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Logistics Review

Announcements

Happy Thanksgiving!! ,
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Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Should have read chapters 1,2, 3, 4 in this book. Read chapter 5.

Also should read “Divergence measures and message passing” by
Thomas Minka, and “Structured Region Graphs: Morphing EP into
GBP”, by Welling, Minka, and Teh.

Assignment due Wednesday (Nov 26th) night, 11:45pm. Final project
proposal updates and progress report (one page max).
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24): Kikuchi, Expectation
Propagation

L17 (11/26): Expectation Propagation,
Mean Field

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Term Decoupling in EP

Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dT ) and the intracxtable ones (of which there are
dI). Thus, d = dT + dI .

Tractable component

φ , (φ1, φ2, . . . , φdT ) (17.5)

Intractable component

Φ , (Φ1,Φ2, . . . ,ΦdI ) (17.6)

φi are typically univariate, while Φi are typically multivariate
(b-dimensional we’ll assume), although this need not always be the
case (but will be for our exposition).

Consider exponential families associated with subcollection (φ,Φ).
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Associated Distributions: base and i-augmented

The associated exponential family

p(x; θ, θ̃) ∝ exp (〈θ, φ(x)〉) exp
(〈
θ̃,Φ(x)

〉)
(17.7)

= exp (〈θ, φ(x)〉)
dI∏
i=1

exp
(〈
θ̃i,Φi(x)

〉)
(17.8)

Base model is tractable

p(x; θ,~0) ∝ exp (〈θ, φ(x)〉) (17.9)

Φi-augmented model

p(x; θ, θ̃i) ∝ exp (〈θ, φ(x)〉) exp
(〈
θ̃i,Φi(x)

〉)
(17.10)
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New EP-based outer bound
For any mean parms (τ, τ̃) where τ̃ = (τ̃1, τ̃2, . . . , τ̃dI ), define
coordinate “projection operation”

Πi(τ, τ̃)→ (τ, τ̃ i) (17.14)

This operator simply removes all but τ̃ i from τ̃ .
Define outer bound on true means M(φ,Φ) (which is still convex)

L(φ,Φ) =
{

(τ, τ̃)|τ ∈M(φ),Πi(τ, τ̃) ∈M(φ,Φi), ∀i
}

(17.15)

Note, based on a set of projections onto M(φ,Φi).
Outer bound, i.e., M(φ,Φ) ⊆ L(φ,Φ), since:

τ ∈M(φ)⇔ ∃p s.t. τ = Ep[φ(X)] (17.16)

(τ, τ̃) ∈ L(φ,Φ)⇔ τ ∈M(φ) & ∃p s.t. (τ, τ̃ i) = Ep[φ(X),Φi(X)]
(17.17)

(τ, τ̃) ∈M(φ,Φ)⇔ ∃p s.t. (τ, τ̃) = Ep[φ(X),Φ(X)] (17.18)

If Φi are edges of a graph (i.e. local consistency) then we get standard
L outer bound we saw before with Bethe approximation
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EP outer bound entropy and opt

For any mean parms (τ, τ̃) ∈ L(φ,Φ): A) There is a member of the
φ-exponential family which mean parameters τ with entropy H(τ); B)
Also, for i = 1 . . . dI , there is a member of the (φ,Φi)-exponential
family with mean parameters (τ, τ̃ i) with entropy H(τ, τ̃ i).

Both entropy forms are easy to compute, and so is a new entropy
approximation:

H(τ, τ̃) ≈ Hep(τ, τ̃) , H(τ) +

dI∑
`=1

[
H(τ, τ̃ l)−H(τ)

]
(17.14)

With outer bound and entropy expression, we get new variational form

max
(τ,τ̃)∈L(φ,Φ)

{
〈τ, θ〉+

〈
τ̃ , θ̃
〉

+Hep(τ, τ̃)
}

(17.15)

This characterizes the EP algorithms.

Given graph G = (V,E) when we take φ to be unaries V and Φ to be
edges E, we exactly recover Bethe approximation.
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Lagrangian optimization setup

Make dI duplicates of vector τ ∈ RdT , call them ηi ∈ RdT for i ∈ [dT ].

This gives large set of pseudo-mean parameters{
τ, (ηi, τ̃ i), i ∈ [dI ]

}
∈ RdT × (RdT × Rb)dI (17.14)

We arrive at the optimization:

max
{τ,{(ηi,τ̃ i)}i}

{
〈τ, θ〉+

dI∑
i=1

〈
τ̃ i, θ̃i

〉
+H(τ) +

dI∑
i=1

[
H(ηi, τ̃ i)−H(ηi)

]}
(17.15)

subject to τ ∈M(φ), and for all i that τ = ηi and that
(ηi, τ̃ i) ∈M(φ,Φi).

Use Lagrange multipliers to impose constraint ηi = τ for all i, and for
the rest of the constraints too.
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Moment Matching → Expectation Propagation Updates
1 At iteration n = 0, initialize the Lagrange multiplier vectors

(λ1, . . . , λdI )
2 At each iteration n = 1, 2, . . . choose some index i(n) ∈ {1, . . . , dI}.
3 Under the following augmented distribution

qi(x; θ, θ̃i, λ) ∝ exp

〈θ +
∑
` 6=i

λl, φ(x)

〉
+
〈
θ̃i,Φi(x)

〉 , (17.19)

compute the mean parameters ηi as follows:

ηi(n) =

∫
qi(n)(x)φ(x)ν(dx) = Eqi(n) [φ(X)] (17.20)

4 Form base distribution q using Equation ?? and adjust λi(n) to satisfy
the moment-matching condition

Eq[φ(X)] = ηi(n) (17.21)

5 This is a KL-divergence minimization step, but done w. exponential
family models which thus corresponds to moment-matching.
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Variational Approach Amenable to Approximation

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.1)

where dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(17.2)

Given efficient expression for A(θ), we can compute marginals of
interest.

Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(θ). We either approximate M or −A∗(µ)
or (most likely) both.
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Variational Approximations we cover
1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational

approximation, LBP fixed point.

2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)
where Happ =

∑
g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi

variational approximation, message passing on hypergraphs.
3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M)

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (17.1)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures.

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.2)

with L(G;D) =
⋂
F∈DM(F )
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EP like variants Mean Field Str. Mean Field Cnvx Relax/Up. Bounds Refs

Example: Sum-Product, Bethe, and EP: distributions

EP generalizes sum-product and Bethe approximation we saw from a
few lectures ago.

Recall, general graph G = (V,E) and we have parameters and
statistics associated with each node φs(xs) for s ∈ V and each edge
φu,v(xu, xv) for (u, v) ∈ E(G).

Base distribution is only the nodes (fully factored independent
distribuiton)

p(x;φ1, . . . , φm,~0) ∝
∏
v∈V

exp(θs(xs)) (17.1)

Each Φi corresponds to an edge (e.g., i = (u, v) for some edge
(u, v) ∈ E(G)). Hence, Φu,v-augmented distribution takes form:

p(x;φ1, . . . , φm, φuv) ∝
∏
v∈V

exp(θs(xs)) exp(θuv(xu, xv)) (17.2)
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Example: Sum-Product, Bethe, and EP: entropies
Base entropy is sum of node marginal entropies

H(τ1, . . . , τm) =
∑
s∈V

H(τs) (17.3)

Augmented entropy takes the form

H(τ1, . . . , τm, τuv) =
∑

s∈V \{u,v}

H(τs) +H(τuv) (17.4)

=
∑
s∈V

H(τs) + [H(τuv)−H(τu)−H(τv)] (17.5)

=
∑
s∈V

H(τs) + I(τu,v) (17.6)

where I(τu,v) is the mutual information between Xu and Xv under
joint distribution τuv.
Overall EP entropy, suming over all augmentations (u, v) ∈ E(G), is:

Hep(τ) =
∑
s∈V

H(τs)−
∑

(u,v)∈E(G)

I(τuv) (17.7)
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Example: Sum-Product, Bethe, and EP: L(φ,Φ)

the base mean parameter M(φ) just asks that τ = (τs, s ∈ V ) are
valid unary marginals (i.e., non-negative and sum to one, in the form
of ∀s ∈ V , 0 ≤ τs(xs) ≤ 1 and

∑
xs
τs(xs) = 1.

Each augmentation M(φ,Φuv) for edge (u, v) ∈ E(G) also asks that
τuv marginalizes down to τu and τv, i.e.,

∑
xv
τuv(xv, xu) = τu(xu)

and
∑

xu
τuv(xv, xu) = τv(xv).

Then considering L(φ,Φ) as defined, we must have for all
(u, v) ∈ E(G), Πuv(τ, τ̃) ∈M(φ,Φuv) — this requires local
consistency along all edges of the graph.

Therefore, in this case, L(φ,Φ) is the same as the local consistency
(or tree-based) polytope outer bound we encountered with LBP and
the Bethe approximation.
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consistency along all edges of the graph.

Therefore, in this case, L(φ,Φ) is the same as the local consistency
(or tree-based) polytope outer bound we encountered with LBP and
the Bethe approximation.
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Ex: Sum-Prod., Bethe, and EP: moment matching, nodes

The base distribution with the Lagrange multipliers has the form:

q(x; θ, λ) ∝
∏
s∈V

exp(θs(xs))
∏

(u,v)∈E

exp(λuv(xv) + λvu(xu)) (17.8)

=
∏
s∈V

exp(θs(xs) +
∑
t∈N(s)

λts(xs)) (17.9)

∝
∏
s∈V

τs(xs) (17.10)

where τs(xs) = exp
(
θs(xs) +

∑
t∈N(s) λts(xs)

)
.

This marginal takes the form of messages being sent along s’s
neighbors to node s, just like in BP.
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Example: Sum-Product, Bethe, and EP: moment matching

Augmented distribution takes the form, for edge ` = (u, v),

q(u,v)(x; θ, λ) ∝ q(x; θ, λ) exp(θuv(xu, xv)− λuv(xv)− λuv(xu))

=

[∏
s∈V

τs(xs)

]
exp(θuv(xu, xv)− λuv(xv)− λuv(xu))

(17.11)

Then the EP algorithm (with this set of base and augmented
statistics) is such that we repeated choose an edge (u, v) ∈ E(G),
form distribution above, and adjust λuv(xv) and λvu(xu) in
Equation (17.8) so that the marginal distributions τv(xv) and τu(xu)
match the marginals of the joint along this edge.

Key point: This marginal matching in fact correspond to the marginal
updates of the standard BP algorithm!
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Example: Tree-structured EP

EP is much more general than this. In above case, base distribution
was all singletons (all independent) and augmentation was edges.

When base distribution is a tree, we get tree-structured EP

Start with a graph G = (V,E) and form a spanning tree
T = (V,E(T )) in any arbitrary way.

Form base tree distribution as follows:

p(x; θ,~0) ∝
∏
s∈V

exp(θs(xs))
∏

(s,t)∈E(T )

exp(θst(xs, xt)) (17.12)

Then, each Φi corresponds to an edge in E \ E(T ), and gives us, for
each edge (u, v) ∈ E \ E(T ), the φ(u,v)-augmented distribution

p(x; θ, θu,v) ∝ (x; θ,~0) exp(θu,v(xu, xv)) (17.13)
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EP as variational: Summary of key points

Fixed points of EP exist assuming Lagrangian form has at least one
optimum.

No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.
EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.
When base distribution is unaries and Φi is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.
Moment matching of EP can be seen as striving for solution of
associated Lagrangian.
Lost of flexibility here, depending on what the base distribution is
(e.g., could be a k-tree, clusters, or many other structures as well).
Can also be done for Gaussian mixture and other distributions.
Many more details, variations, and possible roads to new research.
See text and also see Tom Minka’s papers.
http://research.microsoft.com/en-us/um/people/minka/papers/
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Variational Approximations we cover
1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational

approximation, LBP fixed point.
2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)

where Happ =
∑

g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi
variational approximation, message passing on hypergraphs.

3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M)

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (17.1)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures.

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.2)

with L(G;D) =
⋂
F∈DM(F )
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Mean Field

So far, we have been using an outer bound on M.

In mean-field methods, we use an “inner bound”, a subset of M
constructed so as to make the optimization of A(θ) easier.

Since subset, we get immediate bound on A(θ), all else (i.e., the
entropy) being equal.

Key: we based the inner bound on a “tractable family” like a 1-tree or
even a 0-tree (all independent) so that the variational problem can be
computed efficiently.

Convexity of the optimization problem is often lost still, however, in
the general case.
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Tractable Families

We have graph G = (V,E) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F = (V,EF ) where EF ⊆ E.

Simplest example: F = (V, ∅)

all independence model

.

Tree example: F = (V,ET ) where edges ET ⊂ E constitute a
spanning tree.

Exponential family, sufficient statistics φ = (φα, α ∈ I) associated
with this family I(F ) ⊆ I. These are the statistics that need respect
the Markov properties of only the subgraph F .

Ω gets smaller too. The parameters that respect F are of the form:

R|I| 3 Ω(F ) , {θ ∈ Ω|θα = 0 ∀α ∈ I \ I(F )} ⊆ Ω (17.14)

notice, all parameters associated with sufficient statistic not in I(F )
are set to zero, those statistics are nonexistent in F .

If parameter was not zero, model would not respect the familiy of F .
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spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F = (V,EF ) where EF ⊆ E.

Simplest example: F = (V, ∅)

all independence model

.

Tree example: F = (V,ET ) where edges ET ⊂ E constitute a
spanning tree.

Exponential family, sufficient statistics φ = (φα, α ∈ I) associated
with this family I(F ) ⊆ I. These are the statistics that need respect
the Markov properties of only the subgraph F .

Ω gets smaller too. The parameters that respect F are of the form:

R|I| 3 Ω(F ) , {θ ∈ Ω|θα = 0 ∀α ∈ I \ I(F )} ⊆ Ω (17.14)

notice, all parameters associated with sufficient statistic not in I(F )
are set to zero, those statistics are nonexistent in F .

If parameter was not zero, model would not respect the familiy of F .
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Tractable Subgraphs: All Independent Example

Ex: MRF with potential functions for nodes and edges.

For each (s, t) ∈ E(G), we have θ(s,t).

F0 = (V, ∅) which yields

Ω(F0) =
{
θ ∈ Ω|θ(s,t) = 0 ∀(s, t) ∈ E(G)

}
(17.15)

This is the all independence model, giving family of distributions

pθ(x) =
∏
s∈V

p(xs; θs) (17.16)
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Tractable Subgraphs: Tree Example

Ex: MRF with potential functions for nodes and edges.

For each (s, t) ∈ E(G), we have θ(s,t).

FT = (V, T ) where T ⊂ E are edges that constitute a spanning tree
of G, giving

Ω(F0) =
{
θ ∈ Ω|θ(s,t) = 0 ∀(s, t) /∈ T

}
(17.17)

This gives a tree-dependent family

pθ(x) =
∏
s∈V

p(xs; θs)
∏

(s,t)∈T

p(xs, xt; θst)

p(xs; θs)p(xt; θt)
(17.18)
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Inner bound Approximate Polytope

Before, we had M(G;φ)(=MG(G;φ)), all possible mean parameters
associated with G and associated set of sufficient statistics φ.

For a given subgraph F , we only consider those mean parameters
possible under F -respecting models. I.e.,

MF (G;φ) =
{
µ ∈ Rd|µ = Eθ[φ(x)] for some θ ∈ Ω(F )

}
(17.19)

Therefore, since θ ∈ Ω(F ) ⊆ Ω, we have that

M◦F (G;φ) ⊆M◦(G;φ) (17.20)

and so M◦F (G;φ) is an inner approximation of the set of realizable
mean parameters.

Shorthand notation: M◦F (G) = M◦F (G;φ) and M◦(G) = M◦(G;φ)
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Mean field variational lower bound

Mean field methods generate lower bounds on their estimated A(θ)
and approximate mean parameters µ = Eθ[φ(X)].

Proposition 17.4.1 (mean field lower bound)

Any mean parameter µ ∈M◦ yields a lower bound on the cumulant
function:

A(θ) ≥ 〈θ, µ〉 −A∗(µ) (17.21)

Moreover, equality holds if and only if θ and µ are dually coupled (i.e.,
µ = Eθ[φ(X)]).
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Mean field variational lower bound
Proof.

On the one hand, obvious due to A(θ) = supµ∈M {〈θ, µ〉 −A∗(µ)}

More traditional proof, let q be any distribution that satisfies moment
matching Eq[φ(X)] = µ, then:

A(θ) = log

∫
Xm

exp 〈θ, φ(x)〉ν(dx) (17.22)

= log

∫
Xm

q(x)
exp 〈θ, φ(x)〉

q(x)
ν(dx) (17.23)

≥
∫
Xm

q(x)[〈θ, φ(x)〉 − log q(x)]ν(dx) (17.24)

= 〈θ,Eq[φ(X)]〉 −H(q) = 〈θ, µ〉 −H(q) (17.25)

If we optimize q over all M(G), then we’ll get equality.

If we optimize q over a subset of M(G) (e.g., such as MF (G), then
we’ll get inequality.
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Tractable Dual

Normally dual A∗(µ) = supθ∈Ω (〈θ, µ〉 −A(θ)) is intractable or
unavailable, but key idea is that if µ ∈MF (G) it will be possible to
compute easily.

Thus, goal of mean field (from variational approximation perspective)
is to form AMF(θ) where:

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} , AMF(θ) (17.26)

where A∗F (µ) corresponds to dual function restricted to inner bound
set F(G). I.e., when we expand A∗F (µ), we can take advantage of the
fact that µ is restricted in all cases, so A∗F (µ) might be greatly
simplified relative to A∗(µ).

Note, for µ ∈MF (G) and since MF (G) ⊆M(G), A∗F (µ) is not an
approximation, rather it is just easy to compute.
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Recall

Recall the following slide from lecture 13.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 17.4.3 (Relationship between A and A∗)

(a) For any µ ∈M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(17.3)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.4)

(c) For θ ∈ Ω, sup occurs at µ ∈M◦ of moment matching conditions

µ =

∫
DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (17.5)
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Mean field, KL-Divergence, Exponential Model Families

The conjugae dual optimizations associated with the above, in the
mean field framework has a nice interpretation in terms of minimizing
a KL divergence.

In particular, mean field can be seen as finding the best, in a
KL-divergence minimization sense, approximation to a distribution
from among a family of tractable distributions.
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Mean field, KL-Divergence, Exponential Model Families

The conjugae dual optimizations associated with the above, in the
mean field framework has a nice interpretation in terms of minimizing
a KL divergence.

In particular, mean field can be seen as finding the best, in a
KL-divergence minimization sense, approximation to a distribution
from among a family of tractable distributions.
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Mean field, KL-Divergence, Exponential Model Families

Given two distributions p, q, KL-Divergence of p w.r.t. q is defined as

D(q||p) =

∫
Xm

q(x)

[
log

q(x)

p(x)

]
ν(dx) (17.27)

In summation form, we have

D(q||p) =
∑
x∈Xm

q(x)

[
log

q(x)

p(x)

]
(17.28)

For exponential models this takes on some interesting forms, and more
over, we can see the variational approximation above as a
KL-divergence minimization problem.

Recall, exponential models can be parameterized using canonical
parameters θ or mean parameters µ. We will use notational shortcuts:
D(θ1||θ2) ≡ D(pθ1 ||pθ2), and D(µ1||µ2) ≡ D(pµ1 ||pµ2), and even
D(µ1||θ2) ≡ D(pµ1 ||pθ2).
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Mean field, KL-Divergence, Exponential Model Families

Given two distributions p, q, KL-Divergence of p w.r.t. q is defined as

D(q||p) =
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over, we can see the variational approximation above as a
KL-divergence minimization problem.
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parameters θ or mean parameters µ. We will use notational shortcuts:
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Mean field, KL-Divergence, Exponential Model Families

Given two distributions p, q, KL-Divergence of p w.r.t. q is defined as

D(q||p) =

∫
Xm

q(x)

[
log

q(x)

p(x)

]
ν(dx) (17.27)

In summation form, we have

D(q||p) =
∑
x∈Xm

q(x)

[
log

q(x)

p(x)

]
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For exponential models this takes on some interesting forms, and more
over, we can see the variational approximation above as a
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Recall, exponential models can be parameterized using canonical
parameters θ or mean parameters µ. We will use notational shortcuts:
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Mean field, KL-Divergence, Exponential Model Families

Given two distributions p, q, KL-Divergence of p w.r.t. q is defined as

D(q||p) =

∫
Xm

q(x)

[
log

q(x)

p(x)

]
ν(dx) (17.27)

In summation form, we have

D(q||p) =
∑
x∈Xm

q(x)

[
log

q(x)

p(x)

]
(17.28)

For exponential models this takes on some interesting forms, and more
over, we can see the variational approximation above as a
KL-divergence minimization problem.

Recall, exponential models can be parameterized using canonical
parameters θ or mean parameters µ. We will use notational shortcuts:
D(θ1||θ2) ≡ D(pθ1 ||pθ2), and D(µ1||µ2) ≡ D(pµ1 ||pµ2), and even
D(µ1||θ2) ≡ D(pµ1 ||pθ2).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 17 - Nov 26th, 2014 F31/59 (pg.87/194)



EP like variants Mean Field Str. Mean Field Cnvx Relax/Up. Bounds Refs

Mean field, KL-Divergence, Exponential Model Families

Consider θ1, θ2 ∈ Ω

Let D(θ1||θ2) have aforementioned meaning (KL-divergence between
the two corresponding distributions), and let µi = Eθi [φ(X)],

Then we have a Bregman divergence form:

D(θ1||θ2) = Eθ1
[
log

pθ1(x)

pθ2(x)

]
(17.29)

= A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.30)

= A(θ2)−
[
A(θ1) +

〈
∇A(θ1), θ2 − θ1

〉]
(17.31)

where µ1 = ∇A(θ1) can be seen as the gradient/slope of A(θ)
evaluated at θ1.
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Mean field, KL-Divergence, Exponential Model Families

Consider θ1, θ2 ∈ Ω

Let D(θ1||θ2) have aforementioned meaning (KL-divergence between
the two corresponding distributions), and let µi = Eθi [φ(X)],

Then we have a Bregman divergence form:

D(θ1||θ2) = Eθ1
[
log

pθ1(x)

pθ2(x)

]
(17.29)

= A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.30)

= A(θ2)−
[
A(θ1) +

〈
∇A(θ1), θ2 − θ1

〉]
(17.31)

where µ1 = ∇A(θ1) can be seen as the gradient/slope of A(θ)
evaluated at θ1.
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Mean field, KL-Divergence, Exponential Model Families

Consider θ1, θ2 ∈ Ω

Let D(θ1||θ2) have aforementioned meaning (KL-divergence between
the two corresponding distributions), and let µi = Eθi [φ(X)],

Then we have a Bregman divergence form:

D(θ1||θ2) = Eθ1
[
log

pθ1(x)

pθ2(x)

]
(17.29)

= A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.30)

= A(θ2)−
[
A(θ1) +

〈
∇A(θ1), θ2 − θ1

〉]
(17.31)

where µ1 = ∇A(θ1) can be seen as the gradient/slope of A(θ)
evaluated at θ1.
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Mean field, KL-Divergence, Exponential Model Families

D(θ1||θ2) = A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.32)

= A(θ2)−
[
A(θ1) +

〈
∇A(θ1), θ2 − θ1

〉]
(17.33)
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Mean field, KL-Divergence, Exponential Model Families
We can also express a mixed/hybrid form of KL in terms of dual
A∗(µ) = supθ∈Ω (〈θ, µ〉 −A(θ)) ≥ 〈θ′, µ〉 −A(θ′) for any θ′ ∈ Ω.

We can also write the KL as:

D(θ1||θ2) = A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.34)

= A(θ2)−
〈
µ1, θ2

〉
−
[
A(θ1)−

〈
µ1, θ1

〉]
(17.35)

= A(θ2)−
〈
µ1, θ2

〉
+A∗(µ1) , D(µ1||θ2) (17.36)

which comes from dual expression A∗(µ1) =
〈
θ1, µ1

〉
−A(θ1) which

holds for the dually coupled parameters µ1 = Eθ1 [φ(X)].

In particular, this equation (variational expression for the cumulant):

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

. . . can be written as:

inf
µ∈M

{A(θ) +A∗(µ)− 〈θ, µ〉} = inf
µ∈M

D(µ||θ) = 0 (17.37)
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Mean field, KL-Divergence, Exponential Model Families
We can also express a mixed/hybrid form of KL in terms of dual
A∗(µ) = supθ∈Ω (〈θ, µ〉 −A(θ)) ≥ 〈θ′, µ〉 −A(θ′) for any θ′ ∈ Ω.
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which comes from dual expression A∗(µ1) =
〈
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〉
−A(θ1) which

holds for the dually coupled parameters µ1 = Eθ1 [φ(X)].

In particular, this equation (variational expression for the cumulant):
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{〈θ, µ〉 −A∗(µ)} (13.7)

. . . can be written as:

inf
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Mean field, KL-Divergence, Exponential Model Families
We can also express a mixed/hybrid form of KL in terms of dual
A∗(µ) = supθ∈Ω (〈θ, µ〉 −A(θ)) ≥ 〈θ′, µ〉 −A(θ′) for any θ′ ∈ Ω.

We can also write the KL as:

D(θ1||θ2) = A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.34)

= A(θ2)−
〈
µ1, θ2

〉
−
[
A(θ1)−

〈
µ1, θ1

〉]
(17.35)

= A(θ2)−
〈
µ1, θ2

〉
+A∗(µ1) , D(µ1||θ2) (17.36)

which comes from dual expression A∗(µ1) =
〈
θ1, µ1

〉
−A(θ1) which

holds for the dually coupled parameters µ1 = Eθ1 [φ(X)].

In particular, this equation (variational expression for the cumulant):

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

. . . can be written as:

inf
µ∈M

{A(θ) +A∗(µ)− 〈θ, µ〉} = inf
µ∈M

D(µ||θ) = 0 (17.37)
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Mean field, KL-Divergence, Exponential Model Families
We can also express a mixed/hybrid form of KL in terms of dual
A∗(µ) = supθ∈Ω (〈θ, µ〉 −A(θ)) ≥ 〈θ′, µ〉 −A(θ′) for any θ′ ∈ Ω.

We can also write the KL as:

D(θ1||θ2) = A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
(17.34)

= A(θ2)−
〈
µ1, θ2

〉
−
[
A(θ1)−

〈
µ1, θ1

〉]
(17.35)

= A(θ2)−
〈
µ1, θ2

〉
+A∗(µ1) , D(µ1||θ2) (17.36)

which comes from dual expression A∗(µ1) =
〈
θ1, µ1

〉
−A(θ1) which

holds for the dually coupled parameters µ1 = Eθ1 [φ(X)].

In particular, this equation (variational expression for the cumulant):

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

. . . can be written as:

inf
µ∈M

{A(θ) +A∗(µ)− 〈θ, µ〉} = inf
µ∈M

D(µ||θ) = 0 (17.37)
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Mean field, KL-Divergence, Exponential Model Families

Thus, solving the mean-field variational problem (see Eqn. (17.26)) of:

max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = max
µ∈MF (G)

{〈µ, θ〉 −A∗(µ)} (17.38)

is identical to minimizing KL Divergence D(µ||θ) subject to constraint
µ ∈MF (G).

I.e., mean field can be seen as finding the best approximation, in
terms of this particular KL-divergence, to pθ, over a family of “nice”
distributions MF (G).
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Mean field, KL-Divergence, Exponential Model Families

Thus, solving the mean-field variational problem (see Eqn. (17.26)) of:

max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = max
µ∈MF (G)

{〈µ, θ〉 −A∗(µ)} (17.38)

is identical to minimizing KL Divergence D(µ||θ) subject to constraint
µ ∈MF (G).

I.e., mean field can be seen as finding the best approximation, in
terms of this particular KL-divergence, to pθ, over a family of “nice”
distributions MF (G).
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Näıve Mean field for Ising Model

A classic example of mean-field (goes back to statistical physics)

Mean parameters for Ising: µs = E[Xs] = p(Xs = 1),
µst = E[XsXt] = p(Xs = 1, Xt = 1), thus µ ∈ R|V |+|E|.
Let F0 = (V, ∅) be our mean field approximation family. Thus,

MF0(G) =
{
µ ∈ R|V |+|E||0 ≤ µs ≤ 1 ∀s ∈ V, and µst = µsµt ∀

}
Key is that for µ ∈MF0(G), dual is not hard to calculate, that is

−A∗F0
(µ) =

∑
s∈V

Hs(µs) (17.39)

which are sum of unary entropy terms, very cheap.

Moreover, polytope for MF0(G) is also very simple, namely the
hypercube [0, 1]m.
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Näıve Mean field for Ising Model
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Hs(µs) (17.39)
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Näıve Mean field for Ising Model

A classic example of mean-field (goes back to statistical physics)

Mean parameters for Ising: µs = E[Xs] = p(Xs = 1),
µst = E[XsXt] = p(Xs = 1, Xt = 1), thus µ ∈ R|V |+|E|.
Let F0 = (V, ∅) be our mean field approximation family. Thus,

MF0(G) =
{
µ ∈ R|V |+|E||0 ≤ µs ≤ 1 ∀s ∈ V, and µst = µsµt ∀

}

Key is that for µ ∈MF0(G), dual is not hard to calculate, that is

−A∗F0
(µ) =

∑
s∈V

Hs(µs) (17.39)

which are sum of unary entropy terms, very cheap.

Moreover, polytope for MF0(G) is also very simple, namely the
hypercube [0, 1]m.
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Näıve Mean field for Ising Model

A classic example of mean-field (goes back to statistical physics)

Mean parameters for Ising: µs = E[Xs] = p(Xs = 1),
µst = E[XsXt] = p(Xs = 1, Xt = 1), thus µ ∈ R|V |+|E|.
Let F0 = (V, ∅) be our mean field approximation family. Thus,

MF0(G) =
{
µ ∈ R|V |+|E||0 ≤ µs ≤ 1 ∀s ∈ V, and µst = µsµt ∀

}
Key is that for µ ∈MF0(G), dual is not hard to calculate, that is

−A∗F0
(µ) =

∑
s∈V

Hs(µs) (17.39)

which are sum of unary entropy terms, very cheap.

Moreover, polytope for MF0(G) is also very simple, namely the
hypercube [0, 1]m.
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Näıve Mean field for Ising Model

A classic example of mean-field (goes back to statistical physics)

Mean parameters for Ising: µs = E[Xs] = p(Xs = 1),
µst = E[XsXt] = p(Xs = 1, Xt = 1), thus µ ∈ R|V |+|E|.
Let F0 = (V, ∅) be our mean field approximation family. Thus,

MF0(G) =
{
µ ∈ R|V |+|E||0 ≤ µs ≤ 1 ∀s ∈ V, and µst = µsµt ∀

}
Key is that for µ ∈MF0(G), dual is not hard to calculate, that is

−A∗F0
(µ) =

∑
s∈V

Hs(µs) (17.39)

which are sum of unary entropy terms, very cheap.

Moreover, polytope for MF0(G) is also very simple, namely the
hypercube [0, 1]m.
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Naive Mean field for Ising Model

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Naive Mean field for Ising Model

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Naive Mean field for Ising Model

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Naive Mean field for Ising Model

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Naive Mean field for Ising Model

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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
(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Naive Mean field for Ising Model

We get variational lower bound problem

A(θ) ≥ max
(µ1,...,µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

Hs(µs)


(17.40)

Have constrained form of edge mean parameters µst = µsµt

(µ1, . . . , µm) ∈ [0, 1]m is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

If each coordinate optimization is optimal, we’ll get a stationary point.

Fortunately, each coordinate optimization is concave!
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Naive Mean field for Ising Model

coordinate ascent: choose some s and optimize µs fixing all µt for
t 6= s.

Taking derivatives w.r.t. µs, we get the following update rule for
element µs

µs ← σ

θs +
∑
t∈N(s)

θstµt

 (17.41)

where σ(z) = [1 + exp(−z)]−1 is the sigmoid (logistic) function.

This is the classic mean-field update that is quite well known, but
derived from coordinate assent optimization of a variational
perspective of the problem.

The variational approach indeed seems quite general and powerful.
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Naive Mean field for Ising Model

coordinate ascent: choose some s and optimize µs fixing all µt for
t 6= s.

Taking derivatives w.r.t. µs, we get the following update rule for
element µs

µs ← σ

θs +
∑
t∈N(s)

θstµt

 (17.41)

where σ(z) = [1 + exp(−z)]−1 is the sigmoid (logistic) function.

This is the classic mean-field update that is quite well known, but
derived from coordinate assent optimization of a variational
perspective of the problem.

The variational approach indeed seems quite general and powerful.
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Naive Mean field for Ising Model

coordinate ascent: choose some s and optimize µs fixing all µt for
t 6= s.

Taking derivatives w.r.t. µs, we get the following update rule for
element µs

µs ← σ

θs +
∑
t∈N(s)

θstµt

 (17.41)

where σ(z) = [1 + exp(−z)]−1 is the sigmoid (logistic) function.

This is the classic mean-field update that is quite well known, but
derived from coordinate assent optimization of a variational
perspective of the problem.

The variational approach indeed seems quite general and powerful.
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Naive Mean field for Ising Model

coordinate ascent: choose some s and optimize µs fixing all µt for
t 6= s.

Taking derivatives w.r.t. µs, we get the following update rule for
element µs

µs ← σ

θs +
∑
t∈N(s)

θstµt

 (17.41)

where σ(z) = [1 + exp(−z)]−1 is the sigmoid (logistic) function.

This is the classic mean-field update that is quite well known, but
derived from coordinate assent optimization of a variational
perspective of the problem.

The variational approach indeed seems quite general and powerful.
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Example of Lack of Convexity

Consider simple two variable example (X1, X2), Xi ∈ {−1,+1}.

Exponential family form

pθ(x) ∝ exp(θ1x1 + θ2x2 + θ12x1x2) (17.42)

having mean parameters µi = E[Xi] and µ12 = E[X1X2].

Impose constraint µ12 = µ1µ2, we get mean field objective

f(µ1, µ2; θ) = θ12µ1µ2 + θ1µ1 + θ2µ2 +H(µ1) +H(µ2) (17.43)

where H(µi) = −1
2(1 + µi) log 1

2(1 + µi)− 1
2(1− µi) log 1

2(1− µi)
Consider sub-models of the form:

(θ1, θ2, θ12) =

(
0, 0,

1

4
log

q

1− q

)
, θ(q) (17.44)

where q ∈ (0, 1) is a parameter such that, for any q we have
E[Xi] = 0. It turns out that in this form, we have q = p(X1 = X2).

Is mean field objective in this case convex for all q?
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Example of Lack of Convexity

Consider simple two variable example (X1, X2), Xi ∈ {−1,+1}.
Exponential family form

pθ(x) ∝ exp(θ1x1 + θ2x2 + θ12x1x2) (17.42)

having mean parameters µi = E[Xi] and µ12 = E[X1X2].

Impose constraint µ12 = µ1µ2, we get mean field objective

f(µ1, µ2; θ) = θ12µ1µ2 + θ1µ1 + θ2µ2 +H(µ1) +H(µ2) (17.43)

where H(µi) = −1
2(1 + µi) log 1

2(1 + µi)− 1
2(1− µi) log 1

2(1− µi)
Consider sub-models of the form:

(θ1, θ2, θ12) =

(
0, 0,

1

4
log

q

1− q

)
, θ(q) (17.44)

where q ∈ (0, 1) is a parameter such that, for any q we have
E[Xi] = 0. It turns out that in this form, we have q = p(X1 = X2).

Is mean field objective in this case convex for all q?
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Example of Lack of Convexity

Consider simple two variable example (X1, X2), Xi ∈ {−1,+1}.
Exponential family form

pθ(x) ∝ exp(θ1x1 + θ2x2 + θ12x1x2) (17.42)

having mean parameters µi = E[Xi] and µ12 = E[X1X2].
Impose constraint µ12 = µ1µ2, we get mean field objective

f(µ1, µ2; θ) = θ12µ1µ2 + θ1µ1 + θ2µ2 +H(µ1) +H(µ2) (17.43)

where H(µi) = −1
2(1 + µi) log 1

2(1 + µi)− 1
2(1− µi) log 1

2(1− µi)
Note that p(Xi = +1) = 1

2
(1 + µi)

Consider sub-models of the form:

(θ1, θ2, θ12) =

(
0, 0,

1

4
log

q

1− q

)
, θ(q) (17.44)

where q ∈ (0, 1) is a parameter such that, for any q we have
E[Xi] = 0. It turns out that in this form, we have q = p(X1 = X2).
Is mean field objective in this case convex for all q?
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Example of Lack of Convexity

Consider simple two variable example (X1, X2), Xi ∈ {−1,+1}.
Exponential family form

pθ(x) ∝ exp(θ1x1 + θ2x2 + θ12x1x2) (17.42)

having mean parameters µi = E[Xi] and µ12 = E[X1X2].

Impose constraint µ12 = µ1µ2, we get mean field objective

f(µ1, µ2; θ) = θ12µ1µ2 + θ1µ1 + θ2µ2 +H(µ1) +H(µ2) (17.43)

where H(µi) = −1
2(1 + µi) log 1

2(1 + µi)− 1
2(1− µi) log 1

2(1− µi)
Consider sub-models of the form:

(θ1, θ2, θ12) =

(
0, 0,

1

4
log

q

1− q

)
, θ(q) (17.44)

where q ∈ (0, 1) is a parameter such that, for any q we have
E[Xi] = 0. It turns out that in this form, we have q = p(X1 = X2).

Is mean field objective in this case convex for all q?
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Example of Lack of Convexity

Consider simple two variable example (X1, X2), Xi ∈ {−1,+1}.
Exponential family form

pθ(x) ∝ exp(θ1x1 + θ2x2 + θ12x1x2) (17.42)

having mean parameters µi = E[Xi] and µ12 = E[X1X2].

Impose constraint µ12 = µ1µ2, we get mean field objective

f(µ1, µ2; θ) = θ12µ1µ2 + θ1µ1 + θ2µ2 +H(µ1) +H(µ2) (17.43)

where H(µi) = −1
2(1 + µi) log 1

2(1 + µi)− 1
2(1− µi) log 1

2(1− µi)
Consider sub-models of the form:

(θ1, θ2, θ12) =

(
0, 0,

1

4
log

q

1− q

)
, θ(q) (17.44)

where q ∈ (0, 1) is a parameter such that, for any q we have
E[Xi] = 0. It turns out that in this form, we have q = p(X1 = X2).

Is mean field objective in this case convex for all q?
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Lack of Convexity example

For q = 0.5, objective f(µ1, µ2; θ(0.5)) has global maximum at
(µ1, µ2) = (0, 0) so mean field is exact and convex. This corresponds
to p(X1 = X2) = 0.

When q gets small, f becomes non-convex, e.g., has multiple modes
in figure.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 17 - Nov 26th, 2014 F40/59 (pg.119/194)



EP like variants Mean Field Str. Mean Field Cnvx Relax/Up. Bounds Refs

Lack of Convexity example

For q = 0.5, objective f(µ1, µ2; θ(0.5)) has global maximum at
(µ1, µ2) = (0, 0) so mean field is exact and convex. This corresponds
to p(X1 = X2) = 0.
When q gets small, f becomes non-convex, e.g., has multiple modes
in figure.
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Lack of Convexity example

For q = 0.5, objective f(µ1, µ2; θ(0.5)) has global maximum at
(µ1, µ2) = (0, 0) so mean field is exact and convex. This corresponds
to p(X1 = X2) = 0.
When q gets small, f becomes non-convex, e.g., has multiple modes
in figure.
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Structured Mean Field

key idea, set of sufficient statistics that yield efficient inference need
not be all independence. Could be a tree, or a chain, or a set of
trees/chains.

“structured” in general means that it is not a monolithic single
variable, but is a vector with some decomposability properties.

In Structured mean field, we exploit this and it again can be seen in
our variational framework.

We first see a nice way that we can use fixed points of the mean field
primal/dual equations to derive a general form of the mean field
update.
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Structured Mean Field

key idea, set of sufficient statistics that yield efficient inference need
not be all independence. Could be a tree, or a chain, or a set of
trees/chains.

“structured” in general means that it is not a monolithic single
variable, but is a vector with some decomposability properties.

In Structured mean field, we exploit this and it again can be seen in
our variational framework.

We first see a nice way that we can use fixed points of the mean field
primal/dual equations to derive a general form of the mean field
update.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 17 - Nov 26th, 2014 F41/59 (pg.123/194)



EP like variants Mean Field Str. Mean Field Cnvx Relax/Up. Bounds Refs

Structured Mean Field

key idea, set of sufficient statistics that yield efficient inference need
not be all independence. Could be a tree, or a chain, or a set of
trees/chains.

“structured” in general means that it is not a monolithic single
variable, but is a vector with some decomposability properties.

In Structured mean field, we exploit this and it again can be seen in
our variational framework.

We first see a nice way that we can use fixed points of the mean field
primal/dual equations to derive a general form of the mean field
update.
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Structured Mean Field

key idea, set of sufficient statistics that yield efficient inference need
not be all independence. Could be a tree, or a chain, or a set of
trees/chains.

“structured” in general means that it is not a monolithic single
variable, but is a vector with some decomposability properties.

In Structured mean field, we exploit this and it again can be seen in
our variational framework.

We first see a nice way that we can use fixed points of the mean field
primal/dual equations to derive a general form of the mean field
update.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

Again, I(F ) is set of suff. stats. corresponding to F , and we have
corresponding mean vector µ(F ) = (µα, α ∈ I(F )).

Define M(F ) be set of realizable mean parameters associated with F ,
so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|.

Note also, M(F ) 6=MF (G), their dimensions are entirely different.

Key thing: in mean field, µ(F ) ∈M(F ) and there is no real need to
mention the full MF (G). Also, the dual A∗F depends on only µ(F )
not µ (the other values are derivations from entries within µ(F ).

Other mean parameters µβ for β ∈ I \ I(F ) do play a role in the
value of the mean field variational problem but their value is derivable
from values µ(F ), thus we can express the µβ in functional form
based on values µ(F ).

Thus, for each β ∈ I \ I(F ), we set µβ = gβ(µ(F )) for function gβ.

Example: mean field Ising, µst = g(µ(F )) = µsµt.
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Structured Mean Field

The mean field optimization problem becomes

max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} (17.45)

= max
µ(F )∈M(F )

{ ∑
α∈I(F )

θαµα +
∑

α∈Ic(F )

θαgα(µ(F ))−A∗F (µ(F ))

︸ ︷︷ ︸
f(µ(F ))

}

(17.46)

With this, we can recover our sigmoid mean field coordinate update
process by iterating fixed point equations of f , i.e., for β ∈ I(F ),

∂f

∂µβ
(µ(F )) = θβ +

∑
α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F ))−
∂A∗F
∂µβ

(µ(F ))

(17.47)
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Structured Mean Field

The mean field optimization problem becomes

max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} (17.45)

= max
µ(F )∈M(F )

{ ∑
α∈I(F )

θαµα +
∑

α∈Ic(F )

θαgα(µ(F ))−A∗F (µ(F ))

︸ ︷︷ ︸
f(µ(F ))

}

(17.46)

With this, we can recover our sigmoid mean field coordinate update
process by iterating fixed point equations of f , i.e., for β ∈ I(F ),

∂f

∂µβ
(µ(F )) = θβ +

∑
α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F ))−
∂A∗F
∂µβ

(µ(F ))

(17.47)
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Structured Mean Field

Setting to zero and aggregating over β ∈ I(F ), vector fix point
condition is:

∇A∗F (µ(F )) = θ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F )) (17.48)

∇A is the forward mapping, maps from canonical to mean
parameters, and ∇A∗ does the reverse. Hence, naming
γ(F ) = ∇A(µ(F )), gives a parameter update equation for β ∈ I(F )

γβ(F )← θβ +
∑

α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F )) (17.49)

Above is the mean field update, mapping from a canonical parameters
(θβ for β ∈ I(F )) and using the mean parameters µ(F ) to new
updated canonical parameters γβ(F ) for β ∈ I(F )). It is to be
repeated over and over.
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Structured Mean Field

Setting to zero and aggregating over β ∈ I(F ), vector fix point
condition is:

∇A∗F (µ(F )) = θ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F )) (17.48)

∇A is the forward mapping, maps from canonical to mean
parameters, and ∇A∗ does the reverse. Hence, naming
γ(F ) = ∇A(µ(F )), gives a parameter update equation for β ∈ I(F )

γβ(F )← θβ +
∑

α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F )) (17.49)

Above is the mean field update, mapping from a canonical parameters
(θβ for β ∈ I(F )) and using the mean parameters µ(F ) to new
updated canonical parameters γβ(F ) for β ∈ I(F )). It is to be
repeated over and over.
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Structured Mean Field

Setting to zero and aggregating over β ∈ I(F ), vector fix point
condition is:

∇A∗F (µ(F )) = θ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F )) (17.48)

∇A is the forward mapping, maps from canonical to mean
parameters, and ∇A∗ does the reverse. Hence, naming
γ(F ) = ∇A(µ(F )), gives a parameter update equation for β ∈ I(F )

γβ(F )← θβ +
∑

α∈I(G)\I(F )

θα
∂gα
∂µβ

(µ(F )) (17.49)

Above is the mean field update, mapping from a canonical parameters
(θβ for β ∈ I(F )) and using the mean parameters µ(F ) to new
updated canonical parameters γβ(F ) for β ∈ I(F )). It is to be
repeated over and over.
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Structured Mean Field

After each update of Eqn. (17.49), a mean parameter, say µ(F )δ,
that depends on any of the updated canonical parameter also needs to
be updated before doing the next update.

Since we’re using a tractable sub-structure F , we can then update the
out-of-date mean parameters using any exact inference algorithm
(e.g., junction tree, possible since sub-structure is tractable), and then
repeat Eqn. (17.49).
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Structured Mean Field

After each update of Eqn. (17.49), a mean parameter, say µ(F )δ,
that depends on any of the updated canonical parameter also needs to
be updated before doing the next update.

Since we’re using a tractable sub-structure F , we can then update the
out-of-date mean parameters using any exact inference algorithm
(e.g., junction tree, possible since sub-structure is tractable), and then
repeat Eqn. (17.49).
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Structured Mean Field

Alternatively, we can transform back to mean parameters right away
using ∇A is the forward mapping, maping from mean to canonical.

I.e., we can derive a mean field mean parameter to mean parameter
update equation using AF since ∇AF (γ(F )) = µ(F ),

We get update, for β ∈ I(F ):

µβ(F )← ∂AF
∂γβ

θβ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F ))

 (17.50)

This generalizes our mean field coordinate ascent update from before,
where in that case we would have ∂AF

∂γβ
being the sigmoid mapping.
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Structured Mean Field

Alternatively, we can transform back to mean parameters right away
using ∇A is the forward mapping, maping from mean to canonical.

I.e., we can derive a mean field mean parameter to mean parameter
update equation using AF since ∇AF (γ(F )) = µ(F ),

We get update, for β ∈ I(F ):

µβ(F )← ∂AF
∂γβ

θβ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F ))

 (17.50)

This generalizes our mean field coordinate ascent update from before,
where in that case we would have ∂AF

∂γβ
being the sigmoid mapping.
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Structured Mean Field

Alternatively, we can transform back to mean parameters right away
using ∇A is the forward mapping, maping from mean to canonical.

I.e., we can derive a mean field mean parameter to mean parameter
update equation using AF since ∇AF (γ(F )) = µ(F ),

We get update, for β ∈ I(F ):

µβ(F )← ∂AF
∂γβ

θβ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F ))

 (17.50)

This generalizes our mean field coordinate ascent update from before,
where in that case we would have ∂AF

∂γβ
being the sigmoid mapping.
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Structured Mean Field

Alternatively, we can transform back to mean parameters right away
using ∇A is the forward mapping, maping from mean to canonical.

I.e., we can derive a mean field mean parameter to mean parameter
update equation using AF since ∇AF (γ(F )) = µ(F ),

We get update, for β ∈ I(F ):

µβ(F )← ∂AF
∂γβ

θβ +
∑

α∈I(G)\I(F )

θα∇gα(µ(F ))

 (17.50)

This generalizes our mean field coordinate ascent update from before,
where in that case we would have ∂AF

∂γβ
being the sigmoid mapping.
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Structured Mean Field Factorial HMMs

This idea was developed and applied using factorial HMMs.

Graph consists of M 1st-order Markov chains yi1:T for i ∈ [M ],
coupled together at each time via factor p(ȳt|x1

t , x
2
t , . . . , x

M
t ).

While each HMM chain is simple (it is only a chain, so a 1-tree), the
common observation induces a dependence between each. Thus, if
there are M chains, we have a clique of size M .
Here, after moralization, covering hypergraph consists of tractable
sub-substructure hyperedges F =

{{
xit, x

i
t+1

}
: i ∈ [M ], t ∈ [T ]

}
and

remaining structure E \ F =
{{
x1
t , x

2
t , . . . , x

M
t

}
: t ∈ [T ]

}
.
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Structured Mean Field Factorial HMMs

This idea was developed and applied using factorial HMMs.

Graph consists of M 1st-order Markov chains yi1:T for i ∈ [M ],
coupled together at each time via factor p(ȳt|x1

t , x
2
t , . . . , x

M
t ).

While each HMM chain is simple (it is only a chain, so a 1-tree), the
common observation induces a dependence between each. Thus, if
there are M chains, we have a clique of size M .
Here, after moralization, covering hypergraph consists of tractable
sub-substructure hyperedges F =

{{
xit, x

i
t+1

}
: i ∈ [M ], t ∈ [T ]

}
and

remaining structure E \ F =
{{
x1
t , x

2
t , . . . , x

M
t

}
: t ∈ [T ]

}
.
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Structured Mean Field Factorial HMMs

This idea was developed and applied using factorial HMMs.

Graph consists of M 1st-order Markov chains yi1:T for i ∈ [M ],
coupled together at each time via factor p(ȳt|x1

t , x
2
t , . . . , x

M
t ).

While each HMM chain is simple (it is only a chain, so a 1-tree), the
common observation induces a dependence between each. Thus, if
there are M chains, we have a clique of size M .

Here, after moralization, covering hypergraph consists of tractable
sub-substructure hyperedges F =

{{
xit, x

i
t+1

}
: i ∈ [M ], t ∈ [T ]

}
and

remaining structure E \ F =
{{
x1
t , x

2
t , . . . , x

M
t

}
: t ∈ [T ]

}
.
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Structured Mean Field Factorial HMMs

This idea was developed and applied using factorial HMMs.

Graph consists of M 1st-order Markov chains yi1:T for i ∈ [M ],
coupled together at each time via factor p(ȳt|x1

t , x
2
t , . . . , x

M
t ).

While each HMM chain is simple (it is only a chain, so a 1-tree), the
common observation induces a dependence between each. Thus, if
there are M chains, we have a clique of size M .
Here, after moralization, covering hypergraph consists of tractable
sub-substructure hyperedges F =

{{
xit, x

i
t+1

}
: i ∈ [M ], t ∈ [T ]

}
and

remaining structure E \ F =
{{
x1
t , x

2
t , . . . , x

M
t

}
: t ∈ [T ]

}
.
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Structured Mean Field Factorial HMMs

The induced dependencies (cliques as dotted ellipses)

Tree width of this model is?

M

Thus, if r states per chain, then complexity rM+1.
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Structured Mean Field Factorial HMMs

The induced dependencies (cliques as dotted ellipses)

Tree width of this model is?

M

Thus, if r states per chain, then complexity rM+1.
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Structured Mean Field Factorial HMMs

The induced dependencies (cliques as dotted ellipses)

Tree width of this model is? M

Thus, if r states per chain, then complexity rM+1.
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Structured Mean Field Factorial HMMs

The induced dependencies (cliques as dotted ellipses)

Tree width of this model is? M

Thus, if r states per chain, then complexity rM+1.
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Structured Mean Field Factorial HMMs

A “natural” choice of approximat-
ing distribution is a set of coupled
chains, natural, perhaps primarily
for computational reasons.

Under this independent chains case, we have that for each
β ∈ I \ I(F ), derivable functions have form
gβ(µ(F )) =

∏M
i=1 fi({µi(F )}), for some functions fi. This is fully

factored, so is easy to work with, maintains separate chains.
Each update of form Eqn. (17.49) updates parameters forβ ∈ I(F ),
corresponds to all edges of all M Markov chains.
To recover mean parameters (or do Eqn. (17.50)), need only
forward-backward procedure on each chain separately, O(MTr2).
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Structured Mean Field Factorial HMMs

A “natural” choice of approximat-
ing distribution is a set of coupled
chains, natural, perhaps primarily
for computational reasons.

Under this independent chains case, we have that for each
β ∈ I \ I(F ), derivable functions have form
gβ(µ(F )) =

∏M
i=1 fi({µi(F )}), for some functions fi. This is fully

factored, so is easy to work with, maintains separate chains.

Each update of form Eqn. (17.49) updates parameters forβ ∈ I(F ),
corresponds to all edges of all M Markov chains.
To recover mean parameters (or do Eqn. (17.50)), need only
forward-backward procedure on each chain separately, O(MTr2).
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Structured Mean Field Factorial HMMs

A “natural” choice of approximat-
ing distribution is a set of coupled
chains, natural, perhaps primarily
for computational reasons.

Under this independent chains case, we have that for each
β ∈ I \ I(F ), derivable functions have form
gβ(µ(F )) =

∏M
i=1 fi({µi(F )}), for some functions fi. This is fully

factored, so is easy to work with, maintains separate chains.
Each update of form Eqn. (17.49) updates parameters forβ ∈ I(F ),
corresponds to all edges of all M Markov chains.

To recover mean parameters (or do Eqn. (17.50)), need only
forward-backward procedure on each chain separately, O(MTr2).
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Structured Mean Field Factorial HMMs

A “natural” choice of approximat-
ing distribution is a set of coupled
chains, natural, perhaps primarily
for computational reasons.

Under this independent chains case, we have that for each
β ∈ I \ I(F ), derivable functions have form
gβ(µ(F )) =

∏M
i=1 fi({µi(F )}), for some functions fi. This is fully

factored, so is easy to work with, maintains separate chains.
Each update of form Eqn. (17.49) updates parameters forβ ∈ I(F ),
corresponds to all edges of all M Markov chains.
To recover mean parameters (or do Eqn. (17.50)), need only
forward-backward procedure on each chain separately, O(MTr2).
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Variational Approximations we cover
1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational

approximation, LBP fixed point.
2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)

where Happ =
∑

g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi
variational approximation, message passing on hypergraphs.

3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M)

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (17.1)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures.

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.2)

with L(G;D) =
⋂
F∈DM(F )
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Convex Relaxations and Upper Bounds

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.51)

What about upper bounds?

Other than mean field, none of the other approximation methods have
been anything other than approximation methods.

We would like both lower and upper bounds of A(θ) since that will
allow us to produce upper and lower bounds of the probabilistic
queries we wish to perform.

If the upper and lower bounds between a given probably p is small,
pL ≤ p ≤ pU , with pU − pL ≤ ε, we have guarantees, for a particular
instance of a model.

In this next chapter (Chap 7), we will “convexify” H(µ) and at the
same time produce upper bounds.
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Convex Relaxations and Upper Bounds

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.51)

What about upper bounds?

Other than mean field, none of the other approximation methods have
been anything other than approximation methods.

We would like both lower and upper bounds of A(θ) since that will
allow us to produce upper and lower bounds of the probabilistic
queries we wish to perform.

If the upper and lower bounds between a given probably p is small,
pL ≤ p ≤ pU , with pU − pL ≤ ε, we have guarantees, for a particular
instance of a model.

In this next chapter (Chap 7), we will “convexify” H(µ) and at the
same time produce upper bounds.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 17 - Nov 26th, 2014 F51/59 (pg.158/194)



EP like variants Mean Field Str. Mean Field Cnvx Relax/Up. Bounds Refs

Convex Relaxations and Upper Bounds

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.51)

What about upper bounds?

Other than mean field, none of the other approximation methods have
been anything other than approximation methods.

We would like both lower and upper bounds of A(θ) since that will
allow us to produce upper and lower bounds of the probabilistic
queries we wish to perform.

If the upper and lower bounds between a given probably p is small,
pL ≤ p ≤ pU , with pU − pL ≤ ε, we have guarantees, for a particular
instance of a model.

In this next chapter (Chap 7), we will “convexify” H(µ) and at the
same time produce upper bounds.
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Convex Relaxations and Upper Bounds

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.51)

What about upper bounds?

Other than mean field, none of the other approximation methods have
been anything other than approximation methods.

We would like both lower and upper bounds of A(θ) since that will
allow us to produce upper and lower bounds of the probabilistic
queries we wish to perform.

If the upper and lower bounds between a given probably p is small,
pL ≤ p ≤ pU , with pU − pL ≤ ε, we have guarantees, for a particular
instance of a model.

In this next chapter (Chap 7), we will “convexify” H(µ) and at the
same time produce upper bounds.
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Convex Relaxations and Upper Bounds

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (17.51)

What about upper bounds?

Other than mean field, none of the other approximation methods have
been anything other than approximation methods.

We would like both lower and upper bounds of A(θ) since that will
allow us to produce upper and lower bounds of the probabilistic
queries we wish to perform.

If the upper and lower bounds between a given probably p is small,
pL ≤ p ≤ pU , with pU − pL ≤ ε, we have guarantees, for a particular
instance of a model.

In this next chapter (Chap 7), we will “convexify” H(µ) and at the
same time produce upper bounds.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).

In general, inference (computing mean parameters) is hard for a given
G.
For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .
Let D be a set of subfamilies that are tractable.
I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.
As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.
As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)

Note MF (G) 6=M(F ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).
In general, inference (computing mean parameters) is hard for a given
G.

For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .
Let D be a set of subfamilies that are tractable.
I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.
As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.
As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)

Note MF (G) 6=M(F ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).
In general, inference (computing mean parameters) is hard for a given
G.
For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .

Let D be a set of subfamilies that are tractable.
I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.
As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.
As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)

Note MF (G) 6=M(F ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).
In general, inference (computing mean parameters) is hard for a given
G.
For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .
Let D be a set of subfamilies that are tractable.

I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.
As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.
As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)

Note MF (G) 6=M(F ).
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Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).
In general, inference (computing mean parameters) is hard for a given
G.
For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .
Let D be a set of subfamilies that are tractable.
I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.

As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.
As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)

Note MF (G) 6=M(F ).
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Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).
In general, inference (computing mean parameters) is hard for a given
G.
For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .
Let D be a set of subfamilies that are tractable.
I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.
As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.

As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)

Note MF (G) 6=M(F ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Recall sufficient stats φ = (φα, α ∈ I) and canonical parameters
θ = (θα, α ∈ I).
In general, inference (computing mean parameters) is hard for a given
G.
For a tractable subgraph F , it is not so hard, as we saw in the mean
field case. Note in mean field case, we had one particular F .
Let D be a set of subfamilies that are tractable.
I.e., D might be all spanning trees of G, or some subset of spanning
trees that we like.
As before, I(F ) ⊆ I are the indices of the suff. stats. that abide by
F , and |I(F )| = d(F ) < d = |I| suff. stats.
As before, M(F ) is set of realizable mean parameters associated with
F , so that µ(F ) ∈M(F ). Thus, M(F ) ⊆ R|I(F )|, and

M(F ) =
{
µ ∈ R|I(F )||∃p s.t. µα = Ep[φα(X)] ∀α ∈ I(F )

}
(17.52)
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Given µ ∈M, µ(F ) ∈M(F ) projects from I to I(F ).

Thus, for any µ ∈M ⊆ Rd, we have that µ(F ) ∈M(F ) ⊆ Rd(F ).

We can moreover define the entropy associated with projected mean,
namely H(µ(F )) , H(pµ(F )) = −A∗(µ(F )).

Critically, we have that H(µ(F )) ≥ H(µ) = H(pµ), as we show next.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Given µ ∈M, µ(F ) ∈M(F ) projects from I to I(F ).

Thus, for any µ ∈M ⊆ Rd, we have that µ(F ) ∈M(F ) ⊆ Rd(F ).

We can moreover define the entropy associated with projected mean,
namely H(µ(F )) , H(pµ(F )) = −A∗(µ(F )).

Critically, we have that H(µ(F )) ≥ H(µ) = H(pµ), as we show next.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Given µ ∈M, µ(F ) ∈M(F ) projects from I to I(F ).

Thus, for any µ ∈M ⊆ Rd, we have that µ(F ) ∈M(F ) ⊆ Rd(F ).

We can moreover define the entropy associated with projected mean,
namely H(µ(F )) , H(pµ(F )) = −A∗(µ(F )).

Critically, we have that H(µ(F )) ≥ H(µ) = H(pµ), as we show next.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Given µ ∈M, µ(F ) ∈M(F ) projects from I to I(F ).

Thus, for any µ ∈M ⊆ Rd, we have that µ(F ) ∈M(F ) ⊆ Rd(F ).

We can moreover define the entropy associated with projected mean,
namely H(µ(F )) , H(pµ(F )) = −A∗(µ(F )).

Critically, we have that H(µ(F )) ≥ H(µ) = H(pµ), as we show next.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Proposition 17.6.1

Maximum Entropy Bounds Given any mean parameter µ ∈M and its
projection µ(F ) onto any subgraph F , we have the bound

A∗(µ(F )) ≤ A∗(µ) (17.53)

or alternatively stated, H(µ(F )) ≥ H(µ).

Intuition: H(µ) = H(pµ) is the entropy of the exponential family
model with mean parameters µ.

equivalently H(µ) = H(pµ) is the entropy of the distribution that is
the solution to the maximum entropy problem subject to the
constraints that it has µ = Epθ [φ(X)].

When we form µ(F ), there are fewer constraints, so the entropy in the
corresponding maximum entropy problem may get larger.

Thus, H(µ(F )) ≥ H(µ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Proposition 17.6.1

Maximum Entropy Bounds Given any mean parameter µ ∈M and its
projection µ(F ) onto any subgraph F , we have the bound

A∗(µ(F )) ≤ A∗(µ) (17.53)

or alternatively stated, H(µ(F )) ≥ H(µ).

Intuition: H(µ) = H(pµ) is the entropy of the exponential family
model with mean parameters µ.

equivalently H(µ) = H(pµ) is the entropy of the distribution that is
the solution to the maximum entropy problem subject to the
constraints that it has µ = Epθ [φ(X)].

When we form µ(F ), there are fewer constraints, so the entropy in the
corresponding maximum entropy problem may get larger.

Thus, H(µ(F )) ≥ H(µ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Proposition 17.6.1

Maximum Entropy Bounds Given any mean parameter µ ∈M and its
projection µ(F ) onto any subgraph F , we have the bound

A∗(µ(F )) ≤ A∗(µ) (17.53)

or alternatively stated, H(µ(F )) ≥ H(µ).

Intuition: H(µ) = H(pµ) is the entropy of the exponential family
model with mean parameters µ.

equivalently H(µ) = H(pµ) is the entropy of the distribution that is
the solution to the maximum entropy problem subject to the
constraints that it has µ = Epθ [φ(X)].

When we form µ(F ), there are fewer constraints, so the entropy in the
corresponding maximum entropy problem may get larger.

Thus, H(µ(F )) ≥ H(µ).
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Proposition 17.6.1

Maximum Entropy Bounds Given any mean parameter µ ∈M and its
projection µ(F ) onto any subgraph F , we have the bound

A∗(µ(F )) ≤ A∗(µ) (17.53)

or alternatively stated, H(µ(F )) ≥ H(µ).

Intuition: H(µ) = H(pµ) is the entropy of the exponential family
model with mean parameters µ.

equivalently H(µ) = H(pµ) is the entropy of the distribution that is
the solution to the maximum entropy problem subject to the
constraints that it has µ = Epθ [φ(X)].

When we form µ(F ), there are fewer constraints, so the entropy in the
corresponding maximum entropy problem may get larger.

Thus, H(µ(F )) ≥ H(µ).
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Convex Relaxations and Upper Bounds - Relaxed Entropy
Proof.

Dual problem

A∗(µ) = sup
θ∈Rd
{〈µ, θ〉 −A(θ)} (17.54)

Dual problem in sub-graph case.

A∗(µ(F )) = sup
θ(F )∈Rd(F )

{〈µ(F ), θ(F )〉 −A(θ(F ))} (17.55)

Dual problem in sub-graph case — alternate expression

A∗(µ(F )) = sup
θ ∈ Rd

θα = 0 ∀α /∈ I(F )

{〈µ, θ〉 −A(θ)} (17.56)

Thus, A∗(µ) ≥ A∗(µ(F )).
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Convex Relaxations and Upper Bounds - Relaxed Entropy
Proof.

Dual problem

A∗(µ) = sup
θ∈Rd
{〈µ, θ〉 −A(θ)} (17.54)

Dual problem in sub-graph case.

A∗(µ(F )) = sup
θ(F )∈Rd(F )

{〈µ(F ), θ(F )〉 −A(θ(F ))} (17.55)

Dual problem in sub-graph case — alternate expression

A∗(µ(F )) = sup
θ ∈ Rd

θα = 0 ∀α /∈ I(F )

{〈µ, θ〉 −A(θ)} (17.56)

Thus, A∗(µ) ≥ A∗(µ(F )).
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Convex Relaxations and Upper Bounds - Relaxed Entropy
Proof.

Dual problem

A∗(µ) = sup
θ∈Rd
{〈µ, θ〉 −A(θ)} (17.54)

Dual problem in sub-graph case.

A∗(µ(F )) = sup
θ(F )∈Rd(F )

{〈µ(F ), θ(F )〉 −A(θ(F ))} (17.55)

Dual problem in sub-graph case — alternate expression

A∗(µ(F )) = sup
θ ∈ Rd

θα = 0 ∀α /∈ I(F )

{〈µ, θ〉 −A(θ)} (17.56)

Thus, A∗(µ) ≥ A∗(µ(F )).
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Convex Relaxations and Upper Bounds - Relaxed Entropy
Proof.

Dual problem

A∗(µ) = sup
θ∈Rd
{〈µ, θ〉 −A(θ)} (17.54)

Dual problem in sub-graph case.

A∗(µ(F )) = sup
θ(F )∈Rd(F )

{〈µ(F ), θ(F )〉 −A(θ(F ))} (17.55)

Dual problem in sub-graph case — alternate expression

A∗(µ(F )) = sup
θ ∈ Rd

θα = 0 ∀α /∈ I(F )

{〈µ, θ〉 −A(θ)} (17.56)

Thus, A∗(µ) ≥ A∗(µ(F )).
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Note that the upper bound is true for each F ∈ D, and thus would be
true for mixtures of different F ∈ D.

We can form a distribution over tractable structures, i.e., ρ ∈ R|D|,
i.e., ρ(F ) ≥ 0 for F ∈ D and

∑
F∈D ρ(F ) = 1

Convex combination, gives general upper bound

H(µ) ≤ Eρ[H(µ(F ))] =
∑
F∈D

ρ(F )H(µ(F )) (17.57)

This will be our convexified upper bound on entropy.

compared to mean field, we are not choosing only one structure, but
many of them, and mixing them together in certain ways.
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Note that the upper bound is true for each F ∈ D, and thus would be
true for mixtures of different F ∈ D.

We can form a distribution over tractable structures, i.e., ρ ∈ R|D|,
i.e., ρ(F ) ≥ 0 for F ∈ D and

∑
F∈D ρ(F ) = 1

Convex combination, gives general upper bound

H(µ) ≤ Eρ[H(µ(F ))] =
∑
F∈D

ρ(F )H(µ(F )) (17.57)

This will be our convexified upper bound on entropy.

compared to mean field, we are not choosing only one structure, but
many of them, and mixing them together in certain ways.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Note that the upper bound is true for each F ∈ D, and thus would be
true for mixtures of different F ∈ D.

We can form a distribution over tractable structures, i.e., ρ ∈ R|D|,
i.e., ρ(F ) ≥ 0 for F ∈ D and

∑
F∈D ρ(F ) = 1

Convex combination, gives general upper bound

H(µ) ≤ Eρ[H(µ(F ))] =
∑
F∈D

ρ(F )H(µ(F )) (17.57)

This will be our convexified upper bound on entropy.

compared to mean field, we are not choosing only one structure, but
many of them, and mixing them together in certain ways.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Note that the upper bound is true for each F ∈ D, and thus would be
true for mixtures of different F ∈ D.

We can form a distribution over tractable structures, i.e., ρ ∈ R|D|,
i.e., ρ(F ) ≥ 0 for F ∈ D and

∑
F∈D ρ(F ) = 1

Convex combination, gives general upper bound

H(µ) ≤ Eρ[H(µ(F ))] =
∑
F∈D

ρ(F )H(µ(F )) (17.57)

This will be our convexified upper bound on entropy.

compared to mean field, we are not choosing only one structure, but
many of them, and mixing them together in certain ways.
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Convex Relaxations and Upper Bounds - Relaxed Entropy

Note that the upper bound is true for each F ∈ D, and thus would be
true for mixtures of different F ∈ D.

We can form a distribution over tractable structures, i.e., ρ ∈ R|D|,
i.e., ρ(F ) ≥ 0 for F ∈ D and

∑
F∈D ρ(F ) = 1

Convex combination, gives general upper bound

H(µ) ≤ Eρ[H(µ(F ))] =
∑
F∈D

ρ(F )H(µ(F )) (17.57)

This will be our convexified upper bound on entropy.

compared to mean field, we are not choosing only one structure, but
many of them, and mixing them together in certain ways.
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Convex Relaxations and Upper Bounds - Outer bound

When we form the mixture, and we wish to evaluate a given µ(F ) on
it, we need to make sure that each component can properly evaluate
any possible µ(F ), so logical constraint is to make sure any µ(F )
works for all of them.

Constraint set as follows:

L(G;D) =
{
τ ∈ Rd|τ(F ) ∈M(F ) ∀F ∈ D

}
(17.58)

=
⋂
F∈D
M(F ) (17.59)

Note this is an outer bound i.e., L(G;D) ⊇M(G) since any member
of M(G) (any valid mean parameter for G) must also be a member
of any M(F ) (i.e., non-neg, sums to 1, and consistency).

Also note, L(G;D) is convex since it is the intersection of a set of
convex sets.
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When we form the mixture, and we wish to evaluate a given µ(F ) on
it, we need to make sure that each component can properly evaluate
any possible µ(F ), so logical constraint is to make sure any µ(F )
works for all of them.

Constraint set as follows:

L(G;D) =
{
τ ∈ Rd|τ(F ) ∈M(F ) ∀F ∈ D

}
(17.58)

=
⋂
F∈D
M(F ) (17.59)

Note this is an outer bound i.e., L(G;D) ⊇M(G) since any member
of M(G) (any valid mean parameter for G) must also be a member
of any M(F ) (i.e., non-neg, sums to 1, and consistency).

Also note, L(G;D) is convex since it is the intersection of a set of
convex sets.
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When we form the mixture, and we wish to evaluate a given µ(F ) on
it, we need to make sure that each component can properly evaluate
any possible µ(F ), so logical constraint is to make sure any µ(F )
works for all of them.

Constraint set as follows:

L(G;D) =
{
τ ∈ Rd|τ(F ) ∈M(F ) ∀F ∈ D

}
(17.58)

=
⋂
F∈D
M(F ) (17.59)

Note this is an outer bound i.e., L(G;D) ⊇M(G) since any member
of M(G) (any valid mean parameter for G) must also be a member
of any M(F ) (i.e., non-neg, sums to 1, and consistency).

Also note, L(G;D) is convex since it is the intersection of a set of
convex sets.
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Convex Relaxations and Upper Bounds - Outer bound

When we form the mixture, and we wish to evaluate a given µ(F ) on
it, we need to make sure that each component can properly evaluate
any possible µ(F ), so logical constraint is to make sure any µ(F )
works for all of them.

Constraint set as follows:

L(G;D) =
{
τ ∈ Rd|τ(F ) ∈M(F ) ∀F ∈ D

}
(17.58)

=
⋂
F∈D
M(F ) (17.59)

Note this is an outer bound i.e., L(G;D) ⊇M(G) since any member
of M(G) (any valid mean parameter for G) must also be a member
of any M(F ) (i.e., non-neg, sums to 1, and consistency).

Also note, L(G;D) is convex since it is the intersection of a set of
convex sets.
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Convex Upper Bounds

Combining the upper bound on entropy, and the outer bound on M,
we get a new variational approximation to the cumulant function.

BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.60)

Objective is convex in θ since it is a max over a set of affine functions
of θ (i.e., g(θ) = maxτ 〈τ, θ〉+ cτ )

Also, L(G;D) is a convex outer bound on M(G)

Thus BD(θ; ρ) is convex, has a global optimal solution, it
approximates A(θ), and best of all is an upper bound,
A(θ) ≤ BD(θ; ρ)
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Convex Upper Bounds

Combining the upper bound on entropy, and the outer bound on M,
we get a new variational approximation to the cumulant function.

BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.60)

Objective is convex in θ since it is a max over a set of affine functions
of θ (i.e., g(θ) = maxτ 〈τ, θ〉+ cτ )

Also, L(G;D) is a convex outer bound on M(G)

Thus BD(θ; ρ) is convex, has a global optimal solution, it
approximates A(θ), and best of all is an upper bound,
A(θ) ≤ BD(θ; ρ)
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Convex Upper Bounds

Combining the upper bound on entropy, and the outer bound on M,
we get a new variational approximation to the cumulant function.

BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.60)

Objective is convex in θ since it is a max over a set of affine functions
of θ (i.e., g(θ) = maxτ 〈τ, θ〉+ cτ )

Also, L(G;D) is a convex outer bound on M(G)

Thus BD(θ; ρ) is convex, has a global optimal solution, it
approximates A(θ), and best of all is an upper bound,
A(θ) ≤ BD(θ; ρ)
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Convex Upper Bounds

Combining the upper bound on entropy, and the outer bound on M,
we get a new variational approximation to the cumulant function.

BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(17.60)

Objective is convex in θ since it is a max over a set of affine functions
of θ (i.e., g(θ) = maxτ 〈τ, θ〉+ cτ )

Also, L(G;D) is a convex outer bound on M(G)

Thus BD(θ; ρ) is convex, has a global optimal solution, it
approximates A(θ), and best of all is an upper bound,
A(θ) ≤ BD(θ; ρ)
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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