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Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001

Should have read chapters 1 through 5 in our book. Read chapter 7.

Also read chapter 8 (integer programming, although we probably
won’t cover that chapter in class unfortunately).

Also should have read “Divergence measures and message passing” by
Thomas Minka, and “Structured Region Graphs: Morphing EP into
GBP”, by Welling, Minka, and Teh.

Assignment due Wednesday (Dec 3rd) night, 11:45pm. Final project
proposal final progress report (one page max).

Update: For status update, final writeup, and talk, use notation as
close as possible to that used in class!
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24): Kikuchi, Expectation
Propagation

L17 (11/26): Expectation Propagation,
Mean Field

L18 (12/1): Structured mean field,
Convex relaxations and upper bounds, tree
reweighted case

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 18 - Dec 1st, 2014 F3/45 (pg.3/45)

Logistics Review

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 18.2.3 (Relationship between A and A∗)

(a) For any µ ∈M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(18.3)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (18.4)

(c) For θ ∈ Ω, sup occurs at µ ∈M◦ of moment matching conditions

µ =

∫
DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (18.5)
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Variational Approach Amenable to Approximation
Variational Approximations we cover

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (18.1)

where dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(18.2)

Given efficient expression for A(θ), we can compute marginals of
interest.
Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(θ). We either approximate M or −A∗(µ)
or (most likely) both.

1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational
approximation, LBP fixed point.

2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)
where Happ =

∑
g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi

variational approximation, message passing on hypergraphs.
3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M) l.b.:

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (18.3)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures. Get U.b.:

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(18.4)

with L(G;D) =
⋂
F∈DM(F )
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EP as variational: Summary of key points

Fixed points of EP exist assuming Lagrangian form has at least one
optimum.
No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.
EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.
When base distribution is unaries and Φi is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.
Moment matching of EP can be seen as striving for solution of
associated Lagrangian.
Lost of flexibility here, depending on what the base distribution is
(e.g., could be a k-tree, clusters, or many other structures as well).
Can also be done for Gaussian mixture and other distributions.
Many more details, variations, and possible roads to new research.
See text and also see Tom Minka’s papers.
http://research.microsoft.com/en-us/um/people/minka/papers/
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Mean Field

So far, we have been using an outer bound on M.

In mean-field methods, we use an “inner bound”, a subset of M
constructed so as to make the optimization of A(θ) easier.

Since subset, we get immediate bound on A(θ), all else (i.e., the
entropy) being equal.

Key: we based the inner bound on a “tractable family” like a 1-tree or
even a 0-tree (all independent) so that the variational problem can be
computed efficiently.

Convexity of the optimization problem is often lost still, however, in
the general case (due to the inner bound).

Thus, in mean field, we will get a lower bound on A(θ) but not a
convex procedure to find it (both good and bad news).
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Tractable Families (for mean field approach)

We have graph G = (V,E) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F = (V,EF ) where EF ⊆ E.

Simplest example: F = (V, ∅) all independence model.

Tree example: F = (V,ET ) where edges ET ⊂ E constitute a
spanning tree.

Exponential family, sufficient statistics φ = (φα, α ∈ I) associated
with this family I(F ) ⊆ I. These are the statistics that need respect
the Markov properties of only the subgraph F .

Ω gets smaller too, canonical F -respecting parameters are of the form:

R|I| 3 Ω(F ) , {θ ∈ Ω|θα = 0 ∀α ∈ I \ I(F )} ⊆ Ω. (18.14)

Notice, all parameters associated with sufficient statistic not in I(F )
are set to zero, those statistics are nonexistent in F .

If parameter was not zero, model would not respect the familiy of F .
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Inner bound Approximate Polytope

Before, we had M(G;φ)(=MG(G;φ)), all possible mean parameters
associated with G and associated set of sufficient statistics φ.

For a given subgraph F , we only consider those mean parameters
possible under F -respecting models. I.e.,

MF (G;φ) =
{
µ ∈ Rd|µ = Eθ[φ(x)] for some θ ∈ Ω(F )

}
(18.18)

Therefore, since θ ∈ Ω(F ) ⊆ Ω, we have that

M◦F (G;φ) ⊆M◦(G;φ) (18.19)

and so M◦F (G;φ) is an inner approximation of the set of realizable
mean parameters.

Shorthand notation: M◦F (G) = M◦F (G;φ) and M◦(G) = M◦(G;φ)
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Tractable Dual

Normally dual A∗(µ) = supθ∈Ω (〈θ, µ〉 −A(θ)) is intractable or
unavailable, but key idea is that if µ ∈MF (G) it will be possible to
compute easily.

Thus, goal of mean field (from variational approximation perspective)
is to form AMF(θ) where:

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} , AMF(θ) (18.23)

where A∗F (µ) corresponds to dual function restricted to inner bound
set F(G). I.e., when we expand A∗F (µ), we can take advantage of the
fact that µ is restricted in all cases, so A∗F (µ) might be greatly
simplified relative to A∗(µ).

Note, for µ ∈MF (G) and since MF (G) ⊆M(G), A∗F (µ) is not an
approximation, rather it is just easy to compute.
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Mean field, KL-Divergence, Exponential Model Families

Thus, solving the mean-field variational problem (see Eqn. (18.23)) of:

max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = max
µ∈MF (G)

{〈µ, θ〉 −A∗(µ)} (18.34)

is identical to minimizing KL Divergence D(µ||θ) subject to constraint
µ ∈MF (G).

I.e., mean field can be seen as finding the best approximation, in
terms of this particular KL-divergence, to pθ, over a family of “nice”
distributions MF (G).
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Näıve Mean field for Ising Model: optimization

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(18.35)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

We have a non-convex problem, so while it is a bound, it might be
hard to get as tight as possible.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Str. Mean Field Cnvx Relax/Up. Bounds Tree Re-weighted Case Refs

Structured Mean Field

Key idea: set of sufficient statistics that yield efficient inference need
not be all independence. Could be a tree, or a chain, or a set of
trees/chains.

“structured” in general means that it is not a monolithic single
variable, but is a vector with some decomposability properties.

In Structured mean field, we exploit this and it again can be seen in
our variational framework.

We first see a nice way that we can use fixed points of the mean field
primal/dual equations to derive a general form of the mean field
update.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define new quantity M(F ), the set of realizable mean parameters
associated with F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Ex: mean field Ising, edges (s, t) ∈ E, get µst = gst(µ(F )) = µsµt.
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Structured Mean Field

The mean field optimization problem becomes

max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} (18.1)

= max
µ(F )∈M(F )

{ ∑
α∈I(F )

θαµα +
∑

α∈Ic(F )

θαgα(µ(F ))−A∗F (µ(F ))

︸ ︷︷ ︸
f(µ(F ))

}

(18.2)

With this, we can recover our sigmoid mean field coordinate update
process by iterating fixed point equations of f , i.e., for β ∈ I(F ),

∂f

∂µβ
(µ(F )) = θβ +

∑
α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F ))−
∂A∗F
∂µβ

(µ(F )) (18.3)
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Structured Mean Field

Setting this to zero, and then aggregating/concatenating over
β ∈ I(F ), vector fix point condition is:

∇A∗F (µ(F )) = θ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F )) (18.4)

∇A is the forward mapping, maps from canonical to mean
parameters, and ∇A∗ does the reverse. Hence, naming
γ(F ) = ∇A(µ(F )), gives a parameter update equation for β ∈ I(F )

γβ(F )← θβ +
∑

α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F )) (18.5)

Above is the mean field update, mapping from canonical parameters
(θβ, and θα for α ∈ I(G) \ I(F )) and using the mean parameters
µ(F ) to new updated canonical parameters γβ(F ) for β ∈ I(F )). It is
to be repeated over and over.
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Structured Mean Field

After each update of Eqn. (18.5), a mean parameter, say µ(F )δ, that
depends on any of the updated canonical parameter also needs to be
updated before doing the next update.

Since we’re using a tractable sub-structure F , we can then update the
out-of-date mean parameters using any exact inference algorithm
(e.g., junction tree, possible since sub-structure is tractable), and then
repeat Eqn. (18.5).
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Structured Mean Field

Alternatively, we can transform back to mean parameters right away
using ∇A is the forward mapping, maping from canonical to mean.

I.e., we can derive a mean field mean parameter to mean parameter
update equation using AF since ∇AF (γ(F )) = µ(F ),

We get update, for β ∈ I(F ):

µβ(F )← ∂AF
∂γβ

θβ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F ))

 (18.6)

This generalizes our mean field coordinate ascent update from before,
where in that case we would get ∂AF

∂γβ
as being the sigmoid mapping.

But here, we can use this for any tractable substructure (e.g., trees or
chains or collections thereof).
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Structured Mean Field Factorial HMMs
This idea was developed and applied using factorial HMMs.

Graph consists of M 1st-order Markov chains xi1:T for i ∈ [M ],
coupled together at each time via factor p(ȳt|x1

t , x
2
t , . . . , x

M
t ).

While each HMM chain is simple (it is only a chain, so a 1-tree), the
common observation induces a dependence between each. Thus, given
M chains, have a clique of size M (e.g., after moralization, on right)
After moralization, covering hypergraph consists of tractable
sub-substructure hyperedges F =

{{
xit, x

i
t+1

}
: i ∈ [M ], t ∈ [T ]

}
and

remaining structure E \ F =
{{
x1
t , x

2
t , . . . , x

M
t

}
: t ∈ [T ]

}
.
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Structured Mean Field Factorial HMMs

The induced dependencies (cliques as dotted ellipses)

Tree width of this model is? M

Thus, if r states per chain, then exact inference complexity rM+1.

Each β ∈ I(F ) corresponds to one of the Markov chain edges in one
of the M Markov chains, each soting O(r2).

Each β ∈ I \ I(F ) corresponds to one of the size M cliques (dotted
ellipses above) corresponding to the v-structure moralizations, each
costing O(rM ).
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Structured Mean Field Factorial HMMs

A “natural” choice of approximat-
ing distribution is a set of coupled
chains, natural, perhaps primarily
for computational reasons.

Under this independent chains case, we have that for each
β ∈ I \ I(F ), derivable functions have form
gβ(µ(F )) =

∏M
i=1 fi({µi(F )}), for some functions fi. This is fully

factored, so is easy to work with, maintains separate chains.
Each update of form Eqn. (18.5) updates parameters for β ∈ I(F ),
corresponds to all edges of all M Markov chains.
To recover mean parameters (or do Eqn. (18.6)), need only
forward-backward procedure on each chain separately, O(MTr2).
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Convex Relaxations and Upper Bounds

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (18.7)

Other than mean field (which gives lower bound on A(θ)), none of the
other approximation methods have been anything other than
approximation methods.

What about upper bounds?

We would like both lower and upper bounds of A(θ) since that will
allow us to produce upper and lower bounds of the probabilistic
queries we wish to perform.

If the upper and lower bounds between a given probably p is small,
pL ≤ p ≤ pU , with pU − pL ≤ ε, we have guarantees, for a particular
instance of a model.

In this next chapter (Chap 7), we will “convexify” H(µ) and at the
same time produce upper bounds.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).

In general, inference (computing mean parameters) starting from
canonical parameters is hard for a given G.

For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .

Let D be a set of subfamilies that are tractable.

I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.

As before, I(F ) ⊆ I are the subset of indices of the suff. stats. that
abide by F , and |I(F )| = d(F ) < d = |I| suff. stats.

As before, M(F ) is set of realizable mean parameters associated with
F , and µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(18.8)

Note MF (G) 6=M(F ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Given µ ∈M, µ(F ) ∈M(F ) projects from I to I(F ).

Thus, for any µ ∈M ⊆ Rd, we have that µ(F ) ∈M(F ) ⊆ Rd(F ).

We can moreover define the entropy associated with projected mean,
namely H(µ(F )) , H(pµ(F )) = −A∗(µ(F )).

Critically, we have that H(µ(F )) ≥ H(µ) = H(pµ), as we show next.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Proposition 18.4.1 (Maximum Entropy Bounds)

Given any mean parameter µ ∈M and its projection µ(F ) onto any
subgraph F , we have the bound

A∗(µ(F )) ≤ A∗(µ) (18.9)

or alternatively stated, H(µ(F )) ≥ H(µ), entropy of projection is higher.

Intuition: H(µ) = H(pµ) is the entropy of the exponential family
model with mean parameters µ.
equivalently H(µ) = H(pµ) is the entropy of the distribution that is
the solution to the maximum entropy problem subject to the
constraints that it has µ = Epθ [φ(X)].
Fewer constraints when forming µ(F ) (see Eqn. (18.8)), so entropy in
corresponding maxent problem can only, if anything, get larger.
Thus, H(µ(F )) ≥ H(µ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy
Proof.

Dual problem

A∗(µ) = sup
θ∈Rd
{〈µ, θ〉 −A(θ)} (18.10)

Dual problem in sub-graph case.

A∗(µ(F )) = sup
θ(F )∈Rd(F )

{〈µ(F ), θ(F )〉 −A(θ(F ))} (18.11)

Dual problem in sub-graph case — alternate expression

A∗(µ(F )) = sup
θ ∈ Rd

θα = 0 ∀α /∈ I(F )

{〈µ, θ〉 −A(θ)} (18.12)

Thus, A∗(µ) ≥ A∗(µ(F )).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Note that the upper bound is true for each F ∈ D, and thus would be
true for mixtures of different F ∈ D.

We can form a distribution over tractable structures, i.e., ρ ∈ R|D|,
i.e., ρ(F ) ≥ 0 for F ∈ D and

∑
F∈D ρ(F ) = 1

Convex combination over F ∈ D, gives more general upper bound

H(µ) ≤ Eρ[H(µ(F ))] =
∑
F∈D

ρ(F )H(µ(F )) (18.13)

This will be our convexified upper bound on entropy (lower bound on
the dual).

compared to mean field, we are not choosing only one structure, but
many of them, and mixing them together in a certain way.

This so far gives us an upper bound on A(θ), but we still need an
outer bound. The combination will give us our uppper bound on A(θ).
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Convex Relaxations and Upper Bounds - Outer bound

When we form mixture of entropies (which really are duals), we make
sure any given µ(F ) can be evaluated for any dual (i.e., each
component can properly evaluate any possible µ(F )).

Logical constraint: make sure any µ(F ) works for all components.

Constraint set as follows:

L(G;D) =
{
τ ∈ Rd|τ(F ) ∈M(F ) ∀F ∈ D

}
(18.14)

Note this is an outer bound i.e., L(G;D) ⊇M(G) since any member
of M(G) (any valid mean parameter for G) must also be a member
of any M(F ).

Also note, L(G;D) is convex since it is the intersection of a set of
convex sets.
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Convex Upper Bounds

Combining the upper bound on entropy, and the outer bound on M,
we get a new variational approximation to the cumulant function.

BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(18.15)

Objective is convex in θ since it is a max over a set of affine functions
of θ (i.e., g(θ) = maxτ 〈τ, θ〉+ cτ )

Evaluating the objective (optimization) is concave, so possible to get!

Also, L(G;D) is a convex outer bound on M(G)

Thus BD(θ; ρ) is convex, has a global optimal solution, it
approximates A(θ), and best of all is an upper bound,
A(θ) ≤ BD(θ; ρ)
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Tree-reweighted sum-product and Bethe

We can get convex upper bounds in the tree case, and a new style of
sum-product algorithm.

Consider MRF again

pθ(x) ∝ exp

∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)

 (18.16)

Let T be a set of all spanning trees T of G, and let ρ be a distribution
over them,

∑
T∈T ρ(T ) = 1.

Thus, we have H(µ) ≤
∑

T∈T ρ(T )H(µ(T ))

For any T , H(µ(T )) has an easy form, i.e.,

H(µ(T )) =
∑
s∈V

Hs(µs)−
∑

(s,t)∈E(T )

Ist(µst) (18.17)

We want to use this to see what happens when we take the expected
value w.r.t. distribution ρ.
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Tree-reweighted sum-product and Bethe

Every tree is spanning, all tress have all nodes, so the probability,
according to ρ of a given node is always 1. I.e., ρs = 1,∀s ∈ V .

Thus, in Eρ[H(µ(T ))], we have a term of the form
∑

s∈V Hs(µs).

For edges we need ρst = Eρ[I[(s, t) ∈ E(T )]], this indicates the
probability of presence of an edge in the set T.

The expression becomes

H(µ) ≤
∑
s∈V

Hs(µs)−
∑

(s,t)∈E

ρstIst(µst) (18.18)

Note right hand sum is over all E (not just a given spanning tree) and
terms are weighted by probability of the given edge ρst.

ρst is edge appearance probability, ρ = (ρst, (s, t) ∈ E) is spanning
tree polytope.
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Edge appearance probabilities example

(a) (b) (c) (d)

(a) a graph G = (V,E) with m = |V | = 7

(b), (c), and (d) various spanning trees, each with probability 1/3.

What are the edge appearance probabilities ρst?
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Tree-reweighted sum-product and Bethe

We also need outer bound on M.
For discrete case M = M(G) is marginal polytope.
M(T ) is marginal polytope for tree, and for a tree is the same as
L(T ), the locally consistent pseudo-marginals (which recall are
marginals for a tree).
Thus, µ(T ) ∈M(T ) requires non-negativity, sum-to-one (at each
node), and edge-to-node consistency (marginalization) on each edge.
If G = T then we’re done.
For general G, If we ask for µ(T ) ∈M(T ) for all T ∈ T, this is
identical to asking for local marginalization on every edge of G.
Thus, in this case L(G; I) is just the set of locally consistent
pseudomarginals, and is the same as the outer bound we saw in the
Bethe variational approximation L(G).
In Bethe case, however, we did not have a bound on entropy, only an
outer bound on the marginal polytope. Now, however, we also have a
(convexification based) bound on entropy.
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Tree-reweighted sum-product and Bethe

Theorem 18.5.1 (Tree-Reweighted Bethe and Sum-Product)

(a) For any choice of edge appearance vector ρ = (ρst, (s, t) ∈ E) in the
spanning tree polytope, the cumulant function A(θ) evaluated at θ is
upper bounded by the solution of the tree reweighted Bethe
variational problem (BVP):

BT(θ; ρ) = max
τ∈L(G)

〈τ, θ〉+
∑
s∈V

Hs(τs)−
∑

(s,t)∈E

ρstIst(τst)


(18.19)

≥ A(θ) (18.20)

For any edge appearance vector such that ρst > 0 for all edges (s, t),
this problem is strictly convex with a unique optimum.
. . .
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Tree-reweighted sum-product and Bethe

Theorem 18.5.1 (Tree-Reweighted Bethe and Sum-Product)

(b) The tree-reweighted BVP can be solved using the tree-reweighted
sum-product updates

Mt→s(xs)← κ
∑
x′t∈Xt

ϕst(xs, x
′
t)

∏
v∈N(t)\{s} [Mv→t(x

′
t)]
ρvt

[Ms→t(x′t)]
(1−ρts)

(18.21)

where ϕst(xs, x
′
t) = exp

(
1
ρst
φst(xs, x

′
t) + θt(x

′
t)
)
. The updates have a

unique fixed point under assumptions given in (a).
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Tree-reweighted sum-product and Bethe

Note that if ρst ← 1, for all (s, t) ∈ E, then we recover standard LBP
and Bethe approximation.

However, if ρst = 1 then edge (s, t) appears in all spanning trees. If
this is indeed true for all spanning trees T , then G must be a tree, and
we get back standard tree-based message passing we saw in lecture 2!!

Thus, this is a true convex generalization, when ρst < 1 for many s, t.

Note that ρ = (ρst, (s, t) ∈ E) must live in the “spanning tree
polytope” ⊆ RE+, i.e., a convex combination of vertices consisting of
characteristic (indicator) functions of spanning trees (see example
earlier). I.e., Let T be the set of all spanning trees, and 1T ∈ {0, 1}E
be the characteristic vector of T ∈ T. Then we must have that

ρ ∈ conv({1T : T ∈ T}) (18.22)

where conv(·) is the convex hull of its argument.
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More on spanning tree polytope

Spanning tree polytope takes the form

ρ ∈ conv({1T : T ∈ T}) (18.23)

where T is set of all spanning trees.

Consider graphic matroid on G = (V,E) with rank function r(A) for
any A ⊆ E.

Then A is a spanning tree iff r(A) = |A| and |A| = m− 1.

Consider polytopes:

Pr =
{
x ∈ RE+ : x(A) ≤ r(A), ∀A ⊆ E

}
(18.24)

Br = Pr ∩
{
x ∈ RE+ : x(E) = r(E)

}
(18.25)

Then if T is a spanning tree, 1T ∈ Br, and Br = conv({1T : T ∈ T}).

Edmonds showed that a simple fast greedy procedure will maximize a
linear function over this polytope, and this can be useful for finding
good points in the spanning tree polytope.
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Tree-reweighted sum-product: convex vs. upper bound

In above case, we have both a convexification of the cumulant and an
upper bound property.

It should be pointed out that these are not mutual requirements: one
can have convex without upper bound and vice verse.
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Tree-reweighted sum-product fixed point

The fixed point we ultimately reach has following form:

τ∗s (xs) = κ exp {θs(xs)}
∏

v∈N(s)

[M∗v→s(xs)]
ρvs (18.26)

τ∗st(xs, xt) = κϕst(xs, xt)

∏
v∈N(s)\t[M

∗
vs(xs)]

ρvs
∏
v∈N(t)\s[M

∗
vt(xt)]

ρvt

[M∗ts(xs)]
(1−ρst)[M∗st(xt)]

(1−ρts)

(18.27)

with ϕst(xs, xt) = exp
{

1
ρst
θst(xs, xt) + θs(xs) + θt(xt)

}
where the ∗

versions are the final (convergent) messages.

In practice: damping of messages M appears in practice to help reach
convergence, where each new message is a convex mixture of the
previous version of itself and the new message according to the
equations.
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hypertree-reweighted sum-product

Why stop at trees, instead could use hypertrees and then deduce a
hypertree version of the reweighted BP algorithm.

Example in book considers k-trees, with tree width at most t. I.e.
T(t).

Then we get the same form of bounds

H(µ) ≤ Eρ[H(µ(T ))] =
∑
T∈T(t)

ρ(T )H(µ(T )) (18.28)

but here T is over all valid k-trees.

This leads to a convexified Kikuchi variational problem

A(θ) ≤ BB(t)(θ; ρ) = max
τ∈L(G)

{〈τ, θ〉+ Eρ[H(τ(T ))]} (18.29)

same form (but different than) before.

Optimizing ρ over hypertree polytope is hard, unfortunately.
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Reweighted EP

Other variational variants have convexified version.

Convexified forms of EP

Hep(τ, τ̃ ; ρ) = H(τ) +

dI∑
`=1

ρ(`)[H(τ, τ̃ `)−H(τ)] (18.30)

where
∑

` ρ(`) = 1.

In this case, reweighted entropy is concave!

Lagrangian formulation leads to solutions that are a form of
“reweighted” EP, ideas which also are sometimes called “power EP”
(blending the above reweighted sum-product ideas and EP).
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Other variants

Why only trees? There could be other tractable families (e.g., perhaps
planar graphs, or restricted grids)

Other forms, perhaps it would be possible to take mixtures of
structures each of which might not have low tree width but has
restricted potentials in some way.

Other examples from book:

Use of Gaussian continuous entropy as an upper bound and a
covariance-based outer bound of M.
use of conditional entropy, various forms of use of polyhedral
approximations.

This is still an active research area!
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Variational Approach Amenable to Approximation
Variational Approximations we cover

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (18.1)

where dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(18.2)

Given efficient expression for A(θ), we can compute marginals of
interest.
Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(θ). We either approximate M or −A∗(µ)
or (most likely) both.

1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational
approximation, LBP fixed point.

2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)
where Happ =

∑
g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi

variational approximation, message passing on hypergraphs.
3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M) l.b.:

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (18.3)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures. Get U.b.:

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(18.4)

with L(G;D) =
⋂
F∈DM(F )
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001
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