EE512A - Advanced Inference in Graphical Models
 - Fall Quarter, Lecture 18 -
 http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Dec 1st, 2014

Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Should have read chapters 1 through 5 in our book. Read chapter 7 .
- Also read chapter 8 (integer programming, although we probably won't cover that chapter in class unfortunately).
- Also should have read "Divergence measures and message passing" by Thomas Minka, and "Structured Region Graphs: Morphing EP into GBP", by Welling, Minka, and Teh.
- Assignment due Wednesday (Dec 3rd) night, 11:45pm. Final project proposal final progress report (one page max).
- Update: For status update, final writeup, and talk, use notation as close as possible to that used in class!

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, k-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP
- L11 (11/5): LBP, exponential models,
- L12 (11/10): exponential models, mean params and polytopes,
- L13 (11/12): polytopes, tree outer bound, Bethe entropy approx.
- L14 (11/17): Bethe entropy approx, loop series correction
- L15 (11/19): Hypergraphs, posets, Mobius, Kikuchi
- L16 (11/24): Kikuchi, Expectation Propagation
- L17 (11/26): Expectation Propagation, Mean Field
- L18 (12/1): Structured mean field, Convex relaxations and upper bounds, tree reweighted case
- L19 (12/3):
- Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 18.2.3 (Relationship between A and A^{*})

(a) For any $\mu \in \mathcal{M}^{0}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{18.3}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{18.4}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{18.5}
\end{equation*}
$$

Variational Approach Amenable to Approximation Variational Approximations we cover

- Original variational representation of \log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{18.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{18.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate \mathcal{M} or $-A^{*}(\mu)$ or (most likely) both.
(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$
 variational approximation, message passing on hypergraphs.
(3) Partition τ into $(\tau, \tilde{\tau})$, and set $\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi)$ and set $-A^{*}(\mu) \leftarrow H_{\text {ep }}(\tau, \tilde{\tau})$ to get expectation propagation.

Variational Approach Amenable to Approximation

 Variational Approximations we cover- Original variational representation of \log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{18.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{18.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate \mathcal{M} or $-A^{*}(\mu)$ or (most likely) both.
(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$

EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and Φ^{i} is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.
- Moment matching of EP can be seen as striving for solution of associated Lagrangian.
- Lost of flexibility here, depending on what the base distribution is (e.g., could be a k-tree, clusters, or many other structures as well).
- Can also be done for Gaussian mixture and other distributions.
- Many more details, variations, and possible roads to new research. See text and also see Tom Minka's papers.
http://research.microsoft.com/en-us/um/people/minka/papers/

Logistics
 Mean Field

- So far, we have been using an outer bound on \mathcal{M}.
- In mean-field methods, we use an "inner bound", a subset of \mathcal{M} constructed so as to make the optimization of $A(\theta)$ easier.
- Since subset, we get immediate bound on $A(\theta)$, all else (i.e., the entropy) being equal.
- Key: we based the inner bound on a "tractable family" like a 1-tree or even a 0 -tree (all independent) so that the variational problem can be computed efficiently.
- Convexity of the optimization problem is often lost still, however, in the general case (due to the inner bound).
- Thus, in mean field, we will get a lower bound on $A(\theta)$ but not a convex procedure to find it (both good and bad news).

Tractable Families（for mean field approach）

－We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph（recall，spanning $=$ all nodes，subgraph $=$ subset of edges），i．．e，$F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$ ．
－Simplest example：$F=(V, \emptyset)$ all independence model．
－Tree example：$F=\left(V, E_{T}\right)$ where edges $E_{T} \subset E$ constitute a spanning tree．
－Exponential family，sufficient statistics $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ associated with this family $\mathcal{I}(F) \subseteq \mathcal{I}$ ．These are the statistics that need respect the Markov properties of only the subgraph F ．
－Ω gets smaller too，canonical F－respecting parameters are of the form：

$$
\begin{equation*}
\mathbb{R}^{|\mathcal{I}|} \ni \Omega(F) \triangleq\left\{\theta \in \Omega \mid \theta_{\alpha}=0 \quad \forall \alpha \in \mathcal{I} \backslash \mathcal{I}(F)\right\} \subseteq \Omega \tag{18.14}
\end{equation*}
$$

Notice，all parameters associated with sufficient statistic not in $\mathcal{I}(F)$ are set to zero，those statistics are nonexistent in F ．
－If parameter was not zero，model would not respect the familiy of F ．

Inner bound Approximate Polytope

－Before，we had $\mathcal{M}(G ; \phi)\left(=\mathcal{M}_{G}(G ; \phi)\right)$ ，all possible mean parameters associated with G and associated set of sufficient statistics ϕ ．
－For a given subgraph F ，we only consider those mean parameters possible under F－respecting models．I．e．，

$$
\begin{equation*}
\mathcal{M}_{F}(G ; \phi)=\left\{\mu \in \mathbb{R}^{d} \mid \mu=\mathbb{E}_{\theta}[\phi(x)] \text { for some } \theta \in \Omega(F)\right\} \tag{18.18}
\end{equation*}
$$

－Therefore，since $\theta \in \Omega(F) \subseteq \Omega$ ，we have that

$$
\begin{equation*}
\mathcal{M}_{F}^{\circ}(G ; \phi) \subseteq \mathcal{M}^{\circ}(G ; \phi) \tag{18.19}
\end{equation*}
$$

and so $\mathcal{M}_{F}^{\circ}(G ; \phi)$ is an inner approximation of the set of realizable mean parameters．
－Shorthand notation：$M_{F}^{\circ}(G)=M_{F}^{\circ}(G ; \phi)$ and $M^{\circ}(G)=M^{\circ}(G ; \phi)$

Tractable Dual

- Normally dual $A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))$ is intractable or unavailable, but key idea is that if $\mu \in \mathcal{M}_{F}(G)$ it will be possible to compute easily.
- Thus, goal of mean field (from variational approximation perspective) is to form $A_{\mathrm{MF}}(\theta)$ where:

$$
\begin{equation*}
A(\theta) \geq \max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\} \triangleq A_{\mathrm{MF}}(\theta) \tag{18.23}
\end{equation*}
$$

where $A_{F}^{*}(\mu)$ corresponds to dual function restricted to inner bound set $\mathcal{F}(G)$. I.e., when we expand $A_{F}^{*}(\mu)$, we can take advantage of the fact that μ is restricted in all cases, so $A_{F}^{*}(\mu)$ might be greatly simplified relative to $A^{*}(\mu)$.

- Note, for $\mu \in \mathcal{M}_{F}(G)$ and since $\mathcal{M}_{F}(G) \subseteq \mathcal{M}(G), A_{F}^{*}(\mu)$ is not an approximation, rather it is just easy to compute.

Lemest
 Mean field, KL-Divergence, Exponential Model Families

- Thus, solving the mean-field variational problem (see Eqn. (18.23)) of:

$$
\begin{equation*}
\max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\}=\max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A^{*}(\mu)\right\} \tag{18.34}
\end{equation*}
$$

is identical to minimizing KL Divergence $D(\mu \| \theta)$ subject to constraint $\mu \in \mathcal{M}_{F}(G)$.

- I.e., mean field can be seen as finding the best approximation, in terms of this particular KL-divergence, to p_{θ}, over a family of "nice" distributions $M_{F}(G)$.

Naïve Mean field for Ising Model: optimization

- We get variational lower bound problem

$$
\begin{equation*}
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\} \tag{18.35}
\end{equation*}
$$

- Have constrained form of edge mean parameters $\mu_{s t}=\mu_{s} \mu_{t}$
- $\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}$ is m-D hypercube.
- We have a non-convex problem, so while it is a bound, it might be hard to get as tight as possible.
- One way to optimize is to do coordinate ascent (given otherwise fixed vector, optimize one value at a time).
- If each coordinate optimization is optimal, we'll get a stationary point.
- Fortunately, each coordinate optimization is concave!

```
Str. Mean Field
|||||||
```


Structured Mean Field

- Key idea: set of sufficient statistics that yield efficient inference need not be all independence. Could be a tree, or a chain, or a set of trees/chains.
- "structured" in general means that it is not a monolithic single variable, but is a vector with some decomposability properties.
- In Structured mean field, we exploit this and it again can be seen in our variational framework.
- We first see a nice way that we can use fixed points of the mean field primal/dual equations to derive a general form of the mean field update.

Structured Mean Field

- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F)=\left(\mu_{\alpha}, \alpha \in \mathcal{I}(F)\right)$.
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.
- Note also, $\mathcal{M}(F) \neq \mathcal{M}_{F}(G)$, their dimensions are entirely different.
- Key thing: in mean field, $\mu(F) \in \mathcal{M}(F)$ and there is no real need to mention the full $M_{F}(G)$. Also, the dual A_{F}^{*} depends on only $\mu(F)$ not μ (the other values are derivations from entries within $\mu(F)$.
- Other mean parameters μ_{β} for $\beta \in \mathcal{I} \backslash \mathcal{I}(F)$ do play a role in the value of the mean field variational problem but their value is derivable from values $\mu(F)$, thus we can express the μ_{β} in functional form based on values $\mu(F)$.
- Thus, for each $\beta \in \mathcal{I} \backslash \mathcal{I}(F)$, we set $\mu_{\beta}=g_{\beta}(\mu(F))$ for function g_{β}.
- Ex: mean field lsing, edges $(s, t) \in E$, get $\mu_{s t}=g_{s t}(\mu(F))=\mu_{s} \mu_{t}$.

Structured Mean Field

- The mean field optimization problem becomes

$$
\begin{align*}
& \max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\} \tag{18.1}\\
= & \max _{\mu(F) \in \mathcal{M}(F)}\{\underbrace{\sum_{\alpha \in \mathcal{I}(F)} \theta_{\alpha} \mu_{\alpha}+\sum_{\alpha \in \mathcal{I}^{c}(F)} \theta_{\alpha} g_{\alpha}(\mu(F))-A_{F}^{*}(\mu(F))}_{f(\mu(F))}\} \tag{18.2}
\end{align*}
$$

- With this, we can recover our sigmoid mean field coordinate update process by iterating fixed point equations of f, i.e., for $\beta \in \mathcal{I}(F)$,

$$
\begin{equation*}
\frac{\partial f}{\partial \mu_{\beta}}(\mu(F))=\theta_{\beta}+\sum_{\alpha \in \mathcal{I}(G) \backslash \mathcal{I}(F)} \theta_{\alpha} \frac{\partial g_{\alpha}}{\partial \mu_{\beta}}(\mu(F))-\frac{\partial A_{F}^{*}}{\partial \mu_{\beta}}(\mu(F)) \tag{18.3}
\end{equation*}
$$

Structured Mean Field

- Setting this to zero, and then aggregating/concatenating over $\beta \in \mathcal{I}(F)$, vector fix point condition is:

$$
\begin{equation*}
\nabla A_{F}^{*}(\mu(F))=\theta+\sum_{\alpha \in \mathcal{I}(G) \backslash \mathcal{I}(F)} \theta_{\alpha} \nabla g_{\alpha}(\mu(F)) \tag{18.4}
\end{equation*}
$$

- ∇A is the forward mapping, maps from canonical to mean parameters, and ∇A^{*} does the reverse. Hence, naming $\gamma(F)=\nabla A(\mu(F))$, gives a parameter update equation for $\beta \in \mathcal{I}(F)$

$$
\begin{equation*}
\gamma_{\beta}(F) \leftarrow \theta_{\beta}+\sum_{\alpha \in \mathcal{I}(G) \backslash \mathcal{I}(F)} \theta_{\alpha} \frac{\partial g_{\alpha}}{\partial \mu_{\beta}}(\mu(F)) \tag{18.5}
\end{equation*}
$$

- Above is the mean field update, mapping from canonical parameters (θ_{β}, and θ_{α} for $\left.\alpha \in \mathcal{I}(G) \backslash \mathcal{I}(F)\right)$ and using the mean parameters $\mu(F)$ to new updated canonical parameters $\gamma_{\beta}(F)$ for $\left.\beta \in \mathcal{I}(F)\right)$. It is to be repeated over and over.
- After each update of Eqn. (18.5), a mean parameter, say $\mu(F)_{\delta}$, that depends on any of the updated canonical parameter also needs to be updated before doing the next update.
- Since we're using a tractable sub-structure F, we can then update the out-of-date mean parameters using any exact inference algorithm (e.g., junction tree, possible since sub-structure is tractable), and then repeat Eqn. (18.5).

Structured Mean Field

- Alternatively, we can transform back to mean parameters right away using ∇A is the forward mapping, maping from canonical to mean.
- I.e., we can derive a mean field mean parameter to mean parameter update equation using A_{F} since $\nabla A_{F}(\gamma(F))=\mu(F)$,
- We get update, for $\beta \in \mathcal{I}(F)$:

$$
\begin{equation*}
\mu_{\beta}(F) \leftarrow \frac{\partial A_{F}}{\partial \gamma_{\beta}}\left(\theta_{\beta}+\sum_{\alpha \in \mathcal{I}(G) \backslash \mathcal{I}(F)} \theta_{\alpha} \nabla g_{\alpha}(\mu(F))\right) \tag{18.6}
\end{equation*}
$$

- This generalizes our mean field coordinate ascent update from before, where in that case we would get $\frac{\partial A_{F}}{\partial \gamma_{\beta}}$ as being the sigmoid mapping.
- But here, we can use this for any tractable substructure (e.g., trees or chains or collections thereof).

Structured Mean Field Factorial HMMs

- This idea was developed and applied using factorial HMMs.

- Graph consists of M 1st-order Markov chains $x_{1: T}^{i}$ for $i \in[M]$, coupled together at each time via factor $p\left(\bar{y}_{t} \mid x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{M}\right)$.
- While each HMM chain is simple (it is only a chain, so a 1 -tree), the common observation induces a dependence between each. Thus, given M chains, have a clique of size M (e.g., after moralization, on right)
- After moralization, covering hypergraph consists of tractable sub-substructure hyperedges $F=\left\{\left\{x_{t}^{i}, x_{t+1}^{i}\right\}: i \in[M], t \in[T]\right\}$ and remaining structure $E \backslash F=\left\{\left\{x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{M}\right\}: t \in[T]\right\}$.

Structured Mean Field Factorial HMMs

- The induced dependencies (cliques as dotted ellipses)

- Tree width of this model is? M
- Thus, if r states per chain, then exact inference complexity r^{M+1}.
- Each $\beta \in \mathcal{I}(F)$ corresponds to one of the Markov chain edges in one of the M Markov chains, each soting $O\left(r^{2}\right)$.
- Each $\beta \in \mathcal{I} \backslash \mathcal{I}(F)$ corresponds to one of the size M cliques (dotted ellipses above) corresponding to the v -structure moralizations, each costing $O\left(r^{M}\right)$.

Structured Mean Field Factorial HMMs

A "natural" choice of approximating distribution is a set of coupled - chains, natural, perhaps primarily for computational reasons.

- Under this independent chains case, we have that for each $\beta \in \mathcal{I} \backslash \mathcal{I}(F)$, derivable functions have form $g_{\beta}(\mu(F))=\prod_{i=1}^{M} f_{i}\left(\left\{\mu_{i}(F)\right\}\right)$, for some functions f_{i}. This is fully factored, so is easy to work with, maintains separate chains.
- Each update of form Eqn. (18.5) updates parameters for $\beta \in \mathcal{I}(F)$, corresponds to all edges of all M Markov chains.
- To recover mean parameters (or do Eqn. (18.6)), need only forward-backward procedure on each chain separately, $O\left(M T r^{2}\right)$.

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{18.7}
\end{equation*}
$$

- Other than mean field (which gives lower bound on $A(\theta)$), none of the other approximation methods have been anything other than approximation methods.
- What about upper bounds?
- We would like both lower and upper bounds of $A(\theta)$ since that will allow us to produce upper and lower bounds of the probabilistic queries we wish to perform.
- If the upper and lower bounds between a given probably p is small, $p_{L} \leq p \leq p_{U}$, with $p_{U}-p_{L} \leq \epsilon$, we have guarantees, for a particular instance of a model.
- In this next chapter (Chap 7), we will "convexify" $H(\mu)$ and at the same time produce upper bounds.

$\begin{array}{ll}\text { Str. Mean Field } & \text { Cnvx Relax/Up. Bounds } \\ \|\|\|\|\|\|\|\end{array}$

Convex Relaxations and Upper Bounds - Relaxed Entropy

- Recall sufficient stats $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ and canonical parameters $\theta=\left(\theta_{\alpha}, \alpha \in \mathcal{I}\right)$.
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.
- For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.
- Let \mathfrak{D} be a set of subfamilies that are tractable.
- I.e., \mathfrak{D} might be all spanning trees of G, or some subset of spanning trees that we like.
- As before, $\mathcal{I}(F) \subseteq \mathcal{I}$ are the subset of indices of the suff. stats. that abide by F, and $|\mathcal{I}(F)|=d(\bar{F})<d=|\mathcal{I}|$ suff. stats.
- As before, $\mathcal{M}(F)$ is set of realizable mean parameters associated with F, and $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$, and

$$
\begin{equation*}
\mathcal{M}(F)=\left\{\mu \in \mathbb{R}^{|\mathcal{I}(F)|} \mid \exists p \text { s.t. } \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right] \forall \alpha \in \mathcal{I}(F)\right\} \tag{18.8}
\end{equation*}
$$

Note $\mathcal{M}_{F}(G) \neq \mathcal{M}(F)$.

- Given $\mu \in \mathcal{M}, \mu(F) \in \mathcal{M}(F)$ projects from \mathcal{I} to $\mathcal{I}(F)$.
- Thus, for any $\mu \in \mathcal{M} \subseteq \mathbb{R}^{d}$, we have that $\mu(F) \in \mathcal{M}(F) \subseteq \mathbb{R}^{d(F)}$.
- We can moreover define the entropy associated with projected mean, namely $H(\mu(F)) \triangleq H\left(p_{\mu(F)}\right)=-A^{*}(\mu(F))$.
- Critically, we have that $H(\mu(F)) \geq H(\mu)=H\left(p_{\mu}\right)$, as we show next.

Convex Relaxations and Upper Bounds - Relaxed Entropy

Proposition 18.4.1 (Maximum Entropy Bounds)

Given any mean parameter $\mu \in \mathcal{M}$ and its projection $\mu(F)$ onto any subgraph F, we have the bound

$$
\begin{equation*}
A^{*}(\mu(F)) \leq A^{*}(\mu) \tag{18.9}
\end{equation*}
$$

or alternatively stated, $H(\mu(F)) \geq H(\mu)$, entropy of projection is higher.

- Intuition: $H(\mu)=H\left(p_{\mu}\right)$ is the entropy of the exponential family model with mean parameters μ.
- equivalently $H(\mu)=H\left(p_{\mu}\right)$ is the entropy of the distribution that is the solution to the maximum entropy problem subject to the constraints that it has $\mu=\mathbb{E}_{p_{\theta}}[\phi(X)]$.
- Fewer constraints when forming $\mu(F)$ (see Eqn. (18.8)), so entropy in corresponding maxent problem can only, if anything, get larger.
- Thus, $H(\mu(F)) \geq H(\mu)$.

Convex Relaxations and Upper Bounds - Relaxed Entropy

Proof.

- Dual problem

$$
\begin{equation*}
A^{*}(\mu)=\sup _{\theta \in \mathbb{R}^{d}}\{\langle\mu, \theta\rangle-A(\theta)\} \tag{18.10}
\end{equation*}
$$

- Dual problem in sub-graph case.

$$
\begin{equation*}
A^{*}(\mu(F))=\sup _{\theta(F) \in \mathbb{R}^{d(F)}}\{\langle\mu(F), \theta(F)\rangle-A(\theta(F))\} \tag{18.11}
\end{equation*}
$$

- Dual problem in sub-graph case - alternate expression

$$
\begin{gather*}
A^{*}(\mu(F))=\sup ^{\theta \in \mathbb{R}^{d}}\{\langle\langle\mu, \theta\rangle-A(\theta)\} \tag{18.12}\\
\theta_{\alpha}=0 \forall \alpha \notin \mathcal{I}(F)
\end{gather*}
$$

- Thus, $A^{*}(\mu) \geq A^{*}(\mu(F))$.

Str. Mean Field
 Convex Relaxations and Upper Bounds - Relaxed Entropy

- Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.
- We can form a distribution over tractable structures, i.e., $\rho \in \mathbb{R}^{|\mathfrak{D}|}$, i.e., $\rho(F) \geq 0$ for $F \in \mathfrak{D}$ and $\sum_{F \in \mathfrak{D}} \rho(F)=1$
- Convex combination over $F \in \mathfrak{D}$, gives more general upper bound

$$
\begin{equation*}
H(\mu) \leq \mathbb{E}_{\rho}[H(\mu(F))]=\sum_{F \in \mathfrak{D}} \rho(F) H(\mu(F)) \tag{18.13}
\end{equation*}
$$

- This will be our convexified upper bound on entropy (lower bound on the dual).
- compared to mean field, we are not choosing only one structure, but many of them, and mixing them together in a certain way.
- This so far gives us an upper bound on $A(\theta)$, but we still need an outer bound. The combination will give us our uppper bound on $A(\theta)$.

Convex Relaxations and Upper Bounds - Outer bound

- When we form mixture of entropies (which really are duals), we make sure any given $\mu(F)$ can be evaluated for any dual (i.e., each component can properly evaluate any possible $\mu(F)$).
- Logical constraint: make sure any $\mu(F)$ works for all components.
- Constraint set as follows:

$$
\begin{equation*}
\mathcal{L}(G ; \mathfrak{D})=\left\{\tau \in \mathbb{R}^{d} \mid \tau(F) \in \mathcal{M}(F) \forall F \in \mathfrak{D}\right\} \tag{18.14}
\end{equation*}
$$

- Note this is an outer bound i.e., $\mathcal{L}(G ; \mathfrak{D}) \supseteq \mathcal{M}(G)$ since any member of $\mathcal{M}(G)$ (any valid mean parameter for G) must also be a member of any $\mathcal{M}(F)$.
- Also note, $\mathcal{L}(G ; \mathfrak{D})$ is convex since it is the intersection of a set of convex sets.

Str. Mean Field Cnvx Relax/Up. Bounds
 Convex Upper Bounds

- Combining the upper bound on entropy, and the outer bound on \mathcal{M}, we get a new variational approximation to the cumulant function.

$$
\begin{equation*}
B_{\mathfrak{Q}}(\theta ; \rho) \triangleq \sup _{\tau \in \mathcal{L}(G ; \mathfrak{D})}\left\{\langle\tau, \theta\rangle+\sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F))\right\} \tag{18.15}
\end{equation*}
$$

- Objective is convex in θ since it is a max over a set of affine functions of θ (i.e., $g(\theta)=\max _{\tau}\langle\tau, \theta\rangle+c_{\tau}$)
- Evaluating the objective (optimization) is concave, so possible to get!
- Also, $\mathcal{L}(G ; \mathfrak{D})$ is a convex outer bound on $\mathcal{M}(G)$
- Thus $B_{\mathfrak{D}}(\theta ; \rho)$ is convex, has a global optimal solution, it approximates $A(\theta)$, and best of all is an upper bound, $A(\theta) \leq B_{\mathfrak{D}}(\theta ; \rho)$

Tree-reweighted sum-product and Bethe

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

$$
\begin{equation*}
p_{\theta}(x) \propto \exp \left\{\sum_{s \in V} \theta_{s}\left(x_{s}\right)+\sum_{(s, t) \in E} \theta_{s t}\left(x_{s}, x_{t}\right)\right\} \tag{18.16}
\end{equation*}
$$

- Let \mathfrak{T} be a set of all spanning trees T of G, and let ρ be a distribution over them, $\sum_{T \in \mathfrak{T}} \rho(T)=1$.
- Thus, we have $H(\mu) \leq \sum_{T \in \mathfrak{T}} \rho(T) H(\mu(T))$
- For any $T, H(\mu(T))$ has an easy form, i.e.,

$$
\begin{equation*}
H(\mu(T))=\sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E(T)} I_{s t}\left(\mu_{s t}\right) \tag{18.17}
\end{equation*}
$$

- We want to use this to see what happens when we take the expected value w.r.t. distribution ρ.

Tree-reweighted sum-product and Bethe

- Every tree is spanning, all tress have all nodes, so the probability, according to ρ of a given node is always 1. I.e., $\rho_{s}=1, \forall s \in V$.
- Thus, in $\mathbb{E}_{\rho}[H(\mu(T))]$, we have a term of the form $\sum_{s \in V} H_{s}\left(\mu_{s}\right)$.
- For edges we need $\rho_{s t}=\mathbb{E}_{\rho}[\mathbb{I}[(s, t) \in E(T)]]$, this indicates the probability of presence of an edge in the set \mathfrak{T}.
- The expression becomes

$$
\begin{equation*}
H(\mu) \leq \sum_{s \in V} H_{s}\left(\mu_{s}\right)-\sum_{(s, t) \in E} \rho_{s t} I_{s t}\left(\mu_{s t}\right) \tag{18.18}
\end{equation*}
$$

Note right hand sum is over all E (not just a given spanning tree) and terms are weighted by probability of the given edge $\rho_{s t}$.

- $\rho_{s t}$ is edge appearance probability, $\rho=\left(\rho_{s t},(s, t) \in E\right)$ is spanning tree polytope.

Edge appearance probabilities example

(a)

(b)

(c)

(d)

- (a) a graph $G=(V, E)$ with $m=|V|=7$
- (b), (c), and (d) various spanning trees, each with probability $1 / 3$.
- What are the edge appearance probabilities $\rho_{s t}$?

Tree-reweighted sum-product and Bethe

- We also need outer bound on \mathcal{M}.
- For discrete case $\mathcal{M}=\mathbb{M}(G)$ is marginal polytope.
- $\mathbb{M}(T)$ is marginal polytope for tree, and for a tree is the same as $\mathbb{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).
- Thus, $\mu(T) \in \mathbb{M}(T)$ requires non-negativity, sum-to-one (at each node), and edge-to-node consistency (marginalization) on each edge. If $G=T$ then we're done.
- For general G, If we ask for $\mu(T) \in \mathbb{M}(T)$ for all $T \in \mathfrak{T}$, this is identical to asking for local marginalization on every edge of G.
- Thus, in this case $\mathcal{L}(G ; \mathfrak{I})$ is just the set of locally consistent pseudomarginals, and is the same as the outer bound we saw in the Bethe variational approximation $\mathbb{L}(G)$.
- In Bethe case, however, we did not have a bound on entropy, only an outer bound on the marginal polytope. Now, however, we also have a (convexification based) bound on entropy.

Tree-reweighted sum-product and Bethe

Theorem 18.5.1 (Tree-Reweighted Bethe and Sum-Product)

(a) For any choice of edge appearance vector $\rho=\left(\rho_{s t},(s, t) \in E\right)$ in the spanning tree polytope, the cumulant function $A(\theta)$ evaluated at θ is upper bounded by the solution of the tree reweighted Bethe variational problem (BVP):

$$
\begin{equation*}
B_{\mathfrak{T}}(\theta ; \rho)=\max _{\tau \in \mathbb{L}(G)}\left\{\langle\tau, \theta\rangle+\sum_{s \in V} H_{s}\left(\tau_{s}\right)-\sum_{(s, t) \in E} \rho_{s t} I_{s t}\left(\tau_{s t}\right)\right\} \tag{18.19}
\end{equation*}
$$

$$
\begin{equation*}
\geq A(\theta) \tag{18.20}
\end{equation*}
$$

For any edge appearance vector such that $\rho_{s t}>0$ for all edges (s, t), this problem is strictly convex with a unique optimum.

Tree-reweighted sum-product and Bethe

Theorem 18.5.1 (Tree-Reweighted Bethe and Sum-Product)

(b) The tree-reweighted BVP can be solved using the tree-reweighted sum-product updates

$$
\begin{equation*}
M_{t \rightarrow s}\left(x_{s}\right) \leftarrow \kappa \sum_{x_{t}^{\prime} \in \mathcal{X}_{t}} \varphi_{s t}\left(x_{s}, x_{t}^{\prime}\right) \frac{\prod_{v \in N(t) \backslash\{s\}}\left[M_{v \rightarrow t}\left(x_{t}^{\prime}\right)\right]^{\rho_{v t}}}{\left[M_{s \rightarrow t}\left(x_{t}^{\prime}\right)\right]^{\left(1-\rho_{t s}\right)}} \tag{18.21}
\end{equation*}
$$

where $\varphi_{\text {st }}\left(x_{s}, x_{t}^{\prime}\right)=\exp \left(\frac{1}{\rho_{s t}} \phi_{s t}\left(x_{s}, x_{t}^{\prime}\right)+\theta_{t}\left(x_{t}^{\prime}\right)\right)$. The updates have a unique fixed point under assumptions given in (a).

Tree-reweighted sum-product and Bethe

- Note that if $\rho_{s t} \leftarrow 1$, for all $(s, t) \in E$, then we recover standard LBP and Bethe approximation.
- However, if $\rho_{s t}=1$ then edge (s, t) appears in all spanning trees. If this is indeed true for all spanning trees T, then G must be a tree, and we get back standard tree-based message passing we saw in lecture 2 !!
- Thus, this is a true convex generalization, when $\rho_{s t}<1$ for many s, t.
- Note that $\rho=\left(\rho_{s t},(s, t) \in E\right)$ must live in the "spanning tree polytope" $\subseteq \mathbb{R}_{+}^{E}$, i.e., a convex combination of vertices consisting of characteristic (indicator) functions of spanning trees (see example earlier). I.e., Let \mathfrak{T} be the set of all spanning trees, and $\mathbf{1}_{T} \in\{0,1\}^{E}$ be the characteristic vector of $T \in \mathfrak{T}$. Then we must have that

$$
\begin{equation*}
\rho \in \operatorname{conv}\left(\left\{\mathbf{1}_{T}: T \in \mathfrak{T}\right\}\right) \tag{18.22}
\end{equation*}
$$

where $\operatorname{conv}(\cdot)$ is the convex hull of its argument.

Str. Mean Field Cnvx Relax/Up. Bounds Tree Re-weighted Case
 More on spanning tree polytope

- Spanning tree polytope takes the form

$$
\begin{equation*}
\rho \in \operatorname{conv}\left(\left\{\mathbf{1}_{T}: T \in \mathfrak{T}\right\}\right) \tag{18.23}
\end{equation*}
$$

where \mathfrak{T} is set of all spanning trees.

- Consider graphic matroid on $G=(V, E)$ with rank function $r(A)$ for any $A \subseteq E$.
- Then A is a spanning tree iff $r(A)=|A|$ and $|A|=m-1$.
- Consider polytopes:

$$
\begin{array}{r}
P_{r}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq r(A), \forall A \subseteq E\right\} \\
B_{r}=P_{r} \cap\left\{x \in \mathbb{R}_{+}^{E}: x(E)=r(E)\right\} \tag{18.25}
\end{array}
$$

- Then if T is a spanning tree, $\mathbf{1}_{T} \in B_{r}$, and $B_{r}=\operatorname{conv}\left(\left\{\mathbf{1}_{T}: T \in \mathfrak{T}\right\}\right)$.
- Edmonds showed that a simple fast greedy procedure will maximize a linear function over this polytope, and this can be useful for finding good points in the spanning tree polytope.

Tree-reweighted sum-product: convex vs. upper bound

- In above case, we have both a convexification of the cumulant and an upper bound property.
- It should be pointed out that these are not mutual requirements: one can have convex without upper bound and vice verse.

Str. Mean Field Cnvx Relax/Up. Bounds Tree Re-weighted Case
 Tree-reweighted sum-product fixed point

The fixed point we ultimately reach has following form:

$$
\begin{gather*}
\tau_{s}^{*}\left(x_{s}\right)=\kappa \exp \left\{\theta_{s}\left(x_{s}\right)\right\} \prod_{v \in N(s)}\left[M_{v \rightarrow s}^{*}\left(x_{s}\right)\right]^{\rho_{v s}} \tag{18.26}\\
\tau_{s t}^{*}\left(x_{s}, x_{t}\right)=\kappa \varphi_{s t}\left(x_{s}, x_{t}\right) \frac{\prod_{v \in N(s) \backslash t}\left[M_{v s}^{*}\left(x_{s}\right)\right]^{\rho_{v s}} \prod_{v \in N(t) \backslash s}\left[M_{v t}^{*}\left(x_{t}\right)\right]^{\rho_{v t}}}{\left[M_{t s}^{*}\left(x_{s}\right)\right]^{\left(1-\rho_{s t}\right)}\left[M_{s t}^{*}\left(x_{t}\right)\right]^{\left(1-\rho_{t s}\right)}} \tag{18.27}
\end{gather*}
$$

with $\varphi_{s t}\left(x_{s}, x_{t}\right)=\exp \left\{\frac{1}{\rho_{s t}} \theta_{s t}\left(x_{s}, x_{t}\right)+\theta_{s}\left(x_{s}\right)+\theta_{t}\left(x_{t}\right)\right\}$ where the $*$ versions are the final (convergent) messages.

- In practice: damping of messages M appears in practice to help reach convergence, where each new message is a convex mixture of the previous version of itself and the new message according to the equations.

hypertree-reweighted sum-product

- Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.
- Example in book considers k-trees, with tree width at most t. I.e. $\mathfrak{T}(t)$.
- Then we get the same form of bounds

$$
\begin{equation*}
H(\mu) \leq E_{\rho}[H(\mu(T))]=\sum_{T \in \mathfrak{T}(t)} \rho(T) H(\mu(T)) \tag{18.28}
\end{equation*}
$$

but here T is over all valid k-trees.

- This leads to a convexified Kikuchi variational problem

$$
\begin{equation*}
A(\theta) \leq B_{\mathfrak{B}(t)}(\theta ; \rho)=\max _{\tau \in \mathbb{L}(G)}\left\{\langle\tau, \theta\rangle+\mathbb{E}_{\rho}[H(\tau(T))]\right\} \tag{18.29}
\end{equation*}
$$

same form (but different than) before.

- Optimizing ρ over hypertree polytope is hard, unfortunately.

 Reweighted EP

- Other variational variants have convexified version.
- Convexified forms of EP

$$
\begin{equation*}
H_{\mathrm{ep}}(\tau, \tilde{\tau} ; \rho)=H(\tau)+\sum_{\ell=1}^{d_{I}} \rho(\ell)\left[H\left(\tau, \tilde{\tau}^{\ell}\right)-H(\tau)\right] \tag{18.30}
\end{equation*}
$$

where $\sum_{\ell} \rho(\ell)=1$.

- In this case, reweighted entropy is concave!
- Lagrangian formulation leads to solutions that are a form of "reweighted" EP, ideas which also are sometimes called "power EP" (blending the above reweighted sum-product ideas and EP).

Other variants

- Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.
- Other examples from book:
- Use of Gaussian continuous entropy as an upper bound and a covariance-based outer bound of \mathcal{M}.
- use of conditional entropy, various forms of use of polyhedral approximations.
- This is still an active research area!

Str Mem frat
 Variational Approach Amenable to Approximation Variational Approximations we cover

- Original variational representation of \log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{18.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{18.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate \mathcal{M} or $-A^{*}(\mu)$ or (most likely) both.
(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$

Stimemeral
 Cnvx Relax/Up. Bounds
 Sources for Today's Lecture

Tree Re-weighted Case
Refs

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001

