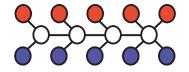
EE12A - Advanced Inference in Graphical Models — Fall Quarter, Lecture 1 http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Sep 29th, 2014



Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

F1/41 (pg.1/121)

Announcements

• Welcome to the class!

• Mon, Wed, 11:30-1:30 in PCAR-297 (this room).

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.
- Also available online by appointment (e.g., skype, google hangouts).

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.
- Also available online by appointment (e.g., skype, google hangouts).
- TA: Jounsup Park <jsup517@uw.edu>, office hours Tuesdays 12:00pm - 2:00pm, EEB-333.

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.
- Also available online by appointment (e.g., skype, google hangouts).
- TA: Jounsup Park <jsup517@uw.edu>, office hours Tuesdays 12:00pm 2:00pm, EEB-333.
- On our web page (http:

//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/),
we will have announcements, readings, homework assignments, copies
of these slides, bboard, and so on.

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.
- Also available online by appointment (e.g., skype, google hangouts).
- TA: Jounsup Park <jsup517@uw.edu>, office hours Tuesdays 12:00pm - 2:00pm, EEB-333.
- On our web page (http:

//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/),
we will have announcements, readings, homework assignments, copies
of these slides, bboard, and so on.

• We'll have 3-5 homeworks this quarter. You'll have about a week to turn them in.

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.
- Also available online by appointment (e.g., skype, google hangouts).
- TA: Jounsup Park <jsup517@uw.edu>, office hours Tuesdays 12:00pm - 2:00pm, EEB-333.
- On our web page (http:

//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/),
we will have announcements, readings, homework assignments, copies
of these slides, bboard, and so on.

- We'll have 3-5 homeworks this quarter. You'll have about a week to turn them in.
- Copies of lecture slides available on the web.

Prof. Jeff Bilmes

Logistics

- Mon, Wed, 11:30-1:30 in PCAR-297 (this room).
- Lectures will also appear on youtube. See youtube channel https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg
- Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm, EEB-418.
- Also available online by appointment (e.g., skype, google hangouts).
- TA: Jounsup Park <jsup517@uw.edu>, office hours Tuesdays 12:00pm 2:00pm, EEB-333.
- On our web page (http:

//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/),
we will have announcements, readings, homework assignments, copies
of these slides, bboard, and so on.

- We'll have 3-5 homeworks this quarter. You'll have about a week to turn them in.
- Copies of lecture slides available on the web.
- Copies of (most) readings available on the web

Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

F3/41 (pg.11/121)

Homework

• Again, about 3-5 this quarter.

Homework

- Again, about 3-5 this quarter.
- Problem sets: answer a question, prove a theorem, etc.

- Again, about 3-5 this quarter.
- Problem sets: answer a question, prove a theorem, etc.
- Alternatively programming projects, so you should be familiar with at least one programming language (e.g., C, C++, or matlab).

Homework

- Again, about 3-5 this quarter.
- Problem sets: answer a question, prove a theorem, etc.
- Alternatively programming projects, so you should be familiar with at least one programming language (e.g., C, C++, or matlab).
- All homework must be turned in electronically in PDF form via canvas at our assignment dropbox (https://canvas.uw.edu/courses/914697/assignments).

Final Project Possibility

Logistics

- There will be a final project, consisting of a 4-page conference-style paper, and a 10-minute final presentation.
- There will be a few milestones (1-page project proposal, 1-page progress summaries) during the quarter. These are graded.
- The final project should be regarding graphical models either as a user in an application, or as a researcher (i.e., new inference method, new proof, etc.).
- The date of the final project is tentatively Wednesday, December 10, 2014, 230-420 pm, PCAR 297.
- Final project reports due Tuesday, Dec 9th, at 11:45pm.
- All final project relate assignment must be turned in electronically via our class web page.

• There is a chance we will do a graphical model inference contest as the final project. More on this as the class progresses.

• There will be three sources of reading material we'll use this term.

- There will be three sources of reading material we'll use this term.
 - Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.

- There will be three sources of reading material we'll use this term.
 - Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.
 - Two text books (next page). One is available for free electronically.

- There will be three sources of reading material we'll use this term.
 - Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.
 - Two text books (next page). One is available for free electronically.
 - Research papers (links will be given in the class slides and on the web).

- There will be three sources of reading material we'll use this term.
 - Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.
 - Two text books (next page). One is available for free electronically.
 - Research papers (links will be given in the class slides and on the web).
- Also might pick up a copy of the recent book by Koller and Friedman.

• There will be three sources of reading material we'll use this term.

- Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.
- Two text books (next page). One is available for free electronically.
- Research papers (links will be given in the class slides and on the web).
- Also might pick up a copy of the recent book by Koller and Friedman.
- Lauritzen 1996 is a classic book on GMs.

- There will be three sources of reading material we'll use this term.
 - Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.
 - Two text books (next page). One is available for free electronically.
 - Research papers (links will be given in the class slides and on the web).
- Also might pick up a copy of the recent book by Koller and Friedman.
- Lauritzen 1996 is a classic book on GMs.
- Two other books on Bayesian networks include Jensen 1996 and 2001.

• There will be three sources of reading material we'll use this term.

- Handouts written by me (these are being prepared/updated now, and are not entirely finished). Material here will be mostly on GM semantics and exact inference methods.
- Two text books (next page). One is available for free electronically.
- Research papers (links will be given in the class slides and on the web).
- Also might pick up a copy of the recent book by Koller and Friedman.
- Lauritzen 1996 is a classic book on GMs.
- Two other books on Bayesian networks include Jensen 1996 and 2001.
- Two nice books on machine learning and pattern recognition are Bishop 2006 and Murphy 2012.

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL&doi=2200000001
- Markov Random Fields for Vision and Image Processing http://mitpress.mit.edu/catalog/item/default.asp?ttype= 2&tid=12668 edited by Andrew Blake, Pushmeet Kohli and Carsten Rother

 Reading assignment: Read the "trees.pdf" chapter soon to be posted on our canvas announcements page (https://canvas.uw.edu/courses/914697/announcements).

 Slides from previous time this course was offered are at our previous web page (http: //j.ee.washington.edu/~bilmes/classes/ee512a_fall_2011/) and even earlier at

http://melodi.ee.washington.edu/~bilmes/ee512fa09/.

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1):
- L3 (10/6):
- L4 (10/8):
- L5 (10/13):
- L6 (10/15):
- L7 (10/20):
- L8 (10/22):
- L9 (10/27):
- L10 (10/29):

- L11 (11/3):
- L12 (11/5):
- L13 (11/10):
- L14 (11/12):
- L15 (11/17):
- L16 (11/19):
- L17 (11/24):
- L18 (11/26):
- L19 (12/1):
- L20 (12/3):
- Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.

• This is where we will review previous lectures.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
	11111				
Proba	bilistic Infere	nce			

• Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
	11111	111111111			
Proba	abilistic Infere	nce			

- Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.
- Probabilistic inference is hard,

Inference and Learning	GM Inference	Markov random fields	
abilistic Infere			

- Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.
- Probabilistic inference is hard, often NP-hard or even inapproximable.

- Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.
- Probabilistic inference is hard, often NP-hard or even inapproximable.
- Best of cases, exact inference is doable in polynomial time (trees).

- Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.
- Probabilistic inference is hard, often NP-hard or even inapproximable.
- Best of cases, exact inference is doable in polynomial time (trees).
- Worst of cases, exact inference is infeasible, so approximation is necessary

- Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.
- Probabilistic inference is hard, often NP-hard or even inapproximable.
- Best of cases, exact inference is doable in polynomial time (trees).
- Worst of cases, exact inference is infeasible, so approximation is necessary
- Plethora of approximation methods are possible.

- Probabilistic Inference involves computing quantities of interest based on probability distributions. E.g., marginalization $\sum_{x_1} p(x_1, x_2)$ or maximization $\max_{x_1} p(x_1, \bar{x}_2)$.
- Probabilistic inference is hard, often NP-hard or even inapproximable.
- Best of cases, exact inference is doable in polynomial time (trees).
- Worst of cases, exact inference is infeasible, so approximation is necessary
- Plethora of approximation methods are possible.
- The course this term will mostly concentrate on graphical model semantics, exact inference methods, and two broad approximation inference methods based on graphical models.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields			
	11111						
Approximation Method: Variational							

The general variational approach encompasses many standard approximate inference methods, including:

The general variational approach encompasses many standard approximate inference methods, including:

- sum-product
- cluster variational methods
- expectation-propagation
- mean field methods
- max-product
- linear programming relaxations
- conic programming relaxations

and is therefore worthy of study. Of particular interest is for the class of exponential models (which have strong relationships to convexity).

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Appro	oximation Me	thod: Move	making		

• Many inference methods from computer vision have appeared recently.

- Many inference methods from computer vision have appeared recently.
- Simplest of the ideas: use an efficient graph-cut approach to find the minimum energy configuration in a pairwise binary Markov random field.

- Many inference methods from computer vision have appeared recently.
- Simplest of the ideas: use an efficient graph-cut approach to find the minimum energy configuration in a pairwise binary Markov random field.
- When is this optimal? When is this an approximation? How can we generalize this to non-binary variables, non-pairwise potentials, and richer potentials?

- Many inference methods from computer vision have appeared recently.
- Simplest of the ideas: use an efficient graph-cut approach to find the minimum energy configuration in a pairwise binary Markov random field.
- When is this optimal? When is this an approximation? How can we generalize this to non-binary variables, non-pairwise potentials, and richer potentials?
- Many generalizations, including move making algorithms such as alpha-beta swaps, alpha expansions, fusion moves, and other recent more sophisticated and energy aware "move making" algorithms.

- Many inference methods from computer vision have appeared recently.
- Simplest of the ideas: use an efficient graph-cut approach to find the minimum energy configuration in a pairwise binary Markov random field.
- When is this optimal? When is this an approximation? How can we generalize this to non-binary variables, non-pairwise potentials, and richer potentials?
- Many generalizations, including move making algorithms such as alpha-beta swaps, alpha expansions, fusion moves, and other recent more sophisticated and energy aware "move making" algorithms.
- Computer vision and beyond.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Other inference methods					

• Sampling, Monte Carlo, MCMC methods, importance sampling

- Sampling, Monte Carlo, MCMC methods, importance sampling
- Search based methods, cut condition, value elimination, as done in CSP/SAT communities. This includes AND/OR search trees, sum/product networks, where the network represents the operations necessary to do inference.

- Sampling, Monte Carlo, MCMC methods, importance sampling
- Search based methods, cut condition, value elimination, as done in CSP/SAT communities. This includes AND/OR search trees, sum/product networks, where the network represents the operations necessary to do inference.
- Also, other modern search based methods.

- Sampling, Monte Carlo, MCMC methods, importance sampling
- Search based methods, cut condition, value elimination, as done in CSP/SAT communities. This includes AND/OR search trees, sum/product networks, where the network represents the operations necessary to do inference.
- Also, other modern search based methods.
- Beam pruning methods often go hand-in-hand with search based methods.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Some	notation				

Distributions

$$p(x) \equiv p(x_{1:N}) \equiv p(x_1, \dots, x_N) \equiv P_{X_1, \dots, X_N} (X_1 = x_1, \dots, X_N = x_N)$$

• Subsets

$$V \stackrel{\Delta}{=} \{1, 2, \dots, N\} \quad A, B \subseteq V \quad A = \{a_1, \dots, a_{|A|}\}$$
(1.1)

$$\{X_{a_1}, X_{a_2}, \dots, X_{a_{|A|}}\}$$

• Example: If $A = \{1, 3, 7\}$ then $X_A = \{X_1, X_3, X_7\}$ and $p(X_A = x_A | X_B = x_B) \equiv p(x_1, x_2 | x_3, x_4)$ if $A = \{1, 2\}, B = \{3, 4\}$

• $p(x_A)$ requires table of size $r^{|A|}$, $r = |\mathsf{D}_X|$ where $\forall i, x_i \in \mathsf{D}_X$ • $\bar{x}^{(i)}$ and $\bar{x}^{(j)}$ are different vector samples for $i \neq j$.

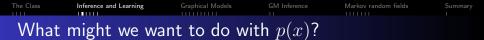
Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

(1.2)

• Marginal quantities

- Marginal quantities
 - Given \bar{x} compute $p(\bar{x})$



- Marginal quantities
 - Given \bar{x} compute $p(\bar{x})$
 - Given $E \subseteq V$, and $F \cup H = V \setminus E$ with F and H disjoint, then compute

$$p(x_{F},\bar{x}_{E}) = \sum_{x_{H}} p(x_{F},x_{H},\bar{x}_{E}).$$
(1.3)
$$P(x_{F}|\bar{x}_{E}) \swarrow P(x_{F},\bar{x}_{E})$$

- Marginal quantities
 - Given \bar{x} compute $p(\bar{x})$
 - Given $E \subseteq V$, and $F \cup H = V \setminus E$ with F and H disjoint, then compute

$$p(x_F, \bar{x}_E) = \sum_{x_H} p(x_F, x_H, \bar{x}_E).$$
 (1.3)

• Model relationship between two signals x_1 and x_2 (e.g., x_1 a feature vector, x_2 is a class or regression variable).

- Marginal quantities
 - Given \bar{x} compute $p(\bar{x})$
 - Given $E \subseteq V$, and $F \cup H = V \setminus E$ with F and H disjoint, then compute

$$p(x_F, \bar{x}_E) = \sum_{x_H} p(x_F, x_H, \bar{x}_E).$$
 (1.3)

- Model relationship between two signals x_1 and x_2 (e.g., x_1 a feature vector, x_2 is a class or regression variable).
 - compute $p(\bar{x}_1, \bar{x}_2)$.

- Marginal quantities
 - Given \bar{x} compute $p(\bar{x})$
 - Given $E \subseteq V$, and $F \cup H = V \setminus E$ with F and H disjoint, then compute

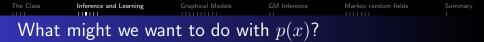
$$p(x_F, \bar{x}_E) = \sum_{x_H} p(x_F, x_H, \bar{x}_E).$$
 (1.3)

- Model relationship between two signals x_1 and x_2 (e.g., x_1 a feature vector, x_2 is a class or regression variable).
 - compute $p(\bar{x}_1, \bar{x}_2)$.
 - Given \bar{x}_1 compute

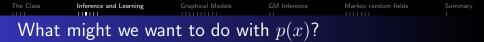
 $x_2^* \in \operatorname*{argmax}_{x_2} p(\bar{x}_1, x_2)$ or equivalently $x_2^* \in \operatorname*{argmax}_{x_2} p(x_2|\bar{x}_1)$ (1.4)

• Machine Learning is adjusting a model based on data.

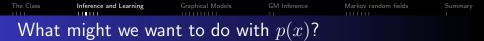
- Machine Learning is adjusting a model based on data.
- Machine Learning almost always requires being able to do inference efficiently.



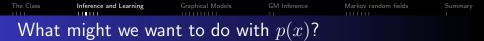
- Machine Learning is adjusting a model based on data.
- Machine Learning almost always requires being able to do inference efficiently.
- We are given set of training samples $\mathbf{D} = \{x^{(1)}, x^{(2)}, \ldots\}.$



- Machine Learning is adjusting a model based on data.
- Machine Learning almost always requires being able to do inference efficiently.
- We are given set of training samples $\mathbf{D} = \{x^{(1)}, x^{(2)}, \dots\}$.
- Then find $\theta^* \in \operatorname{argmin}_{\theta} R(\mathbf{D}, \theta)$ where $R(\mathbf{D}, \theta)$ is a risk.



- Machine Learning is adjusting a model based on data.
- Machine Learning almost always requires being able to do inference efficiently.
- We are given set of training samples $\mathbf{D} = \{x^{(1)}, x^{(2)}, \ldots\}.$
- Then find $\theta^* \in \operatorname{argmin}_{\theta} R(\mathbf{D}, \theta)$ where $R(\mathbf{D}, \theta)$ is a risk.
- Given θ^* , we may we interpret its values (generative learning)?



- Machine Learning is adjusting a model based on data.
- Machine Learning almost always requires being able to do inference efficiently.
- We are given set of training samples $\mathbf{D} = \{x^{(1)}, x^{(2)}, \ldots\}.$
- Then find $\theta^* \in \operatorname{argmin}_{\theta} \frac{R(\mathbf{D}, \theta)}{R(\mathbf{D}, \theta)}$ where $\frac{R(\mathbf{D}, \theta)}{R(\mathbf{D}, \theta)}$ is a risk.
- Given θ^* , we may we interpret its values (generative learning)?
- Given θ^* , could form distribution $p_{\theta^*}(x)$ or marginal $p_{\theta^*}(x_1, x_2)$, etc.

• Generative learning if

$$R(\mathbf{D}, \theta) = -\frac{1}{|\mathbf{D}|} \sum_{j=1}^{|\mathbf{D}|} \log p_{\theta}(x^{(j)}) + \frac{\lambda \|\theta\|}{\lambda \|\theta\|}$$
(1.5)

where $\|\cdot\|$ is some norm. This includes the case of maximum likelihood learning.

F19/41 (pg.61/121)

• Generative learning if

$$R(\mathbf{D}, \theta) = -\frac{1}{|\mathbf{D}|} \sum_{j=1}^{|\mathbf{D}|} \log p_{\theta}(x^{(j)}) + \lambda \|\theta\|$$
(1.5)

where $\|\cdot\|$ is some norm. This includes the case of maximum likelihood learning.

• Discriminative learning results when

$$R(\mathbf{D}, \theta) = -\frac{1}{|\mathbf{D}|} \sum_{j=1}^{|\mathbf{D}|} \log p_{\theta}(x_2^{(j)} | x_1^{(j)}) + \lambda \|\theta\|$$
(1.6)

and includes the case of maximum conditional likelihood learning.

• Another form of discriminative learning, max-margin learning, occurs when if

$$R(\mathbf{D},\theta) = \frac{1}{|\mathbf{D}|} \sum_{i=1}^{|\mathbf{D}|} \left[\max_{x_2} \left(\log p_{\theta}(x_2, x_1^{(j)}) + \Delta(x_2^{(j)}, x_2') \right) - \log p_{\theta}(x_2^{(j)}, x_1^{(j)}) \right] + \lambda \|\theta\| \quad (1.7)$$

where $\Delta(x_2^{(j)}, x_2')$ is a normalizing labeling cost. Overall, this corresponds to a generalized hinge-loss.

• Another form of discriminative learning, max-margin learning, occurs when if

$$R(\mathbf{D}, \theta) = \frac{1}{|\mathbf{D}|} \sum_{i=1}^{|\mathbf{D}|} \left[\max_{x_2} \left(\log p_{\theta}(x_2, x_1^{(j)}) + \Delta(x_2^{(j)}, x_2') \right) - \log p_{\theta}(x_2^{(j)}, x_1^{(j)}) \right] + \lambda \|\theta\| \quad (1.7)$$

where $\Delta(x_2^{(j)},x_2')$ is a normalizing labeling cost. Overall, this corresponds to a generalized hinge-loss.

• Optimizing each risk is unique, but each invariably entails computing quantities over p(x) like the aforementioned inference.

• Another form of discriminative learning, max-margin learning, occurs when if

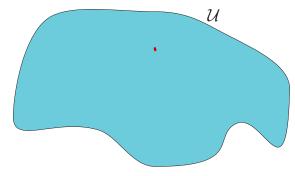
$$R(\mathbf{D}, \theta) = \frac{1}{|\mathbf{D}|} \sum_{i=1}^{|\mathbf{D}|} \left[\max_{x_2} \left(\log p_{\theta}(x_2, x_1^{(j)}) + \Delta(x_2^{(j)}, x_2') \right) - \log p_{\theta}(x_2^{(j)}, x_1^{(j)}) \right] + \lambda \|\theta\| \quad (1.7)$$

where $\Delta(x_2^{(j)},x_2')$ is a normalizing labeling cost. Overall, this corresponds to a generalized hinge-loss.

- Optimizing each risk is unique, but each invariably entails computing quantities over p(x) like the aforementioned inference.
- The need to efficiently compute with p(x) is critical for most machine learning problems.

Prof. Jeff Bilmes

• Let \mathcal{U} be the universe of all distributions over N r.y.s.

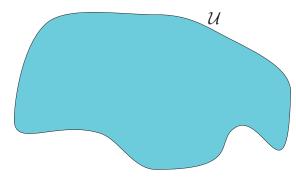


Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

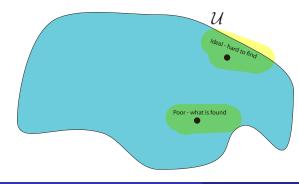
F21/41 (pg.66/121)

- $\bullet\,$ Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\text{true}}(x_1, \ldots, x_N)$.

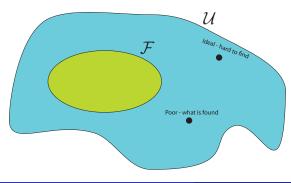


F21/41 (pg.67/121)

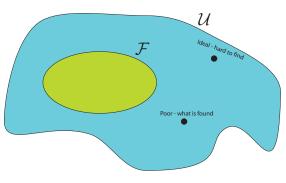
- Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\mathsf{true}}(x_1,\ldots,x_N)$.
- Searching within \mathcal{U} is infeasible/intractable/impossible.



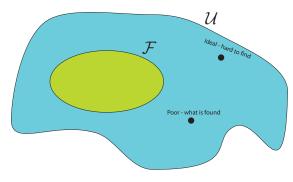
- $\bullet\,$ Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\mathsf{true}}(x_1,\ldots,x_N)$.
- Searching within ${\cal U}$ is infeasible/intractable/impossible.
- Desire a restricted but useful family $\mathcal{F} \subset \mathcal{U}$.



- $\bullet\,$ Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\text{true}}(x_1, \ldots, x_N)$.
- Searching within ${\cal U}$ is infeasible/intractable/impossible.
- Desire a restricted but useful family $\mathcal{F} \subset \mathcal{U}$.
- Size of ${\mathcal U}$ too large

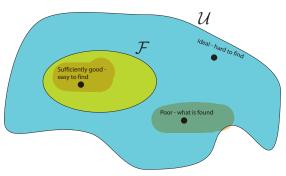


- $\bullet\,$ Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\mathsf{true}}(x_1,\ldots,x_N)$.
- Searching within $\mathcal U$ is infeasible/intractable/impossible.
- Desire a restricted but useful family $\mathcal{F} \subset \mathcal{U}.$
- Size of $\mathcal U$ too large
- $\bullet \,\, \mathcal{U}$ complex, local optima



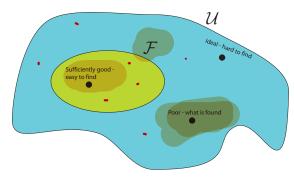
F21/41 (pg.71/121)

- $\bullet\,$ Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\mathsf{true}}(x_1,\ldots,x_N)$.
- Searching within $\mathcal U$ is infeasible/intractable/impossible.
- Desire a restricted but useful family $\mathcal{F} \subset \mathcal{U}.$
- Size of $\mathcal U$ too large
- $\mathcal U$ complex, local optima
- Actual solution in \mathcal{F} better than possible solution in \mathcal{U}



F21/41 (pg.72/121)

- $\bullet\,$ Let ${\mathcal U}$ be the universe of all distributions over N r.v.s.
- Sample data, along with domain knowledge, used to select resulting p(x) from \mathcal{U} that is "close enough" to $p_{\mathsf{true}}(x_1,\ldots,x_N)$.
- Searching within ${\cal U}$ is infeasible/intractable/impossible.
- Desire a restricted but useful family $\mathcal{F} \subset \mathcal{U}.$
- Size of $\mathcal U$ too large
- $\mathcal U$ complex, local optima
- Actual solution in \mathcal{F} better than possible solution in \mathcal{U}
- Graphical models provide a framework for specifying $\mathcal{F} \subseteq \mathcal{U}$



Prof. Jeff Bilmes

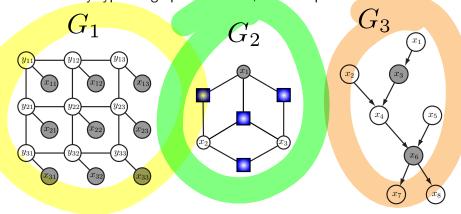
EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

F21/41 (pg.73/121)

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Grapł	nical Models				

• A graphical model is a visual, abstract, and mathematically formal description of properties of families of probability distributions (densities, mass functions)

There are many types of graphical models, for example:



The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Grap	nical Models				

• Graphical models are encodings of families of probability distributions. For the most part, the encodings are done via a graph that formally specifies either a set (conditional) independence properties, or more fundamentally, a set of factorization properties.

P(a,b|c)- P(a|c)P(b|c)

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
1111	11111				
Grap	hical Models				

- Graphical models are encodings of families of probability distributions. For the most part, the encodings are done via a graph that formally specifies either a set (conditional) independence properties, or more fundamentally, a set of factorization properties.
- This is a crucial idea to understand: a graphical model is a set of constraints that all family members must obey.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
1111	11111	1 1 1 1 1 1 1 1 1			
Graph	ical Models				

- Graphical models are encodings of families of probability distributions. For the most part, the encodings are done via a graph that formally specifies either a set (conditional) independence properties, or more fundamentally, a set of factorization properties.
- This is a crucial idea to understand: a graphical model is a set of constraints that all family members must obey.
- Graphical Models encode constraints by factorization requirements that all members of the family must obey.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
1111	11111	1 1 1 1 1 1 1 1 1			
Graph	ical Models				

- Graphical models are encodings of families of probability distributions. For the most part, the encodings are done via a graph that formally specifies either a set (conditional) independence properties, or more fundamentally, a set of factorization properties.
- This is a crucial idea to understand: a graphical model is a set of constraints that all family members must obey.
- Graphical Models encode constraints by factorization requirements that all members of the family must obey.
- Factorization requirements are often identical to conditional independence requirements.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
1111	11111				
Grap	hical Models				

- Graphical models are encodings of families of probability distributions. For the most part, the encodings are done via a graph that formally specifies either a set (conditional) independence properties, or more fundamentally, a set of factorization properties.
- This is a crucial idea to understand: a graphical model is a set of constraints that all family members must obey.
- Graphical Models encode constraints by factorization requirements that all members of the family must obey.
- Factorization requirements are often identical to conditional independence requirements.
- Factorization, in general, allows sums to be distributed into products thereby making (exact) inference quantities more efficient than if factorization properties did not exist.

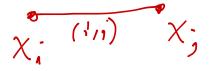
The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
Graph	n Theory				

• We'll define what we need as we go along.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
1111	11111	11.111111			
Graph	Theory				

• We'll define what we need as we go along.

• Graph G = (V, E) where V is set of nodes (or vertices) and $E \subseteq V \times V$ is a set of edges. If $i, j \in V$ then $(i, j) \in E$ means that nodes i and j are connected.



F24/41 (pg.81/121)

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
	11111				
Grapł	n Theory				

- We'll define what we need as we go along.
- Graph G = (V, E) where V is set of nodes (or vertices) and $E \subseteq V \times V$ is a set of edges. If $i, j \in V$ then $(i, j) \in E$ means that nodes i and j are connected.
- Nodes are in one-to-one correspondence to a set of random variables.
 For each v ∈ V we have that X_v is a random variable (r.v.). X_V is the complete set of r.v.'s.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
	11111				
Grapł	n Theory				

- We'll define what we need as we go along.
- Graph G = (V, E) where V is set of nodes (or vertices) and $E \subseteq V \times V$ is a set of edges. If $i, j \in V$ then $(i, j) \in E$ means that nodes i and j are connected.
- Nodes are in one-to-one correspondence to a set of random variables.
 For each v ∈ V we have that X_v is a random variable (r.v.). X_V is the complete set of r.v.'s.
- A graphical model describes a family of distributions $p(x_V)$ over X_V .

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
	11111				
Graph	ical Models				

• A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).

	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Graph	nical Models				

- A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).
- Unlike \mathcal{U} , which is the family of all distributions over n r.v.s, $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$ is a subset of distributions.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
	nical Models				

- A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).
- Unlike \mathcal{U} , which is the family of all distributions over n r.v.s, $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$ is a subset of distributions.
- Any member of *F*(*G*, *M*) must respect the constraints that are specified by the GM.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Graph	nical Models				

- A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).
- Unlike \mathcal{U} , which is the family of all distributions over n r.v.s, $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$ is a subset of distributions.
- Any member of $\mathcal{F}(G, \mathfrak{M})$ must respect the constraints that are specified by the GM.
- Any distribution that does not respect even one of the GM's constraints is not a member of the family.

	Inference and Learning	GM Inference	Markov random fields	
Graph	nical Models			

- A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).
- Unlike \mathcal{U} , which is the family of all distributions over n r.v.s, $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$ is a subset of distributions.
- Any member of $\mathcal{F}(G, \mathcal{M})$ must respect the constraints that are specified by the GM.
- Any distribution that does not respect even one of the GM's constraints is not a member of the family.
- In a GM, the constraints take the form of factorization (which are most often, conditional independence constraints).

	Inference and Learning	GM Inference	Markov random fields	
Graph	nical Models			

- A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).
- Unlike \mathcal{U} , which is the family of all distributions over n r.v.s, $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$ is a subset of distributions.
- Any member of $\mathcal{F}(G, \mathcal{M})$ must respect the constraints that are specified by the GM.
- Any distribution that does not respect even one of the GM's constraints is not a member of the family.
- In a GM, the constraints take the form of factorization (which are most often, conditional independence constraints).
- Factorization is useful since it allows for the distributive law to enable the use of dynamic programming for much faster exact inference than naive.

The Class		GM Inference	Markov random fields	
	nical Models			I

- A graphical model consists of a graph and a set of rules or properties \mathcal{M} (often called *Markov properties*).
- Unlike \mathcal{U} , which is the family of all distributions over n r.v.s, $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$ is a subset of distributions.
- Any member of $\mathcal{F}(G, \mathfrak{M})$ must respect the constraints that are specified by the GM.
- Any distribution that does not respect even one of the GM's constraints is not a member of the family.
- In a GM, the constraints take the form of factorization (which are most often, conditional independence constraints).
- Factorization is useful since it allows for the distributive law to enable the use of dynamic programming for much faster exact inference than naive.
- Finding best way of doing inference is entirely graph theoretic operation.

Prof. Jeff Bilmes

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Grapł	nical Model				

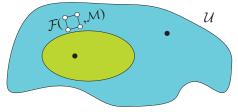
- Each type of graphical model requires a certain type of graph (e.g., undirected, or DAG) and a set of rules (or "Markov properties") to define the GM.
- A graphical model is a pair $(G, \mathcal{M}) = ((V, E), \mathcal{M})$, a graph G and a set of properties \mathcal{M} that define what the graphical model means.
- <u>Conceptually</u>, one can think of a property $r \in \mathcal{M}$ is a predicate on a graph and a distribution, so $r(p,G) \in \{\text{true}, \text{false}\}$.
- (G, \mathcal{M}) consists of a family of distributions over x_V where all predicates hold. That is

$$\mathcal{F}(G,\mathcal{M}) = \{p : p \text{ is a distribution over } X_V \text{ and }, \\ r(p,G) = \mathsf{true}, \forall r \in \mathcal{M}\}$$
(1.8)

• $\mathcal{F}(G, \mathcal{M}) \subseteq \mathcal{U}$

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Mark	ov Properties				

- Markov properties are rules that specify what are required of every family member. Any $p \in \mathcal{F}(G, \mathcal{M})$ satisfies all properties/rules $r \in \mathcal{M}$ for G. Any $p \in \mathcal{U} \setminus \mathcal{F}(G, \mathcal{M})$ violates at least one property for G.
- A $p \in \mathcal{U}$ might have more properties. \mathcal{M} is like a filter, lets in those p that satisfy, but will let in those that satisfy more.



 Example r ∈ M might be "if there are two nodes u, v ∈ V that are neither directly nor indirectly connected in G (i.e., there no path leading from u to v in G) then the corresponding random variables in p are independent"

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
	tions about P				

- For a given type of graphical model, can the property set \mathcal{M} be listed in finite space and computed efficiently? (answer, yes).
- For a given type of graphical model, are there more than one set of rules that define a family? In other words, are there rule sets \mathcal{M}_1 and \mathcal{M}_2 such that $\mathcal{F}(G, \mathcal{M}_1) = \mathcal{F}(G, \mathcal{M}_2)$ for all G? Answer, yes.
- Much of the Lauritzen 1996 book studies graphs, rules (or Markov properties) and proves when the corresponding families are either identical, or subsets of each other.

$$F(6, M) \simeq F(6, M)$$

• Is there a smallest rule set? In other words, are there rules sets $\mathcal{M}_1 \subset \mathcal{M}_2$ such that $\mathcal{F}(G, \mathcal{M}_1) = \mathcal{F}(G, \mathcal{M}_2)$, and can we compute the smallest set \mathcal{M}' so that $\mathcal{F}(G, \mathcal{M}') = \mathcal{F}(G, \mathcal{M})$ where $|\mathcal{M}'|$ is minimal?

- Is there a smallest rule set? In other words, are there rules sets $\mathcal{M}_1 \subset \mathcal{M}_2$ such that $\mathcal{F}(G, \mathcal{M}_1) = \mathcal{F}(G, \mathcal{M}_2)$, and can we compute the smallest set \mathcal{M}' so that $\mathcal{F}(G, \mathcal{M}') = \mathcal{F}(G, \mathcal{M})$ where $|\mathcal{M}'|$ is minimal?
- Are there rule sets that are non-equivalent? I.e. \mathcal{M}_1 and \mathcal{M}_2 such that $\mathcal{F}(G, \mathcal{M}_1) \neq \mathcal{F}(G, \mathcal{M}_2)$ for some G? Answer, yes.

- Is there a smallest rule set? In other words, are there rules sets $\mathcal{M}_1 \subset \mathcal{M}_2$ such that $\mathcal{F}(G, \mathcal{M}_1) = \mathcal{F}(G, \mathcal{M}_2)$, and can we compute the smallest set \mathcal{M}' so that $\mathcal{F}(G, \mathcal{M}') = \mathcal{F}(G, \mathcal{M})$ where $|\mathcal{M}'|$ is minimal?
- Are there rule sets that are non-equivalent? I.e. \mathcal{M}_1 and \mathcal{M}_2 such that $\mathcal{F}(G, \mathcal{M}_1) \neq \mathcal{F}(G, \mathcal{M}_2)$ for some G? Answer, yes.
- In general, much of graphical model theory is regarding deducing properties of rules and corresponding properties of graphs and the distributions they represent. This allows us to reason about graphs as a means of reasoning about families of distributions.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
A = = =					
A SOC	ciety of prope	rties			

- $\mathcal{G}_N = \text{set of all undirected graphs over } N$ nodes.
- Consider

and

family of all distributions over any number of random variables that obeys rules \mathcal{M} for some undirected graph G.

 $\mathcal{F}(\mathcal{M}) = \bigcup_{N=1}^{\infty} \mathcal{F}_N(\mathcal{M})$

 $\mathcal{F}_N(\mathcal{M}) = \bigcup_{G \in \mathcal{G}_N} \mathcal{F}(G, \mathcal{M})$

- $\bullet \ \mathcal{M}$ determines the type of graphical model.
- $\mathcal{M}^{(mrf)}$ rules for MRF, then $\mathcal{F}(\mathcal{M}^{(mrf)})$ are the distributions representable by MRF.
- $\mathcal{M}^{(bn)}$ rules for Bayesian network, then $\mathcal{F}(\mathcal{M}^{(bn)})$ are the distributions representable by BN.

(1.9)

(1.10)

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Differe	ent families				

- Families may be different.
- For a given graph G, we might have neither $\mathcal{F}(G, \mathcal{M}^{(\mathsf{mrf})}) \subset \mathcal{F}(G, \mathcal{M}^{(\mathsf{bn})})$ nor $\mathcal{F}(G, \mathcal{M}^{(\mathsf{bn})}) \subset \mathcal{F}(G, \mathcal{M}^{(\mathsf{mrf})})$.
- The relationship for the family in its entirety might be different. I.e., when we compare the set of all MRFs vs. the set of all BNs, i.e., $\mathcal{F}(\mathcal{M}^{(mrf)})$ vs. $\mathcal{F}(\mathcal{M}^{(bn)})$.
- Large part of GM research is understanding these relationships.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
1111	11111				
What	t is graphical	model infer	ence?		

• Inference, as we saw, is computing probabilistic queries such as:

- Inference, as we saw, is computing probabilistic queries such as:
 - probability of evidence (marginalize the hidden variables)

 $p(\bar{x}_E)$

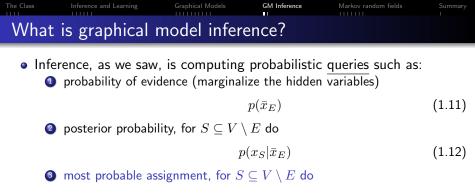
(1.11)

probability of evidence (marginalize the hidden variables)

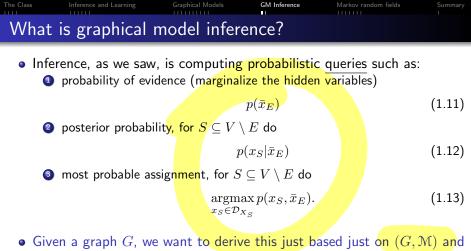
$$p(\bar{x}_E) \tag{1.11}$$

 $\ensuremath{ 2 \ } \ensuremath{ {\rm obs} } \$

$$p(x_S|\bar{x}_E) \tag{1.12}$$



$$\underset{x_{S}\in\mathcal{D}_{X_{S}}}{\operatorname{argmax}}p(x_{S},\bar{x}_{E}).$$
(1.13)



• Given a graph G, we want to derive this just based just on (G, JVL) and derive this automatically.

p

- Inference, as we saw, is computing probabilistic queries such as:
 - probability of evidence (marginalize the hidden variables)

$$(\bar{x}_E) \tag{1.11}$$

2 posterior probability, for $S \subseteq V \setminus E$ do

$$p(x_S|\bar{x}_E) \tag{1.12}$$

 $\textcircled{O} most probable assignment, for <math>S \subseteq V \setminus E$ do

$$\operatorname*{argmax}_{x_S \in \mathcal{D}_{X_S}} p(x_S, \bar{x}_E). \tag{1.13}$$

- Given a graph G, we want to derive this just based just on (G, \mathcal{M}) and derive this automatically.
- We want to understand the computational complexity of the procedure based just on (G, \mathcal{M}) .

p

- Inference, as we saw, is computing probabilistic queries such as:
 - probability of evidence (marginalize the hidden variables)

$$(\bar{x}_E) \tag{1.11}$$

2 posterior probability, for $S \subseteq V \setminus E$ do

$$p(x_S|\bar{x}_E) \tag{1.12}$$

()most probable assignment, for $S \subseteq V \setminus E$ do

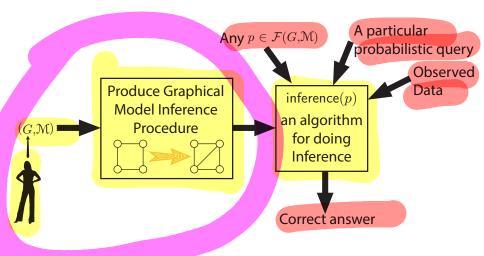
$$\operatorname*{argmax}_{x_S \in \mathcal{D}_{X_S}} p(x_S, \bar{x}_E). \tag{1.13}$$

- Given a graph G, we want to derive this just based just on (G,\mathcal{M}) and derive this automatically.
- We want to understand the computational complexity of the procedure based just on (G, \mathcal{M}) .
- amortization: we want to derive a procedure that works for any $p \in \mathcal{F}(G, R^{(\mathcal{M})})$ for a given rule set.

Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

F32/41 (pg.105/121)



Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

F33/41 (pg.106/121)

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Mark	ov random fie	lds			

- One type of graphical model (we'll study in this course).
- Has its origin in statistical physics (Boltzmann distributions, Ising models of atomic spin) and image processing (grid-based models).
- Example Ising model: Let $W = [w_{ij}]_{ij}$ be a matrix of weights. Note that many of these weights might be zero. Let
 - $s=[s_i]_i=(s_1,s_2,\ldots,s_n)$ be a vector of binary random variables, $s_i\in\{-1,+1\}.$ Define the "energy" as

$$E(s) = -\sum_{ij} s_i s_j w_{ij} \tag{1.14}$$

• Then define a distribution over s as

$$p(s) = \frac{1}{Z} \exp(-E(s)/T)$$
 (1.15)

where T is the temperature of the model and $Z = \sum_{s} \exp(-E(s)/T)$ is a normalizing constant.

Prof. Jeff Bilmes

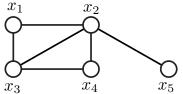
EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
1111		1111111111		1.1.1.1	
	ov random fie	elds			

- Most often *s* corresponds to a grid (i.e., *s* is really a matrix or 3D-matrix).
- Ising model: w_{ij} determines the interaction style of variables: if $w_{ij} = 0$ the no interaction. If $w_{ij} > 0$ then more probable for $s_i = s_j = \pm 1$. If $w_{ij} < 0$ then more probable for $s_i \neq s_j$.
- We can think of matrix W and vector s as a graph, G = (V, E) where s corresponds to V and W corresponds to E that is, $(i, j) = e \in E$ only when $w_{ij} \neq 0$.
- We might expect that any Ising model $p \in \mathcal{F}(G, \mathcal{M}^{(\mathsf{mrf})})$ for appropriately defined MRF rules.

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
1111	11111				
Clique	Factorization	1			

- The "Cliques" of a graph G = (V, E), or $\mathcal{C}(G)$, in a graph are the set of fully connected nodes.
- If $C \in \mathcal{C}(G)$ and $u,v \in C$ then $(u,v) \in E(G)$
- In the following graph



cliques are $C = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{3, 4\}, \{2, 4\}, \{2, 3, 4\}, \{2, 5\}\}.$

Inference and Learning	Graphical Models	GM Inference	Markov random fields	
e Factorizatio				

• Given graph G with cliques C(G), consider a probability distribution that can be represented as follows:

$$p(x_V) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_C(x_C)$$
(1.16)

$$Z = \sum_{x_V} \prod_{C \in \mathcal{C}} \phi_C(x_C) \tag{1.17}$$

• Actually, we don't always need Z explicitly since it is a constant and can be distributed into the factors in a variety of ways, leading to:

$$p(x_V) = \prod_{C \in \mathcal{C}(G)} \phi_C(x_C)$$
(1.18)

where only the factorization is depicted.

Prof. Jeff Bilmes

		GM Inference	Markov random fields	
			1111	
Clique	Factorization			

• More formally, consider the following family:

$$\mathcal{F}(G, \mathcal{M}^{(\mathsf{cf})}) = \left\{ p : \forall C \in \mathcal{C}(G), \exists \psi_C(x_C) \ge 0 \\ \text{and } p(x_V) = \prod_{C \in \mathcal{C}(G)} \psi_C(x_C) \right\}$$

(1.19)

		GM Inference	Markov random fields	
	F			
Clique	Factorization			

• More formally, consider the following family:

$$\mathcal{F}(G, \mathcal{M}^{(\mathsf{cf})}) = \left\{ p : \forall C \in \mathcal{C}(G), \exists \psi_C(x_C) \ge 0 \\ \text{and } p(x_V) = \prod_{C \in \mathcal{C}(G)} \psi_C(x_C) \right\}$$
(1.19)

• are the clique factors unique?

	Inference and Learning		GM Inference	
Max(Clique Factoriz	zation		

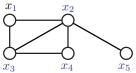
• The "MaxCliques" of a graph G = (V, E), or $\mathcal{C}^{(mc)}(G)$, in a graph are the set of fully connected nodes that can't be enlarged

The Class		GM Inference	Markov random fields	
	Clique Factoriz			

• The "MaxCliques" of a graph G = (V, E), or $\mathcal{C}^{(mc)}(G)$, in a graph are the set of fully connected nodes that can't be enlarged — adding any node to a maxclique renders it no longer a clique.

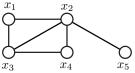
The Class	Inference and Learning		GM Inference	Markov random fields	
MaxO	Clique Factoriz	zation			

- The "MaxCliques" of a graph G = (V, E), or $\mathcal{C}^{(mc)}(G)$, in a graph are the set of fully connected nodes that can't be enlarged adding any node to a maxclique renders it no longer a clique.
- MaxCliques of previous graph (repeated below) are $\{\{1,2,3\},\{2,3,4\},\{2,5\}\}$



	Inference and Learning		GM Inference	
Max(Clique Factoriz	zation		

- The "MaxCliques" of a graph G = (V, E), or $\mathcal{C}^{(mc)}(G)$, in a graph are the set of fully connected nodes that can't be enlarged adding any node to a maxclique renders it no longer a clique.
- MaxCliques of previous graph (repeated below) are $\{\{1,2,3\},\{2,3,4\},\{2,5\}\}$



• New properties $\mathcal{M}^{(\mathrm{mcf})}$ based on maxcliques define family $\mathcal{F}(G, \mathcal{M}^{(\mathrm{mcf})}) = \left\{ p : \forall C \in \mathcal{C}^{(mc)}(G), \exists \psi_C(x_C) \ge 0 \right\}$

and
$$p(x_V) = \prod_{C \in \mathcal{C}^{(mc)}} \psi_C(x_C)$$

(1.20)

Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

F39/41 (pg.116/121)

	Inference and Learning		Markov random fields	
Comp	parisons of far	milies		

	Inference and Learning		Markov random fields	
Comp	parisons of far	nilies		

Lemma 1.7.1

 $\mathcal{F}(G, \mathcal{M}^{(cf)}) \subseteq \mathcal{F}(G, \mathcal{M}^{(mcf)})$

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
	11111			11111	
Comp	parisons of far	milies			

Lemma 1.7.1

 $\mathcal{F}(G, \mathcal{M}^{(\mathit{cf})}) \subseteq \mathcal{F}(G, \mathcal{M}^{(\mathit{mcf})})$

Lemma 1.7.2

 $\mathcal{F}(G, \mathcal{M}^{(cf)}) \supseteq \mathcal{F}(G, \mathcal{M}^{(mcf)})$

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	
Com	parisons of far	milies			

Lemma 1.7.1

 $\mathcal{F}(G, \mathcal{M}^{(\mathit{cf})}) \subseteq \mathcal{F}(G, \mathcal{M}^{(\mathit{mcf})})$

Lemma 1.7.2

$$\mathcal{F}(G, \mathcal{M}^{(cf)}) \supseteq \mathcal{F}(G, \mathcal{M}^{(mcf)})$$

Therefore

Corollary 1.7.3

 $\mathcal{F}(G, \mathcal{M}^{(cf)}) = \mathcal{F}(G, \mathcal{M}^{(mcf)})$

- Since rules are identical, we use $\mathcal{M}^{(f)}$ for clique factorization, and family $\mathcal{F}(G, \mathcal{M}^{(f)})$.
- Often, it is not so obvious that different families are identical.
- Equally often, different families are indeed different.

Prof. Jeff Bilmes

EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014

The Class	Inference and Learning	Graphical Models	GM Inference	Markov random fields	Summary
Sourc	es for Today'	s Lecture			

• Most of this material comes from the reading handouts that will soon be made available.