EE512A - Advanced Inference in Graphical Models
 - Fall Quarter, Lecture 16 -
 http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes
Nov 24th, 2014

Logistics

Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Should have read chapters 1,2, 3, 4 in this book. Read chapter 5 .
- Also should read "Divergence measures and message passing" by Thomas Minka, and "Structured Region Graphs: Morphing EP into GBP", by Welling, Minka, and Teh.
- Assignment due Wednesday (Nov 26th) night, 11:45pm. Final project proposal updates and progress report (one page max).

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, k-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP
- L11 (11/5): LBP, exponential models,
- L12 (11/10): exponential models, mean params and polytopes,
- L13 (11/12): polytopes, tree outer bound, Bethe entropy approx.
- L14 (11/17): Bethe entropy approx, loop series correction
- L15 (11/19): Hypergraphs, posets, Mobius, Kikuchi
- L16 (11/24): Kikuchi, Expectation Propagation
- L17 (11/26): Expectation Propagation, Mean Field
- L18 (12/1):
- L19 (12/3):
- Final Presentations: $(12 / 10)$:

Finals Week: Dec 8th-12th, 2014.

Drawing/Visualizing Hypergraphs as Bipartite Graphs

- Hypergraph (shaded regions) on left, while bipartite graph representation on the right.

Hypergraph, edge representations

- It is possible to represent hypergraphs by only showing their hyperedges.
- Here, we see graphical representations of three hypergraphs. Subsets of nodes corresponding to hyperedges are shown in rectangles, whereas the arrows represent inclusion relations among hyperedges.

(a)

(b)

(c)
- Which ones, if any, are in reduced representation?

Möbius Inversion Lemma and Inclusion-Exclusion

- For any $A \subseteq V$, define two functions $\Omega: 2^{V} \rightarrow \mathbb{R}$ and $\Upsilon: 2^{V} \rightarrow \mathbb{R}$.
- Then the above inclusion-exclusion principle is one instance of the more general Möbius Inversion lemma, namely that each of the below two equations implies the other.

$$
\begin{gather*}
\forall A \subseteq V: \Upsilon(A)=\sum_{B: B \subseteq A} \Omega(B) \tag{16.13}\\
\forall A \subseteq V: \Omega(A)=\sum_{B: B \subseteq A}(-1)^{|A \backslash B|} \Upsilon(B) \tag{16.14}
\end{gather*}
$$

- Möbius Inversion lemma is also used to prove the Hammersley-Clifford theorem (that factorization and Markov property definitions of families are identical for positive distributions).
- We use it here to come up with alternative expressions for the entropy and for the marginal polytope.

Möbius Inversion Lemma for posets

- Let \mathcal{P} be a partially ordered set with binary relation \preceq.
- A zeta function of a poset is a mapping $\zeta: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ defined by

$$
\zeta(g, h)= \begin{cases}1 & \text { if } g \preceq h, \tag{16.23}\\ 0 & \text { otherwise }\end{cases}
$$

- The Möbius function $\omega: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ is the multiplicative inverse of this function. It is defined recursively:
- $\omega(g, g)=1$ for all $g \in \mathcal{P}$
- $\omega(g, h)=0$ for all $h: h \npreceq g$.
- Given $\omega(g, f)$ defined for f such that $g \preceq f \prec h$, we define

$$
\begin{equation*}
\omega(g, h)=-\sum_{\{f \mid g \preceq f \prec h\}} \omega(g, f) \tag{16.24}
\end{equation*}
$$

- Then, ω and ζ are multiplicative inverses, in that

$$
\begin{equation*}
\sum_{f \in \mathcal{P}} \omega(g, f) \zeta(f, h)=\sum_{\{f \mid g \preceq f \preceq h\}} \omega(g, f)=\delta(g, h) \tag{16.25}
\end{equation*}
$$

General Möbius Inversion Lemma for Posets

Lemma 16.2.8 (General Möbius Inversion Lemma)

Given real valued functions Υ and Ω defined on poset \mathcal{P}, then $\Omega(h)$ may be expressed via $\Upsilon(\cdot)$ via

$$
\begin{equation*}
\Omega(h)=\sum_{g \preceq h} \Upsilon(g) \quad \text { for all } h \in \mathcal{P} \tag{16.23}
\end{equation*}
$$

iff $\Upsilon(h)$ may be expressed via $\Omega(\cdot)$ via

$$
\begin{equation*}
\Upsilon(h)=\sum_{g \preceq h} \Omega(g) \omega(g, h) \quad \text { for all } h \in \mathcal{P} \tag{16.24}
\end{equation*}
$$

When $\mathcal{P}=2^{V}$ for some set V (so this means that the poset consists of sets and all subsets of an underlying set V) this can be simplified, where \preceq becomes \subseteq; and \succeq becomes \supseteq, like we saw above.
(see Stanley, "Enumerative Combinatorics" for more info.)

Back to Kikuchi: Möbius and expressions of factorization

- Suppose we are given marginals that factor w.r.t. a hypergraph $G=(V, E)$, so we have $\mu=\left(\mu_{h}, h \in E\right)$, then we can define new functions $\varphi=\left(\varphi_{h}, h \in E\right)$ via Möbius inversion lemma as follows

$$
\begin{equation*}
\log \varphi_{h}\left(x_{h}\right) \triangleq \sum_{g \preceq h} \omega(g, h) \log \mu_{g}\left(x_{g}\right) \tag{16.23}
\end{equation*}
$$

- From Möbius inversion lemma, this then gives us a new way to write the \log marginals, i.e., as

$$
\begin{equation*}
\log \mu_{h}\left(x_{h}\right)=\sum_{g \preceq h} \log \varphi_{g}\left(x_{g}\right) \tag{16.24}
\end{equation*}
$$

- Key, when φ_{h} is defined as above, and G is a hypertree we have

$$
\begin{equation*}
p_{\mu}(x)=\prod_{h \in E} \varphi_{h}\left(x_{h}\right) \tag{16.25}
\end{equation*}
$$

\Rightarrow general way to factorize a distribution that factors w.r.t. a hypergraph.

Logistics

multi-information decomposition

$$
\begin{aligned}
& \text { - Using Möbius, and Eqn. (16.23) we can write } \\
& \qquad \begin{aligned}
I_{h}\left(\mu_{h}\right) & =\sum_{x_{h}} \mu_{h}\left(x_{h}\right) \log \varphi_{h}\left(x_{h}\right)=\sum_{x_{h}} \mu_{h}\left(x_{h}\right)\left(\sum_{g \preceq h} \omega(g, h) \log \mu_{g}\left(x_{g}\right)\right) \\
& =\sum_{g \preceq h} \omega(g, h)\left\{\sum_{x_{h}} \mu_{h}\left(x_{h}\right) \log \mu_{g}\left(x_{g}\right)\right\} \\
& =\sum_{f \preceq h} \sum_{e \succeq f} \omega(f, e)\left\{\sum_{x_{f}} \mu_{f}\left(x_{f}\right) \log \mu_{f}\left(x_{f}\right)\right\}=-\sum_{f \preceq h} c(f) H_{f}\left(\mu_{f}\right)
\end{aligned}
\end{aligned}
$$

where we define overcounting numbers (\sim shattering coefficient)

$$
\begin{equation*}
c(f) \triangleq \sum_{e \succeq f} \omega(f, e) \tag{16.31}
\end{equation*}
$$

- This gives us a new expression for the hypertree entropy

$$
\begin{equation*}
H_{\text {hyper }}(\mu)=\sum_{h \in E} c(h) H_{h}\left(\mu_{h}\right) \tag{16.32}
\end{equation*}
$$

Usable to get Kikuchi variational approximation

- Sum to one constraint:

$$
\begin{equation*}
\sum_{x_{h}} \tau_{h}\left(x_{h}\right)=1 \tag{16.33}
\end{equation*}
$$

- Local agreement via the hypergraph constraint. For any $g \preceq h$ must have marginalization condition

$$
\begin{equation*}
\sum_{x_{h \backslash g}} \tau_{h}\left(x_{h}\right)=\tau_{g}\left(x_{g}\right) \tag{16.34}
\end{equation*}
$$

- Define new polyhedral constraint set $\mathbb{L}_{t}(G)$

$$
\begin{equation*}
\mathbb{L}_{t}(G)=\{\tau \geq 0 \mid \text { Equations (16.3) } \forall h \text {, and (16.34) } \forall g \preceq h \text { hold }\} \tag{16.35}
\end{equation*}
$$

Logistics
 Kikuchi variational approximation, entropy approx

Review

- Generalized approximate (app) entropy for the hypergraph:

$$
\begin{equation*}
H_{\mathrm{app}}=\sum_{g \in E} c(g) H_{g}\left(\tau_{g}\right) \tag{16.33}
\end{equation*}
$$

where H_{g} is hyperedge entropy and overcounting number defined by:

$$
\begin{equation*}
c(g)=\sum_{f \succeq g} \omega(g, f) \tag{16.34}
\end{equation*}
$$

Variational Approach Amenable to Approximation Variational Approximations we cover

- Original variational representation of \log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{16.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{16.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate \mathcal{M} or $-A^{*}(\mu)$ or (most likely) both.
(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$

 variational approximation, message passing on hypergraphs.
(3) Partition τ into $(\tau, \tilde{\tau})$, and set $\mathcal{M} \leftarrow \mathcal{L}(\phi, \Phi)$ and set $-A^{*}(\mu) \leftarrow H_{\mathrm{ep}}(\tau, \tilde{\tau})$ to get expectation propagation.

Kikuchi variational approximation

- This at last gets the Kikuchi variational approximation

$$
\begin{equation*}
A_{\text {Kikuchi }}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\mathrm{app}}(\tau)\right\} \tag{16.1}
\end{equation*}
$$

- For a graph, this is exactly $A_{\text {Bethe }}(\theta)$.
- Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency implies global consistency), then also exact (although expensive, exponential in the tree-width to compute $H_{\text {app }}$).
- We can define message passing algorithms on the hypertree, and show that if it converges, it is a fixed point of the associated Lagrangian.

Kikuchi variational approximation, 3×3 grid example

- Example, left is 3×3 grid, right is optimal junction tree cover.

- Treewidth is 4 , so complexity is $O\left(r^{5}\right)$.
- In general, for $n \times n$ grid strutured graph, treewidth is $O(n)$ (grows as the square root of the number of nodes).

Kiku
 Kikuchi variational approximation, 3×3 grid example

- Left is clustering of vertices in 3×3 grid, and right is hyperedge graph/region graph.

- Complexity is only $O\left(r^{4}\right)$ and will stay $O\left(r^{4}\right)$ even as n gets bigger (since clusters are at most size four).

Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)
- Standard LBP algorithm is merely a special case of GBP
- Different choices of node sets/hyperedges and message passings give different GBP algorithms.
- This gives the user a gradual tradeoff between the most expensive, intractable, and accurate junction tree algorithm, and the least expensive but possibly quite inaccurate LBP algorithm.
- Allows a trade-off between complexity for accuracy!
- In many cases, convergence of GBP will be at fixed points of the Lagrangian for the generalized variational approximation

$$
\begin{equation*}
A_{\text {Kikuchi }}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\mathrm{app}}(\tau)\right\} \tag{16.2}
\end{equation*}
$$

GBP examples: parent-to-child

In hypergraph Hasse-like diagram, - arrows point from parent (superset) to child (subset). Ex: on the right, set $\{1,2,4,5\}$ is the parent of both $\{2,5\}$ and $\{4,5\}$.

- For $h \in E$, let $\operatorname{Par}(h)$ be the set of parents. Also define descendants as $\mathcal{D}(h)=\{g \in E \mid g \prec h\}$ and ancestors as $\mathcal{A}(h)=\{g \in E \mid g \succ h\}$.
- Also define $\mathcal{D}^{+}(h)=\mathcal{D}(h) \cup\{h\}$ and $\mathcal{A}^{+}(h)=\mathcal{A}(h) \cup\{h\}$
- If $f \succ g$ then x_{f} has more variables than x_{g} and one can perform a message of the form $M_{f \rightarrow g}\left(x_{g}\right)=\sum_{f \backslash g} \tau\left(x_{f}\right)=\sum_{f \backslash g} \tau\left(x_{g}, x_{f \backslash g}\right)$

GBP examples: parent-to-child message

- Then parent-to-child message passing takes the form:

$$
\begin{equation*}
\tau_{h}\left(x_{h}\right) \propto\left[\prod_{g \in \mathcal{D}^{+}(h)} \exp \left(\theta\left(x_{g}\right)\right)\right]\left[\prod_{g \in \mathcal{D}^{+}(h)} \prod_{f \in \operatorname{Par}(g) \backslash \mathcal{D}^{+}(h)} M_{f \rightarrow g}\left(x_{g}\right)\right] \tag{16.3}
\end{equation*}
$$

We form marginal at h

- from the factors associated with each hyperedge, namely $\exp \left(\theta\left(x_{g}\right)\right)$, and by the messages sent to h and h 's descendants from other parents.

GBP examples: parent-to-child message, grid graph

- Consider message for hyperedge $h=\{1,2,4,5\}$, which has factors ψ^{\prime} associated with (regular graph) edges $\{1,2\},\{2,5\},\{4,5\}$, and $\{1,4\}$ and also unary factors for each of the nodes $1,2,4$, and 5 (eg., to associate evidence into the model).
- Then $\mathcal{D}^{+}(h)=\{\{1,2,4,5\},\{4,5\},\{2,5\},\{5\}\}$.
- We get and expression for the marginal at h using the above formula.

$$
\begin{align*}
\tau_{1,2,4,5} \propto & \psi_{1,2}^{\prime} \psi_{1,4}^{\prime} \psi_{2,5}^{\prime} \psi_{4,5}^{\prime} \psi_{1}^{\prime} \psi_{2}^{\prime} \psi_{4}^{\prime} \psi_{5}^{\prime} \tag{16.4}\\
& \times M_{\{2,3,5,6\} \rightarrow\{2,5\}} M_{\{4,5,7,8\} \rightarrow\{4,5\}} M_{\{5,6\} \rightarrow\{5\}} M_{\{5,8\} \rightarrow\{5\}}
\end{align*}
$$

- This could repeat for each of the largest clusters, until convergence.

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 16.4.3 (Relationship between A and A^{*})

(a) For any $\mu \in \mathcal{M}^{\circ}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{16.3}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{16.4}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{16.5}
\end{equation*}
$$

Kikuchi and Hypertree-based Methods EP like variants
 Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.
- We then repeat the above step with a bit more of inference, different than what we did above.
- We keep repeating: do a bit of inference, and project, until all inference has been done.
- The difference between ADF and EP is that, with ADF at this stage we're done. With EP we can keep repeating the process of inference, projection.
- EP can be seen as a generalization of BP.
- Interestingly, EP is instance of our variational framework, Equation

Term Decoupling in EP

- Partition the d sufficient statistics into two parts, the tractable ones (of which there are d_{T}) and the intracxtable ones (of which there are d_{I}). Thus, $d=d_{T}+d_{I}$.
- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.5}
\end{equation*}
$$

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi^{1}, \Phi^{2}, \ldots, \Phi^{d_{I}}\right) \tag{16.6}
\end{equation*}
$$

- ϕ_{i} are typically univariate, while Φ^{i} are typically multivariate (b-dimensional we'll assume), although this need not always be the case (but will be for our exposition).
- Consider exponential families associated with subcollection (ϕ, Φ).
- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.7}
\end{equation*}
$$

- So $\phi: \mathcal{X}^{m} \rightarrow \mathbb{R}^{d_{T}}$ with vector of parameters $\theta \in \mathbb{R}^{d_{T}}$.
- Could instantiate model based only on this subcomponent, called the base model

Intractable component

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d_{I}}\right) \tag{16.8}
\end{equation*}
$$

- Each $\Phi_{i}: \mathcal{X}^{m} \rightarrow \mathbb{R}^{b}$.
- $\Phi: \mathcal{X}^{m} \rightarrow \mathbb{R}^{b \times d_{I}}$.
- Parameters $\tilde{\theta} \in \mathbb{R}^{b \times d_{I}}$.
- The associated exponential family

$$
\begin{align*}
p(x ; \theta, \tilde{\theta}) & \propto \exp (\langle\theta, \phi(x)\rangle) \exp (\langle\tilde{\theta}, \Phi(x)\rangle) \tag{16.9}\\
& =\exp (\langle\theta, \phi(x)\rangle) \prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.10}
\end{align*}
$$

- Base model is tractable

$$
\begin{equation*}
p(x ; \theta, \overrightarrow{0}) \propto \exp (\langle\theta, \phi(x)\rangle) \tag{16.11}
\end{equation*}
$$

- Φ^{i}-augmented model

$$
\begin{equation*}
p\left(x ; \theta, \tilde{\theta}^{i}\right) \propto \exp (\langle\theta, \phi(x)\rangle) \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.12}
\end{equation*}
$$

Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between ϕ and Φ are:

- It is possible to compute marginals exactly in polynomial time for distributions of the base form (any member of the ϕ-exponential family).
- For each $i=1, \ldots, d_{I}$, exact polynomial-time computation is still possible for any Φ^{i}-augmented form (any member of the (ϕ, Φ^{i})-exponential family).
- Intractable to perform exact computations with the full (ϕ, Φ)-exponential family.

Example: Mixture models

- Let $X \in \mathbb{R}^{m}$ be Gaussian with distribution $N(0, \Sigma)$.
- Let $\varphi(y ; \mu, \Lambda)$ be Gaussian with mean μ covariance Λ.
- Suppose y conditioned on x is a two-component Gaussian mixture model taking the form:

$$
\begin{equation*}
p(y \mid X=x)=(1-\alpha) \varphi\left(y ; 0, \sigma_{0}^{2} I\right)+\alpha \varphi\left(y ; x, \sigma_{1}^{2} I\right) \tag{16.13}
\end{equation*}
$$

- Assume we have obtained n i.i.d. samples y^{1}, \ldots, y^{n} from mixture density, and goal is to produce posterior $p\left(x \mid y^{1}, \ldots, y^{n}\right)$, similar to Bayes-rule inverting a Naive-Bayes model.
- Using Bayes rule, we get mixture model with 2^{n} components!

$$
\begin{align*}
p\left(x \mid y^{1}, \ldots, y^{n}\right) & \propto \exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right) \prod_{i=1}^{n} p\left(y^{i} \mid X=x\right) \tag{16.14}\\
& =\exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right) \exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}
\end{align*}
$$

Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$) from it is relatively "cheap" $O\left(m^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$, with $b=1$. These are the intractable factors.
- Base distribution $p(x ; \theta, \overrightarrow{0}) \propto \exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right)$ which is a Gaussian and easy as mentioned above.
- If we multiply in only one intractable term, complexity to produce marginal still not so bad (quite easy in fact).
- I.e., Φ^{i}-augmented distribution is proportional to

$$
\begin{equation*}
\exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right)\left[(1-\alpha) \varphi\left(y^{i} ; 0, \sigma_{0}^{2} I\right)+\alpha \varphi\left(y^{i} ; x, \sigma_{1}^{2} I\right)\right] \tag{16.16}
\end{equation*}
$$

- Computing marginals is easy (mixture of only 2 components)
- If we multiply in all Φ^{i}, becomes intractable (2^{n} potentially distinct components each of which requires marginalization).

Kikuchi and Hypertree-based Methods EP like variants
 Polytope and Base case

- We can partition the mean parameters $(\mu, \tilde{\mu}) \in \mathbb{R}^{d_{T}+d_{I} \times b}$
- Marginal polytope associated with these means

$$
\begin{equation*}
\mathcal{M}(\phi, \Phi)=\left\{(\mu, \tilde{\mu}) \mid(\mu, \tilde{\mu})=\mathbb{E}_{p}[(\phi(X), \Phi(X))] \text { for some } p\right\} \tag{16.17}
\end{equation*}
$$

along with negative dual of cumulant, or entropy
$H(\mu, \tilde{\mu})=-A^{*}(\mu, \tilde{\mu})$.

- We also have polytope associated with only base distribution

$$
\begin{equation*}
\mathcal{M}(\phi)=\left\{\mu \in \mathbb{R}^{d_{T}} \mid \mu=\mathbb{E}_{p}(\phi(X))\right\} \tag{16.18}
\end{equation*}
$$

- Recall thm: any mean in the interior is realizable via an exponential family model, and associated entropy $H(\mu)$ is tractable.

Augmented Base case

- For each $i=1 \ldots d_{I}$ we have a Φ^{i}-augmented exp. model and polytope
$\mathcal{M}\left(\phi, \Phi^{i}\right)=\left\{\left(\mu, \tilde{\mu}^{i}\right) \in \mathbb{R}^{d_{T}+b} \mid\left(\mu, \tilde{\mu}^{i}\right)=\mathbb{E}_{p}\left[\left(\phi(X), \Phi^{i}(X)\right)\right]\right.$ for some $\left.p\right\}$
- Thus, any such mean parameters has instance for associated exponential family, and also $H\left(\mu, \tilde{\mu}^{i}\right)$ is easy to compute.
- Goal, variational approximation: Need outer bounds on $\mathcal{M}(\phi, \Phi)$ and expression for entropy (as is now normal).
- Turns out we can do this, and an iterative algorithm to find fixed points of associated Lagrangian, that correspond to EP.

Kikuchi and Hypertree-based Methods EP like variants

New EP-based outer bound

- For any mean parms $(\tau, \tilde{\tau})$ where $\tilde{\tau}=\left(\tilde{\tau}^{1}, \tilde{\tau}^{2}, \ldots, \tilde{\tau}^{d_{I}}\right)$, define coordinate "projection operation"

$$
\begin{equation*}
\Pi^{i}(\tau, \tilde{\tau}) \rightarrow\left(\tau, \tilde{\tau}^{i}\right) \tag{16.20}
\end{equation*}
$$

This operator simply removes all but $\tilde{\tau}^{i}$ from $\tilde{\tau}$.

- Define outer bound on true means $\mathcal{M}(\phi, \Phi)$ (which is still convex)

$$
\begin{equation*}
\mathcal{L}(\phi, \Phi)=\left\{(\tau, \tilde{\tau}) \mid \tau \in \mathcal{M}(\phi), \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}\left(\phi, \Phi^{i}\right), \forall i\right\} \tag{16.21}
\end{equation*}
$$

- Note, based on a set of projections onto $\mathcal{M}\left(\phi, \Phi^{i}\right)$.
- Outer bound, i.e., $\mathcal{M}(\phi, \Phi) \subseteq \mathcal{L}(\phi, \Phi)$, since:

$$
\begin{align*}
\tau \in \mathcal{M}(\phi) & \Leftrightarrow \exists p \text { s.t. } \tau=E_{p}[\phi(X)] \tag{16.22}\\
(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi) & \Leftrightarrow \tau \in \mathcal{M}(\phi) \& \exists p \text { s.t. }\left(\tau, \tilde{\tau}^{i}\right)=E_{p}\left[\phi(X), \Phi^{i}(X)\right] \tag{16.23}
\end{align*}
$$

$(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi) \Leftrightarrow \exists p$ s.t. $(\tau, \tilde{\tau})=E_{p}[\phi(X), \Phi(X)]$

- If Φ^{i} are edges of a graph (i.e. local consistency) then we get standard
\mathbb{L} outer bound we saw before with Bethe approximation

EP outer bound entropy and opt

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$: A) There is a member of the ϕ-exponential family which mean parameters τ with entropy $H(\tau)$; B) Also, for $i=1 \ldots d_{I}$, there is a member of the (ϕ, Φ^{i})-exponential family with mean parameters $\left(\tau, \tilde{\tau}^{i}\right)$ with entropy $H\left(\tau, \tilde{\tau}^{i}\right)$.
- Both entropy forms are easy to compute, and so is a new entropy approximation:

$$
\begin{equation*}
H(\tau, \tilde{\tau}) \approx H_{\mathrm{ep}}(\tau, \tilde{\tau}) \triangleq H(\tau)+\sum_{\ell=1}^{d_{I}}\left[H\left(\tau, \tilde{\tau}^{l}\right)-H(\tau)\right] \tag{16.25}
\end{equation*}
$$

- With outer bound and entropy expression, we get new variational form

$$
\begin{equation*}
\max _{(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)}\left\{\langle\tau, \theta\rangle+\langle\tilde{\tau}, \tilde{\theta}\rangle+H_{\mathrm{ep}}(\tau, \tilde{\tau})\right\} \tag{16.26}
\end{equation*}
$$

- This characterizes the EP algorithms.
- Given graph $G=(V, E)$ when we take ϕ to be unaries V and Φ to be edges E, we exactly recover Bethe approximation.

Kikuchi and Hypertree-based Methods EP like variants
 Lagrangian optimization setup

- Make d_{I} duplicates of vector $\tau \in \mathbb{R}^{d_{T}}$, call them $\eta^{i} \in \mathbb{R}^{d_{T}}$ for $i \in\left[d_{T}\right]$.
- This gives large set of pseudo-mean parameters

$$
\begin{equation*}
\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\} \in \mathbb{R}^{d_{T}} \times\left(\mathbb{R}^{d_{T}} \times \mathbb{R}^{b}\right)^{d_{I}} \tag{16.27}
\end{equation*}
$$

- We arrive at the optimization:

$$
\begin{equation*}
\max _{\left\{\tau,\left\{\left(\eta^{i}, \tilde{\tau}^{i}\right)\right\}_{i}\right\}}\left\{\langle\tau, \theta\rangle+\sum_{i=1}^{d_{I}}\left\langle\tilde{\tau}^{i}, \tilde{\theta}^{i}\right\rangle+H(\tau)+\sum_{i=1}^{d_{I}}\left[H\left(\eta^{i}, \tilde{\tau}^{i}\right)-H\left(\eta^{i}\right)\right]\right\} \tag{16.28}
\end{equation*}
$$

subject to $\tau \in \mathcal{M}(\phi)$, and for all i that $\tau=\eta^{i}$ and that $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}\left(\phi, \Phi^{i}\right)$.

- Use Lagrange multipliers to impose constraint $\eta^{i}=\tau$ for all i, and for the rest of the constraints too.

To Lagrangian optimization

- We get a Lagrangian version of the objective

$$
\begin{equation*}
L(\tau ; \lambda)=\langle\tau, \theta\rangle+\sum_{i=1}^{d_{I}}\left\langle\tilde{\tau}^{i}, \tilde{\theta}^{i}\right\rangle+F\left(\tau ;\left(\eta^{i}, \tilde{\tau}^{i}\right)\right)+\sum_{i=1}^{d_{I}}\left\langle\lambda^{i}, \tau-\eta^{i}\right\rangle+\ldots \tag{16.29}
\end{equation*}
$$

where

$$
\begin{equation*}
F\left(\tau ;\left(\eta^{i}, \tilde{\tau}^{i}\right)\right)=H(\tau)+\sum_{i=1}^{d_{I}}\left[H\left(\eta^{i}, \tilde{\tau}^{i}\right)-H\left(\eta^{i}\right)\right] \tag{16.30}
\end{equation*}
$$

and where λ^{i} are the Lagrange multipliers assocaited with the constraint $\eta^{i}=\tau$ for all i (other multipliers not shown).

Kikuchi and Hypertree-based Methods EP like variants
 To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:
(1) τ belongs to relative interior, i.e., $\tau \in \mathcal{M}^{\circ}(\theta)$ of the base model.
(2) $\left(\eta^{i}, \tilde{\tau}^{i}\right)$ belongs to relative interior of extended model, so $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}^{\circ}\left(\phi, \Phi^{i}\right)$.
(3) Means must agree, i.e., $\tau=\eta^{i}$ for all i.
- First condition means we're a member of the ϕ-exponential family, and (it can be shown) has form:

$$
\begin{equation*}
q(x ; \theta, \lambda) \propto \exp \left\{\left\langle\theta+\sum_{i=1}^{d_{I}} \lambda^{i}, \phi(x)\right\rangle\right\} \tag{16.31}
\end{equation*}
$$

- Second condition means we're a member of the (ϕ, Φ^{i})-exponential family, and (it can be shown) has form:

$$
\begin{equation*}
q^{i}\left(x, \theta, \tilde{\theta}^{i}, \lambda\right) \propto \exp \left(\left\langle\theta+\sum_{\ell \neq i} \lambda^{\ell}, \phi(x)\right\rangle+\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.32}
\end{equation*}
$$

To Lagrangian optimization to Moment Matching

- Thid condiiton is a form of moment-matching. I.e., we have $\tau=E_{q}[\phi(X)]$ and $\eta^{i}=E_{q^{i}}[\phi(X)]$, so equating these gives:

$$
\begin{equation*}
\int q(x ; \theta, \lambda) \phi(x) \nu(d x)=\int q^{i}\left(x ; \theta, \tilde{\theta}^{i}\right) \phi(x) \nu(d x) \tag{16.33}
\end{equation*}
$$

fro $i \in\left[d_{I}\right]$.

Kikuchi and Hypertree-based Methods EP like variants
 Moment Matching \rightarrow Expectation Propagation Updates

(1) At iteration $n=0$, initialize the Lagrange multiplier vectors $\left(\lambda^{1}, \ldots, \lambda^{d_{I}}\right)$
(2) At each iteration $n=1,2, \ldots$ choose some index $i(n) \in\left\{1, \ldots, d_{I}\right\}$.
(3) Under the following augmented distribution

$$
\begin{equation*}
q^{i}\left(x ; \theta, \tilde{\theta}^{i}, \lambda\right) \propto \exp \left(\left\langle\theta+\sum_{\ell \neq i} \lambda^{l}, \phi(x)\right\rangle+\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.34}
\end{equation*}
$$

compute the mean parameters η^{i} as follows:

$$
\begin{equation*}
\eta^{i(n)}=\int q^{i(n)}(x) \phi(x) \nu(d x)=\mathbb{E}_{q^{i(n)}}[\phi(X)] \tag{16.35}
\end{equation*}
$$

(9) Form base distribution q using Equation 16.31 and adjust $\lambda^{i(n)}$ to satisfy the moment-matching condition

$$
\begin{equation*}
\mathbb{E}_{q}[\phi(X)]=\eta^{i(n)} \tag{16.36}
\end{equation*}
$$

(0) This is a KL-divergence minimization step, but done w. exponential family models which thus corresponds to moment-matching.

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001

