EE512A – Advanced Inference in Graphical Models

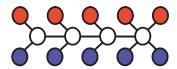
— Fall Quarter, Lecture 18 —

http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Dec 1st, 2014



Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL&doi=220000001
- Should have read chapters 1 through 5 in our book. Read chapter 7.
- Also read chapter 8 (integer programming, although we probably won't cover that chapter in class unfortunately).
- Also should have read "Divergence measures and message passing" by Thomas Minka, and "Structured Region Graphs: Morphing EP into GBP", by Welling, Minka, and Teh.
- Assignment due Wednesday (Dec 3rd) night, 11:45pm. Final project proposal final progress report (one page max).
- Update: For status update, final writeup, and talk, use notation as close as possible to that used in class!

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, *k*-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP

- L11 (11/5): LBP, exponential models,
- L12 (11/10): exponential models, mean params and polytopes,
- L13 (11/12): polytopes, tree outer bound, Bethe entropy approx.
- L14 (11/17): Bethe entropy approx, loop series correction
- L15 (11/19): Hypergraphs, posets, Mobius, Kikuchi
- L16 (11/24): Kikuchi, Expectation Propagation
- L17 (11/26): Expectation Propagation, Mean Field
- L18 (12/1): Structured mean field,
 Convex relaxations and upper bounds, tree reweighted case
- L19 (12/3):
- Final Presentations: (12/10):

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 18.2.3 (Relationship between A and A^*)

(a) For any $\mu \in \mathcal{M}^{\circ}$, $\theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$A^{*}(\mu) = \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta)) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^{\circ} \\ +\infty & \text{if } \mu \notin \overline{\mathcal{M}} \end{cases}$$
(18.3)

(b) Partition function has variational representation (dual of dual)

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \}$$
 (18.4)

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$\mu = \int_{\mathsf{D}_X} \phi(x) p_{\theta}(x) \nu(dx) = \mathbb{E}_{\theta}[\phi(X)] = \nabla A(\theta)$$
 (18.5)

Variational Approach Amenable to Approximation

Original variational representation of log partition function

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \}$$
 (18.1)

where dual takes form:

$$A^{*}(\mu) = \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle - A(\theta)) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^{\circ} \\ +\infty & \text{if } \mu \notin \overline{\mathcal{M}} \end{cases}$$
 (18.2)

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate $\mathcal M$ or $-A^*(\mu)$ or (most likely) both.

Variational Approximations we cover

- Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^*(\mu) \leftarrow H_{\mathsf{Bethe}}(\tau)$ to get Bethe variational approximation, LBP fixed point.
- ② Set $\mathcal{M} \leftarrow \mathbb{L}_t(G)$ (hypergraph marginal polytope), $-A^*(\mu) \leftarrow H_{\mathsf{app}}(\tau)$ where $H_{\mathsf{app}} = \sum_{g \in E} c(g) H_g(\tau_g)$ (via Möbius) to get Kikuchi variational approximation, message passing on hypergraphs.
- Partition τ into $(\tau, \tilde{\tau})$, and set $\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi)$ and set $-A^*(\mu) \leftarrow H_{\text{ep}}(\tau, \tilde{\tau})$ to get expectation propagation.
- Mean field (from variational perspective) is (with $\mathcal{M}_F(G) \subseteq \mathcal{M}$) **l.b.**:

$$A(\theta) \ge \max_{\mu \in \mathcal{M}_F(G)} \left\{ \langle \mu, \theta \rangle - A_F^*(\mu) \right\} = A_{\mathsf{mf}}(\theta) \tag{18.1}$$

EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and Φ^i is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.
- Moment matching of EP can be seen as striving for solution of associated Lagrangian.
- Lost of flexibility here, depending on what the base distribution is (e.g., could be a k-tree, clusters, or many other structures as well).
- Can also be done for Gaussian mixture and other distributions.
- Many more details, variations, and possible roads to new research. See text and also see Tom Minka's papers. http://research.microsoft.com/en-us/um/people/minka/papers/

Mean Field

- ullet So far, we have been using an outer bound on \mathcal{M} .
- In mean-field methods, we use an "inner bound", a subset of \mathcal{M} constructed so as to make the optimization of $A(\theta)$ easier.
- Since subset, we get immediate bound on $A(\theta)$, all else (i.e., the entropy) being equal.
- Key: we based the inner bound on a "tractable family" like a 1-tree or even a 0-tree (all independent) so that the variational problem can be computed efficiently.
- Convexity of the optimization problem is often lost still, however, in the general case (due to the inner bound).
- Thus, in mean field, we will get a lower bound on $A(\theta)$ but not a convex procedure to find it (both good and bad news).

Tractable Families (for mean field approach)

- We have graph G = (V, E) which is intractable and we find a spanning subgraph (recall, spanning = all nodes, subgraph = subset of edges), i..e, $F = (V, E_F)$ where $E_F \subseteq E$.
- Simplest example: $F = (V, \emptyset)$ all independence model.
- Tree example: $F = (V, E_T)$ where edges $E_T \subset E$ constitute a spanning tree.
- Exponential family, sufficient statistics $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ associated with this family $\mathcal{I}(F) \subseteq \mathcal{I}$. These are the statistics that need respect the Markov properties of only the subgraph F.
- ullet Ω gets smaller too, canonical F-respecting parameters are of the form:

$$\mathbb{R}^{|\mathcal{I}|} \ni \Omega(F) \triangleq \{ \theta \in \Omega | \theta_{\alpha} = 0 \ \forall \alpha \in \mathcal{I} \setminus \mathcal{I}(F) \} \subseteq \Omega.$$
 (18.14)

Notice, all parameters associated with sufficient statistic not in $\mathcal{I}(F)$ are set to zero, those statistics are nonexistent in F.

ullet If parameter was not zero, model would not respect the familiy of F.

Inner bound Approximate Polytope

- Before, we had $\mathcal{M}(G;\phi)(=\mathcal{M}_G(G;\phi))$, all possible mean parameters associated with G and associated set of sufficient statistics ϕ .
- For a given subgraph F, we only consider those mean parameters possible under F-respecting models. I.e.,

$$\mathcal{M}_F(G;\phi) = \left\{ \mu \in \mathbb{R}^d | \mu = \mathbb{E}_{\theta}[\phi(x)] \text{ for some } \theta \in \Omega(F) \right\}$$
 (18.18)

• Therefore, since $\theta \in \Omega(F) \subseteq \Omega$, we have that

$$\mathcal{M}_F^{\circ}(G;\phi) \subseteq \mathcal{M}^{\circ}(G;\phi)$$
 (18.19)

and so $\mathcal{M}_F^\circ(G;\phi)$ is an $\ \$ inner approximation of the set of realizable mean parameters.

• Shorthand notation: $M_F^{\circ}(G) = M_F^{\circ}(G;\phi)$ and $M^{\circ}(G) = M^{\circ}(G;\phi)$

Tractable Dual

- Normally dual $A^*(\mu) = \sup_{\theta \in \Omega} (\langle \theta, \mu \rangle A(\theta))$ is intractable or unavailable, but key idea is that if $\mu \in \mathcal{M}_F(G)$ it will be possible to compute easily.
- Thus, goal of mean field (from variational approximation perspective) is to form $A_{\rm MF}(\theta)$ where:

$$A(\theta) \ge \max_{\mu \in \mathcal{M}_F(G)} \{\langle \mu, \theta \rangle - A_F^*(\mu)\} \triangleq A_{\mathsf{MF}}(\theta)$$
 (18.23)

where $A_F^*(\mu)$ corresponds to dual function restricted to inner bound set $\mathcal{F}(G)$. I.e., when we expand $A_F^*(\mu)$, we can take advantage of the fact that μ is restricted in all cases, so $A_F^*(\mu)$ might be greatly simplified relative to $A^*(\mu)$.

• Note, for $\mu \in \mathcal{M}_F(G)$ and since $\mathcal{M}_F(G) \subseteq \mathcal{M}(G)$, $A_F^*(\mu)$ is not an approximation, rather it is just easy to compute.

Mean field, KL-Divergence, Exponential Model Families

Thus, solving the mean-field variational problem (see Eqn. (??)) of:

$$\max_{\mu \in \mathcal{M}_F(G)} \left\{ \langle \mu, \theta \rangle - A_F^*(\mu) \right\} = \max_{\mu \in \mathcal{M}_F(G)} \left\{ \langle \mu, \theta \rangle - A^*(\mu) \right\} \quad \text{(18.34)}$$

is identical to minimizing KL Divergence $D(\mu||\theta)$ subject to constraint $\mu \in \mathcal{M}_F(G)$.

• I.e., mean field can be seen as finding the best approximation, in terms of this particular KL-divergence, to p_{θ} , over a family of "nice" distributions $M_F(G)$.

Naïve Mean field for Ising Model: optimization

• We get variational lower bound problem

$$A(\theta) \ge \max_{(\mu_1, \dots, \mu_m) \in [0, 1]^m} \left\{ \sum_{s \in V} \theta_s \mu_s + \sum_{(s, t) \in E} \theta_{st} \mu_s \mu_t + \sum_{s \in V} H_s(\mu_s) \right\}$$
(18.35)

- ullet Have constrained form of edge mean parameters $\mu_{st}=\mu_s\mu_t$
- $(\mu_1, \ldots, \mu_m) \in [0, 1]^m$ is m-D hypercube.
- We have a non-convex problem, so while it is a bound, it might be hard to get as tight as possible.
- One way to optimize is to do coordinate ascent (given otherwise fixed vector, optimize one value at a time).
- If each coordinate optimization is optimal, we'll get a stationary point.
- Fortunately, each coordinate optimization is concave!

 Key idea: set of sufficient statistics that yield efficient inference need not be all independence. Could be a tree, or a chain, or a set of trees/chains.

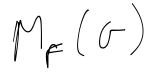
- Key idea: set of sufficient statistics that yield efficient inference need not be all independence. Could be a tree, or a chain, or a set of trees/chains.
- "structured" in general means that it is not a monolithic single variable, but is a vector with some decomposability properties.

- Key idea: set of sufficient statistics that yield efficient inference need not be all independence. Could be a tree, or a chain, or a set of trees/chains.
- "structured" in general means that it is not a monolithic single variable, but is a vector with some decomposability properties.
- In Structured mean field, we exploit this and it again can be seen in our variational framework.

- Key idea: set of sufficient statistics that yield efficient inference need not be all independence. Could be a tree, or a chain, or a set of trees/chains.
- "structured" in general means that it is not a monolithic single variable, but is a vector with some decomposability properties.
- In Structured mean field, we exploit this and it again can be seen in our variational framework
- We first see a nice way that we can use fixed points of the mean field primal/dual equations to derive a general form of the mean field update.

• Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F) = (\mu_{\alpha}, \alpha \in \mathcal{I}(F))$.

- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F) = (\mu_{\alpha}, \alpha \in \mathcal{I}(F))$.
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.



- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F) = (\mu_{\alpha}, \alpha \in \mathcal{I}(F))$.
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.
- Note also, $\mathcal{M}(F) \neq \mathcal{M}_F(G)$, their dimensions are entirely different.

- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F) = (\mu_{\alpha}, \alpha \in \mathcal{I}(F))$.
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.
- Note also, $\mathcal{M}(F) \neq \mathcal{M}_F(G)$, their dimensions are entirely different.
- Key thing: in mean field, $\mu(F) \in \mathcal{M}(F)$ and there is no real need to mention the full $M_F(G)$. Also, the dual A_F^* depends on only $\mu(F)$ not μ (the other values are derivations from entries within $\mu(F)$.

- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F)=(\mu_{\alpha},\alpha\in\mathcal{I}(F)).$
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.
- Note also, $\mathcal{M}(F) \neq \mathcal{M}_F(G)$, their dimensions are entirely different.
- Key thing: in mean field, $\mu(F) \in \mathcal{M}(F)$ and there is no real need to mention the full $M_F(G)$. Also, the dual A_F^* depends on only $\mu(F)$ not μ (the other values are derivations from entries within $\mu(F)$.
- Other mean parameters μ_{β} for $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$ do play a role in the value of the mean field variational problem but their value is derivable from values $\mu(F)$, thus we can express the μ_{β} in functional form based on values $\mu(F)$.

- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F)=(\mu_{\alpha},\alpha\in\mathcal{I}(F)).$
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.
- Note also, $\mathcal{M}(F) \neq \mathcal{M}_F(G)$, their dimensions are entirely different.
- Key thing: in mean field, $\mu(F) \in \mathcal{M}(F)$ and there is no real need to mention the full $M_F(G)$. Also, the dual A_F^* depends on only $\mu(F)$ not μ (the other values are derivations from entries within $\mu(F)$.
- Other mean parameters μ_{β} for $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$ do play a role in the value of the mean field variational problem but their value is derivable from values $\mu(F)$, thus we can express the μ_{β} in functional form based on values $\mu(F)$.
- Thus, for each $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$, we set $\mu_{\beta} = g_{\beta}(\mu(F))$ for function g_{β} .

- Again, $\mathcal{I}(F)$ is set of suff. stats. corresponding to F, and we have corresponding mean vector $\mu(F) = (\mu_{\alpha}, \alpha \in \mathcal{I}(F))$.
- Define new quantity $\mathcal{M}(F)$, the set of realizable mean parameters associated with F, so that $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$.
- Note also, $\mathcal{M}(F) \neq \mathcal{M}_F(G)$, their dimensions are entirely different.
- Key thing: in mean field, $\mu(F) \in \mathcal{M}(F)$ and there is no real need to mention the full $M_F(G)$. Also, the dual A_F^* depends on only $\mu(F)$ not μ (the other values are derivations from entries within $\mu(F)$.
- Other mean parameters μ_{β} for $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$ do play a role in the value of the mean field variational problem but their value is derivable from values $\mu(F)$, thus we can express the μ_{β} in functional form based on values $\mu(F)$.
- Thus, for each $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$, we set $\mu_{\beta} = g_{\beta}(\mu(F))$ for function g_{β} .
- Ex: mean field Ising, edges $(s,t) \in E$, get $\mu_{st} = g_{st}(\mu(F)) \neq \mu_s \mu_t$.

• The mean field optimization problem becomes

$$\max_{\mu \in \mathcal{M}_{F}(G)} \{ \langle \mu, \theta \rangle - A_{F}^{*}(\mu) \}$$

$$= \max_{\mu(F) \in \mathcal{M}(F)} \left\{ \underbrace{\sum_{\alpha \in \mathcal{I}(F)} \theta_{\alpha} \mu_{\alpha} + \sum_{\alpha \in \mathcal{I}^{c}(F)} \theta_{\alpha} g_{\alpha}(\mu(F)) - A_{F}^{*}(\mu(F))}_{f(\mu(F))} \right\}$$

$$(18.1)$$

$$f(\mu(F))$$

$$(18.2)$$

The mean field optimization problem becomes

$$\max_{\mu \in \mathcal{M}_{F}(G)} \left\{ \langle \mu, \theta \rangle - A_{F}^{*}(\mu) \right\}$$

$$= \max_{\mu(F) \in \mathcal{M}(F)} \left\{ \underbrace{\sum_{\alpha \in \mathcal{I}(F)} \theta_{\alpha} \mu_{\alpha} + \sum_{\alpha \in \mathcal{I}^{c}(F)} \theta_{\alpha} g_{\alpha}(\mu(F)) - A_{F}^{*}(\mu(F))}_{f(\mu(F))} \right\}$$

$$(18.1)$$

• With this, we can recover our sigmoid mean field coordinate update process by iterating fixed point equations of f, i.e., for $\beta \in \mathcal{I}(F)$,

$$\frac{\partial f}{\partial \mu_{\beta}}(\mu(F)) = \theta_{\beta} + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_{\alpha} \frac{\partial g_{\alpha}}{\partial \mu_{\beta}}(\mu(F)) - \frac{\partial A_{F}^{*}}{\partial \mu_{\beta}}(\mu(F)) \quad (18.3)$$

• Setting this to zero, and then aggregating/concatenating over $\beta \in \mathcal{I}(F)$, vector fix point condition is:

$$\nabla A_F^*(\mu(F)) = \theta + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_\alpha \nabla g_\alpha(\mu(F))$$
 (18.4)

 Setting this to zero, and then aggregating/concatenating over $\beta \in \mathcal{I}(F)$, vector fix point condition is:

$$\nabla A_F^*(\mu(F)) = \theta + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_\alpha \nabla g_\alpha(\mu(F))$$
 (18.4)

 \bullet ∇A is the forward mapping, maps from canonical to mean parameters, and ∇A^* does the reverse. Hence, naming $\gamma(F) = \nabla A(\mu(F))$, gives a parameter update equation for $\beta \in \mathcal{I}(F)$

$$\gamma_{\beta}(F) \leftarrow \underbrace{\theta_{\beta} + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_{\beta} \frac{\partial g_{\alpha}}{\partial \mu_{\beta}} (\mu(F))}$$
(18.5)

Str. Mean Field

 Setting this to zero, and then aggregating/concatenating over $\beta \in \mathcal{I}(F)$, vector fix point condition is:

$$\nabla A_F^*(\mu(F)) = \theta + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_\alpha \nabla g_\alpha(\mu(F))$$
 (18.4)

 \bullet ∇A is the forward mapping, maps from canonical to mean parameters, and ∇A^* does the reverse. Hence, naming $\gamma(F) = \nabla A(\mathcal{A}(F))$, gives a parameter update equation for $\beta \in \mathcal{I}(F)$ $\gamma_{\beta}(F) \leftarrow \theta_{\beta} + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_{\alpha} \frac{\partial g_{\alpha}}{\partial \mu_{\beta}} \left(\mu(F) \right)$ (18.5)

• Above is the mean field update, mapping from canonical parameters
$$(\theta_{\beta}, \text{ and } \theta_{\alpha} \text{ for } \alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F))$$
 and using the mean parameters $\mu(F)$ to new updated canonical parameters $\gamma_{\beta}(F)$ for $\beta \in \mathcal{I}(F)$). It is to be repeated over and over.

• After each update of Eqn. (18.5), a mean parameter, say $\mu(F)_{\delta}$, that depends on any of the updated canonical parameter also needs to be updated before doing the next update.

Str. Mean Field

- After each update of Eqn. (18.5), a mean parameter, say $\mu(F)_{\delta}$, that depends on any of the updated canonical parameter also needs to be updated before doing the next update.
- Since we're using a tractable sub-structure F, we can then update the out-of-date mean parameters using any exact inference algorithm (e.g., junction tree, possible since sub-structure is tractable), and then repeat Eqn. (18.5).

Str. Mean Field

ullet Alternatively, we can transform back to mean parameters right away using ∇A is the forward mapping, maping from canonical to mean.

- Alternatively, we can transform back to mean parameters right away using ∇A is the forward mapping, maping from canonical to mean.
- I.e., we can derive a mean field mean parameter to mean parameter update equation using A_F since $\nabla A_F(\gamma(F)) = \mu(F)$,

- Alternatively, we can transform back to mean parameters right away using ∇A is the forward mapping, maping from canonical to mean.
- I.e., we can derive a mean field mean parameter to mean parameter update equation using A_F since $\nabla A_F(\gamma(F)) = \mu(F)$,
- We get update, for $\beta \in \mathcal{I}(F)$:

$$\mu_{\beta}(F) \leftarrow \frac{\partial A_F}{\partial \gamma_{\beta}} \left(\theta_{\beta} + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_{\alpha} \nabla g_{\alpha}(\mu(F)) \right)$$
 (18.6)

- Alternatively, we can transform back to mean parameters right away using ∇A is the forward mapping, maping from canonical to mean.
- I.e., we can derive a mean field mean parameter to mean parameter update equation using A_F since $\nabla A_F(\gamma(F)) = \mu(F)$,
- We get update, for $\beta \in \mathcal{I}(F)$:

$$\mu_{\beta}(F) \leftarrow \frac{\partial A_F}{\partial \gamma_{\beta}} \left(\theta_{\beta} + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_{\alpha} \nabla g_{\alpha}(\mu(F)) \right)$$
 (18.6)

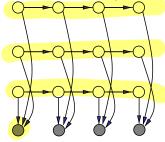
• This generalizes our mean field coordinate ascent update from before, where in that case we would get $\frac{\partial A_F}{\partial \gamma_\beta}$ as being the sigmoid mapping.

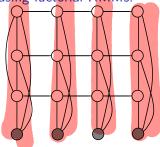
- Alternatively, we can transform back to mean parameters right away using ∇A is the forward mapping, maping from canonical to mean.
- I.e., we can derive a mean field mean parameter to mean parameter update equation using A_F since $\nabla A_F(\gamma(F)) = \mu(F)$,
- We get update, for $\beta \in \mathcal{I}(F)$:

$$\mu_{\beta}(F) \leftarrow \frac{\partial A_F}{\partial \gamma_{\beta}} \left(\theta_{\beta} + \sum_{\alpha \in \mathcal{I}(G) \setminus \mathcal{I}(F)} \theta_{\alpha} \nabla g_{\alpha}(\mu(F)) \right)$$
 (18.6)

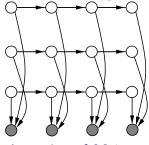
- This generalizes our mean field coordinate ascent update from before, where in that case we would get $\frac{\partial A_F}{\partial \gamma_g}$ as being the sigmoid mapping.
- But here, we can use this for any tractable substructure (e.g., trees or chains or collections thereof).

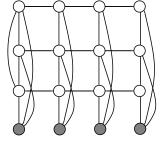
• This idea was developed and applied using factorial HMMs.





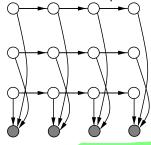
• This idea was developed and applied using factorial HMMs.

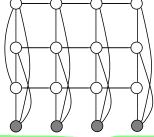




• Graph consists of M 1st-order Markov chains $x_{1:T}^i$ for $i \in [M]$, coupled together at each time via factor $p(\bar{y}_t|x_t^1, x_t^2, \dots, x_t^M)$.

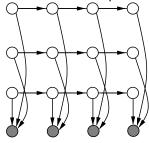
• This idea was developed and applied using factorial HMMs.

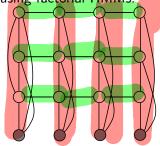




- Graph consists of M 1st-order Markov chains $x_{1:T}^i$ for $i \in [M]$, coupled together at each time via factor $p(\bar{y}_t|x_t^1, x_t^2, \dots, x_t^M)$.
- ullet While each HMM chain is simple (it is only a chain, so a 1-tree), the common observation induces a dependence between each. Thus, given M chains, have a clique of size M (e.g., after moralization, on right)

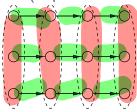
This idea was developed and applied using factorial HMMs.



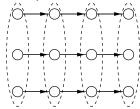


- Graph consists of M 1st-order Markov chains $x_{1:T}^i$ for $i \in [M]$, coupled together at each time via factor $p(\bar{y}_t|x_t^1, x_t^2, \dots, x_t^M)$.
- While each HMM chain is simple (it is only a chain, so a 1-tree), the common observation induces a dependence between each. Thus, given M chains, have a clique of size M (e.g., after moralization, on right)
- After moralization, covering hypergraph consists of tractable sub-substructure hyperedges $F = \{\{x_t^i, x_{t+1}^i\}: i \in [M], t \in [T]\}$ and remaining structure $E \setminus F = \{\{x_t^1, x_t^2, \dots, x_t^M\} : t \in [T]\}$.

• The induced dependencies (cliques as dotted ellipses)

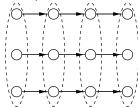


• The induced dependencies (cliques as dotted ellipses)



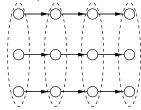
• Tree width of this model is?

• The induced dependencies (cliques as dotted ellipses)



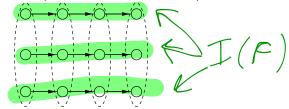
• Tree width of this model is? M

• The induced dependencies (cliques as dotted ellipses)



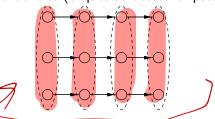
- Tree width of this model is? M
- ullet Thus, if r states per chain, then exact inference complexity r^{M+1}

• The induced dependencies (cliques as dotted ellipses)



- Tree width of this model is? M
- ullet Thus, if r states per chain, then exact inference complexity r^{M+1} .
- Each $\beta \in \mathcal{I}(F)$ corresponds to one of the Markov chain edges in one of the M Markov chains, each soting $O(r^2)$.

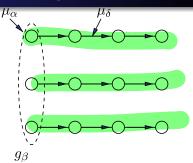
The induced dependencies (cliques as dotted ellipses)



- Tree width of this model is? M
- Thus, if r states per chain, then exact inference complexity r^{M+1} .
- Each $\beta \in \mathcal{I}(F)$ corresponds to one of the Markov chain edges in one of the M Markov chains, each soting $O(r^2)$.
- Each $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$ corresponds to one of the size M cliques (dotted ellipses above) corresponding to the v-structure moralizations, each costing $O(r^M)$.

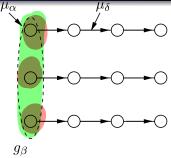
A "natural" choice of approximating distribution is a set of coupled

 chains, natural, perhaps primarily for computational reasons.



A "natural" choice of approximating distribution is a set of coupled

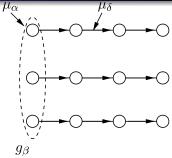
 chains, natural, perhaps primarily for computational reasons.



• Under this independent chains case, we have that for each $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$, derivable functions have form $g_{\beta}(\mu(F)) = \prod_{i=1}^M f_i(\{\mu_i(F)\})$, for some functions f_i . This is fully factored, so is easy to work with, maintains separate chains.

A "natural" choice of approximating distribution is a set of coupled

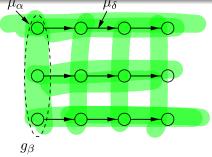
 chains, natural, perhaps primarily for computational reasons.



- Under this independent chains case, we have that for each $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$, derivable functions have form $g_{\beta}(\mu(F)) = \prod_{i=1}^M f_i(\{\mu_i(F)\})$, for some functions f_i . This is fully factored, so is easy to work with, maintains separate chains.
- Each update of form Eqn. (18.5) updates parameters for $\beta \in \mathcal{I}(F)$, corresponds to all edges of all M Markov chains.

A "natural" choice of approximating distribution is a set of coupled

chains, natural, perhaps primarily for computational reasons.



- Under this independent chains case, we have that for each $\beta \in \mathcal{I} \setminus \mathcal{I}(F)$, derivable functions have form $g_{\beta}(\mu(F)) = \prod_{i=1}^{M} f_i(\{\mu_i(F)\}),$ for some functions f_i . This is fully factored, so is easy to work with, maintains separate chains.
- Each update of form Eqn. (18.5) updates parameters for $\beta \in \mathcal{I}(F)$, corresponds to all edges of all M Markov chains.
- To recover mean parameters (or do Eqn. (18.6)), need only forward-backward procedure on each chain separately, $O(MTr^2)$.

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\}$$
 (18.7)

ullet Other than mean field (which gives lower bound on $A(\theta)$), none of the other approximation methods have been anything other than approximation methods.

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\}$$
 (18.7)

- Other than mean field (which gives lower bound on $A(\theta)$), none of the other approximation methods have been anything other than approximation methods.
- What about upper bounds?

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\}$$
 (18.7)

Tree Re-weighted Case

- Other than mean field (which gives lower bound on $A(\theta)$), none of the other approximation methods have been anything other than approximation methods.
- What about upper bounds?
- We would like both lower and upper bounds of $A(\theta)$ since that will allow us to produce upper and lower bounds of the probabilistic queries we wish to perform.

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\}$$
 (18.7)

Tree Re-weighted Case

- Other than mean field (which gives lower bound on $A(\theta)$), none of the other approximation methods have been anything other than approximation methods.
- What about upper bounds?
- We would like both lower and upper bounds of $A(\theta)$ since that will allow us to produce upper and lower bounds of the probabilistic queries we wish to perform.
- If the upper and lower bounds between a given probably p is small, $p_L \le p \le p_U$, with $p_U - p_L \le \epsilon$, we have guarantees, for a particular instance of a model.

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\}$$
 (18.7)

- Other than mean field (which gives lower bound on $A(\theta)$), none of the other approximation methods have been anything other than approximation methods.
- What about upper bounds?
- We would like both lower and upper bounds of $A(\theta)$ since that will allow us to produce upper and lower bounds of the probabilistic queries we wish to perform.
- If the upper and lower bounds between a given probably p is small, $p_L \leq p \leq p_U$, with $p_U p_L \leq \epsilon$, we have guarantees, for a particular instance of a model.
- ullet In this next chapter (Chap 7), we will "convexify" $H(\mu)$ and at the same time produce upper bounds.

• Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I}).$

- Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I}).$
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.

- Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I})$.
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.
- \bullet For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.

- Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I})$.
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.
- For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.
- Let \mathfrak{D} be a set of subfamilies that are tractable.

- Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I}).$
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.
- \bullet For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.
- Let D be a set of subfamilies that are tractable.
- I.e., \mathfrak{D} might be all spanning trees of G, or some subset of spanning trees that we like.

- Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I}).$
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.
- ullet For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.
- Let D be a set of subfamilies that are tractable.
- I.e., $\mathfrak D$ might be all spanning trees of G, or some subset of spanning trees that we like.
- As before, $\mathcal{I}(F) \subseteq \mathcal{I}$ are the subset of indices of the suff. stats. that abide by F, and $|\mathcal{I}(F)| = d(F) < d = |\mathcal{I}|$ suff. stats.

- Recall sufficient stats $\phi = (\phi_{\alpha}, \alpha \in \mathcal{I})$ and canonical parameters $\theta = (\theta_{\alpha}, \alpha \in \mathcal{I}).$
- In general, inference (computing mean parameters) starting from canonical parameters is hard for a given G.
- ullet For a tractable subgraph F, it is not so hard, as we saw in the mean field case. Note in mean field case, we had one particular F.
- Let \mathfrak{D} be a set of subfamilies that are tractable.
- I.e., $\mathfrak D$ might be all spanning trees of G, or some subset of spanning trees that we like.
- As before, $\mathcal{I}(F) \subseteq \mathcal{I}$ are the subset of indices of the suff. stats. that abide by F, and $|\mathcal{I}(F)| = d(F) < d = |\mathcal{I}|$ suff. stats.
- ullet As before, $\mathcal{M}(F)$ is set of realizable mean parameters associated with F, and $\mu(F) \in \mathcal{M}(F)$. Thus, $\mathcal{M}(F) \subseteq \mathbb{R}^{|\mathcal{I}(F)|}$, and

$$\mathcal{M}(F) = \left\{ \mu \in \mathbb{R}^{|\mathcal{I}(F)|} \middle| \exists p \text{ s.t. } \mu_{\alpha} = \mathbb{E}_{p}[\phi_{\alpha}(X)] \forall \alpha \in \mathcal{I}(F) \right\}$$
 (18.8)

Note $\mathcal{M}_F(G) \neq \mathcal{M}(F)$.

• Given $\mu \in \mathcal{M}$, $\mu(F) \in \mathcal{M}(F)$ projects from \mathcal{I} to $\mathcal{I}(F)$.

- Given $\mu \in \mathcal{M}$, $\mu(F) \in \mathcal{M}(F)$ projects from \mathcal{I} to $\mathcal{I}(F)$.
- Thus, for any $\mu \in \mathcal{M} \subseteq \mathbb{R}^d$, we have that $\mu(F) \in \mathcal{M}(F) \subset \mathbb{R}^{d(F)}$.

- Given $\mu \in \mathcal{M}$, $\mu(F) \in \mathcal{M}(F)$ projects from \mathcal{I} to $\mathcal{I}(F)$.
- Thus, for any $\mu \in \mathcal{M} \subseteq \mathbb{R}^d$, we have that $\mu(F) \in \mathcal{M}(F) \subseteq \mathbb{R}^{d(F)}$.
- We can moreover define the entropy associated with projected mean. namely $H(\mu(F)) \triangleq H(p_{\mu(F)}) = -A^*(\mu(F)).$

- Given $\mu \in \mathcal{M}$, $\mu(F) \in \mathcal{M}(F)$ projects from \mathcal{I} to $\mathcal{I}(F)$
- Thus, for any $\mu \in \mathcal{M} \subseteq \mathbb{R}^d$, we have that $\mu(F) \in \mathcal{M}(F) \subseteq \mathbb{R}^{d(F)}$.
- We can moreover define the entropy associated with projected mean, namely $H(\mu(F)) \triangleq H(p_{\mu(F)}) = -A^*(\mu(F)).$
- Critically, we have that $H(\mu(F)) \ge H(\mu) = H(p_{\mu})$, as we show next.

Proposition 18.4.1 (Maximum Entropy Bounds)

Given any mean parameter $\mu \in \mathcal{M}$ and its projection $\mu(F)$ onto any subgraph F, we have the bound

$$A^*(\mu(F)) \le A^*(\mu)$$
 (18.9)

or alternatively stated, $H(\mu(F)) \ge H(\mu)$, entropy of projection is higher.

• Intuition: $H(\mu) = H(p_{\mu})$ is the entropy of the exponential family model with mean parameters μ .

Proposition 18.4.1 (Maximum Entropy Bounds)

Given any mean parameter $\mu \in \mathcal{M}$ and its projection $\mu(F)$ onto any subgraph F, we have the bound

$$A^*(\mu(F)) \le A^*(\mu) \tag{18.9}$$

or alternatively stated, $H(\mu(F)) \ge H(\mu)$, entropy of projection is higher.

- Intuition: $H(\mu) = H(p_{\mu})$ is the entropy of the exponential family model with mean parameters μ .
- equivalently $H(\mu) = H(p_{\mu})$ is the entropy of the distribution that is the solution to the maximum entropy problem subject to the constraints that it has $\mu = \mathbb{E}_{p_{\theta}}[\phi(X)]$.

Proposition 18.4.1 (Maximum Entropy Bounds)

Given any mean parameter $\mu \in \mathcal{M}$ and its projection $\mu(F)$ onto any subgraph F, we have the bound

$$A^*(\mu(F)) \le A^*(\mu) \tag{18.9}$$

or alternatively stated, $H(\mu(F)) \ge H(\mu)$, entropy of projection is higher.

- Intuition: $H(\mu) = H(p_{\mu})$ is the entropy of the exponential family model with mean parameters μ .
- equivalently $H(\mu) = H(p_{\mu})$ is the entropy of the distribution that is the solution to the maximum entropy problem subject to the constraints that it has $\mu = \mathbb{E}_{p_{\theta}}[\phi(X)]$.
- Fewer constraints when forming $\mu(F)$ (see Eqn. (18.8)), so entropy in corresponding maxent problem can only, if anything, get larger.

Proposition 18.4.1 (Maximum Entropy Bounds)

Given any mean parameter $\mu \in \mathcal{M}$ and its projection $\mu(F)$ onto any subgraph F, we have the bound

$$A^*(\mu(F)) \le A^*(\mu) \tag{18.9}$$

or alternatively stated, $H(\mu(F)) \ge H(\mu)$, entropy of projection is higher.

- Intuition: $H(\mu)=H(p_{\mu})$ is the entropy of the exponential family model with mean parameters μ .
- equivalently $H(\mu) = H(p_{\mu})$ is the entropy of the distribution that is the solution to the maximum entropy problem subject to the constraints that it has $\mu = \mathbb{E}_{p_{\theta}}[\phi(X)]$.
- Fewer constraints when forming $\mu(F)$ (see Eqn. (18.8)), so entropy in corresponding maxent problem can only, if anything, get larger.
- Thus, $H(\mu(F)) > H(\mu)$.

Proof.

Dual problem

$$A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \left\{ \langle \mu, \theta \rangle - A(\theta) \right\} \tag{18.10}$$

Proof.

Dual problem

$$A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \left\{ \langle \mu, \theta \rangle - A(\theta) \right\} \tag{18.10}$$

• Dual problem in sub-graph case.

$$A^*(\mu(F)) = \sup_{\theta(F) \in \mathbb{R}^{d(F)}} \{ \langle \mu(F), \theta(F) \rangle - A(\theta(F)) \}$$
 (18.11)

Str. Mean Field

Convex Relaxations and Upper Bounds - Relaxed Entropy

Proof.

Dual problem

$$A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \{ \langle \mu, \theta \rangle - A(\theta) \}$$
 (18.10)

Dual problem in sub-graph case.

$$A^*(\mu(F)) = \sup_{\theta(F) \in \mathbb{R}^{d(F)}} \{ \langle \mu(F), \theta(F) \rangle - A(\theta(F)) \}$$
 (18.11)

Dual problem in sub-graph case — alternate expression

$$A^{*}(\mu(F)) = \sup_{\theta \in \mathbb{R}^{d}} \{\langle \mu, \theta \rangle - A(\theta) \}$$

$$\theta_{\alpha} = 0 \ \forall \alpha \notin \mathcal{I}(F)$$

$$(18.12)$$

Proof.

Dual problem

$$A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \left\{ \langle \mu, \theta \rangle - A(\theta) \right\}$$
 (18.10)

Dual problem in sub-graph case.

$$A^*(\mu(F)) = \sup_{\theta(F) \in \mathbb{R}^{d(F)}} \left\{ \langle \mu(F), \theta(F) \rangle - A(\theta(F)) \right\}$$
 (18.11)

• Dual problem in sub-graph case — alternate expression

$$\frac{A^*(\mu(F))}{\theta} = \sup_{\substack{\theta \in \mathbb{R}^d \\ \theta_{\alpha} = 0 \ \forall \alpha \notin \mathcal{I}(F)}} \{\langle \mu, \theta \rangle - A(\theta) \} \tag{18.12}$$

• Thus, $A^*(\mu) \ge A^*(\mu(F))$.

• Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.

- Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.
- We can form a distribution over tractable structures, i.e., $\rho \in \mathbb{R}^{|\mathfrak{D}|}$, i.e., $\rho(F) \geq 0$ for $F \in \mathfrak{D}$ and $\sum_{F \in \mathfrak{D}} \rho(F) = 1$

- Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.
- We can form a distribution over tractable structures, i.e., $\rho \in \mathbb{R}^{|\mathfrak{D}|}$, i.e., $\rho(F) \geq 0$ for $F \in \mathfrak{D}$ and $\sum_{F \in \mathfrak{D}} \rho(F) = 1$
- Convex combination over $F \in \mathfrak{D}$, gives more general upper bound

$$H(\mu) \le \mathbb{E}_{\rho}[H(\mu(F))] = \sum_{F \in \mathfrak{D}} \rho(F) H(\mu(F))$$
(18.13)

- Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.
- We can form a distribution over tractable structures, i.e., $\rho \in \mathbb{R}^{|\mathfrak{D}|}$, i.e., $\rho(F) \geq 0$ for $F \in \mathfrak{D}$ and $\sum_{F \in \mathfrak{D}} \rho(F) = 1$
- ullet Convex combination over $F\in\mathfrak{D}$, gives more general upper bound

$$H(\mu) \le \mathbb{E}_{\rho}[H(\mu(F))] = \sum_{F \in \mathfrak{D}} \rho(F)H(\mu(F)) \tag{18.13}$$

• This will be our **convexified upper bound on entropy** (lower bound on the dual).

- Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.
- We can form a distribution over tractable structures, i.e., $\rho \in \mathbb{R}^{|\mathfrak{D}|}$, i.e., $\rho(F) \geq 0$ for $F \in \mathfrak{D}$ and $\sum_{F \in \mathfrak{D}} \rho(F) = 1$
- Convex combination over $F \in \mathfrak{D}$, gives more general upper bound

$$H(\mu) \le \mathbb{E}_{\rho}[H(\mu(F))] = \sum_{F \in \mathfrak{D}} \rho(F)H(\mu(F))$$
 (18.13)

- This will be our convexified upper bound on entropy (lower bound on the dual).
- compared to mean field, we are not choosing only one structure, but many of them, and mixing them together in a certain way.

- Note that the upper bound is true for each $F \in \mathfrak{D}$, and thus would be true for mixtures of different $F \in \mathfrak{D}$.
- We can form a distribution over tractable structures, i.e., $\rho \in \mathbb{R}^{|\mathfrak{D}|}$, i.e., $\rho(F) \geq 0$ for $F \in \mathfrak{D}$ and $\sum_{F \in \mathfrak{D}} \rho(F) = 1$
- Convex combination over $F \in \mathfrak{D}$, gives more general upper bound

$$H(\mu) \le \mathbb{E}_{\rho}[H(\mu(F))] = \sum_{F \in \mathfrak{D}} \rho(F) H(\mu(F))$$
(18.13)

- This will be our convexified upper bound on entropy (lower bound on the dual).
- compared to mean field, we are not choosing only one structure, but many of them, and mixing them together in a certain way.
- ullet This so far gives us an upper bound on $A(\theta)$, but we still need an outer bound. The combination will give us our uppper bound on $A(\theta)$.

• When we form mixture of entropies (which really are duals), we make sure any given $\mu(F)$ can be evaluated for any dual (i.e., each component can properly evaluate any possible $\mu(F)$).

- When we form mixture of entropies (which really are duals), we make sure any given $\mu(F)$ can be evaluated for any dual (i.e., each component can properly evaluate any possible $\mu(F)$).
- Logical constraint: make sure any $\mu(F)$ works for all components.

- When we form mixture of entropies (which really are duals), we make sure any given $\mu(F)$ can be evaluated for any dual (i.e., each component can properly evaluate any possible $\mu(F)$).
- Logical constraint: make sure any $\mu(F)$ works for all components.
- Constraint set as follows:

aint set as follows:
$$\mathcal{L}(G; \mathfrak{D}) = \left\{ \tau \in \mathbb{R}^d \middle| \tau(F) \in \mathcal{M}(F) \middle| \forall F \in \mathfrak{D} \right\}$$

$$= \bigcap_{F \in \mathfrak{D}} \mathcal{M}_F(G)$$

$$(18.14)$$

- When we form mixture of entropies (which really are duals), we make sure any given $\mu(F)$ can be evaluated for any dual (i.e., each component can properly evaluate any possible $\mu(F)$).
- Logical constraint: make sure any $\mu(F)$ works for all components.
- Constraint set as follows:

$$\mathcal{L}(G; \mathfrak{D}) = \left\{ \tau \in \mathbb{R}^d | \tau(F) \in \mathcal{M}(F) \ \forall F \in \mathfrak{D} \right\}$$

$$= \bigcap_{F \in \mathcal{P}} \mathcal{M}_F(G)$$
(18.15)

• Note this is an outer bound i.e., $\mathcal{L}(G;\mathfrak{D}) \supseteq \mathcal{M}(G)$ since $F(G) = \mathcal{M}(G)$ any member of $\mathcal{M}(G)$ (any valid mean parameter for G) must also be a member of any $\mathcal{M}(F)$.

- When we form mixture of entropies (which really are duals), we make sure any given $\mu(F)$ can be evaluated for any dual (i.e., each component can properly evaluate any possible $\mu(F)$).
- Logical constraint: make sure any $\mu(F)$ works for all components.
- Constraint set as follows:

$$\mathcal{L}(G; \mathfrak{D}) = \left\{ \tau \in \mathbb{R}^d | \tau(F) \in \mathcal{M}(F) \ \forall F \in \mathfrak{D} \right\}$$
 (18.14)

$$= \bigcap_{F \in \mathfrak{D}} \mathcal{M}_F(G) \tag{18.15}$$

- Note this is an outer bound i.e., $\mathcal{L}(G;\mathfrak{D})\supseteq \mathcal{M}(G)$ since $\mathcal{M}(F)\supseteq \mathcal{M}(G)$ any member of $\mathcal{M}(G)$ (any valid mean parameter for G) must also be a member of any $\mathcal{M}(F)$.
- Also note, $\mathcal{L}(G;\mathfrak{D})$ is convex since it is the intersection of a set of convex sets.

ullet Combining the upper bound on entropy, and the outer bound on \mathcal{M} , we get a new variational approximation to the cumulant function.

$$B_{\mathfrak{D}}(\theta;\rho) \stackrel{\Delta}{=} \sup_{\tau \in \mathcal{L}(G;\mathfrak{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F)) \right\}$$
(18.16)

Str. Mean Field

• Combining the upper bound on entropy, and the outer bound on \mathcal{M} , we get a new variational approximation to the cumulant function.

$$B_{\mathfrak{D}}(\theta; \rho) \stackrel{\Delta}{=} \sup_{\tau \in \mathcal{L}(G; \mathfrak{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F)) \right\}$$
(18.16)

• Objective is convex in θ since it is a max over a set of affine functions of θ (i.e., $g(\theta) = \max_{\tau} \langle \tau, \theta \rangle + c_{\tau}$)

Str. Mean Field

• Combining the upper bound on entropy, and the outer bound on \mathcal{M} , we get a new variational approximation to the cumulant function.

$$B_{\mathfrak{D}}(\theta; \rho) \stackrel{\Delta}{=} \sup_{\tau \in \mathcal{L}(G; \mathfrak{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F)) \right\}$$
(18.16)

- Objective is convex in θ since it is a max over a set of affine functions of θ (i.e., $g(\theta) = \max_{\tau} \langle \tau, \theta \rangle + c_{\tau}$)
- Evaluating the objective (optimization) is concave, so possible to get!

• Combining the upper bound on entropy, and the outer bound on \mathcal{M} , we get a new variational approximation to the cumulant function.

$$B_{\mathfrak{D}}(\theta; \rho) \stackrel{\Delta}{=} \sup_{\tau \in \mathcal{L}(G; \mathfrak{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F)) \right\}$$
(18.16)

- Objective is convex in θ since it is a max over a set of affine functions of θ (i.e., $g(\theta) = \max_{\tau} \langle \tau, \theta \rangle + c_{\tau}$)
- Evaluating the objective (optimization) is concave, so possible to get!
- Also, $\mathcal{L}(G;\mathfrak{D})$ is a convex outer bound on $\mathcal{M}(G)$

Str. Mean Field

• Combining the upper bound on entropy, and the outer bound on \mathcal{M} , we get a new variational approximation to the cumulant function.

$$B_{\mathfrak{D}}(\theta; \rho) \stackrel{\Delta}{=} \sup_{\tau \in \mathcal{L}(G; \mathfrak{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F)) \right\}$$
(18.16)

- Objective is convex in θ since it is a max over a set of affine functions of θ (i.e., $g(\theta) = \max_{\tau} \langle \tau, \theta \rangle + c_{\tau}$)
- Evaluating the objective (optimization) is concave, so possible to get!
- Also, $\mathcal{L}(G;\mathfrak{D})$ is a convex outer bound on $\mathcal{M}(G)$
- Thus $B_{\mathfrak{D}}(\theta; \rho)$ is convex, has a global optimal solution, it approximates $A(\theta)$, and best of all is an upper bound, $A(\theta) \leq B_{\mathfrak{D}}(\theta; \rho)$

 We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

$$p_{\theta}(x) \propto \exp\left\{\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t)\right\}$$
 (18.17)

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

$$p_{\theta}(x) \propto \exp\left\{\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t)\right\}$$
(18.17)

• Let $\mathfrak T$ be a set of all spanning trees T of G, and let ρ be a distribution over them, $\sum_{T \in \mathfrak T} \rho(T) = 1$.

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

$$p_{\theta}(x) \propto \exp\left\{\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t)\right\}$$
 (18.17)

Tree Re-weighted Case

- Let $\mathfrak T$ be a set of all spanning trees T of G, and let ρ be a distribution over them, $\sum_{T \in \mathfrak{T}} \rho(T) = 1$.
- Thus, we have $H(\mu) \leq \sum_{T \in \mathfrak{T}} \rho(T) H(\mu(T))$

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

Str. Mean Field

$$p_{\theta}(x) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$
 (18.17)

- Let $\mathfrak T$ be a set of all spanning trees T of G, and let ρ be a distribution over them, $\sum_{T \in \mathfrak T} \rho(T) = 1$.
- Thus, we have $H(\mu) \leq \sum_{T \in \mathfrak{T}} \rho(T) H(\mu(T))$
- ullet For any T, $H(\mu(T))$ has an easy form, i.e.,

$$H(\mu(T)) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E(T)} I_{st}(\mu_{st})$$
 (18.18)

- We can get convex upper bounds in the tree case, and a new style of sum-product algorithm.
- Consider MRF again

$$p_{\theta}(x) \propto \exp\left\{\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t)\right\}$$
 (18.17)

- Let $\mathfrak T$ be a set of all spanning trees T of G, and let ρ be a distribution over them, $\sum_{T \in \mathfrak T} \rho(T) = 1$.
- Thus, we have $H(\mu) \leq \sum_{T \in \mathfrak{T}} \rho(T) H(\mu(T))$
- For any T, $H(\mu(T))$ has an easy form, i.e.,

$$H(\mu(T)) = \sum_{s \in V} H_s(\mu_s) + \sum_{(s,t) \in E(T)} I_{st}(\mu_{st})$$

$$\tag{18.18}$$

• We want to use this when we take the expected value w.r.t. distribution ρ .

• Every tree is spanning, all tress have all nodes, so the probability, according to ρ of a given node is always 1. I.e., $\rho_s=1, \forall s\in V.$

- Every tree is spanning, all tress have all nodes, so the probability, according to ρ of a given node is always 1. I.e., $\rho_s=1, \forall s\in V.$
- ullet Thus, in $\mathbb{E}_{
 ho}[H(\mu(T))]$, we have a term of the form $\sum_{s\in V}H_s(\mu_s)$.

- Every tree is spanning, all tress have all nodes, so the probability, according to ρ of a given node is always 1. I.e., $\rho_s=1, \forall s\in V.$
- Thus, in $\mathbb{E}_{\rho}[H(\mu(T))]$, we have a term of the form $\sum_{s \in V} H_s(\mu_s)$.
- For edges we need $\rho_{st} = \mathbb{E}_{\rho}[\mathbb{I}[(s,t) \in E(T)]]$, this indicates the probability of presence of an edge in the set \mathfrak{T} .

- Every tree is spanning, all tress have all nodes, so the probability, according to ρ of a given node is always 1. I.e., $\rho_s=1, \forall s\in V.$
- Thus, in $\mathbb{E}_{\rho}[H(\mu(T))]$, we have a term of the form $\sum_{s\in V}H_s(\mu_s)$.
- For edges we need $\rho_{st} = \mathbb{E}_{\rho}[\mathbb{I}[(s,t) \in E(T)]]$, this indicates the probability of presence of an edge in the set \mathfrak{T} .
- The expression becomes

$$H(\mu) \le \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\mu_{st})$$
 (18.19)

Note right hand sum is over all E (not just a given spanning tree) and terms are weighted by probability of the given edge ρ_{st} .

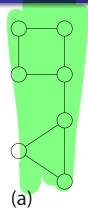
- Every tree is spanning, all tress have all nodes, so the probability, according to ρ of a given node is always 1. I.e., $\rho_s = 1, \forall s \in V$.
- Thus, in $\mathbb{E}_{\rho}[H(\mu(T))]$, we have a term of the form $\sum_{s \in V} H_s(\mu_s)$.
- For edges we need $\rho_{st} = \mathbb{E}_{\rho}[\mathbb{I}[(s,t) \in E(T)]]$, this indicates the probability of presence of an edge in the set \mathfrak{T} .
- The expression becomes

$$H(\mu) \le \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\mu_{st})$$
 (18.19)

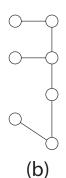
Note right hand sum is over all E (not just a given spanning tree) and terms are weighted by probability of the given edge ρ_{st} .

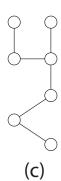
 ho_{st} is edge appearance probability, $ho = (\rho_{st}, (s,t) \in E)$ is spanning tree polytope.

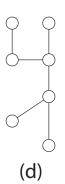
Edge appearance probabilities example



Str. Mean Field

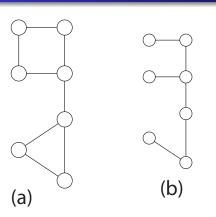


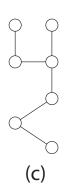


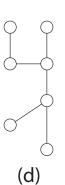


• (a) a graph G = (V, E) with m = |V| = 7

Edge appearance probabilities example



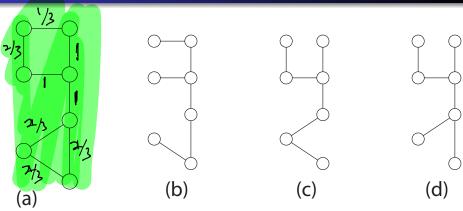




- (a) a graph G = (V, E) with m = |V| = 7
- (b), (c), and (d) various spanning trees, each with probability 1/3.

Str. Mean Field

Edge appearance probabilities example



- (a) a graph G = (V, E) with m = |V| = 7
- (b), (c), and (d) various spanning trees, each with probability 1/3.
- What are the edge appearance probabilities ρ_{st} ?

• We also need outer bound on \mathcal{M} .

- We also need outer bound on \mathcal{M} .
- For discrete case $\mathcal{M} = \mathbb{M}(G)$ is marginal polytope.

- We also need outer bound on \mathcal{M} .
- For discrete case $\mathcal{M} = \mathbb{M}(G)$ is marginal polytope.
- $\mathbb{M}(T)$ is marginal polytope for tree, and for a tree is the same as $\mathbb{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).

- We also need outer bound on \mathcal{M} .
- For discrete case $\mathcal{M} = \mathbb{M}(G)$ is marginal polytope.
- \bullet M(T) is marginal polytope for tree, and for a tree is the same as $\mathbb{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).
- Thus, $\mu(T) \in \mathbb{M}(T)$ requires non-negativity, sum-to-one (at each node), and edge-to-node consistency (marginalization) on each edge. If G = T then we're done.

- We also need outer bound on \mathcal{M} .
- For discrete case $\mathcal{M} = \mathbb{M}(G)$ is marginal polytope.
- $\mathbb{M}(T)$ is marginal polytope for tree, and for a tree is the same as $\mathbb{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).
- Thus, $\mu(T) \in \mathbb{M}(T)$ requires non-negativity, sum-to-one (at each node), and edge-to-node consistency (marginalization) on each edge. If G = T then we're done.
- For general G, If we ask for $\mu(T) \in \mathbb{M}(T)$ for all $T \in \mathfrak{T}$, this is identical to asking for local marginalization on every edge of G.

- We also need outer bound on \mathcal{M} .
- For discrete case $\mathcal{M} = \mathbb{M}(G)$ is marginal polytope.
- \bullet M(T) is marginal polytope for tree, and for a tree is the same as $\mathbb{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).
- Thus, $\mu(T) \in \mathbb{M}(T)$ requires non-negativity, sum-to-one (at each node), and edge-to-node consistency (marginalization) on each edge. If G = T then we're done.
- For general G, If we ask for $\mu(T) \in \mathbb{M}(T)$ for all $T \in \mathfrak{T}$, this is identical to asking for local marginalization on every edge of G.
- Thus, in this case $\mathcal{L}(G; \mathfrak{I})$ is just the set of locally consistent pseudomarginals, and is the same as the outer bound we saw in the Bethe variational approximation $\mathbb{L}(G)$.

- We also need outer bound on \mathcal{M} .
- For discrete case $\mathcal{M} = \mathbb{M}(G)$ is marginal polytope.
- \bullet M(T) is marginal polytope for tree, and for a tree is the same as $\mathbb{L}(T)$, the locally consistent pseudo-marginals (which recall are marginals for a tree).
- Thus, $\mu(T) \in \mathbb{M}(T)$ requires non-negativity, sum-to-one (at each node), and edge-to-node consistency (marginalization) on each edge. If G = T then we're done.
- For general G, If we ask for $\mu(T) \in \mathbb{M}(T)$ for all $T \in \mathfrak{T}$, this is identical to asking for local marginalization on every edge of G.
- ullet Thus, in this case $\mathcal{L}(G;\mathfrak{I})$ is just the set of locally consistent pseudomarginals, and is the same as the outer bound we saw in the Bethe variational approximation $\mathbb{L}(G)$.
- In Bethe case, however, we did not have a bound on entropy, only an outer bound on the marginal polytope. Now, however, we also have a (convexification based) bound on entropy.

Theorem 18.5.1 (Tree-Reweighted Bethe and Sum-Product)

(a) For any choice of edge appearance vector $\rho = (\rho_{st}, (s,t) \in E)$ in the spanning tree polytope, the cumulant function $A(\theta)$ evaluated at θ is upper bounded by the solution of the tree reweighted Bethe variational problem (BVP):

$$B_{\mathfrak{T}}(\theta; \rho) = \max_{\tau \in \mathbb{L}(G)} \left\{ \langle \tau, \theta \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\tau_{st}) \right\}$$

$$\geq A(\theta)$$
(18.20)

For any edge appearance vector such that $\rho_{st} > 0$ for all edges (s,t), this problem is strictly convex with a unique optimum.

Theorem 18.5.1 (Tree-Reweighted Bethe and Sum-Product)

(b) The tree-reweighted BVP can be solved using the tree-reweighted sum-product updates

$$M_{t \to s}(x_s) \leftarrow \kappa \sum_{x_t' \in \mathcal{X}_t} \varphi_{st}(x_s, x_t') \frac{\left[M_{v \to t}(x_t')\right]^{\rho_{vt}}}{\left[M_{s \to t}(x_t')\right]^{(1-\rho_{ts})}}$$
(18.22)

where $\varphi_{st}(x_s, x_t') = \exp\left(\frac{1}{\rho_{st}}\phi_{st}(x_s, x_t') + \theta_t(x_t')\right)$. The updates have a unique fixed point under assumptions given in (a).

• Note that if $\rho_{st} \leftarrow 1$, for all $(s,t) \in E$, then we recover standard LBP and Bethe approximation.

- Note that if $\rho_{st} \leftarrow 1$, for all $(s,t) \in E$, then we recover standard LBP and Bethe approximation.
- However, if $\rho_{st} = 1$ then edge (s,t) appears in all spanning trees. If this is indeed true for all spanning trees T, then G must be a tree, and we get back standard tree-based message passing we saw in lecture 2!!

- Note that if $\rho_{st} \leftarrow 1$, for all $(s,t) \in E$, then we recover standard LBP and Bethe approximation.
- However, if $\rho_{st}=1$ then edge (s,t) appears in all spanning trees. If this is indeed true for all spanning trees T, then G must be a tree, and we get back standard tree-based message passing we saw in lecture 2!!
- Thus, this is a true convex generalization, when $\rho_{st} < 1$ for many s, t.

- Note that if $\rho_{st} \leftarrow 1$, for all $(s,t) \in E$, then we recover standard LBP and Bethe approximation.
- However, if $\rho_{st}=1$ then edge (s,t) appears in all spanning trees. If this is indeed true for all spanning trees T, then G must be a tree, and we get back standard tree-based message passing we saw in lecture 2!!
- Thus, this is a true convex generalization, when $\rho_{st} < 1$ for many s,t.
- Note that $\rho = (\rho_{st}, (s,t) \in E)$ must live in the "spanning tree polytope" $\subseteq \mathbb{R}_+^E$, i.e., a convex combination of vertices consisting of characteristic (indicator) functions of spanning trees (see example earlier).

• Note that if $\rho_{st} \leftarrow 1$, for all $(s,t) \in E$, then we recover standard LBP and Bethe approximation.

Tree Re-weighted Case

- However, if $\rho_{st} = 1$ then edge (s,t) appears in all spanning trees. If this is indeed true for all spanning trees T, then G must be a tree, and we get back standard tree-based message passing we saw in lecture 2!!
- Thus, this is a true convex generalization, when $\rho_{st} < 1$ for many s, t.
- Note that $\rho = (\rho_{st}, (s,t) \in E)$ must live in the "spanning tree polytope" $\subseteq \mathbb{R}_{+}^{E}$, i.e., a convex combination of vertices consisting of characteristic (indicator) functions of spanning trees (see example earlier). I.e., Let \mathfrak{T} be the set of all spanning trees, and $\mathbf{1}_T \in \{0,1\}^E$ be the characteristic vector of $T \in \mathfrak{T}$. Then we must have that

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.23}$$

where $conv(\cdot)$ is the convex hull of its argument.

More on spanning tree polytope

• Spanning tree polytope takes the form

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.24}$$

where \mathfrak{T} is set of all spanning trees.

Spanning tree polytope takes the form

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.24}$$

where \mathfrak{T} is set of all spanning trees.

• Consider graphic matroid on G = (V, E) with rank function r(A) for any $A \subseteq E$.

More on spanning tree polytope

Spanning tree polytope takes the form

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.24}$$

where \mathfrak{T} is set of all spanning trees.

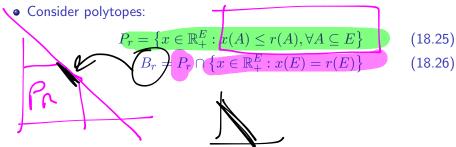
- Consider graphic matroid on G = (V, E) with rank function r(A) for any $A \subseteq E$.
- Then A is a spanning tree iff r(A) = |A| and |A| = m 1.

Spanning tree polytope takes the form

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.24}$$

where \mathfrak{T} is set of all spanning trees.

- Consider graphic matroid on G = (V, E) with rank function r(A) for any $A \subseteq E$.
- Then A is a spanning tree iff r(A) = |A| and |A| = m 1.



More on spanning tree polytope

Spanning tree polytope takes the form

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.24}$$

where \mathfrak{T} is set of all spanning trees.

- Consider graphic matroid on G = (V, E) with rank function r(A) for any $A \subseteq E$.
- Then A is a spanning tree iff r(A) = |A| and |A| = m 1.
- Consider polytopes:

$$P_r = \left\{ x \in \mathbb{R}_+^E : x(A) \le r(A), \forall A \subseteq E \right\}$$
 (18.25)

$$B_r = P_r \cap \left\{ x \in \mathbb{R}_+^E : x(E) = r(E) \right\}$$
 (18.26)

• Then if T is a spanning tree, $\mathbf{1}_T \in B_r$, and $B_r = \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\})$.

Spanning tree polytope takes the form

$$\rho \in \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\}) \tag{18.24}$$

where \mathfrak{T} is set of all spanning trees.

- Consider graphic matroid on G = (V, E) with rank function r(A) for any $A \subseteq E$.
- Then A is a spanning tree iff r(A) = |A| and |A| = m 1.
- Consider polytopes:

$$P_r = \left\{ x \in \mathbb{R}_+^E : x(A) \le r(A), \forall A \subseteq E \right\}$$
 (18.25)

$$B_r = P_r \cap \left\{ x \in \mathbb{R}_+^E : x(E) = r(E) \right\}$$
 (18.26)

- Then if T is a spanning tree, $\mathbf{1}_T \in B_r$, and $B_r = \operatorname{conv}(\{\mathbf{1}_T : T \in \mathfrak{T}\})$.
- Edmonds showed that a simple fast greedy procedure will maximize a linear function over this polytope, and this can be useful for finding good points in the spanning tree polytope.

Tree-reweighted sum-product: convex vs. upper bound

• In above case, we have both a convexification of the cumulant and an upper bound property.

Tree-reweighted sum-product: convex vs. upper bound

- In above case, we have both a convexification of the cumulant and an upper bound property.
- It should be pointed out that these are not mutual requirements: one can have convex without upper bound and vice verse.

Tree-reweighted sum-product fixed point

The fixed point we ultimately reach has following form:

$$\tau_{st}^{*}(x_{s}) = \kappa \exp\left\{\theta_{s}(x_{s})\right\} \prod_{v \in N(s)} [M_{v \to s}^{*}(x_{s})]^{\rho_{vs}}$$

$$(18.27)$$

$$\tau_{st}^{*}(x_{s}, x_{t}) = \kappa \varphi_{st}(x_{s}, x_{t}) \frac{\prod_{v \in N(s) \setminus t} [M_{vs}^{*}(x_{s})]^{\rho_{vs}} \prod_{v \in N(t) \setminus s} [M_{vt}^{*}(x_{t})]^{\rho_{vt}}}{[M_{ts}^{*}(x_{s})]^{(1-\rho_{st})} [M_{st}^{*}(x_{t})]^{(1-\rho_{ts})}}$$

$$(18.28)$$
with $\varphi_{st}(x_{s}, x_{t}) = \exp\left\{\frac{1}{\rho_{st}} \theta_{st}(x_{s}, x_{t}) + \theta_{s}(x_{s}) + \theta_{t}(x_{t})\right\}$ where the *

versions are the final (convergent) messages.

• In practice: damping of messages M appears in practice to help reach convergence, where each new message is a convex mixture of the previous version of itself and the new message according to the equations.

 Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.

- Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.
- Example in book considers k-trees, with tree width at most t. I.e. $\mathfrak{T}(t)$.

- Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.
- Example in book considers k-trees, with tree width at most t. I.e. $\mathfrak{T}(t)$.
- Then we get the same form of bounds

$$H(\mu) \le E_{\rho}[H(\mu(T))] = \sum_{T \in \mathfrak{T}(t)} \rho(T)H(\mu(T))$$
 (18.29)

but here T is over all valid k-trees.

- Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.
- Example in book considers k-trees, with tree width at most t. I.e. $\mathfrak{T}(t)$.
- Then we get the same form of bounds

$$H(\mu) \le E_{\rho}[H(\mu(T))] = \sum_{T \in \mathfrak{T}(t)} \rho(T)H(\mu(T))$$
 (18.29)

but here T is over all valid k-trees.

• This leads to a convexified Kikuchi variational problem

$$A(\theta) \le B_{\mathfrak{B}(t)}(\theta; \rho) = \max_{\tau \in \mathbb{L}(G)} \left\{ \langle \tau, \theta \rangle + \mathbb{E}_{\rho}[H(\tau(T))] \right\}$$
 (18.30)

same form (but different than) before.

- Why stop at trees, instead could use hypertrees and then deduce a hypertree version of the reweighted BP algorithm.
- Example in book considers k-trees, with tree width at most t. I.e. $\mathfrak{T}(t)$.
- Then we get the same form of bounds

$$H(\mu) \le E_{\rho}[H(\mu(T))] = \sum_{T \in \mathfrak{T}(t)} \rho(T)H(\mu(T))$$
 (18.29)

but here T is over all valid k-trees.

This leads to a convexified Kikuchi variational problem

$$A(\theta) \le B_{\mathfrak{B}(t)}(\theta; \rho) = \max_{\tau \in \mathbb{L}(G)} \left\{ \langle \tau, \theta \rangle + \mathbb{E}_{\rho}[H(\tau(T))] \right\}$$
 (18.30)

same form (but different than) before.

• Optimizing ρ over hypertree polytope is hard, unfortunately.

Reweighted EP

• Other variational variants have convexified version.

Str. Mean Field

- Other variational variants have convexified version.
- Convexified forms of EP

$$H_{\rm ep}(\tau, \tilde{\tau}; \rho) = H(\tau) + \sum_{\ell=1}^{d_{\rm I}} \rho(\ell) [H(\tau, \tilde{\tau}^{\ell}) - H(\tau)]$$
 (18.31)

where
$$\sum_{\ell} \rho(\ell) = 1$$
.

Str. Mean Field

- Other variational variants have convexified version.
- Convexified forms of EP

$$H_{\rm ep}(\tau,\tilde{\tau};\rho) = H(\tau) + \sum_{\ell=1}^{d_I} \rho(\ell) [H(\tau,\tilde{\tau}^\ell) - H(\tau)] \tag{18.31} \label{eq:Hep}$$

where
$$\sum_{\ell} \rho(\ell) = 1$$
.

• In this case, reweighted entropy is concave!

Str. Mean Field

Other variational variants have convexified version.

Convexified forms of EP

$$H_{\rm ep}(\tau, \tilde{\tau}; \rho) = H(\tau) + \sum_{\ell=1}^{d_I} \rho(\ell) [H(\tau, \tilde{\tau}^{\ell}) - H(\tau)]$$
 (18.31)

where
$$\sum_{\ell} \rho(\ell) = 1$$
.

- In this case, reweighted entropy is concave!
- Lagrangian formulation leads to solutions that are a form of "reweighted" EP, ideas which also are sometimes called "power EP" (blending the above reweighted sum-product ideas and EP).

• Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)

- Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.

- Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.
- Other examples from book:

- Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.
- Other examples from book:
 - Use of Gaussian continuous entropy as an upper bound and a covariance-based outer bound of \mathcal{M} .

- Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.
- Other examples from book:
 - Use of Gaussian continuous entropy as an upper bound and a covariance-based outer bound of \mathcal{M} .
 - use of conditional entropy, various forms of use of polyhedral approximations.

- Why only trees? There could be other tractable families (e.g., perhaps planar graphs, or restricted grids)
- Other forms, perhaps it would be possible to take mixtures of structures each of which might not have low tree width but has restricted potentials in some way.
- Other examples from book:
 - Use of Gaussian continuous entropy as an upper bound and a covariance-based outer bound of \mathcal{M} .
 - use of conditional entropy, various forms of use of polyhedral approximations.
- This is still an active research area!

Variational Approximations we cover

- Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^*(\mu) \leftarrow H_{\mathsf{Bethe}}(\tau)$ to get Bethe variational approximation, LBP fixed point.
- \bullet Set $\mathcal{M} \leftarrow \mathbb{L}_t(G)$ (hypergraph marginal polytope), $-A^*(\mu) \leftarrow H_{\mathsf{app}}(\tau)$ where $H_{app} = \sum_{g \in E} c(g) H_q(\tau_q)$ (via Möbius) to get Kikuchi variational approximation, message passing on hypergraphs.
- **3** Partition τ into $(\tau, \tilde{\tau})$, and set $\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi)$ and set $-A^*(\mu) \leftarrow H_{\rm ep}(\tau, \tilde{\tau})$ to get expectation propagation.
- **Mean field** (from variational perspective) is (with $\mathcal{M}_E(G) \subseteq \mathcal{M}$) **l.b.**:

$$A(\theta) \ge \max_{\mu \in \mathcal{M}_F(G)} \left\{ \langle \mu, \theta \rangle - A_F^*(\mu) \right\} = A_{\mathsf{mf}}(\theta) \tag{18.1}$$

• Upper bound Convexified/tree reweighted LBP, entropy upper bounds $H(\tau(F))$ for all members $F \in \mathfrak{D}$ of tractable substructures. Get **U.b.**:

$$A(\theta) \le B_{\mathfrak{D}}(\theta; \rho) \stackrel{\Delta}{=} \sup_{\tau \in \mathcal{L}(G; \mathfrak{D})} \left\{ \langle \tau, \theta \rangle + \sum_{F \in \mathfrak{D}} \rho(F) H(\tau(F)) \right\}$$
(18.2)

with $\mathcal{L}(G;\mathfrak{D}) = \bigcap_{F \in \mathfrak{D}} \mathcal{M}(F)$

Str. Mean Field

MPE - most probable explanation

• In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^* \in \operatorname{argmax}_{x \in D_X} p(x)$.

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^* \in \operatorname{argmax}_{x \in D_Y} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^* \in \operatorname{argmax}_{x \in D_X} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.

- In many cases, we care not to sum over x in $\sum_x p(x)$ but instead to compute $x^* \in \operatorname{argmax}_{x \in \mathsf{D}_X} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.
- Equally difficult when tree-width is large.

- In many cases, we care not to sum over x in $\sum_{x} p(x)$ but instead to compute $x^* \in \operatorname{argmax}_{x \in D_X} p(x)$.
- This is called the "Viterbi assignment", or the "most probable explanation" (MPE), or the "most probable configuration" or the "mode", or a few other names.
- From the perspective of semirings, we are only changing the semiring (from sum-product to max-product). Can do exactly same form of exact inference algorithms (e.g., trees, k-trees, junction trees) using different semiring, to get answer. To get n-best answers, can also be seen as a semiring.
- Equally difficult when tree-width is large.
- Can the variational approach help in this case as well?

MPE again

$$\underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} \, p(x) = \{ x \in \mathsf{D}_{X^m} : p_{\theta}(x) \ge p_{\theta}(y), \forall y \in \mathsf{D}_{X^m} \} \qquad (18.32)$$

MPE again

Str. Mean Field

$$\underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} \, p(x) = \{ x \in \mathsf{D}_{X^m} : p_{\theta}(x) \ge p_{\theta}(y), \forall y \in \mathsf{D}_{X^m} \}$$
 (18.32)

• Since we are using exponential family models, we have

$$\underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} p(x) = \underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} \langle \theta, \phi(x) \rangle = \underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmin}} E[x] \tag{18.33}$$

i.e., cumulant function isn't required for computation.

$$E[x] = -\langle \theta, \phi(x) \rangle$$
 is seen as an "energy" function.

MPE again

$$\underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} \, p(x) = \{ x \in \mathsf{D}_{X^m} : p_{\theta}(x) \ge p_{\theta}(y), \forall y \in \mathsf{D}_{X^m} \}$$
 (18.32)

Since we are using exponential family models, we have

$$\underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} p(x) = \underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmax}} \langle \theta, \phi(x) \rangle = \underset{x \in \mathsf{D}_{X^m}}{\operatorname{argmin}} E[x] \tag{18.33}$$

i.e., cumulant function isn't required for computation.

$$E[x] = -\langle \theta, \phi(x) \rangle$$
 is seen as an "energy" function.

But it is related. Recall cumulant function

$$A(\theta) = \log \int \exp\left\{ \langle \theta, \phi(x) \rangle \right\} d\nu(x)$$
 (18.34)

$$= \sup_{\mu \in \mathcal{M}} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\} \tag{18.35}$$

• Considering $p_{\theta}(x) = \exp \{ \langle \theta, \phi(x) \rangle - A(\theta) \}.$

- Considering $p_{\theta}(x) = \exp \{ \langle \theta, \phi(x) \rangle A(\theta) \}.$
- Let $\beta \in \mathbb{R}_+$ be a positive scalar.

- Considering $p_{\theta}(x) = \exp \{ \langle \theta, \phi(x) \rangle A(\theta) \}.$
- Let $\beta \in \mathbb{R}_+$ be a positive scalar.
- If we substitute θ with $\beta\theta$ (i.e., $p_{\theta}(x)$ with $p_{\beta\theta}(x)$), then $b_{\beta\theta(x)}$ becomes more concentrated around MPE solutions as $\beta \to \infty$.

- Considering $p_{\theta}(x) = \exp \{ \langle \theta, \phi(x) \rangle A(\theta) \}.$
- Let $\beta \in \mathbb{R}_+$ be a positive scalar.
- If we substitute θ with $\beta\theta$ (i.e., $p_{\theta}(x)$ with $p_{\beta\theta}(x)$), then $b_{\beta\theta(x)}$ becomes more concentrated around MPE solutions as $\beta \to \infty$.
- This should have some influence on the cumulant. I.e., if we look at $A(\beta\theta)/\beta$ and let β get large.

- Considering $p_{\theta}(x) = \exp \{ \langle \theta, \phi(x) \rangle A(\theta) \}.$
- Let $\beta \in \mathbb{R}_+$ be a positive scalar.
- If we substitute θ with $\beta\theta$ (i.e., $p_{\theta}(x)$ with $p_{\beta\theta}(x)$), then $b_{\beta\theta(x)}$ becomes more concentrated around MPE solutions as $\beta \to \infty$.
- This should have some influence on the cumulant. I.e., if we look at $A(\beta\theta)/\beta$ and let β get large.
- Moreover, with respect to mean parameters, the maximum mean should (intuitively) fall on a vertex.

We have following theorem.

Theorem 18.6.1

For all $\theta \in \Omega$, the problem of mode computation has the following alternative representations:

$$\max_{x \in \mathsf{D}_{X^m}} \left\langle \theta, \phi(x) \right\rangle = \max_{\mu \in \mathcal{M}} \left\langle \theta, \mu \right\rangle, \text{ and} \tag{18.36}$$

$$\max_{x \in \mathsf{D}_{X^m}} \langle \theta, \phi(x) \rangle = \lim_{\beta \to \infty} \frac{A(\beta \theta)}{\beta}$$
 (18.37)

ullet First equation shows how MPE can be seen as a LP over convex set \mathcal{M} .

We have following theorem.

Theorem 18.6.1

For all $\theta \in \Omega$, the problem of mode computation has the following alternative representations:

$$\max_{x \in \mathsf{D}_{X^m}} \left\langle \theta, \phi(x) \right\rangle = \max_{\mu \in \mathcal{M}} \left\langle \theta, \mu \right\rangle, \text{ and} \tag{18.36}$$

$$\max_{x \in \mathsf{D}_{X^m}} \langle \theta, \phi(x) \rangle = \lim_{\beta \to \infty} \frac{A(\beta \theta)}{\beta}$$
 (18.37)

- First equation shows how MPE can be seen as a LP over convex set \mathcal{M} .
- For discrete distributions, we have $\mathbb{M}(G)$ for graph G, so this is a linear objective with polyhedral constraints.

We have following theorem.

Theorem 18.6.1

For all $\theta \in \Omega$, the problem of mode computation has the following alternative representations:

$$\max_{x \in \mathsf{D}_{X^m}} \left\langle \theta, \phi(x) \right\rangle = \max_{\mu \in \mathcal{M}} \left\langle \theta, \mu \right\rangle, \text{ and} \tag{18.36}$$

$$\max_{x \in \mathsf{D}_{X^m}} \langle \theta, \phi(x) \rangle = \lim_{\beta \to \infty} \frac{A(\beta \theta)}{\beta}$$
 (18.37)

- \bullet First equation shows how MPE can be seen as a LP over convex set $\mathcal{M}.$
- For discrete distributions, we have $\mathbb{M}(G)$ for graph G, so this is a linear objective with polyhedral constraints.
- Since I.h.s. is IP, this shows the difficulty of $\mathbb{M}(G)$.

MPE - and variational for trees

 When the graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.

MPE - and variational for trees

- When the graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- \bullet Using the above theorem, we get (for tree T)

$$\max_{x \in \mathsf{D}_{X^m}} \left[\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] = \max_{\mu \in \mathbb{L}(T)} \langle \mu, \theta \rangle \quad (18.38)$$

- When the graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Using the above theorem, we get (for tree T)

$$\max_{x \in \mathsf{D}_{X^m}} \left[\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] = \max_{\mu \in \mathbb{L}(T)} \langle \mu, \theta \rangle \quad (18.38)$$

ullet Right hand side is a LP over a simple polytope, the marginal polytope for trees $\mathbb{L}(T)$.

MPE - and variational for trees

- When the graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Using the above theorem, we get (for tree T)

$$\max_{x \in \mathsf{D}_{X^m}} \left[\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] = \max_{\mu \in \mathbb{L}(T)} \langle \mu, \theta \rangle \quad (18.38)$$

- Right hand side is a LP over a simple polytope, the marginal polytope for trees $\mathbb{L}(T)$.
- It turns out that: the max-product updates are a Lagrangian method for solving dual of the above linear program.

- When the graph is a tree, we can find an interesting connection between the max-product form of messages and a particular Lagrangian.
- Using the above theorem, we get (for tree T)

$$\max_{x \in \mathsf{D}_{X^m}} \left[\sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] = \max_{\mu \in \mathbb{L}(T)} \langle \mu, \theta \rangle \quad (18.38)$$

- Right hand side is a LP over a simple polytope, the marginal polytope for trees $\mathbb{L}(T)$.
- It turns out that: the max-product updates are a Lagrangian method for solving dual of the above linear program.
- Maxproduct updates take the form:

$$M_{t \to s}(x_s) \leftarrow \kappa \max_{x_t \in \mathsf{D}_{X_t}} \left[\exp \left\{ \theta_{st}(x_s, x_t) + \theta_t(x_t) \right\} \prod_{u \in N(t) \setminus s} M_{u \to t}(x_t) \right]$$

Theorem 18.6.2

Max-product and LP Duality Consider the dual function Q defined by the following partial Lagrangian formulation of the tree-structured LP:

$$Q(\lambda) = \max_{\mu \in \mathbb{N}} \mathcal{L}(\mu; \lambda), \text{ where}$$
 (18.40)

$$L(\mu; \lambda) = \langle \theta, \mu \rangle + \sum_{(s,t) \in E(T)} \left[\sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s) + \sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t) \right]$$
(18.41)

For any fixed point M^* of the max-product updates, the vector $\lambda^* = \log M^*$, where the logarithm is taken elementwise, is an optimal solution of the dual problem $\min_{\lambda} Q(\lambda)$.

Sources for Today's Lecture

 Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL&doi=2200000001