EE512A - Advanced Inference in Graphical Models

- Fall Quarter, Lecture 19 -
http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Dec 3rd, 2014

Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Should have read chapters 1 through 5 in our book. Read chapter 7
- Also read chapter 8 (integer/linear programming, although we cover only a bit of that chapter in class unfortunately).
- Also should have read "Divergence measures and message passing" by Thomas Minka, and "Structured Region Graphs: Morphing EP into GBP", by Welling, Minka, and Teh.
- Assignment due Wednesday (Dec 3rd) night, 11:45pm. Final project proposal final progress report (one page max).
- Update: For status update, final writeup, and talk, use notation as close as possible to that used in class!

On Final Project

- Project update report due tonight, 11:45pm via canvas.

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.
- Final writeup: 4 -pages, 10 point font, 8.5×11 inch pages, 1 inch margins on all four sides.

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.
- Final writeup: 4-pages, 10 point font, 8.5×11 inch pages, 1 inch margins on all four sides.
- Again, all your writeups (starting tonight) should use notation as close as possible to what we've been using in class!

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.
- Final writeup: 4-pages, 10 point font, 8.5×11 inch pages, 1 inch margins on all four sides.
- Again, all your writeups (starting tonight) should use notation as close as possible to what we've been using in class!
- Talk slides need to be uploaded before. Must be pdf, all will be meregd into one pdf file. No animations.

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.
- Final writeup: 4 -pages, 10 point font, 8.5×11 inch pages, 1 inch margins on all four sides.
- Again, all your writeups (starting tonight) should use notation as close as possible to what we've been using in class!
- Talk slides need to be uploaded before. Must be pdf, all will be meregd into one pdf file. No animations.
- We have 21 presentations to give. 10 minutes each means 3.5 hours of presentation. 7 minutes each means 2.45 hours of presentation.

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.
- Final writeup: 4 -pages, 10 point font, 8.5×11 inch pages, 1 inch margins on all four sides.
- Again, all your writeups (starting tonight) should use notation as close as possible to what we've been using in class!
- Talk slides need to be uploaded before. Must be pdf, all will be meregd into one pdf file. No animations.
- We have 21 presentations to give. 10 minutes each means 3.5 hours of presentation. 7 minutes each means 2.45 hours of presentation.
- Final Exam time slot: Wednesday, December 10, 2014,230-420 pm, PCAR 297 (two hours).

On Final Project

- Project update report due tonight, 11:45pm via canvas.
- Final four-page writeup due next Wednesday at 11:45pm.
- Final writeup: 4 -pages, 10 point font, 8.5×11 inch pages, 1 inch margins on all four sides.
- Again, all your writeups (starting tonight) should use notation as close as possible to what we've been using in class!
- Talk slides need to be uploaded before. Must be pdf, all will be meregd into one pdf file. No animations.
- We have 21 presentations to give. 10 minutes each means 3.5 hours of presentation. 7 minutes each means 2.45 hours of presentation.
- Final Exam time slot: Wednesday, December 10, 2014,230-420 pm, PCAR 297 (two hours).
- Alternatively, you each do a 10-minute youtube presentation with at least screen capture and audio, can use perhaps
http://tinytake.com/ or http://camstudio.org/, or post your favorite to canvas for others to discover. Then, it to an unlisted youtube link, send the link, and we all view it.

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, k-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP
- L11 (11/5): LBP, exponential models,
- L12 (11/10): exponential models, mean params and polytopes,
- L13 (11/12): polytopes, tree outer bound, Bethe entropy approx.
- L14 (11/17): Bethe entropy approx, loop series correction
- L15 (11/19): Hypergraphs, posets, Mobius, Kikuchi
- L16 (11/24): Kikuchi, Expectation Propagation
- L17 (11/26): Expectation Propagation, Mean Field
- L18 (12/1): Structured mean field, Convex relaxations and upper bounds, tree reweighted case
- L19 (12/3): Variational MPE, Graph Cut MPE, LP Relaxations
- Final Presentations: $(12 / 10)$:

Finals Week: Dec 8th-12th, 2014.

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 19.2.3 (Relationship between A and A^{*})

(a) For any $\mu \in \mathcal{M}^{\circ}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{19.3}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.4}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{19.5}
\end{equation*}
$$

Variational Approach Amenable to Approximation

- Original variational representation of \log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{19.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate \mathcal{M} or $-A^{*}(\mu)$ or (most likely) both.

Variational Approximations we cover

(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$ where $H_{\mathrm{app}}=\sum_{g \in E} c(g) H_{g}\left(\tau_{g}\right)$ (via Möbius) to get Kikuchi variational approximation, message passing on hypergraphs.
(3) Partition τ into $(\tau, \tilde{\tau})$, and set $\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi)$ and set $-A^{*}(\mu) \leftarrow H_{\text {ep }}(\tau, \tilde{\tau})$ to get expectation propagation.
(9) Mean field (from variational perspective) is (with $\mathcal{M}_{F}(G) \subseteq \mathcal{M}$) I.b.:

$$
\begin{equation*}
A(\theta) \geq \max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\}=A_{\mathrm{mf}}(\theta) \tag{19.1}
\end{equation*}
$$

(3) Upper bound Convexified/tree reweighted LBP, entropy upper bounds $H(\tau(F))$ for all members $F \in \mathfrak{D}$ of tractable substructures. Get U.b.:

$$
\begin{equation*}
A(\theta) \leq B_{\mathfrak{D}}(\theta ; \rho) \triangleq \sup _{\tau \in \mathcal{L}(G ; \mathfrak{D})}\left\{\langle\tau, \theta\rangle+\sum_{F \in \mathfrak{Q}} \rho(F) H(\tau(F))\right\} \tag{19.2}
\end{equation*}
$$

with $\mathcal{L}(G ; \mathfrak{D})=\bigcap_{F \in \mathfrak{D}} \mathcal{M}(F)$

MPE - most probable explanation

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^{*} \in \operatorname{argmax}_{x \in \mathrm{D}_{X}} p(x)$.

MPE - most probable explanation

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^{*} \in \operatorname{argmax}_{x \in \mathrm{D}_{X}} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.

MPE - most probable explanation

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^{*} \in \operatorname{argmax}_{x \in \mathrm{D}_{X}} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.

MPE - most probable explanation

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^{*} \in \operatorname{argmax}_{x \in \mathrm{D}_{X}} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.
- Equally difficult when tree-width is large.

MPE - most probable explanation

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^{*} \in \operatorname{argmax}_{x \in \mathrm{D}_{X}} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.
- Equally difficult when tree-width is large.
- Can the variational approach help in this case as well?

MPE - most probable explanation

- MPE again

$$
\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}} p(x)=\left\{x \in \mathrm{D}_{X^{m}}: p_{\theta}(x) \geq p_{\theta}(y), \forall y \in \mathrm{D}_{X^{m}}\right\}
$$

MPE - most probable explanation

- MPE again

$$
\begin{equation*}
\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}} p(x)=\left\{x \in \mathrm{D}_{X^{m}}: p_{\theta}(x) \geq p_{\theta}(y), \forall y \in \mathrm{D}_{X^{m}}\right\} \tag{19.1}
\end{equation*}
$$

- Since we are using exponential family models, we have

$$
\begin{equation*}
\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}} p(x)=\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}}\langle\theta, \phi(x)\rangle=\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmin}} E[x] \tag{19.2}
\end{equation*}
$$

MPE - most probable explanation

- MPE again

$$
\begin{equation*}
\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}} p(x)=\left\{x \in \mathrm{D}_{X^{m}}: p_{\theta}(x) \geq p_{\theta}(y), \forall y \in \mathrm{D}_{X^{m}}\right\} \tag{19.1}
\end{equation*}
$$

- Since we are using exponential family models, we have

$$
\begin{equation*}
\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}} p(x)=\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmax}}\langle\theta, \phi(x)\rangle=\underset{x \in \mathrm{D}_{X^{m}}}{\operatorname{argmin}} E[x] \tag{19.2}
\end{equation*}
$$

i.e., cumulant function isn't required for computation. $E[x]=-\langle\theta, \phi(x)\rangle$ is seen as an "energy" function.

- But it is related. Recall cumulant function

$$
\begin{align*}
A(\theta) & =\log \int \exp \{\langle\theta, \phi(x)\rangle\} d \nu(x) \tag{19.3}\\
& =\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.4}
\end{align*}
$$

MPE - and variational

- Considering $p_{\theta}(x)=\exp \{\langle\theta, \phi(x)\rangle-A(\theta)\}$.

MPE - and variational

- Considering $p_{\theta}(x)=\exp \{\langle\theta, \phi(x)\rangle-A(\theta)\}$.
- Let $\beta \in \mathbb{R}_{+}$be a positive scalar.

MPE - and variational

- Considering $p_{\theta}(x)=\exp \{\langle\theta, \phi(x)\rangle-A(\theta)\}$.
- Let $\beta \in \mathbb{R}_{+}$be a positive scalar.
- If we substitute θ with $\beta \theta$ (i.e., $p_{\theta}(x)$ with $p_{\beta \theta}(x)$), and when $\beta \theta \in \Omega$, then $p_{\beta \theta(x)}$ becomes more concentrated (relatively) around MPE solutions as $\beta \rightarrow \infty$.

MPE - and variational

- Considering $p_{\theta}(x)=\exp \{\langle\theta, \phi(x)\rangle-A(\theta)\}$.
- Let $\beta \in \mathbb{R}_{+}$be a positive scalar.
- If we substitute θ with $\beta \theta$ (i.e., $p_{\theta}(x)$ with $p_{\beta \theta}(x)$), and when $\beta \theta \in \Omega$, then $p_{\beta \theta(x)}$ becomes more concentrated (relatively) around MPE solutions as $\beta \rightarrow \infty$.
- Ex: Let $p_{\theta}\left(x^{*}\right)>p_{\theta}(y)$ for all $y \neq x^{*}$, so x^{*} is the unique maximum. Then $\left\langle\theta, \phi\left(x^{*}\right)\right\rangle>\langle\theta, \phi(y)\rangle$ and
$h(\beta) \triangleq\left\langle\beta \theta, \phi\left(x^{*}\right)\right\rangle-\langle\beta \theta, \phi(y)\rangle=\beta\left(\left\langle\theta, \phi\left(x^{*}\right)\right\rangle-\langle\theta, \phi(y)\rangle\right)$
grows unboundedly large as $\beta \rightarrow \infty$.

MPE - and variational

- Considering $p_{\theta}(x)=\exp \{\langle\theta, \phi(x)\}-A(\theta)\}$
- Let $\beta \in \mathbb{R}_{+}$be a positive scalar.
- If we substitute θ with $\beta \theta$ (i.e., $p_{\theta}(x)$ with $p_{\beta \theta}(x)$), and when $\beta \theta \in \Omega$, then $p_{\beta \theta(x)}$ becomes more concentrated (relatively) around MPE solutions as $\beta \rightarrow \infty$.
- Ex: Let $p_{\theta}\left(x^{*}\right)>p_{\theta}(y)$ for all $y \neq x^{*}$, so x^{*} is the unique maximum. Then $\left\langle\theta, \phi\left(x^{*}\right)\right\rangle>\langle\theta, \phi(y)\rangle$ and

$$
\begin{equation*}
h(\beta) \triangleq\left\langle\beta \theta, \phi\left(x^{*}\right)\right\rangle-\langle\beta \theta, \phi(y)\rangle=\beta\left(\left\langle\theta, \phi\left(x^{*}\right)\right\rangle-\langle\theta, \phi(y)\rangle\right) \tag{19.5}
\end{equation*}
$$

grows unboundedly large as $\beta \rightarrow \infty$.

- Since $A(\beta \theta)$ keeps things normalized, $A(\beta \theta)$ somehow must counteract the otherwise unbounded increase in $h(\beta)$. This suggests $A(\beta \theta) / \beta$ might tell us something.

MPE and variational, theorem relating to MPE solution

Theorem 19.3.1 (MPE and variational)

For all $\theta \in \Omega$, the problem of mode computation has the following alternative representations:

$$
\begin{align*}
& \max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{\mu \in \mathcal{M}}\langle\theta, \mu\rangle, \text { and } \tag{19.6}\\
& \max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \tag{19.7}
\end{align*}
$$

MPE and variational, theorem relating to MPE solution

Theorem 19.3.1 (MPE and variational)

For all $\theta \in \Omega$, the problem of mode computation has the following alternative representations:

$$
\begin{equation*}
\max _{r \in \cap_{m}}\langle\theta, \phi(x)\rangle=\max \langle\theta, \mu\rangle, \text { and } \tag{19.6}
\end{equation*}
$$

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \tag{19.7}
\end{equation*}
$$

- Intuition: We have $\mu=E_{p}[\phi(x)]$, so that
$\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle \neq \max _{p \in \mathcal{P}}\left\langle\theta, E_{p}[\phi(x)]\right\rangle$ where \mathcal{P} is a set of zero entropy distributions with point mass on some point in $\mathrm{D}_{X^{m}}$. I.e., for each $p \in \mathcal{P}$, there exists $x \in \mathrm{D}_{X^{m}}$ with $p(x)=1$.

$$
\checkmark \int \phi(x) \rho(x) d v(x)=\int I\left(x=x^{*}\right) \phi(x)=\phi\left(x^{*}\right)
$$

MPE and variational, theorem relating to MPE solution

Theorem 19.3.1 (MPE and variational)

For all $\theta \in \Omega$, the problem of mode computation has the following alternative representations:

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{\mu \in \overline{\mathcal{M}}}\langle\theta, \mu\rangle, \text { and } \tag{19.6}
\end{equation*}
$$

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \tag{19.7}
\end{equation*}
$$

- Intuition: We have $\mu=E_{p}[\phi(x)]$, so that $\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{p \in \mathcal{P}}\left\langle\theta, E_{p}[\phi(x)]\right\rangle$ where \mathcal{P} is a set of zero entropy distributions with point mass on some point in $\mathrm{D}_{X^{m}}$. I.e., for each $p \in \mathcal{P}$, there exists $x \in \mathrm{D}_{X^{m}}$ with $p(x)=1$.
- Equation (19.6) says that max falls on extreme point of the mean parameter convex region \mathcal{M} (vertex of polytope, in polyhedral case).

MPE - and variational

- Also, Equation (19.6) shows how MPE can be seen as a linear optimization over a convex set \mathcal{M}.

MPE - and variational

- Also, Equation (19.6) shows how MPE can be seen as a linear optimization over a convex set \mathcal{M}.
- For discrete distributions, we have $\mathcal{M}=\mathbb{M}(G)$ for graph G, so this is a linear objective with polyhedral constraints, i.e., a linear program (LP).

MPE - and variational

- Also, Equation (19.6) shows how MPE can be seen as a linear optimization over a convex set \mathcal{M}.
- For discrete distributions, we have $\mathcal{M}=\mathbb{M}(G)$ for graph G, so this is a linear objective with polyhedral constraints, i.e., a linear program (LP).
- Since I.h.s. of Equation (19.6) is integer program, this shows the difficulty of $\mathbb{M}(G)$.

MPE - and variational

- Intution for Equation (19.7), repeated here:

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \tag{19.7}
\end{equation*}
$$

MPE - and variational

- Intution for Equation (19.7), repeated here:

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \tag{19.7}
\end{equation*}
$$

- Intuitively,

$$
\begin{align*}
\lim _{\beta \rightarrow+\infty} \frac{A(\beta \theta)}{\beta} & =\lim _{\beta \rightarrow+\infty} \frac{1}{\beta} \sup _{\mu \in \mathcal{M}}\left\{\langle\beta \theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.8}\\
& =\lim _{\beta \rightarrow+\infty} \sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-\frac{1}{\beta} A^{*}(\mu)\right\} \tag{19.9}
\end{align*}
$$

MPE - and variational

- Intution for Equation (19.7), repeated here:

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\lim _{\beta \rightarrow \infty} \frac{A(\beta \theta)}{\beta} \tag{19.7}
\end{equation*}
$$

- Intuitively,

$$
\begin{align*}
\lim _{\beta \rightarrow+\infty} \frac{A(\beta \theta)}{\beta} & =\lim _{\beta \rightarrow+\infty} \frac{1}{\beta} \sup _{\mu \in \mathcal{M}}\left\{\langle\beta \theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.8}\\
& =\lim _{\beta \rightarrow+\infty} \sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-\frac{1}{\beta} A^{*}(\mu)\right\} \tag{19.9}
\end{align*}
$$

- Due to convexity of A^{*} we can swap the lim and the sup and we get the result.

MPE - and variational for trees

- When graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.

MPE - and variational for trees

- When graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Maxproduct updates take the form:

$$
M_{t \rightarrow s}\left(x_{s}\right) \leftarrow \kappa \max _{x_{t} \in \mathrm{D}_{X_{t}}}\left[\exp \left\{\theta_{s t}\left(x_{s}, x_{t}\right)+\theta_{t}\left(x_{t}\right)\right\} \prod_{u \in N(t) \backslash s} M_{u \rightarrow t}\left(x_{t}\right)\right]
$$

MPE - and variational for trees

- When graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Maxproduct updates take the form:

$$
\begin{equation*}
M_{t \rightarrow s}\left(x_{s}\right) \leftarrow \kappa \max _{x_{t} \in \mathrm{D}_{X_{t}}}\left[\exp \left\{\theta_{s t}\left(x_{s}, x_{t}\right)+\theta_{t}\left(x_{t}\right)\right\} \prod_{u \in N(t) \backslash s} M_{u \rightarrow t}\left(x_{t}\right)\right] \tag{19.10}
\end{equation*}
$$

- Using the Theorem 19.3.1, we get (in the case of a tree T)

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\left[\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)\right]=\max _{\mu \in \mathbb{L}(T)}\langle\mu, \theta\rangle \tag{19.11}
\end{equation*}
$$

MPE - and variational for trees

- When graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Maxproduct updates take the form:

$$
\begin{equation*}
M_{t \rightarrow s}\left(x_{s}\right) \leftarrow \kappa \max _{x_{t} \in \mathrm{D}_{X_{t}}}\left[\exp \left\{\theta_{s t}\left(x_{s}, x_{t}\right)+\theta_{t}\left(x_{t}\right)\right\} \prod_{u \in N(t) \backslash s} M_{u \rightarrow t}\left(x_{t}\right)\right] \tag{19.10}
\end{equation*}
$$

- Using the Theorem 19.3.1, we get (in the case of a tree T)

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\left[\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)\right]=\max _{\mu \in \mathbb{L}(T)}\langle\mu, \theta\rangle \tag{19.11}
\end{equation*}
$$

- Right hand side is a LP over a simple polytope, the marginal polytope for trees $\mathbb{L}(T)$.

MPE, relationship betwen max-product algorithm and linear program

- It turns out that: the max-product updates are a Lagrangian method for solving the dual of the above linear program, i.e., $\max _{\mu \in \mathbb{L}(T)}\langle\mu, \theta\rangle$

MPE, relationship betwen max-product algorithm and linear program

- It turns out that: the max-product updates are a Lagrangian method for solving the dual of the above linear program, i.e., $\max _{\mu \in \mathbb{L}(T)}\langle\mu, \theta\rangle$.
- Marginalization constraint $C_{t s}\left(x_{s}\right)=0$ for edge t, s

$$
\begin{equation*}
C_{t s}\left(x_{s}\right)=\mu_{s}\left(x_{s}\right)-\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right) \tag{19.12}
\end{equation*}
$$

and associated Lagrange multipler $\lambda_{s t}\left(x_{s}\right)$.

MPE, relationship betwen max-product algorithm and linear program

- It turns out that: the max-product updates are a Lagrangian method for solving the dual of the above linear program, i.e., $\max _{\mu \in \mathbb{L}(T)}\langle\mu, \theta\rangle$.
- Marginalization constraint $C_{t s}\left(x_{s}\right)=0$ for edge t, s

$$
\begin{equation*}
C_{t s}\left(x_{s}\right)=\mu_{s}\left(x_{s}\right)-\sum_{x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right) \tag{19.12}
\end{equation*}
$$

and associated Lagrange multipler $\lambda_{s t}\left(x_{s}\right)$.

- Also define a (non-negative and normalized) mean parameter space $\mathbb{N} \subseteq \mathbb{R}^{d}$ as follows:

$$
\mathbb{N}=\left\{\mu \in \mathbb{R}^{d} \mid \mu \geq 0, \sum_{x_{s}} \mu_{s}\left(x_{s}\right)=1, \sum_{x_{s}, x_{t}} \mu_{s t}\left(x_{s}, x_{t}\right)=1\right\}
$$

Max-Product and LP Duality

Theorem 19.3.2 (Max-product and LP Duality)

Consider the dual function \mathcal{Q} defined by the following partial Lagrangian formulation of the tree-structured LP:

$$
\mathcal{Q}(\lambda)=\max _{\mu \in \mathbb{N}} \mathcal{L}(\mu ; \lambda), \text { where }
$$

$$
L(\mu ; \lambda)=\langle\theta, \mu\rangle+\sum_{(s, t) \in E(T)}\left[\sum_{x_{s}} \lambda_{t s}\left(x_{s}\right) C_{t s}\left(x_{s}\right)+\sum_{x_{t}} \lambda_{s t}\left(x_{t}\right) C_{s t}\left(x_{t}\right)\right]
$$

For any fixed point M^{*} of the max-product updates, the vector $\lambda^{*}=\log M^{*}$, where the logarithm is taken elementwise, is an optimal solution of the dual problem $\min _{\lambda} Q(\lambda)$.

Restricted clique functions

- Here we don't restrict G but restrict clique functions.

Restricted clique functions

- Here we don't restrict G but restrict clique functions.
- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write

Restricted clique functions

- Here we don't restrict G but restrict clique functions.
- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ such that we can write

$$
\begin{equation*}
\prod_{v \in V(G)} p(x)=\psi_{v}\left(x_{v}\right) \prod_{(i, j) \in E(G)} \psi_{i j}\left(x_{i}, x_{j}\right) \tag{19.16}
\end{equation*}
$$

Restricted clique functions

- Here we don't restrict G but restrict clique functions.
- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write

$$
\begin{equation*}
\log p(x)=\prod_{v \in V(G)} \psi_{v}\left(x_{v}\right) \prod_{(i, j) \in E(G)} \psi_{i j}\left(x_{i}, x_{j}\right) \tag{19.16}
\end{equation*}
$$

or equivalently

$$
-\log p(x) \overline{\bar{\sigma}} \sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \not \text { f(un) } \text { (19.17) }
$$

Restricted clique functions

- Here we don't restrict G but restrict clique functions.
- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write

$$
\begin{equation*}
\log p(x)=\prod_{v \in V(G)} \psi_{v}\left(x_{v}\right) \prod_{(i, j) \in E(G)} \psi_{i j}\left(x_{i}, x_{j}\right) \tag{19.16}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
-\log p(x) \propto \sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \tag{19.17}
\end{equation*}
$$

- $e_{v}\left(x_{v}\right)$ and $e_{i j}\left(x_{i}, x_{j}\right)$ are like local energy potentials, the smaller they are, the higher the probability. E.g., $e_{i j}\left(x_{i}, x_{j}\right)=-\theta_{i j} \phi_{i j}\left(x_{i}, x_{j}\right)$

Restricted clique functions

- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ such that we can write the global energy $E(x)$ as a sum of unary and pairwisepotentials:

$$
E(x)=\sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{i(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right)
$$

$$
e_{v}\left(x_{r}\right)=e_{r}\left(x_{v}, \bar{y}_{r}\right)
$$

Restricted clique functions

- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write the global energy $E(x)$ as a sum of unary and pairwise potentials:

$$
\begin{equation*}
E(x)=\sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \tag{19.18}
\end{equation*}
$$

- $e_{v}\left(x_{v}\right)$ and $e_{i j}\left(x_{i}, x_{j}\right)$ are like local energy potentials.

Restricted clique functions

- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write the global energy $E(x)$ as a sum of unary and pairwise potentials:

$$
\begin{equation*}
E(x)=\sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \tag{19.18}
\end{equation*}
$$

- $e_{v}\left(x_{v}\right)$ and $e_{i j}\left(x_{i}, x_{j}\right)$ are like local energy potentials.
- Since $\log p(x)=-E(x)+$ const., the smaller $e_{v}\left(x_{v}\right)$ or $e_{i j}\left(x_{i}, x_{j}\right)$ become, the higher the probability becomes.

Restricted clique functions

- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write the global energy $E(x)$ as a sum of unary and pairwise potentials:

$$
\begin{equation*}
E(x)=\sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \tag{19.18}
\end{equation*}
$$

- $e_{v}\left(x_{v}\right)$ and $e_{i j}\left(x_{i}, x_{j}\right)$ are like local energy potentials.
- Since $\log p(x)=-E(x)+$ const., the smaller $e_{v}\left(x_{v}\right)$ or $e_{i j}\left(x_{i}, x_{j}\right)$ become, the higher the probability becomes.
- Further, say that $\mathrm{D}_{X_{v}}=\{0,1\}$ (binary), so we have binary random vectors distributed according to $p(x)$.

Restricted clique functions

- Given G let $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ such that we can write the global energy $E(x)$ as a sum of unary and pairwise potentials:

$$
\begin{equation*}
E(x)=\sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \tag{19.18}
\end{equation*}
$$

- $e_{v}\left(x_{v}\right)$ and $e_{i j}\left(x_{i}, x_{j}\right)$ are like local energy potentials.
- Since $\log p(x)=-E(x)+$ const., the smaller $e_{v}\left(x_{v}\right)$ or $e_{i j}\left(x_{i}, x_{j}\right)$ become, the higher the probability becomes.
- Further, say that $\mathrm{D}_{X_{v}}=\{0,1\}$ (binary), so we have binary random vectors distributed according to $p(x)$.
- Thus, $x \in\{0,1\}^{V}$, and finding MPE solution is setting some of the variables to 0 and some to 1 , i.e.,

MRF example

Markov random field

$$
\begin{equation*}
\log p(x) \propto \sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right) \tag{19.20}
\end{equation*}
$$

When G is a 2D grid graph, we have

Create an auxiliary graph

- We can create auxiliary graph G_{a} that involves two new "terminal" nodes s and t and all of the original "non-terminal" nodes $v \in V(G)$.
- The non-terminal nodes represent the original random variables $x_{v}, v \in V$.
- Starting with the original grid-graph amonst the vertices $v \in V$, we connect each of s and t to all of the original nodes.
- I.e., we form $G_{a}=\left(V \cup\{s, t\}, E+\cup_{v \in V}((s, v) \cup(v, t))\right)$.

Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function $E(x)=\sum_{v \in V(G)} e_{v}\left(x_{v}\right)+\sum_{(i, j) \in E(G)} e_{i j}\left(x_{i}, x_{j}\right)$ needing to be minimized over $x \in\{0,1\}^{V}$. Recall, tree-width is $O(\sqrt{|V|})$.

Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph G_{a}. Edge weights (TBD) of graph are derived from $\left\{e_{v}(\cdot)\right\}_{v \in V}$ and $\left\{e_{i j}(\cdot, \cdot)\right\}_{(i, j) \in E(G)}$. An (s, t)-cut $C \subseteq E\left(G_{a}\right)$ is a set of edges that cut all paths from s to
t. A minimum (s, t)-cut is one that has minimum weight where $w(C)=\sum_{e \in C} w_{e}$ is the cut weight.
To be a cut, must have that, for every $v \in V$, either $(s, v) \in C$ or $(v, t) \in C$. Graph is directed, arrows pointing down from s towards t or from $i \rightarrow j$.

Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph G_{a}. Edge weights (TBD) of graph are derived from $\left\{e_{v}(\cdot)\right\}_{v \in V}$ and $\left\{e_{i j}(\cdot, \cdot)\right\}_{(i, j) \in E(G)}$. An (s, t)-cut $C \subseteq E\left(G_{a}\right)$ is a set of edges that cut all paths from s to
t. A minimum (s, t)-cut is one that has minimum weight where $w(C)=\sum_{e \in C} w_{e}$ is the cut weight.
To be a cut, must have that, for every $v \in V$, either $(s, v) \in C$ or $(v, t) \in C$. Graph is directed, arrows pointing down from s towards t or from $i \rightarrow j$.

Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes s and t are indicated in green.

Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes s and t removed from graph. But there are still un-cut (s, t)-paths remaining.

Transformation from graphical model to auxiliary graph

Additional cut edges incident to two non-terminal nodes are indicated in green.

Transformation from graphical model to auxiliary graph

Vertices adjacent to t are shaded blue, vertices adjacent to s shaded red.

Transformation from graphical model to auxiliary graph

Additional cut edges incident to two non-terminal nodes are removed from graph.

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph with cut edges removed corresponds to particular binary vector $\bar{x} \in\{0,1\}^{n}$. Each vector \bar{x} has a score corresponding to $\log p(\bar{x})$, but when can graph cut scores correspond precisely to $\log p(\bar{x})$ in a way that min-cut algorithms can find minimum of energy $E(x)$?

Setting of the weights in the auxiliary cut graph

- Any graph cut corresponds to a vector $\bar{x} \in\{0,1\}^{n}$.

Setting of the weights in the auxiliary cut graph

- Any graph cut corresponds to a vector $\bar{x} \in\{0,1\}^{n}$.
- If weights of all edges, except those involving terminals s and t, are non-negative, graph cut computable in polynomial time via max-flow (many algorithms, e.g., Edmonds\&Karp $O\left(n m^{2}\right)$ or $O\left(n^{2} m \log (n C)\right.$); Goldberg\&Tarjan $O\left(n m \log \left(n^{2} / m\right)\right)$, see Schrijver, page 161).

Setting of the weights in the auxiliary cut graph

- Any graph cut corresponds to a vector $\bar{x} \in\{0,1\}^{n}$.
- If weights of all edges, except those involving terminals s and t, are non-negative, graph cut computable in polynomial time via max-flow (many algorithms, e.g., Edmonds\&Karp $O\left(n m^{2}\right)$ or $O\left(n^{2} m \log (n C)\right.$); Goldberg\&Tarjan $O\left(n m \log \left(n^{2} / m\right)\right)$, see Schrijver, page 161).
- If weights are set correctly in the cut graph, and if edge functions $e_{i j}$ satisfy certain properties, then graph-cut score corresponding to \bar{x} can be made equivalent to $E(x)=\log p(\bar{x})+$ const..

Setting of the weights in the auxiliary cut graph

- Any graph cut corresponds to a vector $\bar{x} \in\{0,1\}^{n}$.
- If weights of all edges, except those involving terminals s and t, are non-negative, graph cut computable in polynomial time via max-flow (many algorithms, e.g., Edmonds\&Karp $O\left(n m^{2}\right)$ or $O\left(n^{2} m \log (n C)\right.$); Goldberg\&Tarjan $O\left(n m \log \left(n^{2} / m\right)\right)$, see Schrijver, page 161).
- If weights are set correctly in the cut graph, and if edge functions $e_{i j}$ satisfy certain properties, then graph-cut score corresponding to \bar{x} can be made equivalent to $E(x)=\log p(\bar{x})+$ const..
- Hence, poly time graph cut, can find the optimal MPE assignment, regardless of the graphical model's tree-width!

Setting of the weights in the auxiliary cut graph

- Any graph cut corresponds to a vector $\bar{x} \in\{0,1\}^{n}$.
- If weights of all edges, except those involving terminals s and t, are non-negative, graph cut computable in polynomial time via max-flow (many algorithms, e.g., Edmonds\&Karp $O\left(n m^{2}\right)$ or $O\left(n^{2} m \log (n C)\right.$); Goldberg\&Tarjan $O\left(n m \log \left(n^{2} / m\right)\right)$, see Schrijver, page 161).
- If weights are set correctly in the cut graph, and if edge functions $e_{i j}$ satisfy certain properties, then graph-cut score corresponding to \bar{x} can be made equivalent to $E(x)=\log p(\bar{x})+$ const..
- Hence, poly time graph cut, can find the optimal MPE assignment, regardless of the graphical model's tree-width!
- In general, finding MPE is an NP-hard optimization problem.

Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

- For (s, v) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{s, v}=\left(e_{v}(1)-e_{v}(0)\right) \mathbf{1}\left(e_{v}(1)>e_{v}(0)\right) \tag{19.21}
\end{equation*}
$$

Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

- For (s, v) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{s, v}=\left(e_{v}(1)-e_{v}(0)\right) \mathbf{1}\left(e_{v}(1)>e_{v}(0)\right) \tag{19.21}
\end{equation*}
$$

- For (v, t) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{v, t}=\left(e_{v}(0)-e_{v}(1)\right) \mathbf{1}\left(e_{v}(0) \geq e_{v}(1)\right) \tag{19.22}
\end{equation*}
$$

Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

- For (s, v) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{s, v}=\left(e_{v}(1)-e_{v}(0)\right) \mathbf{1}\left(e_{v}(1)>e_{v}(0)\right) \tag{19.21}
\end{equation*}
$$

- For (v, t) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{v, t}=\left(e_{v}(0)-e_{v}(1)\right) \mathbf{1}\left(e_{v}(0) \geq e_{v}(1)\right) \tag{19.22}
\end{equation*}
$$

- For original edge $(i, j) \in E, i, j \in V$, set weight

$$
\begin{equation*}
w_{i, j}=e_{i j}(1,0)+e_{i j}(0,1)-e_{i j}(1,1)-e_{i j}(0,0) \tag{19.23}
\end{equation*}
$$

Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

- For (s, v) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{s, v}=\left(e_{v}(1)-e_{v}(0)\right) \mathbf{1}\left(e_{v}(1)>e_{v}(0)\right) \tag{19.21}
\end{equation*}
$$

- For (v, t) with $v \in V(G)$, set edge

$$
\begin{equation*}
w_{v, t}=\left(e_{v}(0)-e_{v}(1)\right) \mathbf{1}\left(e_{v}(0) \geq e_{v}(1)\right) \tag{19.22}
\end{equation*}
$$

- For original edge $(i, j) \in E, i, j \in V$, set weight

$$
\text { and } \begin{array}{r}
w_{i, j}=e_{i j}(1,0)+e_{i j}(0,1)-e_{i j}(1,1)-e_{i j}(0,0) \\
e_{i j}(1,0)>e_{i j}(0,0), \text { and } e_{i j}(1,1)>e_{i j}(0,1) \\
w_{s, i} \leftarrow w_{s, i}+\left(e_{i j}(1,0)-e_{i j}(0,0)\right) \\
w_{j, t} \leftarrow w_{j, t}+\left(e_{i j}(1,1)-e_{i j}(0,1)\right) \tag{19.25}
\end{array}
$$

and analogous increments if inequalities are flipped.

Non-negative edge weights

- The inequalities ensures that we are adding non-negative weights to each of the edges. I.e., we do $w_{s, i} \leftarrow w_{s, i}+\left(e_{i j}(1,0)-e_{i j}(0,0)\right)$ only if $e_{i j}(1,0)>e_{i j}(0,0)$.

Non-negative edge weights

- The inequalities ensures that we are adding non-negative weights to each of the edges. I.e., we do $w_{s, i} \leftarrow w_{s, i}+\left(e_{i j}(1,0)-e_{i j}(0,0)\right)$ only if $e_{i j}(1,0)>e_{i j}(0,0)$.
- For (i, j) edge weight, it takes the form:

$$
\begin{equation*}
w_{i, j}=e_{i j}(1,0)+e_{i j}(0,1)-e_{i j}(1,1)-e_{i j}(0,0) \tag{19.26}
\end{equation*}
$$

Non-negative edge weights

- The inequalities ensures that we are adding non-negative weights to each of the edges. I.e., we do $w_{s, i} \leftarrow w_{s, i}+\left(e_{i j}(1,0)-e_{i j}(0,0)\right)$ only if $e_{i j}(1,0)>e_{i j}(0,0)$.
- For (i, j) edge weight, it takes the form:

$$
\begin{equation*}
w_{i, j}=e_{i j}(1,0)+e_{i j}(0,1)-e_{i j}(1,1)-e_{i j}(0,0) \tag{19.26}
\end{equation*}
$$

- For this to be non-negative, we need:

$$
\begin{equation*}
e_{i j}(1,0)+e_{i j}(0,1) \geq e_{i j}(1,1)-e_{i j}(0,0) \tag{19.27}
\end{equation*}
$$

Non-negative edge weights

- The inequalities ensures that we are adding non-negative weights to each of the edges. I.e., we do $w_{s, i} \leftarrow w_{s, i}+\left(e_{i j}(1,0)-e_{i j}(0,0)\right)$ only if $e_{i j}(1,0)>e_{i j}(0,0)$.
- For (i, j) edge weight, it takes the form:

$$
\begin{equation*}
w_{i, j}=e_{i j}(1,0)+e_{i j}(0,1)-e_{i j}(1,1)-e_{i j}(0,0) \tag{19.26}
\end{equation*}
$$

- For this to be non-negative, we need:

$$
\begin{equation*}
e_{i j}(1,0)+e_{i j}(0,1) \geq e_{i j}(1,1)-e_{i j}(0,0) \tag{19.27}
\end{equation*}
$$

- Thus weights $w_{i j}$ in s, t-graph above are always non-negative, so graph-cut solvable exactly.

Submodular potentials

- Edge functions must be submodular (in the binary case, equivalent to "associative", "attractive", "regular", "Potts", or "ferromagnetic"): for all $(i, j) \in E(G)$, must have:

$$
\begin{equation*}
e_{i j}(0,1)+e_{i j}(1,0) \geq e_{i j}(1,1)+e_{i j}(0,0) \tag{19.28}
\end{equation*}
$$

Submodular potentials

- Edge functions must be submodular (in the binary case, equivalent to "associative", "attractive", "regular", "Potts", or "ferromagnetic"): for all $(i, j) \in E(G)$, must have:

$$
\begin{equation*}
e_{i j}(0,1)+e_{i j}(1,0) \geq e_{i j}(1,1)+e_{i j}(0,0) \tag{19.28}
\end{equation*}
$$

- This means: on average, preservation is preferred over change.

Submodular potentials

- Edge functions must be submodular (in the binary case, equivalent to "associative", "attractive", "regular", "Potts", or "ferromagnetic"): for all $(i, j) \in E(G)$, must have:

$$
\begin{equation*}
e_{i j}(0,1)+e_{i j}(1,0) \geq e_{i j}(1,1)+e_{i j}(0,0) \tag{19.28}
\end{equation*}
$$

- This means: on average, preservation is preferred over change.
- Actual probability are of the form $p(x) \propto \prod \psi$, so this means $\psi_{i j}(1,0) \psi_{i j}(0,1) \leq \psi_{i j}(0,0) \psi_{i j}(1,1)$: geometric mean of factor scores higher when neighboring pixels have the same value - a reasonable assumption about natural scenes and signals.

Submodular potentials

- Edge functions must be submodular (in the binary case, equivalent to "associative", "attractive", "regular", "Potts", or "ferromagnetic"): for all $(i, j) \in E(G)$, must have:

$$
\begin{equation*}
e_{i j}(0,1)+e_{i j}(1,0) \geq e_{i j}(1,1)+e_{i j}(0,0) \tag{19.28}
\end{equation*}
$$

- This means: on average, preservation is preferred over change.
- Actual probability are of the form $p(x) \propto \prod \psi$, so this means $\psi_{i j}(1,0) \psi_{i j}(0,1) \leq \psi_{i j}(0,0) \psi_{i j}(1,1)$: geometric mean of factor scores higher when neighboring pixels have the same value - a reasonable assumption about natural scenes and signals.
- As a set function, this is the same as:

which is submodular if each of the $f_{i, j}$'s are submodular!

Submodular potentials

- Edge functions must be submodular (in the binary case, equivalent to "associative", "attractive", "regular", "Potts", or "ferromagnetic"): for all $(i, j) \in E(G)$, must have:

$$
\begin{equation*}
e_{i j}(0,1)+e_{i j}(1,0) \geq e_{i j}(1,1)+e_{i j}(0,0) \tag{19.28}
\end{equation*}
$$

- This means: on average, preservation is preferred over change.
- Actual probability are of the form $p(x) \propto \prod \psi$, so this means $\psi_{i j}(1,0) \psi_{i j}(0,1) \leq \psi_{i j}(0,0) \psi_{i j}(1,1)$: geometric mean of factor scores higher when neighboring pixels have the same value - a reasonable assumption about natural scenes and signals.
- As a set function, this is the same as:

$$
\begin{equation*}
f(X)=\sum f_{i, j}(X \cap\{i, j\}) \tag{19.29}
\end{equation*}
$$

which is submodular if each of the $f_{i, j}$'s are submodular!

- A special case of more general submodular functions - unconstrained submodular function minimization is solvable in polytime.

Submodular potentials

Theorem 19.4.1

If the edge functions are submodular and the edge weights in the s, t-graph are set as above, then finding the minimum s, t-cut in the auxiliary graph will yield a variable assignment having maximum probability.

Submodular potentials

Theorem 19.4.1

If the edge functions are submodular and the edge weights in the s, t-graph are set as above, then finding the minimum s, t-cut in the auxiliary graph will yield a variable assignment having maximum probability.

Theorem 19.4.2

Submodular pairwise potentials is a necessary and sufficient condition for an energy function like the above $E(x)$ to be graph representable, meaning that we can set up a graph cut based MPE inference algorithm and the resulting graph cut solves the MPE problem, $\min _{x \in\{0,1\}^{V}} E(x)=\max _{x \in\{0,1\}^{V}} p(x)$, exactly in polytime in $n=|V|$.

Proof.

Useful for computer vision

- image segmentation problems can use such
a model.

Useful for computer vision

- image segmentation problems can use such a model.
- Consider a 2D image, with a MRF to encode "smoothness" (i.e., spatial locality means things are likely to be similar).

Useful for computer vision

- image segmentation problems can use such a model.
- Consider a 2D image, with a MRF to encode "smoothness" (i.e., spatial locality means things are likely to be similar).
- On average, similar neighbors have lower energy (higher probability) via

$$
\begin{aligned}
& e_{i j}(0,1)+e_{i j}(1,0) \geq \\
& e_{i j}(1,1)+e_{i j}(0,0)
\end{aligned}
$$

Graph Cut Marginalization

- What to do when potentials are not submodular?

Graph Cut Marginalization

- What to do when potentials are not submodular? QPBO, quadratic pseudo Boolean optimization (computes only a partial solution).

Graph Cut Marginalization

- What to do when potentials are not submodular? QPBO, quadratic pseudo Boolean optimization (computes only a partial solution).
- For non-binary, use move making algorithms ($\alpha-\beta$-swaps, α-expansions, fusion moves, etc.)

Graph Cut Marginalization

- What to do when potentials are not submodular? QPBO, quadratic pseudo Boolean optimization (computes only a partial solution).
- For non-binary, use move making algorithms ($\alpha-\beta$-swaps, α-expansions, fusion moves, etc.)
- Is submodularity sufficient to make standard marginalization possible?

Graph Cut Marginalization

- What to do when potentials are not submodular? QPBO, quadratic pseudo Boolean optimization (computes only a partial solution).
- For non-binary, use move making algorithms ($\alpha-\beta$-swaps, α-expansions, fusion moves, etc.)
- Is submodularity sufficient to make standard marginalization possible?
- Unfortunately, even in submodular case, computing partition function is a \#P-complete problem (if it was possible to do it in poly time, that would require $P=N P$).

Graph Cut Marginalization

- What to do when potentials are not submodular? QPBO, quadratic pseudo Boolean optimization (computes only a partial solution).
- For non-binary, use move making algorithms ($\alpha-\beta$-swaps, α-expansions, fusion moves, etc.)
- Is submodularity sufficient to make standard marginalization possible?
- Unfortunately, even in submodular case, computing partition function is a \#P-complete problem (if it was possible to do it in poly time, that would require $P=N P$).
- On the other hand, for pairwise MRFs, computing partition function in submodular potential case is approximable (has low error with high probability).

Graph Cut Marginalization

- What to do when potentials are not submodular? QPBO, quadratic pseudo Boolean optimization (computes only a partial solution).
- For non-binary, use move making algorithms ($\alpha-\beta$-swaps, α-expansions, fusion moves, etc.)
- Is submodularity sufficient to make standard marginalization possible?
- Unfortunately, even in submodular case, computing partition function is a \#P-complete problem (if it was possible to do it in poly time, that would require $P=N P$).
- On the other hand, for pairwise MRFs, computing partition function in submodular potential case is approximable (has low error with high probability).
- Attractive potentials (generalization of submodular to non-binary case) leads to bound in Bethe, as we saw.

Bounds on inner product

- We know $\mathbb{L}(G) \supseteq \mathbb{M}(G)$ with equality only when $G=T$.

Bounds on inner product

- We know $\mathbb{L}(G) \supseteq \mathbb{M}(G)$ with equality only when $G=T$.
- Thus,

Bounds on inner product

- We know $\mathbb{L}(G) \supseteq \mathbb{M}(G)$ with equality only when $G=T$.
- Thus,

$$
\begin{equation*}
\max _{x \in \mathbb{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{\mu \in \mathbb{M}(G)}\langle\theta, \mu\rangle \leq \max _{\tau \in \mathbb{L}(G)}\langle\theta, \tau\rangle \tag{19.30}
\end{equation*}
$$

- r.h.s. is called a first-order LP relaxation (i.e., due to 1-tree), with only linear number of constraints and can be solved exactly.

Bounds on inner product

- We know $\mathbb{L}(G) \supseteq \mathbb{M}(G)$ with equality only when $G=T$.
- Thus,

$$
\begin{equation*}
\max _{x \in \mathrm{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{\mu \in \mathbb{M}(G)}\langle\theta, \mu\rangle \leq \max _{\tau \in \mathbb{L}(G)}\langle\theta, \tau\rangle \tag{19.30}
\end{equation*}
$$

- r.h.s. is called a first-order LP relaxation (i.e., due to 1-tree), with only linear number of constraints and can be solved exactly.
- Note, middle case means that solution lies on integral extremal point of polytope $\mathbb{M}(G)$ (always at least one extremal point in solution set of any LP over a polytope).

Bounds on inner product

- We know $\mathbb{L}(G) \supseteq \mathbb{M}(G)$ with equality only when $G=T$.
- Thus,

$$
\begin{equation*}
\max _{x \in \mathbb{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{\mu \in \mathbb{M}(G)}\langle\theta, \mu\rangle \leq \max _{\tau \in \mathbb{L}(G)}\langle\theta, \tau\rangle \tag{19.30}
\end{equation*}
$$

- r.h.s. is called a first-order LP relaxation (i.e., due to 1-tree), with only linear number of constraints and can be solved exactly.
- Note, middle case means that solution lies on integral extremal point of polytope $\mathbb{M}(G)$ (always at least one extremal point in solution set of any LP over a polytope).
- I.e., solution is some point $\phi(y)=\mu_{y} \in \mathbb{M}(G)$ for solution vector $y \in\{0,1\}^{n}$.

Bounds on inner product

- We know $\mathbb{L}(G) \supseteq \mathbb{M}(G)$ with equality only when $G=T$.
- Thus,

$$
\begin{equation*}
\max _{x \in \mathbb{D}_{X^{m}}}\langle\theta, \phi(x)\rangle=\max _{\mu \in \mathbb{M}(G)}\langle\theta, \mu\rangle \leq \max _{\tau \in \mathbb{L}(G)}\langle\theta, \tau\rangle \tag{19.30}
\end{equation*}
$$

- r.h.s. is called a first-order LP relaxation (i.e., due to 1-tree), with only linear number of constraints and can be solved exactly.
- Note, middle case means that solution lies on integral extremal point of polytope $\mathbb{M}(G)$ (always at least one extremal point in solution set of any LP over a polytope).
- I.e., solution is some point $\phi(y)=\mu_{y} \in \mathbb{M}(G)$ for solution vector $y \in\{0,1\}^{n}$.
- We can relate extreme points of $\mathbb{M}(G)$ and $\mathbb{L}(G)$.

Extreme points

Proposition 19.5.1

The extreme points of $\mathbb{L}(G)$ and $\mathbb{M}(G)$ are related in the following way:
(a) All extreme points of $\mathbb{M}(G)$ are integral, each one is also an extreme point of $\mathbb{L}(G)$.
(b) For graphs with cycles, $\mathbb{L}(G)$ also includes additional extreme points with fractional elements that lie strictly outside of $\mathbb{M}(G)$.

- If the relaxation works or not, depends on the tightness. If we end up with integral point, we are tight and have an exact solution.

Extreme points

Proposition 19.5.1

The extreme points of $\mathbb{L}(G)$ and $\mathbb{M}(G)$ are related in the following way:
(a) All extreme points of $\mathbb{M}(G)$ are integral, each one is also an extreme point of $\mathbb{L}(G)$.
(b) For graphs with cycles, $\mathbb{L}(G)$ also includes additional extreme points with fractional elements that lie strictly outside of $\mathbb{M}(G)$.

- If the relaxation works or not, depends on the tightness. If we end up with integral point, we are tight and have an exact solution.
- If we end up with a fractional solution, we are not tight and instead are outside of $\mathbb{M}(G)$ and thus have only an approximate solution.

Extreme points

Proposition 19.5.1

The extreme points of $\mathbb{L}(G)$ and $\mathbb{M}(G)$ are related in the following way:
(a) All extreme points of $\mathbb{M}(G)$ are integral, each one is also an extreme point of $\mathbb{L}(G)$.
(b) For graphs with cycles, $\mathbb{L}(G)$ also includes additional extreme points with fractional elements that lie strictly outside of $\mathbb{M}(G)$.

- If the relaxation works or not, depends on the tightness. If we end up with integral point, we are tight and have an exact solution.
- If we end up with a fractional solution, we are not tight and instead are outside of $\mathbb{M}(G)$ and thus have only an approximate solution.
- In such case, we could potentially round the nonintegral values back down to integers.

Fractional solutions

- Perhaps fractional solutions have at least some information about the optimal solution.

Fractional solutions

- Perhaps fractional solutions have at least some information about the optimal solution.
- We get:

Fractional solutions

- Perhaps fractional solutions have at least some information about the optimal solution.
- We get:

Definition 19.5.2

Given a fractional solution τ to the LP relaxation, let $I \subset V$ represent the subset of vertices for which τ_{s} has only integral elements, say fixing $x_{s}=x_{s}^{*}$ for all $s \in I$. The fractional solution is said to be strongly persistent if any optimal integral solution y^{*} satisfies $y_{s}^{*}=x_{s}^{*}$ for all $s \in I$. The fractional solution is weakly persistent if there exists at least one optimal y^{*} such that $y_{s}^{*}=x_{s}^{*}$ for all $s \in I$.

Fractional solutions

- Perhaps fractional solutions have at least some information about the optimal solution.
- We get:

Definition 19.5.2

Given a fractional solution τ to the LP relaxation, let $I \subset V$ represent the subset of vertices for which τ_{s} has only integral elements, say fixing $x_{s}=x_{s}^{*}$ for all $s \in I$. The fractional solution is said to be strongly persistent if any optimal integral solution y^{*} satisfies $y_{s}^{*}=x_{s}^{*}$ for all $s \in I$. The fractional solution is weakly persistent if there exists at least one optimal y^{*} such that $y_{s}^{*}=x_{s}^{*}$ for all $s \in I$.

- So if either of these are true, we'd get some sort of partial solution.

Fractional solutions

- Perhaps fractional solutions have at least some information about the optimal solution.
- We get:

Definition 19.5.2

Given a fractional solution τ to the LP relaxation, let $I \subset V$ represent the subset of vertices for which τ_{s} has only integral elements, say fixing $x_{s}=x_{s}^{*}$ for all $s \in I$. The fractional solution is said to be strongly persistent if any optimal integral solution y^{*} satisfies $y_{s}^{*}=x_{s}^{*}$ for all $s \in I$. The fractional solution is weakly persistent if there exists at least one optimal y^{*} such that $y_{s}^{*}=x_{s}^{*}$ for all $s \in I$.

- So if either of these are true, we'd get some sort of partial solution.
- Strongly persistent ensures that no solutions are eliminated by sticking with the integral values of x_{s} for $s \in I$.

Persistent solutions in LP relaxation binary case

Proposition 19.5.3

Suppose that the first-order LP relaxation is applied to the binary quadratic program

$$
\begin{equation*}
\max _{x \in\{0,1\}^{m}}\left\{\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right\} \tag{19.31}
\end{equation*}
$$

Then any fractional solution is strongly persistent!

Higher order relaxations

- As you can imagine, higher order relaxations are possible.

Higher order relaxations

- As you can imagine, higher order relaxations are possible.
- Kikuchi style relaxations, where pseudo marginals come from being consistent w.r.t. a graph other than a tree.

Higher order relaxations

- As you can imagine, higher order relaxations are possible.
- Kikuchi style relaxations, where pseudo marginals come from being consistent w.r.t. a graph other than a tree.
- Analogous to previous cases, could use a k-tree for $k>1$ or define polytope based on being locally consistent w.r.t. some clustered instance, i.e., hypergraph.

Higher order relaxations

- As you can imagine, higher order relaxations are possible.
- Kikuchi style relaxations, where pseudo marginals come from being consistent w.r.t. a graph other than a tree.
- Analogous to previous cases, could use a k-tree for $k>1$ or define polytope based on being locally consistent w.r.t. some clustered instance, i.e., hypergraph.
- In each case, we'll get an upper bound approximation of the MPE problem

Higher order relaxations

- As you can imagine, higher order relaxations are possible.
- Kikuchi style relaxations, where pseudo marginals come from being consistent w.r.t. a graph other than a tree.
- Analogous to previous cases, could use a k-tree for $k>1$ or define polytope based on being locally consistent w.r.t. some clustered instance, i.e., hypergraph.
- In each case, we'll get an upper bound approximation of the MPE problem
- In each case, we'll have a Lagrangian, and can define max-marginal style messages that, if they converge, correspond to a fixed point.

Higher order relaxations

- As you can imagine, higher order relaxations are possible.
- Kikuchi style relaxations, where pseudo marginals come from being consistent w.r.t. a graph other than a tree.
- Analogous to previous cases, could use a k-tree for $k>1$ or define polytope based on being locally consistent w.r.t. some clustered instance, i.e., hypergraph.
- In each case, we'll get an upper bound approximation of the MPE problem
- In each case, we'll have a Lagrangian, and can define max-marginal style messages that, if they converge, correspond to a fixed point.
- Important to generalize to discrete non-binary case, so far little is known (much work here done in the graph cut case, in terms of move-making algorithms).

Higher order relaxations

- As you can imagine, higher order relaxations are possible.
- Kikuchi style relaxations, where pseudo marginals come from being consistent w.r.t. a graph other than a tree.
- Analogous to previous cases, could use a k-tree for $k>1$ or define polytope based on being locally consistent w.r.t. some clustered instance, i.e., hypergraph.
- In each case, we'll get an upper bound approximation of the MPE problem
- In each case, we'll have a Lagrangian, and can define max-marginal style messages that, if they converge, correspond to a fixed point.
- Important to generalize to discrete non-binary case, so far little is known (much work here done in the graph cut case, in terms of move-making algorithms).
- Can move-making algorithms be seen in the variational framework (i.e., is there a variational approximation such that move making algorithms correspond to fixed point of some Lagrangian?).

Graphical Model Inference

- We started by marginalizing variables, the elimination algorithm.

Graphical Model Inference

- We started by marginalizing variables, the elimination algorithm.
- Elimination couples variables together if the graph is not a tree.

Graphical Model Inference

- We started by marginalizing variables, the elimination algorithm.
- Elimination couples variables together if the graph is not a tree.
- all graphs can be embedded into a hypertree if the "width" of the tree is wide enough.

Graphical Model Inference

- We started by marginalizing variables, the elimination algorithm.
- Elimination couples variables together if the graph is not a tree.
- all graphs can be embedded into a hypertree if the "width" of the tree is wide enough.
- Want to find slimmest possible tree into which a graph can be embedded.

Graphical Model Inference

- We started by marginalizing variables, the elimination algorithm.
- Elimination couples variables together if the graph is not a tree.
- all graphs can be embedded into a hypertree if the "width" of the tree is wide enough.
- Want to find slimmest possible tree into which a graph can be embedded.
- Once done we can convert to junction tree and run message passing (equivalent to eliminating on the hypertree).

Graphical Model Inference

- We started by marginalizing variables, the elimination algorithm.
- Elimination couples variables together if the graph is not a tree.
- all graphs can be embedded into a hypertree if the "width" of the tree is wide enough.
- Want to find slimmest possible tree into which a graph can be embedded.
- Once done we can convert to junction tree and run message passing (equivalent to eliminating on the hypertree).
- Often, slimmest possible tree (even if we could find it) is not slim enough, need approximation.

Time-Space Tradeoffs in Exact and Approximate Inference

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph
(2) Functional restrictions to the model (i.e., use factors or potential functions that obey certain properties). Then certain fast algorithms (e.g., graph-cut) can be performed.

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph
(2) Functional restrictions to the model (i.e., use factors or potential functions that obey certain properties). Then certain fast algorithms (e.g., graph-cut) can be performed.
- approximate solution to exact problem - approximate inference

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph
(2) Functional restrictions to the model (i.e., use factors or potential functions that obey certain properties). Then certain fast algorithms (e.g., graph-cut) can be performed.
- approximate solution to exact problem - approximate inference
(1) Message or other form of propagation, variational approaches, LP relaxations, loopy belief propagation (LBP)

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph
(2) Functional restrictions to the model (i.e., use factors or potential functions that obey certain properties). Then certain fast algorithms (e.g., graph-cut) can be performed.
- approximate solution to exact problem - approximate inference
(1) Message or other form of propagation, variational approaches, LP relaxations, loopy belief propagation (LBP)
(2) sampling (Monte Carlo, MCMC, importance sampling) and pruning (e.g., search based A*, score based, number of hypothesis based) procedures

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph
(2) Functional restrictions to the model (i.e., use factors or potential functions that obey certain properties). Then certain fast algorithms (e.g., graph-cut) can be performed.
- approximate solution to exact problem - approximate inference
(1) Message or other form of propagation, variational approaches, LP relaxations, loopy belief propagation (LBP)
(2) sampling (Monte Carlo, MCMC, importance sampling) and pruning (e.g., search based A*, score based, number of hypothesis based) procedures
- Both methods only guaranteed approximate quality solutions.

Approximation: Two general approaches

- exact solution to approximate problem - approximate problem
(1) learning with or using a model with a structural restriction, structure learning, using a k-tree for a lower k than one knows is true. Make sure k is small enough so that exact inference can be performed, and make sure that, in that low tree-width model, one has best possible graph
(2) Functional restrictions to the model (i.e., use factors or potential functions that obey certain properties). Then certain fast algorithms (e.g., graph-cut) can be performed.
- approximate solution to exact problem - approximate inference
(1) Message or other form of propagation, variational approaches, LP relaxations, loopy belief propagation (LBP)
(2) sampling (Monte Carlo, MCMC, importance sampling) and pruning (e.g., search based A^{*}, score based, number of hypothesis based) procedures
- Both methods only guaranteed approximate quality solutions.
- No longer in the achievable region in time-space tradoff graph, new set of time/space tradeoffs to achieve a particular accuracy.

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 19.6.3 (Relationship between A and A^{*})
(a) For any $\mu \in \mathcal{M}^{\circ}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{19.3}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.4}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{19.5}
\end{equation*}
$$

Variational Approach Amenable to Approximation

- Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{19.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{19.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate \mathcal{M} or $-A^{*}(\mu)$ or (most likely) both.

Variational Approximations we cover

(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$ where $H_{\text {app }}=\sum_{g \in E} c(g) H_{g}\left(\tau_{g}\right)$ (via Möbius) to get Kikuchi variational approximation, message passing on hypergraphs.
(3) Partition τ into $(\tau, \tilde{\tau})$, and set $\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi)$ and set $-A^{*}(\mu) \leftarrow H_{\text {ep }}(\tau, \tilde{\tau})$ to get expectation propagation.
(9) Mean field (from variational perspective) is (with $\mathcal{M}_{F}(G) \subseteq \mathcal{M}$) I.b.:

$$
\begin{equation*}
A(\theta) \geq \max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\}=A_{\mathrm{mf}}(\theta) \tag{19.1}
\end{equation*}
$$

(5) Upper bound Convexified/tree reweighted LBP, entropy upper bounds $H(\tau(F))$ for all members $F \in \mathfrak{D}$ of tractable substructures. Get U.b.:

$$
\begin{equation*}
A(\theta) \leq B_{\mathfrak{D}}(\theta ; \rho) \triangleq \sup _{\tau \in \mathcal{L}(G ; \mathfrak{D})}\left\{\langle\tau, \theta\rangle+\sum_{F \in \mathfrak{Q}} \rho(F) H(\tau(F))\right\} \tag{19.2}
\end{equation*}
$$

with $\mathcal{L}(G ; \mathfrak{D})=\bigcap_{F \in \mathfrak{D}} \mathcal{M}(F)$

Sources for Today's Lecture

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Markov Random Fields for Vision and Image Processing http://mitpress.mit.edu/catalog/item/default.asp?ttype= $2 \& t i d=12668$ edited by Andrew Blake, Pushmeet Kohli and Carsten Rother
- Earlier lectures of this class.

