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Announcements

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi1=2200000001

@ Should have read chapters 1,2, 3, 4 in this book. Read chapter 5.

@ Also should read “Divergence measures and message passing” by
Thomas Minka, and “Structured Region Graphs: Morphing EP into
GBP", by Welling, Minka, and Teh.

@ Assignment due Wednesday (Nov 26th) night, 11:45pm. Final project
proposal updates and progress report (one page max).
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Class Road Map - EE512a

@ L1 (9/29): Introduction, Families, @ L11 (11/5): LBP, exponential models,

Semantics @ L12 (11/10): exponential models, mean
@ L2 (10/1): MRFs, elimination, Inference params and polytopes,

on Trees @ L13 (11/12): polytopes, tree outer bound,
@ L3 (10/6): Tree inference, message Bethe entropy approx.

passing, more general queries, non-tree) ¢ L14 (11/17): Bethe entropy approx, loop
@ L4 (10/8): Non-trees, perfect elimination, series correction

triangulated graphs @ L15 (11/19): Hypergraphs, posets,
@ L5 (10/13): triangulated graphs, k-trees, Mobius, Kikuchi

the triangulation process/heuristics @ L16 (11/24): Kikuchi, Expectation
@ L6 (10/15): multiple queries, Propagation

decomposable models, junction trees @ L17 (11/26): Expectation Propagation,
@ L7 (10/20): junction trees, begin Mean Field

intersection graphs @ L18 (12/1):
@ L8 (10/22): intersection graphs, inference @ |19 (12/3):

on junction trees @ Final Presentations: (12/10):

L9 (10/27): inference on junction trees,
semirings,
L10 (11/3): conditioning, hardness, LBP

()

Finals Week: Dec 8th-12th, 2014.
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Drawing/Visualizing Hypergraphs as Bipartite Graphs

@ Hypergraph (shaded regions) on left, while bipartite graph
representation on the right.
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Review

Hypergraph, edge representations

@ It is possible to represent hypergraphs by only showing their
hyperedges.

@ Here, we see graphical representations of three hypergraphs. Subsets
of nodes corresponding to hyperedges are shown in rectangles,
whereas the arrows represent inclusion relations among hyperedges.

[123] [234]
(a) (b)

@ Which ones, if any, are in reduced representation?
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Mobius Inversion Lemma and Inclusion-Exclusion

@ For any A C V, define two functions €2 : 2V 3 Rand T:2V - R.

@ Then the above inclusion-exclusion principle is one instance of the
more general Mobius Inversion lemma, namely that each of the below
two equations implies the other.

VACV:T(A)= > QB) (16.13)
B:BCA
VACV:Q4)= > (-)*Flr(B) (16.14)
B:BCA

@ Mobius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).

@ We use it here to come up with alternative expressions for the entropy
and for the marginal polytope.
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Mobius Inversion Lemma for posets

@ Let P be a partially ordered set with binary relation <.
@ A zeta function of a poset is a mapping ¢ : P x P — R defined by

1 if g <h,
C(g,h) = . (16.23)
0 otherwise.

@ The Mobius function w : P x P — R is the multiplicative inverse of
this function. It is defined recursively:
w(g,g9) =1 forall g € P

o w(g,h)=0forall h:h £g.
e Given w(g, f) defined for f such that g < f < h, we define
wig:h) == > w(g,f) (16.24)
{flg=f=<h}

@ Then, w and ¢ are multiplicative inverses, in that
Swg HCER) = Y wig, f) =d(g,h) (16.25)
fer {flg=f=h}
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General Mobius Inversion Lemma for Posets

Lemma 16.2.8 (General Mobius Inversion Lemma)

Given real valued functions Y and 2 defined on poset P, then Q2(h) may
be expressed via Y (-) via

Q(h) =) Y(g) forallheP (16.23)

g=h

iff Y(h) may be expressed via (-) via

Y(h) =) Q(g)w(g,h) forallhecP (16.24)

g=h

When P = 2V for some set V (so this means that the poset consists of
sets and all subsets of an underlying set V') this can be simplified, where
< becomes C; and = becomes O, like we saw above.

(see Stanley, “Enumerative Combinatorics” for more info.)
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Back to Kikuchi: Mobius and expressions of factorization

@ Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V, E), so we have pi = (up, h € E), then we can define new
functions ¢ = (pp, h € E) via Mobius inversion lemma as follows

log pn(zn) £ ) w(g, h)log () (16.23)
g=h

@ From Mobius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

log pun(zn) =) log pg(xy) (16.24)
g=h
@ Key, when ¢y, is defined as above, and G is a hypertree we have
pu(@) = || enlan) (16.25)
heE

= general way to factorize a distribution that factors w.r.t. a
hypergraph.
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multi-information decomposition
@ Using Mobius, and Eqn. (16.23) we can write

In(un) =Y pn(@n) log pn(xn) = Y pn(an) | D w(g, h)log pg(x)

Th g=h

= w(g,h) {Z pn(n) log ug(wg)}

g=h Zh
=) ) wfie) Y uplzs)logps(ay) p=—>  c(f)Hs(ug)
f2he=f zf f=h

where we define overcounting numbers (~ shattering coefficient)

o(f) £ w(fe) (16.31)

e f
@ This gives us a new expression for the hypertree entropy

thper(/vb) - Z C(h)Hh(Mh) (1632)
hek
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Usable to get Kikuchi variational approximation

@ Sum to one constraint:

> Thlzn) =1 (16.33)

@ Local agreement via the hypergraph constraint. For any g < h must
have marginalization condition

> mal@n) = Ty(zy) (16.34)

Th\g
@ Define new polyhedral constraint set L;(G)
Li(G) = {7 > 0] Equations (16.3) Yh, and (16.34) Vg < h hold}
(16.35)
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Kikuchi variational approximation, entropy approx

o Generalized approximate (app) entropy for the hypergraph:

Happ = Y c(9)Hy(g) (16.33)
geFE

where H is hyperedge entropy and overcounting number defined by:

cg) =) wlg, f) (16.34)

f=g
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Variational Approach Amenable to Approximation

Variational Approximations we cover

@ Original variational representation of log partition function
A(6) = sup {(8,n) — A" (1)} (16.1)
neM
where dual takes form:

—H(pg(y) ifpeM®

A" () = sup ({0, u) — A(0)) = . i 16.2
(1) = sup (6. 1) ~ (D)) {+ o 192
@ Given efficient expression for A(f), we can compute marginals of

interest.
@ Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(#). We either approximate M or —A*(u)

or (most likely) both.
Q Set M < L and —A*(u) < Hpethe(T) to get Bethe variational

approximation, LBP fixed point.
@ Set M « LL(G) (hypergraph marginal polytope), —A*(u) < Happ(T)
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varlatlonal approximation, message passing on hypergraphs
© Partition 7 into (7,7), and set M «+ L(¢,®) and set
—A*(n) < Hep(7,7T) to get expectation propagation.

Kikuchi and Hypertree-based Methods
[AARERN

Kikuchi variational approximation

@ This at last gets the Kikuchi variational approximation

AKikuchi(Q) = max {<€ T> —|—Happ< )} (161)
T€L(G)

@ For a graph, this is exactly Agethe(f).

@ Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency
implies global consistency), then also exact (although expensive,
exponential in the tree-width to compute Hypp).

@ We can define message passing algorithms on the hypertree, and show
that if it converges, |t is a fixed point of the associated Lagrangian.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F14/39 (pg.14/39)



Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation, 3x3 grid example

@ Example, left is 3x3 grid, right is optimal junction tree cover.

@® @ © ©
@ ® © O
@ ® © ©
510,11

(&) © &) ()
@ Treewidth is 4, so complexity is O(7°).

@ In general, for n x n grid strutured graph, treewidth is O(n) (grows as
the square root of the number of nodes).
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Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation, 3x3 grid example

@ Left is clustering of vertices in 3x3 grid, and right is hyperedge
graph /region graph.

L1245 | >[25
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e Complexity is only O(r*) and will stay O(r*) even as n gets bigger
(since clusters are at most size four).
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Kikuchi and Hypertree-based Methods
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Generalized BP (GBP): Key idea

@ Key idea: sets of nodes send messages to other sets of nodes.

@ The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)

e Standard LBP algorithm is merely a special case of GBP

@ Different choices of node sets/hyperedges and message passings give
different GBP algorithms.

@ This gives the user a gradual tradeoff between the most expensive,
intractable, and accurate junction tree algorithm, and the least
expensive but possibly quite inaccurate LBP algorithm.

@ Allows a trade-off between complexity for accuracy!

@ In many cases, convergence of GBP will be at fixed points of the
Lagrangian for the generalized variational approximation

Akikuchi(0) = fnax {{0,7) + Happ(7)} (16.2)
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Kikuchi and Hypertree-based Methods
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GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

arrows point from parent (superset)

to child (subset). Ex: on the right,

set {1,2,4,5} is the parent of both

{2,5} and {4, 5}.

@ For h € E, let Par(h) be the set of parents. Also define descendants
as D(h) = {g € E|g < h} and ancestors as A(h) = {g € E|g > h}.

e Also define DT (h) = D(h) U {h} and AT (h) = A(h) U {h}
e If f = g then xy has more variables than z, and one can perform a
message of the form My_,4(zg) =3 p\,7(xf) =D 5o T(Tg, Tp\g)
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GBP examples: parent-to-child message

@ Then parent-to-child message passing takes the form:

Th(Zn) o H exp(0(zg)) H H Myqg(2g)

geD*(h) geD* (h) fePar(9)\D* (h)
(16.3)
We form marginal at h Par(g) \ D" (h) M7
@ from the factors associated 4 ) oy
with each hyperedge, namely \® /@x
exp(6(x,)), and by the mes- Ny

sages sent to h and h's de-
scendants from other parents.
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Kikuchi and Hypertree-based Methods
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e Consider message for hyperedge h = {1,2,4,5}, which has factors v/
associated with (regular graph) edges {1,2}, {2,5}, {4,5}, and {1,4}
and also unary factors for each of the nodes 1, 2, 4, and 5 (eg., to
associate evidence into the model).

o Then D¥(h) = {{1,2,4,5},{4,5},{2,5}, {5}}.
@ We get and expression for the marginal at h using the above formula.
T1,2,4,5 OC W1 oW1 45 5% 591 Y2015 (16.4)
X Mo 356)—12,53 M{a5,7.8) {45} M{5,6)— {51 M58}~ {5}

@ This could repeat for each of the largest clusters, until convergence.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 16.4.3 (Relationship between A and A*)

(a) For any p € M°, 6(n) unique canonical parameter sat. matching
condition, then conj. dual takes form:

—H(pg( )) If/L e M°
A" () =sup ({0, u) — A(0)) = . i 16.3
(1) = sup ((6,2) ~ A(9)) {m e (169
(b) Partition function has variational representation (dual of dual)

A(6) = sup {(6, 1) — A*(1)} (16.4)

HEM

(c) For 8 € Q, sup occurs at ;1 € M° of moment matching conditions

n= ¢(x)pg(x)v(dr) = Eo[p(X)] = VA(O) (16.5)

v
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

@ Before going further, we “project” this new distribution back down to
a class of simple distributions.

@ We then repeat the above step with a bit more of inference, different
than what we did above.

@ We keep repeating: do a bit of inference, and project, until all
inference has been done.

@ The difference between ADF and EP is that, with ADF at this stage
we're done. With EP we can keep repeating the process of inference,
projection.

@ EP can be seen as a generalization of BP.

@ Interestingly, EP is instance of our variational framework, Equation
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(N ARE AR RN

Term Decoupling in EP

e Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dr) and the intracxtable ones (of which there are

d]). Thus, d = dp + dj.
@ Tractable component
<y Pdr) (16.5)

¢é (¢17¢27"

(16.6)

@ Intractable component
oL (oL, P2 ..., o)

@ ¢; are typically univariate, while ®* are typically multivariate
(b-dimensional we'll assume), although this need not always be the

case (but will be for our exposition).

e Consider exponential families associated with subcollection (¢, ®).
F23/39 (pg.23/39)
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Tractable component

s Gdy) (16.7)

@ Tractable component

¢ = (1, P2,

@ So ¢ : X™ — RYT with vector of parameters § € R97,
@ Could instantiate model based only on this subcomponent, called the

base model

F24/39 (pg.24/39)
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Intractable component

@ Intractable component
DL (D, Py,...,Dy,) (16.8)

@ Each @, : XY™ — RD.
$: X™ — ROXr,

o Parameters ¢ RV>dr
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Associated Distributions: base and i-augmented

@ The associated exponential family

p(x:8,8) o exp ({8, ¢(x))) exp (<9 <I>(x)>> (16.9)
— exp ({9, 6(2))) ﬁexp (<e qﬂ(x)>) (16.10)

@ Base model is tractable

p(;6,0) o< exp ({6, ¢(x))) (16.11)

o d’-augmented model

p(z:8,0) o exp ({8, 6(z))) exp (<9 @i(x)>> (16.12)
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Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between ¢ and
® are:

@ It is possible to compute marginals exactly in polynomial time for
distributions of the base form (any member of the ¢-exponential
family).

@ Foreachi=1,...,d;, exact polynomial-time computation is still
possible for any ®’-augmented form (any member of the
(¢, ®)-exponential family).

@ Intractable to perform exact computations with the full
(¢, ®)-exponential family.
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Example: Mixture models

@ Let X € R™ be Gaussian with distribution N(0,3).

o Let p(y; u, A) be Gaussian with mean p covariance A.

@ Suppose y conditioned on z is a two-component Gaussian mixture
model taking the form:

p(Y|X = z) = (1 — )p(y; 0,051) + cwp(y; z, 07 1) (16.13)
@ Assume we have obtained n i.i.d. samples 3!, ..., y™ from mixture
density, and goal is to produce posterior p(z|y!,...,y™), similar to

Bayes-rule inverting a Naive-Bayes model.
@ Using Bayes rule, we get mixture model with 2" components!

1 i .
p(aly's...,y") o exp <—§xTE‘1x> [[r( X =2 (16.14)
i=1
= exp —leE_lx exp Y log p(y'| X =
e ; 2
(16.15)
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EP like variants
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Example: Mixture models

@ We equate exp (—%:)}TE_lx) with exp((0, ¢(x))), with dr = m.
@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(wa) for A C [m]) from it is relatively “cheap” O(m?).

o exp {>7 ,logp(y'|X =z)} equates to glil exp (<§Z, <I>Z(:z;)>>
with b = 1. These are the intractable factors.

o Base distribution p(;0,0) oc exp (—22TX~'z) which is a Gaussian
and easy as mentioned above.

@ If we multiply in only one intractable term, complexity to produce
marginal still not so bad (quite easy in fact).

e l.e., P’-augmented distribution is proportional to

1 . .
exp <_§xTZ_1$> [(1 = @)e(y';0,001) + ap(y'; z,011)]  (16.16)

e Computing marginals is easy (mixture of only 2 components)
o If we multiply in all ®%, becomes intractable (2" potentially distinct
components each of which requires marginalization).
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Polytope and Base case

o We can partition the mean parameters (u, fi) € RIT+drxb

@ Marginal polytope associated with these means

M(¢,®) = {(p, )| (e, 1) = Ep[(o(X), B(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
@ We also have polytope associated with only base distribution

M(@) = {1 € RY"|u = B,(9(X)) } (16.18)

@ Recall thm: any mean in the interior is realizable via an exponential
family model, and associated entropy H (u) is tractable.
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Augmented Base case

@ For each i = 1...d; we have a ®-augmented exp. model and
polytope

M(&, ) = { (u, ) € RIH (s, i) = B, [(6(X), &(X)] for some p]
(16.19)

@ Thus, any such mean parameters has instance for associated
exponential family, and also H(u, i*) is easy to compute.

e Goal, variational approximation: Need outer bounds on M (¢, ®) and
expression for entropy (as is now normal).

@ Turns out we can do this, and an iterative algorithm to find fixed
points of associated Lagrangian, that correspond to EP.
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New EP-based outer bound

o For any mean parms (7,7) where 7 = (71, 72,...,7%), define
coordinate “projection operation”
(7, %) — (7,7%) (16.20)

This operator simply removes all but 7* from 7.
@ Define outer bound on true means M(¢, ®) (which is still convex)

L(p,®) = {(1,7)|T € M(¢),IT'(1,7) € M(6,®"), Vi}  (16.21)

e Note, based on a set of projections onto M (¢, ®*).
@ Outer bound, i.e., M(¢,®) C L(¢, P), since:

T € M(¢) & Ips.t. 7= Ep[o(X)] (16.22)

(1,7) € L(p,®) & T € M(¢) & Tp st. (1,7") = Ep[p(X), D (X)]
(16.23)
(1,7) € M(¢,®) & Ip sit. (1,7) = Eplp(X), ®(X)] (16.24)

o If ®’ are edges of a graph (i.e. local consistency) then we get standard

L outer bound we saw before with Bethe approximation
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EP outer bound entropy and opt

e For any mean parms (7,7) € L(¢, ®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7); B)
Also, for i = 1...dy, there is a member of the (¢, ®')-exponential
family with mean parameters (7, 7%) with entropy H(r, 7).

@ Both entropy forms are easy to compute, and so is a new entropy
approximation:

dr
H(r,7) ~ Hep(r,7) 2 H(r) + Y [H(r,#) - H(r)]  (16.25)
=1
@ With outer bound and entropy expression, we get new variational form

e {(r.0) + (7,0) + Hep(r,7) } (16.26)

This characterizes the EP algorithms.
Given graph G = (V, E) when we take ¢ to be unaries V' and ® to be
edges E, we exactly recover Bethe approximation.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F33/39 (pg.33/39)

EP like variants
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Lagrangian optimization setup

o Make d; duplicates of vector 7 € R?T, call them 7’ € R for i € [dr].

@ This gives large set of pseudo-mean parameters
{r,(n",7),i € [d1]} € R x (RIT x R?)%“ (16.27)
@ We arrive at the optimization:

dr d;
e {(7, 0) + ; (7,67 + H(r) + ; [H (', 7) — H(p)] }
(16.28)

subject to 7 € M(¢), and for all i that 7 = 1* and that
(n', 7*) € M(9, 2").

e Use Lagrange multipliers to impose constraint n* = 7 for all 7, and for
the rest of the constraints too.
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EP like variants
(NERREERERERERY AR

To Lagrangian optimization

@ We get a Lagrangian version of the objective

L(t;A\) = (1,0) + Z <%i, 9~Z> + F(r; (ni, %Z)) + Z <)\i, T — ni> N

where

F(r; (nf,7) +Z — H(n")] (16.30)

and where )\’ are the Lagrange multipliers assocaited with the
constraint n* = 7 for all i (other multipliers not shown).
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EP like variants
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{7’, (n*,7"),1 € [d[]} to the above Lagrangian, must have properties:
© 7 belongs to relative interior, i.e., 7 € M°(f) of the base model.
@ (1',7") belongs to relative interior of extended model, so
(n',7') € M°(¢, 2°).
© Means must agree, i.e., 7 =1’ for all i.
@ First condition means we're a member of the ¢-exponential family,
and (it can be shown) has form:

dy
q(z;0, ) exp{<9 +> N, ¢(m)>} (16.31)
1=1

@ Second condition means we're a member of the (¢, ®*)-exponential
family, and (it can be shown) has form:

¢'(x,0,0",\) x exp <¢9 + Z N ¢(a:')> + <§z, @Z(a:)> (16.32)
0£i
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EP like variants
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To Lagrangian optimization to Moment Matching

@ Thid condiiton is a form of moment-matching. l.e., we have
T = E4[¢(X)] and 1" = E;i[¢(X)], so equating these gives:

/ o(z; 0, \)p(a)v(dz) = / ¢ (@;0,0)p(x)v(dr)  (1633)

fro € [d[]
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EP like variants
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Moment Matching — Expectation Propagation Updates
O At iteration n = 0, initialize the Lagrange multiplier vectors

(AL, ..., A9
@ At each iteration n = 1,2, ... choose some index i(n) € {1,...,d}.
© Under the following augmented distribution

¢ (z; 0,0, A) X exp <9 + Z)\l, gb(a:)> + <§i, <I>Z(a:)> , (16.34)

0£i
compute the mean parameters 1’ as follows:
7 = [ ¢ @)@ (dr) = E i [B(0)] (16.35)

@ Form base distribution ¢ using Equation 16.31 and adjust A to
satisfy the moment-matching condition

Eq[¢(X)] = n*™ (16.36)

© This is a KL-divergence minimization step, but done w. exponential

family models which thus corresponds to moment-matching.
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Sources for Today's Lecture

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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