already added to the original graph when v is eliminated in
the original graph.
Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F57/61 (pg.109/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Lemma 3.5.4

Given an elimination order, the computational complexity of the
elimination process is O(rk+1) where k is the largest set of neighbors
encountered during elimination. This is the size of the largest clique in
the reconstituted graph.

Proof.

First, when we eliminate σi in Gi−1, eliminating variable v when it is in
the context of its current neighbors will cost O(r") where ! = |δ(v) + 1|
— thus, the overall cost will be O(rk+1).
Next, we show that largest clique in the reconstituted graph is equal to
the complexity. Consider the reconstituted graph, and assume its largest
clique is of size k + 1. When we re-run elimination on this graph, there
will be no fill in. . . .

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F58/61 (pg.110/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Proof cont.

. . . continued.

However, the cost of the elimination step upon reaching the first vertex v
of the clique of size k + 1 will be O(rk+1) since k of the variables of the
clique will be neighbors of v, but no other nodes will be neighbors since it
is a perfect elimination order in the reconstituted graph. This will be the
same cost as what was incurred during the initial elimination procedure
since v has the same set of neighbors. Therefore, the largest clique in the
reconstituted graph is the complexity of doing elimination.

This means that any perfect elimination ordering on a
perfect-elimination graph will have complexity exponential in the size
of the largest clique in that graph.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F59/61 (pg.111/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Summarizing what we’ve got so far:

G′ = (V,E ∪ Fσ) always has at least one perfect elimination order

When we run elimination algorithm, we will always end up with such a
graph - inevitable

Perhaps we should deal only with such graphs?

Is finding the order that minimizes fill-in optimal? (HW problem)

We can characterize the complexity of a given elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F60/61 (pg.112/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Summarizing what we’ve got so far:

G′ = (V,E ∪ Fσ) always has at least one perfect elimination order

When we run elimination algorithm, we will always end up with such a
graph - inevitable

Perhaps we should deal only with such graphs?

Is finding the order that minimizes fill-in optimal? (HW problem)

We can characterize the complexity of a given elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F60/61 (pg.113/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Summarizing what we’ve got so far:

G′ = (V,E ∪ Fσ) always has at least one perfect elimination order

When we run elimination algorithm, we will always end up with such a
graph - inevitable

Perhaps we should deal only with such graphs?

Is finding the order that minimizes fill-in optimal? (HW problem)

We can characterize the complexity of a given elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F60/61 (pg.114/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Summarizing what we’ve got so far:

G′ = (V,E ∪ Fσ) always has at least one perfect elimination order

When we run elimination algorithm, we will always end up with such a
graph - inevitable

Perhaps we should deal only with such graphs?

Is finding the order that minimizes fill-in optimal? (HW problem)

We can characterize the complexity of a given elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F60/61 (pg.115/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Non-tree graphs

Summarizing what we’ve got so far:

G′ = (V,E ∪ Fσ) always has at least one perfect elimination order

When we run elimination algorithm, we will always end up with such a
graph - inevitable

Perhaps we should deal only with such graphs?

Is finding the order that minimizes fill-in optimal? (HW problem)

We can characterize the complexity of a given elimination order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F60/61 (pg.116/117)

Tree Inference Arbitrary Queries Non-Tree Graphs Refs

Sources for Today’s Lecture

Most of this material comes from the reading handout
tree inference.pdf

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 3 - Oct 6th, 2014 F61/61 (pg.117/117)

