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Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001

Should have read chapters 1 through 5 in our book. Read chapter 7

Also read chapter 8 (integer/linear programming, although we cover
only a bit of that chapter in class unfortunately).

Also should have read “Divergence measures and message passing” by
Thomas Minka, and “Structured Region Graphs: Morphing EP into
GBP”, by Welling, Minka, and Teh.

Assignment due Wednesday (Dec 3rd) night, 11:45pm. Final project
proposal final progress report (one page max).

Update: For status update, final writeup, and talk, use notation as
close as possible to that used in class!

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F2/40 (pg.2/136)

http://www.nowpublishers.com/product.aspx?product=MAL&doi=2200000001
http://www.nowpublishers.com/product.aspx?product=MAL&doi=2200000001


Logistics Review

On Final Project
Project update report due tonight, 11:45pm via canvas.

Final four-page writeup due next Wednesday at 11:45pm.
Final writeup: 4-pages, 10 point font, 8.5x11 inch pages, 1 inch
margins on all four sides.
Again, all your writeups (starting tonight) should use notation as close
as possible to what we’ve been using in class!
Talk slides need to be uploaded before. Must be pdf, all will be
meregd into one pdf file. No animations.
We have 21 presentations to give. 10 minutes each means 3.5 hours
of presentation. 7 minutes each means 2.45 hours of presentation.
Final Exam time slot: Wednesday, December 10, 2014,230-420 pm,
PCAR 297 (two hours).
Alternatively, you each do a 10-minute youtube presentation with at
least screen capture and audio, can use perhaps
http://tinytake.com/ or http://camstudio.org/, or post your
favorite to canvas for others to discover. Then, it to an unlisted
youtube link, send the link, and we all view it.
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24): Kikuchi, Expectation
Propagation

L17 (11/26): Expectation Propagation,
Mean Field

L18 (12/1): Structured mean field,
Convex relaxations and upper bounds, tree
reweighted case

L19 (12/3): Variational MPE, Graph Cut
MPE, LP Relaxations

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Logistics Review

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 19.2.3 (Relationship between A and A∗)

(a) For any µ ∈M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(19.3)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (19.4)

(c) For θ ∈ Ω, sup occurs at µ ∈M◦ of moment matching conditions

µ =

∫
DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (19.5)
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Logistics Review

Variational Approach Amenable to Approximation

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (19.1)

where dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(19.2)

Given efficient expression for A(θ), we can compute marginals of
interest.

Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(θ). We either approximate M or −A∗(µ)
or (most likely) both.
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Logistics Review

Variational Approximations we cover
1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational

approximation, LBP fixed point.
2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)

where Happ =
∑

g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi
variational approximation, message passing on hypergraphs.

3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M) l.b.:

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (19.1)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures. Get U.b.:

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(19.2)

with L(G;D) =
⋂
F∈DM(F )
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Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

MPE - most probable explanation

In many cases, we care not to sum over x in
∑

x p(x) but instead to
compute x∗ ∈ argmaxx∈DX

p(x).

This is called the “Viterbi assignment”, or the “most probable
explanation” (MPE), or the “most probable configuration” or the
“mode”, or a few other names.

From the perspective of semirings, we are only changing the semiring
(from sum-product to max-product). Can do exactly same form of
exact inference algorithms (e.g., trees, k-trees, junction trees) using
different semiring, to get answer. To get n-best answers, can also be
seen as a semiring.

Equally difficult when tree-width is large.

Can the variational approach help in this case as well?
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Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

MPE - most probable explanation

MPE again

argmax
x∈DXm

p(x) = {x ∈ DXm : pθ(x) ≥ pθ(y), ∀y ∈ DXm} (19.1)

Since we are using exponential family models, we have

argmax
x∈DXm

p(x) = argmax
x∈DXm

〈θ, φ(x)〉 = argmin
x∈DXm

E[x] (19.2)

i.e., cumulant function isn’t required for computation.
E[x] = −〈θ, φ(x)〉 is seen as an “energy” function.

But it is related. Recall cumulant function

A(θ) = log

∫
exp {〈θ, φ(x)〉}dν(x) (19.3)

= sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (19.4)
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Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

MPE - and variational

Considering pθ(x) = exp {〈θ, φ(x)〉 −A(θ)}.

Let β ∈ R+ be a positive scalar.

If we substitute θ with βθ (i.e., pθ(x) with pβθ(x)), and when βθ ∈ Ω,
then pβθ(x) becomes more concentrated (relatively) around MPE
solutions as β →∞.

Ex: Let pθ(x
∗) > pθ(y) for all y 6= x∗, so x∗ is the unique maximum.

Then 〈θ, φ(x∗)〉 > 〈θ, φ(y)〉 and

h(β) , 〈βθ, φ(x∗)〉 − 〈βθ, φ(y)〉 = β
(
〈θ, φ(x∗)〉 − 〈θ, φ(y)〉

)
(19.5)

grows unboundedly large as β →∞.

Since A(βθ) keeps things normalized, A(βθ) somehow must
counteract the otherwise unbounded increase in h(β). This suggests
A(βθ)/β might tell us something.
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MPE and variational, theorem relating to MPE solution

Theorem 19.3.1 (MPE and variational)

For all θ ∈ Ω, the problem of mode computation has the following
alternative representations:

max
x∈DXm

〈θ, φ(x)〉 = max
µ∈M̄

〈θ, µ〉 , and (19.6)

max
x∈DXm

〈θ, φ(x)〉 = lim
β→∞

A(βθ)

β
(19.7)

Intuition: We have µ = Ep[φ(x)], so that
maxx∈DXm 〈θ, φ(x)〉 = maxp∈P 〈θ, Ep[φ(x)]〉 where P is a set of zero
entropy distributions with point mass on some point in DXm . I.e., for
each p ∈ P, there exists x ∈ DXm with p(x) = 1.
Equation (19.6) says that max falls on extreme point of the mean
parameter convex region M̄ (vertex of polytope, in polyhedral case).
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MPE - and variational

Also, Equation (19.6) shows how MPE can be seen as a linear
optimization over a convex set M.

For discrete distributions, we have M = M(G) for graph G, so this is
a linear objective with polyhedral constraints, i.e., a linear program
(LP).

Since l.h.s. of Equation (19.6) is integer program, this shows the
difficulty of M(G).
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MPE - and variational

Intution for Equation (19.7), repeated here:

max
x∈DXm

〈θ, φ(x)〉 = lim
β→∞

A(βθ)

β
(19.7)

Intuitively,

lim
β→+∞

A(βθ)

β
= lim

β→+∞

1

β
sup
µ∈M

{〈βθ, µ〉 −A∗(µ)} (19.8)

= lim
β→+∞

sup
µ∈M

{
〈θ, µ〉 − 1

β
A∗(µ)

}
(19.9)

Due to convexity of A∗ we can swap the lim and the sup and we get
the result.
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MPE - and variational for trees

When graph is a tree, we can find an interesting connection between
the max-product form of messages and a particular Lagrangian.

Maxproduct updates take the form:

Mt→s(xs)← κ max
xt∈DXt

exp {θst(xs, xt) + θt(xt)}
∏

u∈N(t)\s

Mu→t(xt)


(19.10)

Using the Theorem 19.3.1, we get (in the case of a tree T )

max
x∈DXm

∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)

 = max
µ∈L(T )

〈µ, θ〉 (19.11)

Right hand side is a LP over a simple polytope, the marginal polytope
for trees L(T ).
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MPE, relationship betwen max-product algorithm and
linear program

It turns out that: the max-product updates are a Lagrangian method
for solving the dual of the above linear program, i.e., maxµ∈L(T ) 〈µ, θ〉.

Marginalization constraint Cts(xs) = 0 for edge t, s

Cts(xs) = µs(xs)−
∑
xt

µst(xs, xt) (19.12)

and associated Lagrange multipler λst(xs).

Also define a (non-negative and normalized) mean parameter space
N ⊆ Rd as follows:

N =

{
µ ∈ Rd|µ ≥ 0,

∑
xs

µs(xs) = 1,
∑
xs,xt

µst(xs, xt) = 1

}
(19.13)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F15/40 (pg.41/136)



Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

MPE, relationship betwen max-product algorithm and
linear program

It turns out that: the max-product updates are a Lagrangian method
for solving the dual of the above linear program, i.e., maxµ∈L(T ) 〈µ, θ〉.
Marginalization constraint Cts(xs) = 0 for edge t, s

Cts(xs) = µs(xs)−
∑
xt

µst(xs, xt) (19.12)

and associated Lagrange multipler λst(xs).

Also define a (non-negative and normalized) mean parameter space
N ⊆ Rd as follows:

N =

{
µ ∈ Rd|µ ≥ 0,

∑
xs

µs(xs) = 1,
∑
xs,xt

µst(xs, xt) = 1

}
(19.13)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F15/40 (pg.42/136)



Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

MPE, relationship betwen max-product algorithm and
linear program

It turns out that: the max-product updates are a Lagrangian method
for solving the dual of the above linear program, i.e., maxµ∈L(T ) 〈µ, θ〉.
Marginalization constraint Cts(xs) = 0 for edge t, s

Cts(xs) = µs(xs)−
∑
xt

µst(xs, xt) (19.12)

and associated Lagrange multipler λst(xs).

Also define a (non-negative and normalized) mean parameter space
N ⊆ Rd as follows:

N =

{
µ ∈ Rd|µ ≥ 0,

∑
xs

µs(xs) = 1,
∑
xs,xt

µst(xs, xt) = 1

}
(19.13)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F15/40 (pg.43/136)



Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

Max-Product and LP Duality

Theorem 19.3.2 (Max-product and LP Duality)

Consider the dual function Q defined by the following partial Lagrangian
formulation of the tree-structured LP:

Q(λ) = max
µ∈N
L(µ;λ), where (19.14)

L(µ;λ) = 〈θ, µ〉+
∑

(s,t)∈E(T )

[∑
xs

λts(xs)Cts(xs) +
∑
xt

λst(xt)Cst(xt)

]
(19.15)

For any fixed point M∗ of the max-product updates, the vector
λ∗ = logM∗, where the logarithm is taken elementwise, is an optimal
solution of the dual problem minλQ(λ).
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Restricted clique functions

Here we don’t restrict G but restrict clique functions.

Given G let p ∈ F(G,M(f)) such that we can write

log p(x) =
∏

v∈V (G)

ψv(xv)
∏

(i,j)∈E(G)

ψij(xi, xj) (19.16)

or equivalently

− log p(x) ∝
∑

v∈V (G)

ev(xv) +
∑

(i,j)∈E(G)

eij(xi, xj) (19.17)

ev(xv) and eij(xi, xj) are like local energy potentials, the smaller they
are, the higher the probability. E.g., eij(xi, xj) = −θijφij(xi, xj)
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Restricted clique functions

Given G let p ∈ F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
∑

v∈V (G)

ev(xv) +
∑

(i,j)∈E(G)

eij(xi, xj) (19.18)

ev(xv) and eij(xi, xj) are like local energy potentials.

Since log p(x) = −E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E(x) (19.19)
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MRF example

Markov random field

log p(x) ∝
∑

v∈V (G)

ev(xv) +
∑

(i,j)∈E(G)

eij(xi, xj) (19.20)

When G is a 2D grid graph, we have
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Create an auxiliary graph

We can create auxiliary graph Ga that involves two new “terminal”
nodes s and t and all of the original “non-terminal” nodes v ∈ V (G).

The non-terminal nodes represent the original random variables
xv, v ∈ V .

Starting with the original grid-graph amonst the vertices v ∈ V , we
connect each of s and t to all of the original nodes.

I.e., we form Ga = (V ∪ {s, t}, E + ∪v∈V ((s, v) ∪ (v, t))).
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Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function
E(x) =

∑
v∈V (G) ev(xv) +

∑
(i,j)∈E(G) eij(xi, xj) needing to be

minimized over x ∈ {0, 1}V . Recall, tree-width is O(
√
|V |).
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Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph Ga. Edge
weights (TBD) of graph are derived from
{ev(·)}v∈V and {eij(·, ·)}(i,j)∈E(G).

An (s, t)-cut C ⊆ E(Ga) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

∑
e∈C we

is the cut weight.
To be a cut, must
have that, for
every v ∈ V ,
either (s, v) ∈ C or
(v, t) ∈ C. Graph is
directed, arrows pointing down
from s towards t or from i→ j. t

s
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Transformation from graphical model to auxiliary graph
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An (s, t)-cut C ⊆ E(Ga) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

∑
e∈C we

is the cut weight.
To be a cut, must
have that, for
every v ∈ V ,
either (s, v) ∈ C or
(v, t) ∈ C. Graph is
directed, arrows pointing down
from s towards t or from i→ j. t

s
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Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes
s and t are indicated in green.

t

s
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Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes
s and t removed from graph. But there are
still un-cut (s, t)-paths remaining.

t

s
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Transformation from graphical model to auxiliary graph

Additional cut edges incident to two
non-terminal nodes are indicated in green.

t

s
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Transformation from graphical model to auxiliary graph

Vertices adjacent to t are shaded blue,
vertices adjacent to s shaded red.

t

s
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Transformation from graphical model to auxiliary graph

Additional cut edges incident to two
non-terminal nodes are removed from graph.

t

s
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Transformation from graphical model to auxiliary graph

Augmented graph-cut graph with cut edges
removed corresponds to particular binary
vector x̄ ∈ {0, 1}n. Each vector x̄ has a
score corresponding to log p(x̄),
but when can graph cut scores
correspond precisely to log p(x̄)
in a way that min-cut
algorithms can find
minimum of
energy E(x)?

t

s

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F21/40 (pg.65/136)



Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph
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Setting of the weights in the auxiliary cut graph
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

For (s, v) with v ∈ V (G), set edge

ws,v = (ev(1)− ev(0))1(ev(1) > ev(0)) (19.21)

For (v, t) with v ∈ V (G), set edge

wv,t = (ev(0)− ev(1))1(ev(0) ≥ ev(1)) (19.22)

For original edge (i, j) ∈ E, i, j ∈ V , set weight

wi,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (19.23)

and if eij(1, 0) > eij(0, 0), and eij(1, 1) > eij(0, 1),

ws,i ← ws,i + (eij(1, 0)− eij(0, 0)) (19.24)

wj,t ← wj,t + (eij(1, 1)− eij(0, 1)) (19.25)

and analogous increments if inequalities are flipped.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F23/40 (pg.71/136)



Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

For (s, v) with v ∈ V (G), set edge

ws,v = (ev(1)− ev(0))1(ev(1) > ev(0)) (19.21)

For (v, t) with v ∈ V (G), set edge

wv,t = (ev(0)− ev(1))1(ev(0) ≥ ev(1)) (19.22)

For original edge (i, j) ∈ E, i, j ∈ V , set weight

wi,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (19.23)

and if eij(1, 0) > eij(0, 0), and eij(1, 1) > eij(0, 1),

ws,i ← ws,i + (eij(1, 0)− eij(0, 0)) (19.24)

wj,t ← wj,t + (eij(1, 1)− eij(0, 1)) (19.25)

and analogous increments if inequalities are flipped.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 19 - Dec 3rd, 2014 F23/40 (pg.72/136)



Variational MPE Graph Cut MPE LP Relaxations Class Recap Refs

Setting of the weights in the auxiliary cut graph
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Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.
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Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do ws,i ← ws,i + (eij(1, 0)− eij(0, 0)) only
if eij(1, 0) > eij(0, 0).

For (i, j) edge weight, it takes the form:

wi,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (19.26)

For this to be non-negative, we need:

eij(1, 0) + eij(0, 1) ≥ eij(1, 1)− eij(0, 0) (19.27)

Thus weights wij in s, t-graph above are always non-negative, so
graph-cut solvable exactly.
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Non-negative edge weights
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Submodular potentials

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”):
for all (i, j) ∈ E(G), must have:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (19.28)

This means: on average, preservation is preferred over change.
Actual probability are of the form p(x) ∝

∏
ψ, so this means

ψij(1, 0)ψij(0, 1) ≤ ψij(0, 0)ψij(1, 1): geometric mean of factor
scores higher when neighboring pixels have the same value - a
reasonable assumption about natural scenes and signals.
As a set function, this is the same as:

f(X) =
∑

{i,j}∈E(G)

fi,j(X ∩ {i, j}) (19.29)

which is submodular if each of the fi,j ’s are submodular!
A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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Submodular potentials

Theorem 19.4.1

If the edge functions are submodular and the edge weights in the
s, t-graph are set as above, then finding the minimum s, t-cut in the
auxiliary graph will yield a variable assignment having maximum
probability.

Theorem 19.4.2

Submodular pairwise potentials is a necessary and sufficient condition for
an energy function like the above E(x) to be graph representable,
meaning that we can set up a graph cut based MPE inference algorithm
and the resulting graph cut solves the MPE problem,
minx∈{0,1}V E(x) = maxx∈{0,1}V p(x), exactly in polytime in n = |V |.

Proof.

See Kolmogorov 2004
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Useful for computer vision

image segmentation
problems can use such
a model.

Consider a 2D image,
with a MRF to
encode “smoothness”
(i.e., spatial locality
means things are
likely to be similar).

On average, similar
neighbors have lower
energy (higher
probability) via
eij(0, 1) + eij(1, 0) ≥
eij(1, 1) + eij(0, 0)
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Useful for computer vision

image segmentation
problems can use such
a model.

Consider a 2D image,
with a MRF to
encode “smoothness”
(i.e., spatial locality
means things are
likely to be similar).

On average, similar
neighbors have lower
energy (higher
probability) via
eij(0, 1) + eij(1, 0) ≥
eij(1, 1) + eij(0, 0)

s - source

s-t cut will bi-partition
the pixels, those on s- and
those on t-side.

t - sink

t-side links

s-side links
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Graph Cut Marginalization

What to do when potentials are not submodular?

QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution)

.

For non-binary, use move making algorithms (α− β-swaps,
α-expansions, fusion moves, etc.)

Is submodularity sufficient to make standard marginalization possible?

Unfortunately, even in submodular case, computing partition function
is a #P-complete problem (if it was possible to do it in poly time,
that would require P = NP ).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with high
probability).

Attractive potentials (generalization of submodular to non-binary
case) leads to bound in Bethe, as we saw.
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Bounds on inner product

We know L(G) ⊇M(G) with equality only when G = T .

Thus,

max
x∈DXm

〈θ, φ(x)〉 = max
µ∈M(G)

〈θ, µ〉 ≤ max
τ∈L(G)

〈θ, τ〉 (19.30)

r.h.s. is called a first-order LP relaxation (i.e., due to 1-tree), with
only linear number of constraints and can be solved exactly.

Note, middle case means that solution lies on integral extremal point
of polytope M(G) (always at least one extremal point in solution set
of any LP over a polytope).

I.e., solution is some point φ(y) = µy ∈M(G) for solution vector
y ∈ {0, 1}n.

We can relate extreme points of M(G) and L(G).
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Extreme points

Proposition 19.5.1

The extreme points of L(G) and M(G) are related in the following way:

(a) All extreme points of M(G) are integral, each one is also an extreme
point of L(G).

(b) For graphs with cycles, L(G) also includes additional extreme points
with fractional elements that lie strictly outside of M(G).

If the relaxation works or not, depends on the tightness. If we end up
with integral point, we are tight and have an exact solution.

If we end up with a fractional solution, we are not tight and instead
are outside of M(G) and thus have only an approximate solution.

In such case, we could potentially round the nonintegral values back
down to integers.
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Fractional solutions

Perhaps fractional solutions have at least some information about the
optimal solution.

We get:

Definition 19.5.2

Given a fractional solution τ to the LP relaxation, let I ⊂ V represent the
subset of vertices for which τs has only integral elements, say fixing
xs = x∗s for all s ∈ I. The fractional solution is said to be strongly
persistent if any optimal integral solution y∗ satisfies y∗s = x∗s for all
s ∈ I. The fractional solution is weakly persistent if there exists at least
one optimal y∗ such that y∗s = x∗s for all s ∈ I.

So if either of these are true, we’d get some sort of partial solution.

Strongly persistent ensures that no solutions are eliminated by sticking
with the integral values of xs for s ∈ I.
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Persistent solutions in LP relaxation binary case

Proposition 19.5.3

Suppose that the first-order LP relaxation is applied to the binary
quadratic program

max
x∈{0,1}m

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

 (19.31)

Then any fractional solution is strongly persistent!
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Higher order relaxations

As you can imagine, higher order relaxations are possible.

Kikuchi style relaxations, where pseudo marginals come from being
consistent w.r.t. a graph other than a tree.
Analogous to previous cases, could use a k-tree for k > 1 or define
polytope based on being locally consistent w.r.t. some clustered
instance, i.e., hypergraph.
In each case, we’ll get an upper bound approximation of the MPE
problem
In each case, we’ll have a Lagrangian, and can define max-marginal
style messages that, if they converge, correspond to a fixed point.
Important to generalize to discrete non-binary case, so far little is
known (much work here done in the graph cut case, in terms of
move-making algorithms).
Can move-making algorithms be seen in the variational framework
(i.e., is there a variational approximation such that move making
algorithms correspond to fixed point of some Lagrangian?).
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Graphical Model Inference

We started by marginalizing variables, the elimination algorithm.

Elimination couples variables together if the graph is not a tree.

all graphs can be embedded into a hypertree if the “width” of the tree
is wide enough.

Want to find slimmest possible tree into which a graph can be
embedded.

Once done we can convert to junction tree and run message passing
(equivalent to eliminating on the hypertree).

Often, slimmest possible tree (even if we could find it) is not slim
enough, need approximation.
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Time-Space Tradeoffs in Exact and Approximate Inference
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Approximation: Two general approaches

exact solution to approximate problem - approximate problem

1 learning with or using a model with a structural restriction, structure
learning, using a k-tree for a lower k than one knows is true. Make sure
k is small enough so that exact inference can be performed, and make
sure that, in that low tree-width model, one has best possible graph

2 Functional restrictions to the model (i.e., use factors or potential
functions that obey certain properties). Then certain fast algorithms
(e.g., graph-cut) can be performed.

approximate solution to exact problem - approximate inference

1 Message or other form of propagation, variational approaches, LP
relaxations, loopy belief propagation (LBP)

2 sampling (Monte Carlo, MCMC, importance sampling) and pruning
(e.g., search based A*, score based, number of hypothesis based)
procedures

Both methods only guaranteed approximate quality solutions.
No longer in the achievable region in time-space tradoff graph, new
set of time/space tradeoffs to achieve a particular accuracy.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 19.6.3 (Relationship between A and A∗)

(a) For any µ ∈M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(19.3)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (19.4)

(c) For θ ∈ Ω, sup occurs at µ ∈M◦ of moment matching conditions

µ =

∫
DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (19.5)
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Variational Approach Amenable to Approximation

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (19.1)

where dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(19.2)

Given efficient expression for A(θ), we can compute marginals of
interest.

Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(θ). We either approximate M or −A∗(µ)
or (most likely) both.
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Variational Approximations we cover
1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational

approximation, LBP fixed point.
2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)

where Happ =
∑

g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi
variational approximation, message passing on hypergraphs.

3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M) l.b.:

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (19.1)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures. Get U.b.:

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(19.2)

with L(G;D) =
⋂
F∈DM(F )
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001

Markov Random Fields for Vision and Image Processing
http://mitpress.mit.edu/catalog/item/default.asp?ttype=

2&tid=12668 edited by Andrew Blake, Pushmeet Kohli and Carsten
Rother

Earlier lectures of this class.
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