## EE512A - Advanced Inference in Graphical Models

- Fall Quarter, Lecture 16 -
http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/


## Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Nov 24th, 2014


## Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Should have read chapters 1,2, 3, 4 in this book. Read chapter 5 .
- Assignment due Wednesday (Nov 26th) night, 11:45pm. Final project proposal updates and progress report (one page max).


## Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, $k$-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP

Finals Week: Dec 8th-12th, 2014.

## Drawing/Visualizing Hypergraphs as Bipartite Graphs

- Hypergraph (shaded regions) on left, while bipartite graph representation on the right.



## Hypergraph, edge representations

- It is possible to represent hypergraphs by only showing their hyperedges.
- Here, we see graphical representations of three hypergraphs. Subsets of nodes corresponding to hyperedges are shown in rectangles, whereas the arrows represent inclusion relations among hyperedges.

- Which ones, if any, are in reduced representation?


## Möbius Inversion Lemma and Inclusion-Exclusion

- For any $A \subseteq V$, define two functions $\Omega: 2^{V} \rightarrow \mathbb{R}$ and $\Upsilon: 2^{V} \rightarrow \mathbb{R}$.
- Then the above inclusion-exclusion principle is one instance of the more general Möbius Inversion lemma, namely that each of the below two equations implies the other.

$$
\begin{gather*}
\forall A \subseteq V: \Upsilon(A)=\sum_{B: B \subseteq A} \Omega(B)  \tag{16.13}\\
\forall A \subseteq V: \Omega(A)=\sum_{B: B \subseteq A}(-1)^{|A \backslash B|} \Upsilon(B) \tag{16.14}
\end{gather*}
$$

- Möbius Inversion lemma is also used to prove the Hammersley-Clifford theorem (that factorization and Markov property definitions of families are identical for positive distributions).
- We use it here to come up with alternative expressions for the entropy and for the marginal polytope.


## Möbius Inversion Lemma for posets

- Let $\mathcal{P}$ be a partially ordered set with binary relation $\preceq$.
- A zeta function of a poset is a mapping $\zeta: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ defined by

$$
\zeta(g, h)= \begin{cases}1 & \text { if } g \preceq h  \tag{16.23}\\ 0 & \text { otherwise }\end{cases}
$$

- The Möbius function $\omega: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ is the multiplicative inverse of this function. It is defined recursively:
- $\omega(g, g)=1$ for all $g \in \mathcal{P}$
- $\omega(g, h)=0$ for all $h: h \npreceq g$.
- Given $\omega(g, f)$ defined for $f$ such that $g \preceq f \prec h$, we define

$$
\begin{equation*}
\omega(g, h)=-\sum_{\{f \mid g \preceq f \prec h\}} \omega(g, f) \tag{16.24}
\end{equation*}
$$

- Then, $\omega$ and $\zeta$ are multiplicative inverses, in that

$$
\begin{equation*}
\sum_{f \in \mathcal{P}} \omega(g, f) \zeta(f, h)=\sum_{\{f \mid g \preceq f \preceq h\}} \omega(g, f)=\delta(g, h) \tag{16.25}
\end{equation*}
$$

## General Möbius Inversion Lemma for Posets

## Lemma 16.2.8 (General Möbius Inversion Lemma)

Given real valued functions $\Upsilon$ and $\Omega$ defined on poset $\mathcal{P}$, then $\Omega(h)$ may be expressed via $\Upsilon(\cdot)$ via

$$
\begin{equation*}
\Omega(h)=\sum_{g \preceq h} \Upsilon(g) \quad \text { for all } h \in \mathcal{P} \tag{16.23}
\end{equation*}
$$

iff $\Upsilon(h)$ may be expressed via $\Omega(\cdot)$ via

$$
\begin{equation*}
\Upsilon(h)=\sum_{g \preceq h} \Omega(g) \omega(g, h) \quad \text { for all } h \in \mathcal{P} \tag{16.24}
\end{equation*}
$$

When $\mathcal{P}=2^{V}$ for some set $V$ (so this means that the poset consists of sets and all subsets of an underlying set $V$ ) this can be simplified, where $\preceq$ becomes $\subseteq$; and $\succeq$ becomes $\supseteq$, like we saw above. (see Stanley, "Enumerative Combinatorics" for more info.)

## Back to Kikuchi: Möbius and expressions of factorization

- Suppose we are given marginals that factor w.r.t. a hypergraph $G=(V, E)$, so we have $\mu=\left(\mu_{h}, h \in E\right)$, then we can define new functions $\varphi=\left(\varphi_{h}, h \in E\right)$ via Möbius inversion lemma as follows

$$
\begin{equation*}
\log \varphi_{h}\left(x_{h}\right) \triangleq \sum_{g \preceq h} \omega(g, h) \log \mu_{g}\left(x_{g}\right) \tag{16.23}
\end{equation*}
$$

- From Möbius inversion lemma, this then gives us a new way to write the log marginals, i.e., as

$$
\begin{equation*}
\log \mu_{h}\left(x_{h}\right)=\sum_{g \preceq h} \log \varphi_{g}\left(x_{g}\right) \tag{16.24}
\end{equation*}
$$

- Key, when $\varphi_{h}$ is defined as above, and $G$ is a hypertree we have

$$
\begin{equation*}
p_{\mu}(x)=\prod_{h \in E} \varphi_{h}\left(x_{h}\right) \tag{16.25}
\end{equation*}
$$

$\Rightarrow$ general way to factorize a distribution that factors w.r.t. a hypergraph.

## multi-information decomposition

- Using Möbius, and Eqn. (??) we can write

$$
\begin{aligned}
I_{h}\left(\mu_{h}\right) & =\sum_{x_{h}} \mu_{h}\left(x_{h}\right) \log \varphi_{h}\left(x_{h}\right)=\sum_{x_{h}} \mu_{h}\left(x_{h}\right)\left(\sum_{g \preceq h} \omega(g, h) \log \mu_{g}\left(x_{g}\right)\right) \\
& =\sum_{g \preceq h} \omega(g, h)\left\{\sum_{x_{h}} \mu_{h}\left(x_{h}\right) \log \mu_{g}\left(x_{g}\right)\right\} \\
& =\sum_{f \preceq h} \sum_{e \succeq f} \omega(f, e)\left\{\sum_{x_{f}} \mu_{f}\left(x_{f}\right) \log \mu_{f}\left(x_{f}\right)\right\}=-\sum_{f \preceq h} c(f) H_{f}\left(\mu_{f}\right)
\end{aligned}
$$

where we define overcounting numbers ( $\sim$ shattering coefficient)

$$
\begin{equation*}
c(f) \triangleq \sum_{e \succeq f} \omega(f, e) \tag{16.31}
\end{equation*}
$$

- This gives us a new expression for the hypertree entropy

$$
\begin{equation*}
H_{\text {hyper }}(\mu)=\sum_{h \in E} c(h) H_{h}\left(\mu_{h}\right) \tag{16.32}
\end{equation*}
$$

## Usable to get Kikuchi variational approximation

- Sum to one constraint:

$$
\begin{equation*}
\sum_{x_{h}} \tau_{h}\left(x_{h}\right)=1 \tag{16.33}
\end{equation*}
$$

- Local agreement via the hypergraph constraint. For any $g \preceq h$ must have marginalization condition

$$
\begin{equation*}
\sum_{x_{h \backslash g}} \tau_{h}\left(x_{h}\right)=\tau_{g}\left(x_{g}\right) \tag{16.34}
\end{equation*}
$$

- Define new polyhedral constraint set $\mathbb{L}_{t}(G)$

$$
\mathbb{L}_{t}(G)=\{\tau \geq 0 \mid \text { Equations (16.47) } \forall h, \text { and (16.55) } \forall g \preceq h \text { hold }\}
$$

## Kikuchi variational approximation, entropy approx

- Generalized approximate (app) entropy for the hypergraph:

$$
\begin{equation*}
H_{\mathrm{app}}=\sum_{g \in E} c(g) H_{g}\left(\tau_{g}\right) \tag{16.33}
\end{equation*}
$$

where $H_{g}$ is hyperedge entropy and overcounting number defined by:

$$
\begin{equation*}
c(g)=\sum_{f \succeq g} \omega(g, f) \tag{16.34}
\end{equation*}
$$

## Variational Approach Amenable to Approximation

- Original variational representation of $\log$ partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{16.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ}  \tag{16.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

## Variational Approach Amenable to Approximation

- Original variational representation of $\log$ partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{16.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ}  \tag{16.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.


## Variational Approach Amenable to Approximation

- Original variational representation of $\log$ partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{16.1}
\end{equation*}
$$

where dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ}  \tag{16.2}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

- Given efficient expression for $A(\theta)$, we can compute marginals of interest.
- Above expression (dual of the dual) offers strategies to approximate or (upper or lower) bound $A(\theta)$. We either approximate Mor $-A^{*}(\mu)$ or (most likely) both.


## Variational Approximations we cover

(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.

## Variational Approximations we cover

(1) Set $\mathcal{M} \leftarrow \mathbb{L}$ and $-A^{*}(\mu) \leftarrow H_{\text {Bethe }}(\tau)$ to get Bethe variational approximation, LBP fixed point.
(2) Set $\mathcal{M} \leftarrow \mathbb{L}_{t}(G)$ (hypergraph marginal polytope), $-A^{*}(\mu) \leftarrow H_{\text {app }}(\tau)$ where $H_{\text {app }}=\sum_{g \in E} c(g) H_{g}\left(\tau_{g}\right)$ (via Möbius) to get Kikuchi variational approximation, message passing on hypergraphs.

## Kikuchi variational approximation

- This at last gets the Kikuchi variational approximation

$$
\begin{equation*}
A_{\text {Kikuchi }}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\mathrm{app}}(\tau)\right\} \tag{16.1}
\end{equation*}
$$

## Kikuchi variational approximation

- This at last gets the Kikuchi variational approximation

$$
\begin{equation*}
A_{\text {Kikuchi }}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\mathrm{app}}(\tau)\right\} \tag{16.1}
\end{equation*}
$$

- For a graph, this is exactly $A_{\text {Bethe }}(\theta)$.


## Kikuchi variational approximation

- This at last gets the Kikuchi variational approximation

$$
\begin{equation*}
A_{\text {Kikuchi }}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\mathrm{app}}(\tau)\right\} \tag{16.1}
\end{equation*}
$$

- For a graph, this is exactly $A_{\text {Bethe }}(\theta)$.
- Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency implies global consistency), then also exact (although expensive, exponential in the tree-width to compute $H_{\text {app }}$ ).


## Kikuchi variational approximation

- This at last gets the Kikuchi variational approximation

$$
\begin{equation*}
A_{\mathrm{Kikuchi}}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\mathrm{app}}(\tau)\right\} \tag{16.1}
\end{equation*}
$$

- For a graph, this is exactly $A_{\text {Bethe }}(\theta)$.
- Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency implies global consistency), then also exact (although expensive, exponential in the tree-width to compute $H_{\text {app }}$ ).
- We can define message passing algorithms on the hypertree, and show that if it converges, it is a fixed point of the associated Lagrangian.



## Kikuchi variational approximation, $3 \times 3$ grid example

- Example, left is $3 \times 3$ grid, right is optimal junction tree cover.



## Kikuchi variational approximation, $3 \times 3$ grid example

- Example, left is $3 \times 3$ grid, right is optimal junction tree cover.

- Treewidth is 4 , so complexity is $O\left(r^{5}\right)$.


## Kikuchi variational approximation, $3 \times 3$ grid example

- Example, left is $3 \times 3$ grid, right is optimal junction tree cover.

- Treewidth is 4 , so complexity is $O\left(r^{5}\right)$.
- In general, for $n \times n$ grid strutured graph, treewidth is $O(n)$ (grows as the square root of the number of nodes).


## Kikuchi variational approximation, $3 \times 3$ grid example

- Left is clustering of vertices in $3 \times 3$ grid, and right is hyperedge graph/region graph.



## Kikuchi variational approximation, $3 \times 3$ grid example

- Left is clustering of vertices in $3 \times 3$ grid, and right is hyperedge graph/region graph.

- Complexity is only $O\left(r^{4}\right)$ and will stay $O\left(r^{4}\right)$ even as $n$ gets bigger (since clusters are at most size four).


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)
- Standard LBP algorithm is merely a special case of GBP


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)
- Standard LBP algorithm is merely a special case of GBP
- Different choices of node sets/hyperedges and message passings give different GBP algorithms.


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)
- Standard LBP algorithm is merely a special case of GBP
- Different choices of node sets/hyperedges and message passings give different GBP algorithms.
- This gives the user a gradual tradeoff between the most expensive, intractable, and accurate junction tree algorithm, and the least expensive but possibly quite inaccurate LBP algorithm.


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)
- Standard LBP algorithm is merely a special case of GBP
- Different choices of node sets/hyperedges and message passings give different GBP algorithms.
- This gives the user a gradual tradeoff between the most expensive, intractable, and accurate junction tree algorithm, and the least expensive but possibly quite inaccurate LBP algorithm.
- Allows a trade-off between complexity for accuracy!


## Generalized BP (GBP): Key idea

- Key idea: sets of nodes send messages to other sets of nodes.
- The node sets that communicate with each other represented using hypergraph (hyperedges are the ndoe sets)
- Standard LBP algorithm is merely a special case of GBP
- Different choices of node sets/hyperedges and message passings give different GBP algorithms.
- This gives the user a gradual tradeoff between the most expensive, intractable, and accurate junction tree algorithm, and the least expensive but possibly quite inaccurate LBP algorithm.
- Allows a trade-off between complexity for accuracy!
- In many cases, convergence of GBP will be at fixed points of the Lagrangian for the generalized variational approximation

$$
\begin{equation*}
A_{\text {Kikuchi }}(\theta)=\max _{\tau \in \mathbb{L}_{t}(G)}\left\{\langle\theta, \tau\rangle+H_{\text {app }}(\tau)\right\} \tag{16.2}
\end{equation*}
$$

## GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

- arrows point from parent (superset) to child (subset). Ex: on the right, set $\{1,2,4,5\}$ is the parent of both $\{2,5\}$ and $\{4,5\}$.



## GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

- arrows point from parent (superset) to child (subset). Ex: on the right, set $\{1,2,4,5\}$ is the parent of both $\{2,5\}$ and $\{4,5\}$.

- For $h \in E$, let $\operatorname{Par}(h)$ be the set of parents. Also define descendants as $\mathcal{D}(h)=\{g \in E \mid g \prec h\}$ and ancestors as $\mathcal{A}(h)=\{g \in E \mid g \succ h\}$.


## GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

- arrows point from parent (superset) to child (subset). Ex: on the right, set $\{1,2,4,5\}$ is the parent of both $\{2,5\}$ and $\{4,5\}$.

- For $h \in E$, let $\operatorname{Par}(h)$ be the set of parents. Also define descendants as $\mathcal{D}(h)=\{g \in E \mid g \prec h\}$ and ancestors as $\mathcal{A}(h)=\{g \in E \mid g \succ h\}$.
- Also define $\mathcal{D}^{+}(h)=\mathcal{D}(h) \cup\{h\}$ and $\mathcal{A}^{+}(h)=\mathcal{A}(h) \cup\{h\}$


## GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

- arrows point from parent (superset) to child (subset). Ex: on the right, set $\{1,2,4,5\}$ is the parent of both $\{2,5\}$ and $\{4,5\}$.

- For $h \in E$, let $\operatorname{Par}(h)$ be the set of parents. Also define descendants as $\mathcal{D}(h)=\{g \in E \mid g \prec h\}$ and ancestors as $\mathcal{A}(h)=\{g \in E \mid g \succ h\}$.
- Also define $\mathcal{D}^{+}(h)=\mathcal{D}(h) \cup\{h\}$ and $\mathcal{A}^{+}(h)=\mathcal{A}(h) \cup\{h\}$
- If $f \succ g$ then $x_{f}$ has more variables than $x_{g}$ and one can perform a message of the form $M_{f \rightarrow g}\left(x_{g}\right)=\sum_{f \backslash g} \tau\left(x_{f}\right)=\sum_{f \backslash g} \tau\left(x_{g}, x_{f \backslash g}\right)$


## GBP examples: parent-to-child message

- Then parent-to-child message passing takes the form:



## GBP examples: parent-to-child message

- Then parent-to-child message passing takes the form:
$\tau_{h}\left(x_{h}\right) \propto\left[\prod_{g \in \mathcal{D}^{+}(h)} \exp \left(\theta\left(x_{g}\right)\right)\right]$
$\left[\prod_{g \in \mathcal{D}^{+}(h)} \prod_{f \in \operatorname{Par}(g) \backslash \mathcal{D}^{+}(h)} M_{f \rightarrow g}\left(x_{g}\right)\right]$
(16.3)

We form marginal at $h$

- from the factors associated with each hyperedge, namely $\exp \left(\theta\left(x_{g}\right)\right)$, and by the messages sent to $h$ and $h$ 's descendants from other parents.



## GBP examples: parent-to-child message, grid graph



- Consider message for hyperedge $h=\{1,2,4,5\}$, which has factors $\psi^{\prime}$ associated with (regular graph) edges $\{1,2\},\{2,5\},\{4,5\}$, and $\{1,4\}$ and also unary factors for each of the nodes $1,2,4$, and 5 (eg., to associate evidence into the model).


## GBP examples: parent-to-child message, grid graph



- Consider message for hyperedge $h=\{1,2,4,5\}$, which has factors $\psi^{\prime}$ associated with (regular graph) edges $\{1,2\},\{2,5\},\{4,5\}$, and $\{1,4\}$ and also unary factors for each of the nodes $1,2,4$, and 5 (eg., to associate evidence into the model).
- Then $\mathcal{D}^{+}(h)=\{\{1,2,4,5\},\{4,5\},\{2,5\},\{5\}\}$.


## GBP examples: parent-to-child message, grid graph



- Consider message for hyperedge $h=\{1,2,4,5\}$, which has factors $\psi^{\prime}$ associated with (regular graph) edges $\{1,2\},\{2,5\},\{4,5\}$, and $\{1,4\}$ and also unary factors for each of the nodes $1,2,4$, and 5 (eg., to associate evidence into the model).
- Then $\mathcal{D}^{+}(h)=\{\{1,2,4,5\},\{4,5\},\{2,5\},\{5\}\}$.
- We get and expression for the marginal at $h$ using the above formula.

$$
\begin{equation*}
\tau_{1,2,4,5} \propto \psi_{1,2}^{\prime} \psi_{1,4}^{\prime} \psi_{2,5}^{\prime} \psi_{4,5}^{\prime} \psi_{1}^{\prime} \psi_{2}^{\prime} \psi_{4}^{\prime} \psi_{5}^{\prime} \tag{16.4}
\end{equation*}
$$

$\times M_{\{2,3,5,6\} \rightarrow\{2,5\}} M_{\{4,5,7,8\} \rightarrow\{4,5\}} M_{\{5,6\} \rightarrow\{5\}} M_{\{5,8\} \rightarrow\{5\}}$

## GBP examples: parent-to-child message, grid graph



- Consider message for hyperedge $h=\{1,2,4,5\}$, which has factors $\psi^{\prime}$ associated with (regular graph) edges $\{1,2\},\{2,5\},\{4,5\}$, and $\{1,4\}$ and also unary factors for each of the nodes $1,2,4$, and 5 (eg., to associate evidence into the model).
- Then $\mathcal{D}^{+}(h)=\{\{1,2,4,5\},\{4,5\},\{2,5\},\{5\}\}$.
- We get and expression for the marginal at $h$ using the above formula.

$$
\begin{align*}
\tau_{1,2,4,5} \propto & \psi_{1,2}^{\prime} \psi_{1,4}^{\prime} \psi_{2,5}^{\prime} \psi_{4,5}^{\prime} \psi_{1}^{\prime} \psi_{2}^{\prime} \psi_{4}^{\prime} \psi_{5}^{\prime}  \tag{16.4}\\
& \times M_{\{2,3,5,6\} \rightarrow\{2,5\}} M_{\{4,5,7,8\} \rightarrow\{4,5\}} M_{\{5,6\} \rightarrow\{5\}} M_{\{5,8\} \rightarrow\{5\}}
\end{align*}
$$

- This could repeat for each of the largest clusters, until convergence.


## Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 16.4.3 (Relationship between $A$ and $A^{*}$ )
(a) For any $\mu \in \mathcal{M}^{\circ}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ}  \tag{16.3}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{16.4}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{16.5}
\end{equation*}
$$

## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF). - Doing full inference involves exponential computation.


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.



## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.
- We then repeat the above step with a bit more of inference, different than what we did above.


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.
- We then repeat the above step with a bit more of inference, different than what we did above.
- We keep repeating: do a bit of inference, and project, until all inference has been done.


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.
- We then repeat the above step with a bit more of inference, different than what we did above.
- We keep repeating: do a bit of inference, and project, until all inference has been done.
- The difference between ADF and EP is that, with ADF at this stage we're done. With EP we can keep repeating the process of inference, projection.


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.
- We then repeat the above step with a bit more of inference, different than what we did above.
- We keep repeating: do a bit of inference, and project, until all inference has been done.
- The difference between ADF and EP is that, with ADF at this stage we're done. With EP we can keep repeating the process of inference, projection.
- EP can be seen as a generalization of BP.


## Expectation Propagation: basic idea

- Came from a method called "assumed density filtering" (ADF).
- Doing full inference involves exponential computation.
- We do a bit of inference, involving reasonable computation, and getting us a new distribution that is a bit more complex but not too much more complex.
- Before going further, we "project" this new distribution back down to a class of simple distributions.
- We then repeat the above step with a bit more of inference, different than what we did above.
- We keep repeating: do a bit of inference, and project, until all inference has been done.
- The difference between ADF and EP is that, with ADF at this stage we're done. With EP we can keep repeating the process of inference, projection.
- EP can be seen as a generalization of BP.
- Interestingly, EP is instance of our variational framework, Equation ??.


## Term Decoupling

# d, (X) $\alpha \in L \quad \mid I=d$ 

- Partition the $d$ sufficient statistics into two parts, the tractable ones (of which there are $d_{T}$ ) and the intracxtable ones (of which there are $\left.d_{I}\right)$. Thus, $d=d_{T}+d_{I}$.



## Term Decoupling

- Partition the $d$ sufficient statistics into two parts, the tractable ones (of which there are $d_{T}$ ) and the intracxtable ones (of which there are $d_{I}$ ). Thus, $d=d_{T}+d_{I}$.
- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.5}
\end{equation*}
$$

## Term Decoupling

- Partition the $d$ sufficient statistics into two parts, the tractable ones (of which there are $d_{T}$ ) and the intracxtable ones (of which there are $d_{I}$ ). Thus, $d=d_{T}+d_{I}$.
- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.5}
\end{equation*}
$$

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi^{1}, \Phi^{2}, \ldots, \Phi^{d_{I}}\right) \tag{16.6}
\end{equation*}
$$

## Term Decoupling

- Partition the $d$ sufficient statistics into two parts, the tractable ones (of which there are $d_{T}$ ) and the intracxtable ones (of which there are $d_{I}$ ). Thus, $d=d_{T}+d_{I}$.
- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.5}
\end{equation*}
$$

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi^{1}, \Phi^{2}, \ldots, \Phi^{d_{I}}\right) \tag{16.6}
\end{equation*}
$$

- $\phi_{i}$ are typically univariate, while $\Phi^{i}$ are multivariate ( $b$-dimensional).


## Term Decoupling

- Partition the $d$ sufficient statistics into two parts, the tractable ones (of which there are $d_{T}$ ) and the intracxtable ones (of which there are $d_{I}$ ). Thus, $d=d_{T}+d_{I}$.
- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.5}
\end{equation*}
$$

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi^{1}, \Phi^{2}, \ldots, \Phi^{d_{I}}\right) \tag{16.6}
\end{equation*}
$$

- $\phi_{i}$ are typically univariate, while $\Phi^{i}$ are multivariate ( $b$-dimensional).
- Consider exponential families associated with subcollection $(\phi, \Phi)$.


## Tractable component

- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.7}
\end{equation*}
$$

## Tractable component

- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.7}
\end{equation*}
$$

- So $\phi: \mathcal{X}^{m} \rightarrow \mathbb{R}^{d_{T}}$ with vector of parameters $\theta \in \mathbb{R}^{d_{T}}$.


## Tractable component

- Tractable component

$$
\begin{equation*}
\phi \triangleq\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d_{T}}\right) \tag{16.7}
\end{equation*}
$$

- So $\phi: \mathcal{X}^{m} \rightarrow \mathbb{R}^{d_{T}}$ with vector of parameters $\theta \in \mathbb{R}^{d_{T}}$.
- Could instantiate model based only on this subcomponent, called the base model


## Intractable component

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d_{I}}\right) \tag{16.8}
\end{equation*}
$$

## Intractable component

- Intractable component

$$
\Phi \triangleq\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d_{I}}\right)
$$

- Each $\Phi_{i}: \mathcal{X}^{m} \rightarrow \mathbb{R}^{b}$.


## Intractable component

- Intractable component

$$
\Phi \triangleq\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d_{I}}\right)
$$

- Each $\Phi_{i}: \mathcal{X}^{m} \rightarrow \mathbb{R}^{b}$.
- $\Phi: \mathcal{X}^{m}$ $\mathbb{R}^{b \times d_{I}}$


## Intractable component

- Intractable component

$$
\begin{equation*}
\Phi \triangleq\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{d_{I}}\right) \tag{16.8}
\end{equation*}
$$

- Each $\Phi_{i}: \mathcal{X}^{m} \rightarrow \mathbb{R}^{b}$.
- $\Phi: \mathcal{X}^{m} \rightarrow \mathbb{R}^{b \times d_{I}}$.
- Parameters $\tilde{\theta} \in \mathbb{R}^{b \times d_{I}}$.


## Associated Distributions

- The associated exponential family

$$
\begin{aligned}
p(x ; \theta, \tilde{\theta}) & \propto \exp (\langle\theta, \phi(x)\rangle) \exp (\langle\tilde{\theta}, \Phi(x)\rangle) \\
& =\exp \left(\left\langle\theta, \phi\left(x \prod_{i=1}^{\exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)}\right.\right.\right.
\end{aligned}
$$

## Associated Distributions

- The associated exponential family

$$
\begin{align*}
p(x ; \theta, \tilde{\theta}) & \propto \exp (\langle\theta, \phi(x)\rangle) \exp (\langle\tilde{\theta}, \Phi(x)\rangle)  \tag{16.9}\\
& =\exp (\langle\theta, \phi(x)\rangle) \prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.10}
\end{align*}
$$

- Base model is tractable

$$
\begin{equation*}
p(x ; \theta, \overrightarrow{0}) \propto \exp (\langle\theta, \phi(x)\rangle) \tag{16.11}
\end{equation*}
$$

## Associated Distributions

- The associated exponential family

$$
\begin{align*}
p(x ; \theta, \tilde{\theta}) & \propto \exp (\langle\theta, \phi(x)\rangle) \exp (\langle\tilde{\theta}, \Phi(x)\rangle)  \tag{16.9}\\
& =\exp (\langle\theta, \phi(x)\rangle) \prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.10}
\end{align*}
$$

- Base model is tractable

$$
\begin{equation*}
p(x ; \theta, \overrightarrow{0}) \propto \exp (\langle\theta, \phi(x)\rangle) \tag{16.11}
\end{equation*}
$$

- $\Phi^{i}$-augmented model

$$
\begin{equation*}
p\left(x ; \theta, \tilde{\theta}^{i}\right) \propto \exp (\langle\theta, \phi(x)\rangle) \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.12}
\end{equation*}
$$

## Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between $\phi$ and $\Phi$ are:

- It is possible to compute marginals exactly in polynomial time for distributions of the base form (any member of the $\phi$-exponential family).


## Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between $\phi$ and $\Phi$ are:

- It is possible to compute marginals exactly in polynomial time for distributions of the base form (any member of the $\phi$-exponential family).
- For each $i=1, \ldots, d_{I}$, exact polynomial-time computation is still possible for any $\Phi^{i}$-augmented form (any member of the ( $\phi, \Phi^{i}$ )-exponential family).


## Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between $\phi$ and $\Phi$ are:

- It is possible to compute marginals exactly in polynomial time for distributions of the base form (any member of the $\phi$-exponential family).
- For each $i=1, \ldots, d_{I}$, exact polynomial-time computation is still possible for any $\Phi^{i}$-augmented form (any member of the ( $\phi, \Phi^{i}$ )-exponential family).
- Intractable to perform exact computations with the full $(\phi, \Phi)$-exponential family.


## Example: Mixture models

- Let $X \in \mathbb{R}^{m}$ be Gaussian with distribution $N(0, \Sigma)$.


## Example: Mixture models

- Let $X \in \mathbb{R}^{m}$ be Gaussian with distribution $N(0, \Sigma)$.
- Let $\varphi(y ; \mu, \Lambda)$ be Gaussian with mean $\mu$ c)variance $\Lambda$.


## Example: Mixture models

- Let $X \in \mathbb{R}^{m}$ be Gaussian with distribution $N(0, \Sigma)$.
- Let $\varphi(y ; \mu, \Lambda)$ be Gaussian with mean $\mu$ covariance $\Lambda$.
- Suppose $y$ conditioned on $x$ is a two-component Gaussian mixture model taking the form:

$$
\begin{equation*}
p(y \mid X=x)=(1-\alpha) \varphi\left(y ; 0, \sigma_{\rho}^{2} I\right)+\alpha \varphi\left(y ; x, \sigma_{1}^{2} I\right) \tag{16.13}
\end{equation*}
$$

## Example: Mixture models

- Let $X \in \mathbb{R}^{m}$ be Gaussian with distribution $N(0, \Sigma)$.
- Let $\varphi(y ; \mu, \Lambda)$ be Gaussian with mean $\mu$ covariance $\Lambda$.
- Suppose $y$ conditioned on $x$ is a two-component Gaussian mixture model taking the form:

$$
\begin{equation*}
p(y \mid X=x)=(1-\alpha) \varphi\left(y ; 0, \sigma_{0}^{2} I\right)+\alpha \varphi\left(y ; x, \sigma_{1}^{2} I\right) \tag{16.13}
\end{equation*}
$$

- Assume we have obtained $n$ i.i.d. samples $y^{1}, \ldots, y^{n}$ from mixture density, and goal is to produce posterior $p\left(x \mid y^{1}, \ldots, y^{n}\right)$, similar to Bayes-rule inverting a Naive-Bayes model.



## Example: Mixture models

- Let $X \in \mathbb{R}^{m}$ be Gaussian with distribution $N(0, \Sigma)$
- Let $\varphi(y ; \mu, \Lambda)$ be Gaussian with mean $\mu$ covarin ce $\Lambda$.
- Suppose $y$ conditioned on $x$ is a two-componen Gaussian mixture model taking the form:

$$
\begin{equation*}
p(y \mid X=x)=(1-\alpha) \varphi\left(y ; 0, \sigma_{0}^{2} I\right)+\alpha p\left(y ; x, \sigma_{1}^{2} I\right) \tag{16.13}
\end{equation*}
$$

- Assume we have obtained $n$ i.i.d. samples $\not y^{1}, \ldots, y^{n}$ from mixture density, and goal is to produce posterior $p\left(x \mid y^{1}, \ldots, y^{n}\right)$, similar to Bayes-rule inverting a Naive-Bayes model.
- Using Bayes rule, we getmixture model with $2^{n}$ components!

$$
\begin{align*}
\left.p\left(x \mid y^{1}, \ldots, y^{n}\right)\right) & \propto\left\{\operatorname{xp}\left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right) \prod_{i=1}^{n} p\left(y^{i} \mid X=x\right)\right.  \tag{16.14}\\
& =\exp \left(-\frac{1}{2} x^{\top} \Sigma^{-1} x\right) \exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}
\end{align*}
$$

## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x\left(\sigma^{-}\right) x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.


## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$ ) from it is relatively "cheap" $O\left(m^{3}\right)$.


## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $\left.A \subseteq[m]\right)$ from it is relatively "cheap" $O\left(\mathrm{~m}^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$,
with $b=1$. These arg the intractable factors.


## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$ ) from it is relatively "cheap" $O\left(m^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$, with $b=1$. These are the intractable factors.
- Base distribution $p(x ; \theta, \overrightarrow{0}) \propto \exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ which is a Gaussian and easy as mentioned above.


## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$ ) from it is relatively "cheap" $O\left(m^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$, with $b=1$. These are the intractable factors.
- Base distribution $p(x ; \theta, \overrightarrow{0}) \propto \exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ which is a Gaussian and easy as mentioned above.
- If we multiply in only one intractable term, complexity to produce marginal still not so bad (quite easy in fact).


## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$ ) from it is relatively "cheap" $O\left(m^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$, with $b=1$. These are the intractable factors.
- Base distribution $p(x ; \theta, \overrightarrow{0}) \propto \exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ which is a Gaussian and easy as mentioned above.
- If we multiply in only one intractable term, complexity to produce marginal still not so bad (quite easy in fact).
- I.e., $\Phi^{i}$-augmented distribution is proportional to

$$
\begin{equation*}
\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)\left[(1-\alpha) \varphi\left(y^{i} ; 0, \sigma_{0}^{2} I\right)+\alpha \varphi\left(y^{i} ; x, \sigma_{1}^{2} I\right)\right] \tag{16.16}
\end{equation*}
$$

## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$ ) from it is relatively "cheap" $O\left(m^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$, with $b=1$. These are the intractable factors.
- Base distribution $p(x ; \theta, \overrightarrow{0}) \propto \exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ which is a Gaussian and easy as mentioned above.
- If we multiply in only one intractable term, complexity to produce marginal still not so bad (quite easy in fact).
- I.e., $\Phi^{i}$-augmented distribution is proportional to

$$
\begin{equation*}
\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)\left[(1-\alpha) \varphi\left(y^{i} ; 0, \sigma_{0}^{2} I\right)+\alpha \varphi\left(y^{i} ; x, \sigma_{1}^{2} I\right)\right] \tag{16.16}
\end{equation*}
$$

- Computing marginals is easy (mixture of only 2 components)


## Example: Mixture models

- We equate $\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ with $\exp (\langle\theta, \phi(x)\rangle)$, with $d_{T}=m$.
- Such a distribution is multivariate Gaussian, and getting marginals (say $p\left(x_{A}\right)$ for $A \subseteq[m]$ ) from it is relatively "cheap" $O\left(m^{3}\right)$.
- $\exp \left\{\sum_{i=1}^{n} \log p\left(y^{i} \mid X=x\right)\right\}$ equates to $\prod_{i=1}^{d_{I}} \exp \left(\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right)$, with $b=1$. These are the intractable factors.
- Base distribution $p(x ; \theta, \overrightarrow{0}) \propto \exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)$ which is a Gaussian and easy as mentioned above.
- If we multiply in only one intractable term, complexity to produce marginal still not so bad (quite easy in fact).
- I.e., $\Phi^{i}$-augmented distribution is proportional to

$$
\begin{equation*}
\exp \left(-\frac{1}{2} x^{\top} \sigma^{-1} x\right)\left[(1-\alpha) \varphi\left(y^{i} ; 0, \sigma_{0}^{2} I\right)+\alpha \varphi\left(y^{i} ; x, \sigma_{1}^{2} I\right)\right] \tag{16.16}
\end{equation*}
$$

- Computing marginals is easy (mixture of only 2 components)
- If we multiply in all $\Phi^{i}$, becomes intractable ( $2^{n}$ potentially distinct components each of which requires marginalization).


## Polytope and Base case

- We can partition the mean parameters $(\mu, \tilde{\mu}) \in \mathbb{R}^{d_{T}+d_{I} \times b}$


## Polytope and Base case

- We can partition the mean parameters $(\mu, \tilde{\mu}) \in \mathbb{R}^{d_{T}+d_{I} \times b}$
- Marginal polytope associated with these means

$$
\mathcal{M}(\phi, \Phi)=\left\{(\mu, \tilde{\mu}) \mid(\mu, \tilde{\mu})=\mathbb{E}_{p}[(\phi(X), \Phi(X))] \text { for some } p\right\}
$$

along with negative dual of cumulant, or entropy $H(\mu, \tilde{\mu})=-A^{*}(\mu, \tilde{\mu})$.

## Polytope and Base case

- We can partition the mean parameters $(\mu, \tilde{\mu}) \in \mathbb{R}^{d_{T}+d_{I} \times b}$
- Marginal polytope associated with these means

$$
\begin{equation*}
\mathcal{M}(\phi, \Phi)=\left\{(\mu, \tilde{\mu}) \mid(\mu, \tilde{\mu})=\mathbb{E}_{p}[(\phi(X), \Phi(X))] \text { for some } p\right\} \tag{16.17}
\end{equation*}
$$

along with negative dual of cumulant, or entropy

$$
H(\mu, \tilde{\mu})=-A^{*}(\mu, \tilde{\mu})
$$

- We also have polytope associated with only base distribution

$$
\begin{equation*}
\mathcal{M}(\phi)=\left\{\mu \in \mathbb{R}^{d_{T}} \mid \mu=\mathbb{E}_{p}(\phi(X))\right\} \tag{16.18}
\end{equation*}
$$

## Polytope and Base case

- We can partition the mean parameters $(\mu, \tilde{\mu}) \in \mathbb{R}^{d_{T}+d_{I} \times b}$
- Marginal polytope associated with these means

$$
\begin{equation*}
\mathcal{M}(\phi, \Phi)=\left\{(\mu, \tilde{\mu}) \mid(\mu, \tilde{\mu})=\mathbb{E}_{p}[(\phi(X), \Phi(X))] \text { for some } p\right\} \tag{16.17}
\end{equation*}
$$

along with negative dual of cumulant, or entropy

$$
H(\mu, \tilde{\mu})=-A^{*}(\mu, \tilde{\mu})
$$

- We also have polytope associated with only base distribution

$$
\begin{equation*}
\mathcal{M}(\phi)=\left\{\mu \in \mathbb{R}^{d_{T}} \mid \mu=\mathbb{E}_{p}(\phi(X))\right\} \tag{16.18}
\end{equation*}
$$

- Recall thm: any mean in the interior is realizable via an exponential family model, and associated entropy $H(\mu)$ is tractable.


## Augmented Base case

- For each $i=1 \ldots d_{I}$ we have a $\Phi^{i}$-augmented exp. model and polytope

$$
\mathcal{M}\left(\phi, \Phi^{i}\right)=\left\{\left(\mu, \tilde{\mu}^{i}\right) \in \mathbb{R}^{d_{T}+b} \mid\left(\mu, \tilde{\mu}^{i}\right)=\mathbb{E}_{p}\left[\left(\phi(X), \Phi^{i}(X)\right)\right] \text { for some } p\right\}
$$

## Augmented Base case

- For each $i=1 \ldots d_{I}$ we have a $\Phi^{i}$-augmented exp. model and polytope

$$
\mathcal{M}\left(\phi, \Phi^{i}\right)=\left\{\left(\mu, \tilde{\mu}^{i}\right) \in \mathbb{R}^{d_{T}+b} \mid\left(\mu, \tilde{\mu}^{i}\right)=\mathbb{E}_{p}\left[\left(\phi(X), \Phi^{i}(X)\right)\right] \text { for some } p\right\}
$$

- Thus, any such mean parameters has instance for associated exponential family, and also $H\left(\mu, \tilde{\mu}^{i}\right)$ is easy to compute.


## Augmented Base case

- For each $i=1 \ldots d_{I}$ we have a $\Phi^{i}$-augmented exp. model and polytope

$$
\mathcal{M}\left(\phi, \Phi^{i}\right)=\left\{\left(\mu, \tilde{\mu}^{i}\right) \in \mathbb{R}^{d_{T}+b} \mid\left(\mu, \tilde{\mu}^{i}\right)=\mathbb{E}_{p}\left[\left(\phi(X), \Phi^{i}(X)\right)\right] \text { for some } p\right\}
$$

- Thus, any such mean parameters has instance for associated exponential family, and also $H\left(\mu, \tilde{\mu}^{i}\right)$ is easy to compute.
- Goal, variational approximation: Need outer bounds on $\mathcal{M}(\phi, \Phi)$ and expression for entropy (as is now normal).


## Augmented Base case

- For each $i=1 \ldots d_{I}$ we have a $\Phi^{i}$-augmented exp. model and polytope

$$
\mathcal{M}\left(\phi, \Phi^{i}\right)=\left\{\left(\mu, \tilde{\mu}^{i}\right) \in \mathbb{R}^{d_{T}+b} \mid\left(\mu, \tilde{\mu}^{i}\right)=\mathbb{E}_{p}\left[\left(\phi(X), \Phi^{i}(X)\right)\right] \text { for some } p\right\}
$$

- Thus, any such mean parameters has instance for associated exponential family, and also $H\left(\mu, \tilde{\mu}^{i}\right)$ is easy to compute.
- Goal, variational approximation: Need outer bounds on $\mathcal{M}(\phi, \Phi)$ and expression for entropy (as is now normal).
- Turns out we can do this, and an iterative algorithm to find fixed points of associated Lagrangian, that correspond to EP.


## New outer bound

- For any mean parms $(\tau, \tilde{\tau})$ where $\tilde{\tau}=\left(\tilde{\tau}^{1}, \tilde{\tau}^{2}, \ldots, \tilde{\tau}^{d_{I}}\right)$, define coordinate "projection operation"

$$
\begin{equation*}
\Pi^{i}(\tau, \tilde{\tau}) \rightarrow\left(\tau, \tilde{\tau}^{i}\right) \tag{16.20}
\end{equation*}
$$

This operator simply removes all but $\tilde{\tau}^{i}$ from $\tilde{\tau}$.

## New outer bound

- For any mean parms $(\tau, \tilde{\tau})$ where $\tilde{\tau}=\left(\tilde{\tau}^{1}, \tilde{\tau}^{2}, \ldots, \tilde{\tau}^{d_{I}}\right)$, define coordinate "projection operation"

$$
\begin{equation*}
\Pi^{i}(\tau, \tilde{\tau}) \rightarrow\left(\tau, \tilde{\tau}^{i}\right) \tag{16.20}
\end{equation*}
$$

This operator simply removes all but $\tilde{\tau}^{i}$ from $\tilde{\tau}$.

- Define outer bound on true means $M(\phi, \Phi)$ (which is still convex)

$$
\begin{equation*}
\mathcal{L}(\phi, \Phi)=\left\{(\tau, \tilde{\tau}) \mid \tau \in \mathcal{M}(\phi), \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}\left(\phi, \Phi^{i}\right), \forall i\right\} \tag{16.21}
\end{equation*}
$$

## New outer bound

- For any mean parms $(\tau, \tilde{\tau})$ where $\tilde{\tau}=\left(\tilde{\tau}^{1}, \tilde{\tau}^{2}, \ldots, \tilde{\tau}^{d_{I}}\right)$, define coordinate "projection operation"

$$
\begin{equation*}
\Pi^{i}(\tau, \tilde{\tau}) \rightarrow\left(\tau, \tilde{\tau}^{i}\right) \tag{16.20}
\end{equation*}
$$

This operator simply removes all but $\tilde{\tau}^{i}$ from $\tilde{\tau}$.

- Define outer bound on true means $M(\phi, \Phi)$ (which is still convex)

$$
\begin{equation*}
\mathcal{L}(\phi, \Phi)=\left\{(\tau, \tilde{\tau}) \mid \tau \in \mathcal{M}(\phi), \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}\left(\phi, \Phi^{i}\right), \forall i\right\} \tag{16.21}
\end{equation*}
$$

- Note, based on a set of projections onto $\mathcal{M}\left(\phi, \Phi^{i}\right)$. Clearly outer bound since $\mathcal{M}(\phi, \Phi) \subseteq \mathcal{L}(\phi, \Phi)$.


## New outer bound

- For any mean parms $(\tau, \tilde{\tau})$ where $\tilde{\tau}=\left(\tilde{\tau}^{1}, \tilde{\tau}^{2}, \ldots, \tilde{\tau}^{d_{I}}\right)$, define coordinate "projection operation"

$$
\begin{equation*}
\Pi^{i}(\tau, \tilde{\tau}) \rightarrow\left(\tau, \tilde{\tau}^{i}\right) \tag{16.20}
\end{equation*}
$$

This operator simply removes all but $\tilde{\tau}^{i}$ from $\tilde{\tau}$.

- Define outer bound on true means $M(\phi, \Phi)$ (which is still convex)

$$
\begin{equation*}
\mathcal{L}(\phi, \Phi)=\left\{(\tau, \tilde{\tau}) \mid \tau \in \mathcal{M}(\phi), \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}\left(\phi, \Phi^{i}\right), \forall i\right\} \tag{16.21}
\end{equation*}
$$

- Note, based on a set of projections onto $\mathcal{M}\left(\phi, \Phi^{i}\right)$. Clearly outer bound since $\mathcal{M}(\phi, \Phi) \subseteq \mathcal{L}(\phi, \Phi)$.
- If $\Phi^{i}$ are edges of a graph (i.e. local consistency) then we get standard $\mathbb{L}$ outer bound we saw before with Bethe approximation


## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ :


## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ : A) There is a member of the $\phi$-exponential family which mean parameters $\tau$ with entropy $H(\tau)$;


## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ : A) There is a member of the $\phi$-exponential family which mean parameters $\tau$ with entropy $H(\tau)$; B) Also, for $i=1 \ldots d_{I}$, there is a member of the $\left(\phi, \Phi^{i}\right)$-exponential family with mean parameters $\left(\tau, \tilde{\tau}^{i}\right)$ yith entropy $H\left(\tau, \tilde{\tau}^{i}\right)$.


## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ : A) There is a member of the $\phi$-exponential family which mean parameters $\tau$ with entropy $H(\tau)$; B) Also, for $i=1 \ldots d_{I}$, there is a member of the $\left(\phi, \Phi^{i}\right)$-exponential family with mean parameters $\left(\tau, \tilde{\tau}^{i}\right)$ with entropy $H\left(\tau, \tilde{\tau}^{i}\right)$.
- Both entropy forms are easy to compute, and so is a new entropy approximation:

$$
\begin{equation*}
H(\tau, \tilde{\tau}) \approx H_{\mathrm{ep}}(\tau, \tilde{\tau}) \triangleq H(\tau)+\sum_{\ell=1}^{d_{I}}\left[H\left(\tau, \tilde{\tau}^{l}\right)-H(\tau)\right] \tag{16.22}
\end{equation*}
$$

## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ : A) There is a member of the $\phi$-exponential family which mean parameters $\tau$ with entropy $H(\tau)$; B$)$ Also, for $i=1 \ldots d_{I}$, there is a member of the $\left(\phi, \Phi^{i}\right)$-exponential family with mean parameters $\left(\tau, \tilde{\tau}^{i}\right)$ with entropy $H\left(\tau, \tilde{\tau}^{i}\right)$.
- Both entropy forms are easy to compute, and so is a new entropy approximation:

$$
\begin{equation*}
H(\tau, \tilde{\tau}) \approx H_{\mathrm{ep}}(\tau, \tilde{\tau}) \triangleq H(\tau)+\sum_{\ell=1}^{d_{I}}\left[H\left(\tau, \tilde{\tau}^{l}\right)-H(\tau)\right] \tag{16.22}
\end{equation*}
$$

- With outer bound and entropy expression, we get new variational form

$$
\begin{equation*}
\max _{(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)}\left\{\langle\tau, \theta\rangle+\langle\tilde{\tau}, \tilde{\theta}\rangle+H_{\mathrm{ep}}(\tau, \tilde{\tau})\right\} \tag{16.23}
\end{equation*}
$$

## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ : A) There is a member of the $\phi$-exponential family which mean parameters $\tau$ with entropy $H(\tau)$; B$)$ Also, for $i=1 \ldots d_{I}$, there is a member of the $\left(\phi, \Phi^{i}\right)$-exponential family with mean parameters $\left(\tau, \tilde{\tau}^{i}\right)$ with entropy $H\left(\tau, \tilde{\tau}^{i}\right)$.
- Both entropy forms are easy to compute, and so is a new entropy approximation:

$$
\begin{equation*}
H(\tau, \tilde{\tau}) \approx H_{\mathrm{ep}}(\tau, \tilde{\tau}) \triangleq H(\tau)+\sum_{\ell=1}^{d_{I}}\left[H\left(\tau, \tilde{\tau}^{l}\right)-H(\tau)\right] \tag{16.22}
\end{equation*}
$$

- With outer bound and entropy expression, we get new variational form

$$
\begin{equation*}
\max _{(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)}\left\{\langle\tau, \theta\rangle+\langle\tilde{\tau}, \tilde{\theta}\rangle+H_{\mathrm{ep}}(\tau, \tilde{\tau})\right\} \tag{16.23}
\end{equation*}
$$

- This characterizes the EP algorithms.


## Members in new outer bound

- For any mean parms $(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)$ : A) There is a member of the $\phi$-exponential family which mean parameters $\tau$ with entropy $H(\tau)$; B$)$ Also, for $i=1 \ldots d_{I}$, there is a member of the $\left(\phi, \Phi^{i}\right)$-exponential family with mean parameters $\left(\tau, \tilde{\tau}^{i}\right)$ with entropy $H\left(\tau, \tilde{\tau}^{i}\right)$.
- Both entropy forms are easy to compute, and so is a new entropy approximation:

$$
\begin{equation*}
H(\tau, \tilde{\tau}) \approx H_{\mathrm{ep}}(\tau, \tilde{\tau}) \triangleq H(\tau)+\sum_{\ell=1}^{d_{I}}\left[H\left(\tau, \tilde{\tau}^{l}\right)-H(\tau)\right] \tag{16.22}
\end{equation*}
$$

- With outer bound and entropy expression, we get new variational form

$$
\begin{equation*}
\max _{(\tau, \tilde{\tau}) \in \mathcal{L}(\phi, \Phi)}\left\{\langle\tau, \theta\rangle+\langle\tilde{\tau}, \tilde{\theta}\rangle+H_{\mathrm{ep}}(\tau, \tilde{\tau})\right\} \tag{16.23}
\end{equation*}
$$

- This characterizes the EP algorithms.
- Given graph $G=(V, E)$ when we take $\phi$ to be unaries $V$ and $\Phi$ to be edges $E$, we exactly recover Bethe approximation.


## Lagrangian optimization setup

- Make $d_{I}$ duplicates of vector $\tau \in \mathbb{R}^{d_{T}}$, call them $\eta^{i} \in \mathbb{R}^{d_{T}}$ for $i \in\left[d_{T}\right]$.


## Lagrangian optimization setup

- Make $d_{I}$ duplicates of vector $\tau \in \mathbb{R}^{d_{T}}$, call them $\eta^{i} \in \mathbb{R}^{d_{T}}$ for $i \in\left[d_{T}\right]$.
- This gives large set of pseudo-mean parameters

$$
\begin{equation*}
\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\} \in \mathbb{R}^{d_{T}} \times\left(\mathbb{R}^{d_{T}} \times \mathbb{R}^{b}\right)^{d_{I}} \tag{16.24}
\end{equation*}
$$

## Lagrangian optimization setup

- Make $d_{I}$ duplicates of vector $\tau \in \mathbb{R}^{d_{T}}$, call them $\eta^{i} \in \mathbb{R}^{d_{T}}$ for $i \in\left[d_{T}\right]$.
- This gives large set of pseudo-mean parameters

$$
\begin{equation*}
\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\} \in \mathbb{R}^{d_{T}} \times\left(\mathbb{R}^{d_{T}} \times \mathbb{R}^{b}\right)^{d_{I}} \tag{16.24}
\end{equation*}
$$

- We arrive at the optimization:
$\max _{\left\{\tau,\left\{\left(\eta^{i}, \tilde{\tau}^{i}\right)\right\}_{i}\right\}}\left\{\langle\tau, \theta\rangle+\sum_{i=1}^{d_{I}}\left\langle\tilde{\tau}^{i}, \tilde{\theta}^{i}\right\rangle+H(\tau)+\sum_{i=1}^{d_{I}}\left[H\left(\eta^{i}, \tilde{\tau}^{i}\right)-H\left(\eta^{i}\right)\right]\right\}$
subject to $\tau \in \mathcal{M}(\phi)$, and for all $i$ that $\tau=\eta^{i}$ and that $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}\left(\phi, \Phi^{i}\right)$.


## Lagrangian optimization setup

- Make $d_{I}$ duplicates of vector $\tau \in \mathbb{R}^{d_{T}}$, call them $\eta^{i} \in \mathbb{R}^{d_{T}}$ for $i \in\left[d_{T}\right]$.
- This gives large set of pseudo-mean parameters

$$
\begin{equation*}
\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\} \in \mathbb{R}^{d_{T}} \times\left(\mathbb{R}^{d_{T}} \times \mathbb{R}^{b}\right)^{d_{I}} \tag{16.24}
\end{equation*}
$$

- We arrive at the optimization:
$\max _{\left\{\tau,\left\{\left(\eta^{i}, \tilde{\tau}^{i}\right)\right\}_{i}\right\}}\left\{\langle\tau, \theta\rangle+\sum_{i=1}^{d_{I}}\left\langle\tilde{\tau}^{i}, \tilde{\theta}^{i}\right\rangle+H(\tau)+\sum_{i=1}^{d_{I}}\left[H\left(\eta^{i}, \tilde{\tau}^{i}\right)-H\left(\eta^{i}\right)\right]\right\}$
subject to $\tau \in \mathcal{M}(\phi)$, and for all $i$ that $\tau=\eta^{i}$ and that $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}\left(\phi, \Phi^{i}\right)$.
- Use Lagrange multipliers to impose constrant $\eta^{i}=\tau$ for all $\rangle$ and for the rest of the constraints too.


## To Lagrangian optimization

- We get a Lagrangian version of the objective

$$
\begin{equation*}
L(\tau ; \lambda)=\langle\tau, \theta\rangle+\sum_{i=1}^{d_{I}}\left\langle\tilde{\tau}^{i}, \tilde{\theta}^{i}\right\rangle+F\left(\tau ;\left(\eta^{i}, \tilde{\tau}^{i}\right)\right)+\sum_{i=1}^{d_{I}}\left\langle\lambda^{i}, \tau-\eta^{i}\right\rangle+\ldots \tag{16.26}
\end{equation*}
$$

where

$$
\begin{equation*}
F\left(\tau ;\left(\eta^{i}, \tilde{\tau}^{i}\right)\right)=H(\tau)+\sum_{i=1}^{d_{I}}\left[H\left(\eta^{i}, \tilde{\tau}^{i}\right)-H\left(\eta^{i}\right)\right] \tag{16.27}
\end{equation*}
$$

and where $\lambda^{i}$ are the Lagrange multipliers assocaited with the constraint $\eta^{i}=\tau$ for all $i$ (other multipliers not shown).

## To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:


## To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:
(1) $\tau$ belongs to relative interior, i.e., $\tau \in \mathcal{M}^{\circ}(\theta)$ of the base model.


## To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:
(1) $\tau$ belongs to relative interior, i.e., $\tau \in \mathcal{M}^{\circ}(\theta)$ of the base model.
(2) $\left(\eta^{i}, \tilde{\tau}^{i}\right)$ belongs to relative interior of extended model, so $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}^{\circ}\left(\phi, \Phi^{i}\right)$.


## To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:
(1) $\tau$ belongs to relative interior, i.e., $\tau \in \mathcal{M}^{\circ}(\theta)$ of the base model.
(2) $\left(\eta^{i}, \tilde{\tau}^{i}\right)$ belongs to relative interior of extended model, so
$\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}^{\circ}\left(\phi, \Phi^{i}\right)$.
(3) Means must agree, i.e., $\tau=\eta^{i}$ for all $i$.


## To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:
(1) $\tau$ belongs to relative interior, i.e., $\tau \in \mathcal{M}^{\circ}(\theta)$ of the base model.
(2) $\left(\eta^{i}, \tilde{\tau}^{i}\right)$ belongs to relative interior of extended model, so $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}^{\circ}\left(\phi, \Phi^{i}\right)$.
(3) Means must agree, i.e., $\tau=\eta^{i}$ for all $i$.
- First condition means we're a member of the $\phi$-exponential family, and (it can be shown) has form:

$$
\begin{equation*}
q(x ; \theta, \lambda) \propto \exp \left\{\left\langle\theta+\sum_{i=1}^{d_{I}} \lambda^{i}, \phi(x)\right\rangle\right\} \tag{16.28}
\end{equation*}
$$

## To Lagrangian optimization to Moment Matching

- Considering optimality conditions on what must hold for a solution $\left\{\tau,\left(\eta^{i}, \tilde{\tau}^{i}\right), i \in\left[d_{I}\right]\right\}$ to the above Lagrangian, must have properties:
(1) $\tau$ belongs to relative interior, i.e., $\tau \in \mathcal{M}^{\circ}(\theta)$ of the base model.
(2) $\left(\eta^{i}, \tilde{\tau}^{i}\right)$ belongs to relative interior of extended model, so $\left(\eta^{i}, \tilde{\tau}^{i}\right) \in \mathcal{M}^{\circ}\left(\phi, \Phi^{i}\right)$.
(3) Means must agree, i.e., $\tau=\eta^{i}$ for all $i$.
- First condition means we're a member of the $\phi$-exponential family, and (it can be shown) has form:

- Second condition means we're a member of the $\left(\phi, \Phi^{i}\right)$-exponential family, and (it can be shown) has form:

$$
\begin{equation*}
q^{i}\left(x, \theta, \tilde{\theta}^{i}, \lambda\right) \propto \operatorname{xp}\left(\left\langle\theta+\sum_{\ell \neq i} \lambda^{\ell}, \phi(x)\right\rangle+\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.29}
\end{equation*}
$$

## To Lagrangian optimization to Moment Matching

- Thid condiiton is a form of moment-matching. I.e., we have $\tau=E_{q}[\phi(X)]$ and $\eta^{i}=E_{q^{i}}[\phi(X)]$, so equating these gives:

$$
\begin{equation*}
\int q(x ; \theta, \lambda) \phi(x) \nu(d x)=\int q^{i}\left(x ; \theta, \tilde{\theta}^{i}\right) \phi(x) \nu(d x) \tag{16.30}
\end{equation*}
$$

fro $i \in\left[d_{I}\right]$.

## Moment Matching $\rightarrow$ Expectation Propagation Updates

(1) At iteration $n=0$, initialize the Lagrange multiplier vectors $\left(\lambda^{1}, \ldots, \lambda^{d_{I}}\right)$

## Moment Matching $\rightarrow$ Expectation Propagation Updates

(1) At iteration $n=0$, initialize the Lagrange multiplier vectors $\left(\lambda^{1}, \ldots, \lambda^{d_{I}}\right)$
(2) At each iteration $n=1,2, \ldots$ choose some index $i(n) \in\left\{1, \ldots, d_{I}\right\}$.

## Moment Matching $\rightarrow$ Expectation Propagation Updates

(1) At iteration $n=0$, initialize the Lagrange multiplier vectors $\left(\lambda^{1}, \ldots, \lambda^{d_{I}}\right)$
(2) At each iteration $n=1,2, \ldots$ choose some index $i(n) \in\left\{1, \ldots, d_{I}\right\}$.
(3) Under the following augmented distribution

$$
\begin{equation*}
q^{i}\left(x ; \theta, \tilde{\theta}^{i}, \lambda\right) \propto \exp \left(\left\langle\theta+\sum_{\ell \neq i} \lambda^{l}, \phi(x)\right\rangle+\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.31}
\end{equation*}
$$

compute the mean parameters $\eta^{i}$ as follows:

$$
\begin{equation*}
\eta^{i(n)}=\int q^{i(n)}(x) \phi(x) \nu(d x)=\mathbb{E}_{q^{i(n)}}[\phi(X)] \tag{16.32}
\end{equation*}
$$

## Moment Matching $\rightarrow$ Expectation Propagation Updates

(1) At iteration $n=0$, initialize the Lagrange multiplier vectors $\left(\lambda^{1}, \ldots, \lambda^{d_{I}}\right)$
(2) At each iteration $n=1,2, \ldots$ choose some index $i(n) \in\left\{1, \ldots, d_{I}\right\}$.
(3) Under the following augmented distribution

$$
\begin{equation*}
q^{i}\left(x ; \theta, \tilde{\theta}^{i}, \lambda\right) \propto \exp \left(\left\langle\theta+\sum_{\ell \neq i} \lambda^{l}, \phi(x)\right\rangle+\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.31}
\end{equation*}
$$

compute the mean parameters $\eta^{i}$ as follows:

$$
\begin{equation*}
\eta^{i(n)}=\int q^{i(n)}(x) \phi(x) \nu(d x)=\mathbb{E}_{q^{i(n)}}[\phi(X)] \tag{16.32}
\end{equation*}
$$

(9) Form base distribution $q$ using Equation 16.28 and adjust $\lambda^{i(n)}$ to satisfy the moment-matching condition

$$
\begin{equation*}
\mathbb{E}_{q}[\phi(X)]=\eta^{i(n)} \tag{16.33}
\end{equation*}
$$

## Moment Matching $\rightarrow$ Expectation Propagation Updates

(1) At iteration $n=0$, initialize the Lagrange multiplier vectors $\left(\lambda^{1}, \ldots, \lambda^{d_{I}}\right)$
(2) At each iteration $n=1,2, \ldots$ choose some index $i(n) \in\left\{1, \ldots, d_{I}\right\}$.
(3) Under the following augmented distribution

$$
\begin{equation*}
q^{i}\left(x ; \theta, \tilde{\theta}^{i}, \lambda\right) \propto \exp \left(\left\langle\theta+\sum_{\ell \neq i} \lambda^{l}, \phi(x)\right\rangle+\left\langle\tilde{\theta}^{i}, \Phi^{i}(x)\right\rangle\right) \tag{16.31}
\end{equation*}
$$

compute the mean parameters $\eta^{i}$ as follows:

$$
\begin{equation*}
\eta^{i(n)}=\int q^{i(n)}(x) \phi(x) \nu(d x)=\mathbb{E}_{q^{i(n)}}[\phi(X)] \tag{16.32}
\end{equation*}
$$

(9) Form base distribution $q$ using Equation 16.28 and adjust $\lambda^{i(n)}$ to satisfy the moment-matching condition

$$
\begin{equation*}
\mathbb{E}_{q}[\phi(X)]=\eta^{i(n)} \tag{16.33}
\end{equation*}
$$

(0) This is a KL-divergence minimization step, but done w. exponential family models which thus corresponds to moment-matching.

## Example: Tree-structured EP

- When base distribution is a tree, we get what is called tree-structured EP


## Example: Tree-structured EP

- When base distribution is a tree, we get what is called tree-structured EP
- Start with a graph $G=(V, E)$ and form a spanning tree $T=(V, E(T))$ in any arbitrary way.


## Example: Tree-structured EP

- When base distribution is a tree, we get what is called tree-structured EP
- Start with a graph $G=(V, E)$ and form a spanning tree $T=(V, E(T))$ in any arbitrary way.
- Form base distribution as follows:

$$
\begin{equation*}
p(x ; \theta, \overrightarrow{0}) \propto \prod_{s \in V} \exp \left(\theta_{s}\left(x_{s}\right)\right) \prod_{(s, t) \in E(T)} \exp \left(\theta_{s t}\left(x_{s}, x_{t}\right)\right) \tag{16.34}
\end{equation*}
$$

## Example: Tree-structured EP

- When base distribution is a tree, we get what is called tree-structured EP
- Start with a graph $G=(V, E)$ and form a spanning tree $T=(V, E(T))$ in any arbitrary way.
- Form base distribution as follows:

$$
\begin{equation*}
p(x ; \theta, \overrightarrow{0}) \propto \prod_{s \in V} \exp \left(\theta_{s}\left(x_{s}\right)\right) \prod_{(s, t) \in E(T)} \exp \left(\theta_{s t}\left(x_{s}, x_{t}\right)\right) \tag{16.34}
\end{equation*}
$$

- Then, each $\Phi^{i}$ corresponds to an edge in $E \backslash E(T)$, and gives us, for each edge $(u, v) \in E \backslash E(T)$, the $\phi^{(u, v)}$-augmented distribution

$$
\begin{equation*}
p\left(x ; \theta, \theta_{u, v}\right) \propto(x ; \theta, \overrightarrow{0}) \exp \left(\theta_{u, v}\left(x_{u}, x_{v}\right)\right) \tag{16.35}
\end{equation*}
$$

## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and $\Phi^{i}$ is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and $\Phi^{i}$ is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.
- Moment matching of EP can be seen as striving for solution of associated Lagrangian.


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and $\Phi^{i}$ is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.
- Moment matching of EP can be seen as striving for solution of associated Lagrangian.
- Lost of flexibility here, depending on what the base distribution is (e.g., could be a $k$-tree or any other structure).


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and $\Phi^{i}$ is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.
- Moment matching of EP can be seen as striving for solution of associated Lagrangian.
- Lost of flexibility here, depending on what the base distribution is (e.g., could be a $k$-tree or any other structure).
- Can also be done for Gaussian mixture models.


## EP as variational: Summary of key points

- Fixed points of EP exist assuming Lagrangian form has at least one optimum.
- No guarantees that EP will converge, but if it does it will be at a stationary point of the Lagrangian.
- EP can be seen to be based on variational framework, using Bethe-like entropy and convex outer bound for the mean parameters.
- When base distribution is unaries and $\Phi^{i}$ is the edges of a graph, we in fact get standard Bethe approximation, and standard sum-product LBP.
- Moment matching of EP can be seen as striving for solution of associated Lagrangian.
- Lost of flexibility here, depending on what the base distribution is (e.g., could be a $k$-tree or any other structure).
- Can also be done for Gaussian mixture models.
- Many more details, variations, and possible roads to new research. See text and also see Tom Minka's papers.
http://research.microsoft.com/en-us/um/people/minka/papers/


## Mean Field

- So far, we have been using an outer bound on $\mathcal{M}$.


## Mean Field

- So far, we have been using an outer bound on $\mathcal{M}$.
- In mean-field methods, we use an "inner bound", a subset of $\mathcal{M}$ constructed so as to make the optimization of $A(\theta)$ easier.


## Mean Field

- So far, we have been using an outer bound on $\mathcal{M}$.
- In mean-field methods, we use an "inner bound", a subset of $\mathcal{M}$ constructed so as to make the optimization of $A(\theta)$ easier.
- Since subset, we get immediate bound on $A(\theta)$.


## Mean Field

- So far, we have been using an outer bound on $\mathcal{M}$.
- In mean-field methods, we use an "inner bound", a subset of $\mathcal{M}$ constructed so as to make the optimization of $A(\theta)$ easier.
- Since subset, we get immediate bound on $A(\theta)$.
- Key: we based the inner bound on a "tractable family" like a 1-tree or even a 0-tree (all independent) so that the variational problem can be computed efficiently.


## Mean Field

- So far, we have been using an outer bound on $\mathcal{M}$.
- In mean-field methods, we use an "inner bound", a subset of $\mathcal{M}$ constructed so as to make the optimization of $A(\theta)$ easier.
- Since subset, we get immediate bound on $A(\theta)$.
- Key: we based the inner bound on a "tractable family" like a 1-tree or even a 0-tree (all independent) so that the variational problem can be computed efficiently.
- Convexity is often lost still, however.


## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.


## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$


## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$ all independence model.


## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$ all independence model.
- Tree example: $F=\left(V, E_{T}\right)$ where edges $E_{T} \subset E$ constitute a spanning tree.


## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$ all independence model.
- Tree example: $F=\left(V, E_{T}\right)$ where edges $E_{T} \subset E$ constitute a spanning tree.
- Exponential family, sufficient statistics $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ associated with this family $\mathcal{I}(F) \subseteq \mathcal{I}$. These are the statistics that need respect the Markov properties of only the subgraph $F$.


## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$ all independence model.
- Tree example: $F=\left(V, E_{T}\right)$ where edges $E_{T} \subset E$ constitute a spanning tree.
- Exponential family, sufficient statistics $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ associated with this family $\mathcal{I}(F) \subseteq \mathcal{I}$. These are the statistics that need respect the Markov properties of only the subgraph $F$.
- $\Omega$ gets smaller too. The parameters that respect $F$ are of the form:

$$
\begin{equation*}
\mathbb{R}^{|\mathcal{I}|} \ni \Omega(F) \triangleq\left\{\theta \in \Omega \mid \theta_{\alpha}=0 \quad \forall \alpha \in \mathcal{I} \backslash \mathcal{I}(F)\right\} \subseteq \Omega \tag{16.36}
\end{equation*}
$$

## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$ all independence model.
- Tree example: $F=\left(V, E_{T}\right)$ where edges $E_{T} \subset E$ constitute a spanning tree.
- Exponential family, sufficient statistics $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ associated with this family $\mathcal{I}(F) \subseteq \mathcal{I}$. These are the statistics that need respect the Markov properties of only the subgraph $F$.
- $\Omega$ gets smaller too. The parameters that respect $F$ are of the form:

$$
\begin{equation*}
\mathbb{R}^{|\mathcal{I}|} \ni \Omega(F) \triangleq\left\{\theta \in \Omega \mid \theta_{\alpha}=0 \quad \forall \alpha \in \mathcal{I} \backslash \mathcal{I}(F)\right\} \subseteq \Omega \tag{16.36}
\end{equation*}
$$

notice, all parameters associated with sufficient statistic not in $\mathcal{I}(F)$ are set to zero, those statistics are nonexistent in $F$.

## Tractable Families

- We have graph $G=(V, E)$ which is intractable and we find a spanning subgraph (recall, spanning $=$ all nodes, subgraph $=$ subset of edges), i..e, $F=\left(V, E_{F}\right)$ where $E_{F} \subseteq E$.
- Simplest example: $F=(V, \emptyset)$ all independence model.
- Tree example: $F=\left(V, E_{T}\right)$ where edges $E_{T} \subset E$ constitute a spanning tree.
- Exponential family, sufficient statistics $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ associated with this family $\mathcal{I}(F) \subseteq \mathcal{I}$. These are the statistics that need respect the Markov properties of only the subgraph $F$.
- $\Omega$ gets smaller too. The parameters that respect $F$ are of the form:

$$
\begin{equation*}
\mathbb{R}^{|\mathcal{I}|} \ni \Omega(F) \triangleq\left\{\theta \in \Omega \mid \theta_{\alpha}=0 \quad \forall \alpha \in \mathcal{I} \backslash \mathcal{I}(F)\right\} \subseteq \Omega \tag{16.36}
\end{equation*}
$$

notice, all parameters associated with sufficient statistic not in $\mathcal{I}(F)$ are set to zero, those statistics are nonexistent in $F$.

- If parameter was not zero, model would not respect the familiy of $F$.


## Tractable Subgraphs: All Independent Example

- Ex: MRF with potential functions for nodes and edges.


## Tractable Subgraphs: All Independent Example

- Ex: MRF with potential functions for nodes and edges.
- For each $(s, t) \in E(G)$, we have $\theta_{(s, t)}$.


## Tractable Subgraphs: All Independent Example

- Ex: MRF with potential functions for nodes and edges.
- For each $(s, t) \in E(G)$, we have $\theta_{(s, t)}$.
- $F_{0}=(V, \emptyset)$ which yields

$$
\begin{equation*}
\Omega\left(F_{0}\right)=\left\{\theta \in \Omega \mid \theta_{(s, t)}=0 \quad \forall(s, t) \in E(G)\right\} \tag{16.37}
\end{equation*}
$$

## Tractable Subgraphs: All Independent Example

- Ex: MRF with potential functions for nodes and edges.
- For each $(s, t) \in E(G)$, we have $\theta_{(s, t)}$.
- $F_{0}=(V, \emptyset)$ which yields

$$
\begin{equation*}
\Omega\left(F_{0}\right)=\left\{\theta \in \Omega \mid \theta_{(s, t)}=0 \quad \forall(s, t) \in E(G)\right\} \tag{16.37}
\end{equation*}
$$

- This is the all independence model, giving family of distributions

$$
\begin{equation*}
p_{\theta}(x)=\prod_{s \in V} p\left(x_{s} ; \theta_{s}\right) \tag{16.38}
\end{equation*}
$$

## Tractable Subgraphs: Tree Example

- Ex: MRF with potential functions for nodes and edges.


## Tractable Subgraphs: Tree Example

- Ex: MRF with potential functions for nodes and edges.
- For each $(s, t) \in E(G)$, we have $\theta_{(s, t)}$.


## Tractable Subgraphs: Tree Example

- Ex: MRF with potential functions for nodes and edges.
- For each $(s, t) \in E(G)$, we have $\theta_{(s, t)}$.
- $F_{T}=(V, T)$ where $T \subset E$ are edges that constitute a spanning tree of $G$, giving

$$
\begin{equation*}
\Omega\left(F_{0}\right)=\left\{\theta \in \Omega \mid \theta_{(s, t)}=0 \quad \forall(s, t) \notin T\right\} \tag{16.39}
\end{equation*}
$$

## Tractable Subgraphs: Tree Example

- Ex: MRF with potential functions for nodes and edges.
- For each $(s, t) \in E(G)$, we have $\theta_{(s, t)}$.
- $F_{T}=(V, T)$ where $T \subset E$ are edges that constitute a spanning tree of $G$, giving

$$
\begin{equation*}
\Omega\left(F_{0}\right)=\left\{\theta \in \Omega \mid \theta_{(s, t)}=0 \quad \forall(s, t) \notin T\right\} \tag{16.39}
\end{equation*}
$$

- This gives a tree-dependent family

$$
\begin{equation*}
p_{\theta}(x)=\prod_{s \in V} p\left(x_{s} ; \theta_{s}\right) \prod_{(s, t) \in T} \frac{p\left(x_{s}, x_{t} ; \theta_{s t}\right)}{p\left(x_{s} ; \theta_{s}\right) p\left(x_{t} ; \theta_{t}\right)} \tag{16.40}
\end{equation*}
$$

## Inner bound Approximate Polytope

- Before, we had $\mathcal{M}(G ; \phi)\left(=\mathcal{M}_{G}(G ; \phi)\right)$, all possible mean parameters associated with $G$ and associated set of sufficient statistics $\phi$.


## Inner bound Approximate Polytope

- Before, we had $\mathcal{M}(G ; \phi)\left(=\mathcal{M}_{G}(G ; \phi)\right)$, all possible mean parameters associated with $G$ and associated set of sufficient statistics $\phi$.
- For a given subgraph $F$, we only consider those mean parameters possible under such models. I.e.,

$$
\begin{equation*}
\mathcal{M}_{F}(G ; \phi)=\left\{\mu \in \mathbb{R}^{d} \mid \mu=\mathbb{E}_{\theta}[\phi(x)] \quad \text { for some } \theta \in \Omega(F)\right\} \tag{16.41}
\end{equation*}
$$

## Inner bound Approximate Polytope

- Before, we had $\mathcal{M}(G ; \phi)\left(=\mathcal{M}_{G}(G ; \phi)\right)$, all possible mean parameters associated with $G$ and associated set of sufficient statistics $\phi$.
- For a given subgraph $F$, we only consider those mean parameters possible under such models. I.e.,

$$
\begin{equation*}
\mathcal{M}_{F}(G ; \phi)=\left\{\mu \in \mathbb{R}^{d} \mid \mu=\mathbb{E}_{\theta}[\phi(x)] \quad \text { for some } \theta \in \Omega(F)\right\} \tag{16.41}
\end{equation*}
$$

- Therefore, since $\theta \in \Omega(F) \subseteq \Omega$, we have that

$$
\begin{equation*}
\mathcal{M}_{F}^{\circ}(G ; \phi) \subseteq \mathcal{M}^{\circ}(G ; \phi) \tag{16.42}
\end{equation*}
$$

and so $\mathcal{M}_{F}^{\circ}(G ; \phi)$ is an inner approximation of the set of realizable mean parameters.

## Inner bound Approximate Polytope

- Before, we had $\mathcal{M}(G ; \phi)\left(=\mathcal{M}_{G}(G ; \phi)\right)$, all possible mean parameters associated with $G$ and associated set of sufficient statistics $\phi$.
- For a given subgraph $F$, we only consider those mean parameters possible under such models. I.e.,

$$
\begin{equation*}
\mathcal{M}_{F}(G ; \phi)=\left\{\mu \in \mathbb{R}^{d} \mid \mu=\mathbb{E}_{\theta}[\phi(x)] \quad \text { for some } \theta \in \Omega(F)\right\} \tag{16.41}
\end{equation*}
$$

- Therefore, since $\theta \in \Omega(F) \subseteq \Omega$, we have that

$$
\begin{equation*}
\mathcal{M}_{F}^{\circ}(G ; \phi) \subseteq \mathcal{M}^{\circ}(G ; \phi) \tag{16.42}
\end{equation*}
$$

and so $\mathcal{M}_{F}^{\circ}(G ; \phi)$ is an inner approximation of the set of realizable mean parameters.

- Shorthand notation: $M_{F}^{\circ}(G)=M_{F}^{\circ}(G ; \phi)$ and $M^{\circ}(G)=M^{\circ}(G ; \phi)$


## Mean field variational lower bound

- Mean field methods generate lower bounds on their estimated $A(\theta)$ and approximate mean parameters $\mu=\mathbb{E}_{\theta}[\phi(X)]$.


## Proposition 16.5.1 (mean field lower bound)

Any mean parameter $\mu \in \mathcal{M}^{\circ}$ yields a lower bound on the cumulant function:

$$
\begin{equation*}
A(\theta) \geq\langle\theta, \mu\rangle-A^{*}(\mu) \tag{16.43}
\end{equation*}
$$

Moreover, equality holds if and only if $\theta$ and $\mu$ are dually coupled (i.e., $\mu=\mathbb{E}_{\theta}[\phi(X)]$.

## Mean field variational lower bound

## Proof.

- On the one hand, obvious due to $A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\}$


## Mean field variational lower bound

## Proof.

- On the one hand, obvious due to $A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\}$
- More traditional proof, let $q$ be any distribution that satisfies moment matching $\mathbb{E}_{q}[\phi(X)]=\mu$, then:

$$
\begin{align*}
A(\theta) & =\log \int_{\mathcal{X}^{m}} q(x) \frac{\exp \langle\theta, \phi(x)\rangle}{q(x)} \nu(d x)  \tag{16.44}\\
& \geq \int_{\mathcal{X}^{m}} q(x)[\langle\theta, \phi(x)\rangle-\log q(x)] \nu(d x)  \tag{16.45}\\
& =\left\langle\theta, E_{q}[\phi(X)]\right\rangle-H(q)=\langle\theta, \mu\rangle-H(q) \tag{16.46}
\end{align*}
$$

## Mean field variational lower bound

## Proof.

- On the one hand, obvious due to $A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\}$
- More traditional proof, let $q$ be any distribution that satisfies moment matching $\mathbb{E}_{q}[\phi(X)]=\mu$, then:

$$
\begin{align*}
A(\theta) & =\log \int_{\mathcal{X}^{m}} q(x) \frac{\exp \langle\theta, \phi(x)\rangle}{q(x)} \nu(d x)  \tag{16.44}\\
& \geq \int_{\mathcal{X}^{m}} q(x)[\langle\theta, \phi(x)\rangle-\log q(x)] \nu(d x)  \tag{16.45}\\
& =\left\langle\theta, E_{q}[\phi(X)]\right\rangle-H(q)=\langle\theta, \mu\rangle-H(q) \tag{16.46}
\end{align*}
$$

- If we optimize $q$ over all $\mathcal{M}(G)$, then we'll get equality.


## Mean field variational lower bound

## Proof.

- On the one hand, obvious due to $A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\}$
- More traditional proof, let $q$ be any distribution that satisfies moment matching $\mathbb{E}_{q}[\phi(X)]=\mu$, then:

$$
\begin{align*}
A(\theta) & =\log \int_{\mathcal{X}^{m}} q(x) \frac{\exp \langle\theta, \phi(x)\rangle}{q(x)} \nu(d x)  \tag{16.44}\\
& \geq \int_{\mathcal{X}^{m}} q(x)[\langle\theta, \phi(x)\rangle-\log q(x)] \nu(d x)  \tag{16.45}\\
& =\left\langle\theta, E_{q}[\phi(X)]\right\rangle-H(q)=\langle\theta, \mu\rangle-H(q) \tag{16.46}
\end{align*}
$$

- If we optimize $q$ over all $\mathcal{M}(G)$, then we'll get equality.
- If we optimize $q$ over a subset of $\mathcal{M}(G)$ (e.g., such as $\mathcal{M}_{F}(G)$, then we'll get inequality.


## Tractable Dual

- Normally dual $A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))$ is intractable or unavailable, but key idea is that if $\mu \in \mathcal{M}_{F}(G)$ it will be possible to compute easily.


## Tractable Dual

- Normally dual $A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))$ is intractable or unavailable, but key idea is that if $\mu \in \mathcal{M}_{F}(G)$ it will be possible to compute easily.
- Thus, goal of mean field (from variational approximation perspective) is to form $A_{\mathrm{MF}}(\theta)$ where:

$$
\begin{equation*}
A(\theta) \geq \max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\} \triangleq A_{\mathrm{MF}}(\theta) \tag{16.47}
\end{equation*}
$$

where $A_{F}^{*}(\mu)$ corresponds to dual function restricted to inner bound set $\mathcal{F}(G)$. I.e., when we expand $A_{F}^{*}(\mu)$, we can take advantage of the fact that $\mu$ is restricted in all cases, so $A_{F}^{*}(\mu)$ might be greatly simplified relative to $A^{*}(\mu)$.

## Tractable Dual

- Normally dual $A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))$ is intractable or unavailable, but key idea is that if $\mu \in \mathcal{M}_{F}(G)$ it will be possible to compute easily.
- Thus, goal of mean field (from variational approximation perspective) is to form $A_{\mathrm{MF}}(\theta)$ where:

$$
\begin{equation*}
A(\theta) \geq \max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\} \triangleq A_{\mathrm{MF}}(\theta) \tag{16.47}
\end{equation*}
$$

where $A_{F}^{*}(\mu)$ corresponds to dual function restricted to inner bound set $\mathcal{F}(G)$. I.e., when we expand $A_{F}^{*}(\mu)$, we can take advantage of the fact that $\mu$ is restricted in all cases, so $A_{F}^{*}(\mu)$ might be greatly simplified relative to $A^{*}(\mu)$.

- Note, for $\mu \in \mathcal{M}_{F}(G), A_{F}^{*}(\mu)$ is not an approximation, rather it is just easy to compute.


## Mean field, KL-Divergence, Exponential Model Families

- Given two distributions $p, q$, KL-Divergence of $p$ w.r.t. $q$ is defined as

$$
\begin{equation*}
D(q \| p)=\int_{\mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \nu(d x) \tag{16.48}
\end{equation*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Given two distributions $p, q$, KL-Divergence of $p$ w.r.t. $q$ is defined as

$$
\begin{equation*}
D(q \| p)=\int_{\mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \nu(d x) \tag{16.48}
\end{equation*}
$$

- In summation form, we have

$$
\begin{equation*}
D(q \| p)=\sum_{x \in \mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \tag{16.49}
\end{equation*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Given two distributions $p, q$, KL-Divergence of $p$ w.r.t. $q$ is defined as

$$
\begin{equation*}
D(q \| p)=\int_{\mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \nu(d x) \tag{16.48}
\end{equation*}
$$

- In summation form, we have

$$
\begin{equation*}
D(q \| p)=\sum_{x \in \mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \tag{16.49}
\end{equation*}
$$

- For exponential models this takes on some interesting forms, and more over, we can see the variational approximation above as a KL-divergence minimization problem.


## Mean field, KL-Divergence, Exponential Model Families

- Given two distributions $p, q$, KL-Divergence of $p$ w.r.t. $q$ is defined as

$$
\begin{equation*}
D(q \| p)=\int_{\mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \nu(d x) \tag{16.48}
\end{equation*}
$$

- In summation form, we have

$$
\begin{equation*}
D(q \| p)=\sum_{x \in \mathcal{X}^{m}} q(x)\left[\log \frac{q(x)}{p(x)}\right] \tag{16.49}
\end{equation*}
$$

- For exponential models this takes on some interesting forms, and more over, we can see the variational approximation above as a KL-divergence minimization problem.
- Recall, exponential models can be parameterized using canonical parameters $\theta$ or mean parameters $\mu$. We will use notational shortcuts: $D\left(\theta^{1} \| \theta^{2}\right) \equiv D\left(p_{\theta^{1}} \| p_{\theta^{2}}\right), D\left(\mu^{1} \| \mu^{2}\right) \equiv D\left(p_{\mu^{1}} \| p_{\mu^{2}}\right)$, and even $D\left(\mu^{1}| | \theta^{2}\right) \equiv D\left(p_{\mu^{1}}| | p_{\theta^{2}}\right)$.


## Mean field, KL-Divergence, Exponential Model Families

- Consider $\theta^{1}, \theta^{2} \in \Omega$


## Mean field, KL-Divergence, Exponential Model Families

- Consider $\theta^{1}, \theta^{2} \in \Omega$
- Let $D\left(\theta^{1} \| \theta^{2}\right)$ have aforementioned meaning (KL-divergence between the two corresponding distributions), and let $\mu^{i}=\mathbb{E}_{\theta^{i}}[\phi(X)]$,


## Mean field, KL-Divergence, Exponential Model Families

- Consider $\theta^{1}, \theta^{2} \in \Omega$
- Let $D\left(\theta^{1} \| \theta^{2}\right)$ have aforementioned meaning (KL-divergence between the two corresponding distributions), and let $\mu^{i}=\mathbb{E}_{\theta^{i}}[\phi(X)]$,
- Then we have a Bregman divergence form:

$$
\begin{align*}
D\left(\theta^{1} \| \theta^{2}\right) & =\mathbb{E}_{\theta^{1}}\left[\log \frac{p_{\theta^{1}}(x)}{p_{\theta^{2}}(x)}\right]  \tag{16.50}\\
& =A\left(\theta^{2}\right)-A\left(\theta^{1}\right)-\left\langle\mu^{1}, \theta^{2}-\theta^{1}\right\rangle  \tag{16.51}\\
& =A\left(\theta^{2}\right)-\left[A\left(\theta^{1}\right)+\left\langle\nabla A\left(\theta^{1}\right), \theta^{2}-\theta^{1}\right\rangle\right]  \tag{16.52}\\
& \underbrace{\theta^{1}}_{\theta}
\end{align*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Purely dual form of KL divergence can be formed as well, i.e.,

$$
\begin{equation*}
D\left(\theta^{1} \| \theta^{2}\right)=D\left(\mu^{1} \| \mu^{2}\right)=A^{*}\left(\mu^{1}\right)-A^{*}\left(\mu^{2}\right)-\left\langle\theta^{2}, \mu^{1}-\mu^{2}\right\rangle \tag{16.53}
\end{equation*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Purely dual form of KL divergence can be formed as well, i.e.,

$$
\begin{equation*}
D\left(\theta^{1} \| \theta^{2}\right)=D\left(\mu^{1} \| \mu^{2}\right)=A^{*}\left(\mu^{1}\right)-A^{*}\left(\mu^{2}\right)-\left\langle\theta^{2}, \mu^{1}-\mu^{2}\right\rangle \tag{16.53}
\end{equation*}
$$

- Dual Bregman form


## Mean field, KL-Divergence, Exponential Model Families

- Mixed/hybrid form of KL in terms of dual


## Mean field, KL-Divergence, Exponential Model Families

- Mixed/hybrid form of KL in terms of dual
- We can also write the KL as:

$$
\begin{equation*}
D\left(\theta^{1} \| \theta^{2}\right)=D\left(\mu^{1} \| \theta^{2}\right)=A\left(\theta^{2}\right)+A^{*}\left(\mu^{1}\right)-\left\langle\mu^{1}, \theta^{2}\right\rangle \tag{16.54}
\end{equation*}
$$

which comes from dual expression $A^{*}\left(\mu^{1}\right)=\left\langle\theta^{1}, \mu^{1}\right\rangle-A\left(\theta^{1}\right)$ for dually coupled parameters $\mu^{1}=\mathbb{E}_{\theta^{1}}[\phi(X)]$.

## Mean field, KL-Divergence, Exponential Model Families

- Mixed/hybrid form of KL in terms of dual
- We can also write the KL as:

$$
\begin{equation*}
D\left(\theta^{1} \| \theta^{2}\right)=D\left(\mu^{1} \| \theta^{2}\right)=A\left(\theta^{2}\right)+A^{*}\left(\mu^{1}\right)-\left\langle\mu^{1}, \theta^{2}\right\rangle \tag{16.54}
\end{equation*}
$$

which comes from dual expression $A^{*}\left(\mu^{1}\right)=\left\langle\theta^{1}, \mu^{1}\right\rangle-A\left(\theta^{1}\right)$ for dually coupled parameters $\mu^{1}=\mathbb{E}_{\theta^{1}}[\phi(X)]$.

- In particular, this equation (variational expression for the cumulant):

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{??}
\end{equation*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Mixed/hybrid form of KL in terms of dual
- We can also write the KL as:

$$
\begin{equation*}
D\left(\theta^{1} \| \theta^{2}\right)=D\left(\mu^{1} \| \theta^{2}\right)=A\left(\theta^{2}\right)+A^{*}\left(\mu^{1}\right)-\left\langle\mu^{1}, \theta^{2}\right\rangle \tag{16.54}
\end{equation*}
$$

which comes from dual expression $A^{*}\left(\mu^{1}\right)=\left\langle\theta^{1}, \mu^{1}\right\rangle-A\left(\theta^{1}\right)$ for dually coupled parameters $\mu^{1}=\mathbb{E}_{\theta^{1}}[\phi(X)]$.

- In particular, this equation (variational expression for the cumulant):

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{??}
\end{equation*}
$$

- ...can be written as:

$$
\begin{equation*}
\inf _{\mu \in \mathcal{M}}\left\{A(\theta)+A^{*}(\mu)-\langle\theta, \mu\rangle\right\}=\inf _{\mu \in \mathcal{M}} D(\mu \| \theta)=0 \tag{16.55}
\end{equation*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Since

$$
\begin{equation*}
\inf _{\mu \in \mathcal{M}}\left\{A(\theta)+A^{*}(\mu)-\langle\theta, \mu\rangle\right\}=\inf _{\mu \in \mathcal{M}} D(\mu \| \theta)=0 \tag{16.55}
\end{equation*}
$$

## Mean field, KL-Divergence, Exponential Model Families

- Since

$$
\begin{equation*}
\inf _{\mu \in \mathcal{M}}\left\{A(\theta)+A^{*}(\mu)-\langle\theta, \mu\rangle\right\}=\inf _{\mu \in \mathcal{M}} D(\mu \| \theta)=0 \tag{16.55}
\end{equation*}
$$

- Thus, solving the mean-field variational problem of:

$$
\begin{equation*}
\max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\} \tag{16.47}
\end{equation*}
$$

is identical to minimizing KL Divergence $D(\mu \| \theta)$ subject to constraint $\mu \in \mathcal{M}_{F}(G)$.

## Mean field, KL-Divergence, Exponential Model Families

- Since

$$
\begin{equation*}
\inf _{\mu \in \mathcal{M}}\left\{A(\theta)+A^{*}(\mu)-\langle\theta, \mu\rangle\right\}=\inf _{\mu \in \mathcal{M}} D(\mu \| \theta)=0 \tag{16.55}
\end{equation*}
$$

- Thus, solving the mean-field variational problem of:

$$
\begin{equation*}
\max _{\mu \in \mathcal{M}_{F}(G)}\left\{\langle\mu, \theta\rangle-A_{F}^{*}(\mu)\right\} \tag{16.47}
\end{equation*}
$$

is identical to minimizing KL Divergence $D(\mu \| \theta)$ subject to constraint $\mu \in \mathcal{M}_{F}(G)$.

- I.e., mean field can be seen as finding the best approximation, in terms of this particular KL-divergence, to $p_{\theta}$, over a family of "nice" distributions $M_{F}(G)$.


## Naïve Mean field for Ising Model

- A classic example of mean-field (goes back to statistical physics)


## Naïve Mean field for Ising Model

- A classic example of mean-field (goes back to statistical physics)
- Mean parameters for Ising: $\mu_{s}=\mathbb{E}\left[X_{s}\right]=p\left(X_{s}=1\right)$, $\mu_{s t}=\mathbb{E}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right)$, thus $\mu \in \mathbb{R}^{|V|+|E|}$.


## Naïve Mean field for Ising Model

- A classic example of mean-field (goes back to statistical physics)
- Mean parameters for Ising: $\mu_{s}=\mathbb{E}\left[X_{s}\right]=p\left(X_{s}=1\right)$, $\mu_{s t}=\mathbb{E}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right)$, thus $\mu \in \mathbb{R}^{|V|+|E|}$.
- Let $F_{0}=(V, \emptyset)$ be our mean field approximation family. Thus,

$$
\mathcal{M}_{F_{0}}(G)=\left\{\mu \in \mathbb{R}^{|V|+|E|} \mid 0 \leq \mu_{s} \leq 1 \quad \forall s \in V, \text { and } \mu_{s t}=\mu_{s} \mu_{t} \forall\right\}
$$

## Naïve Mean field for Ising Model

- A classic example of mean-field (goes back to statistical physics)
- Mean parameters for Ising: $\mu_{s}=\mathbb{E}\left[X_{s}\right]=p\left(X_{s}=1\right)$, $\mu_{s t}=\mathbb{E}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right)$, thus $\mu \in \mathbb{R}^{|V|+|E|}$.
- Let $F_{0}=(V, \emptyset)$ be our mean field approximation family. Thus,

$$
\mathcal{M}_{F_{0}}(G)=\left\{\mu \in \mathbb{R}^{|V|+|E|} \mid 0 \leq \mu_{s} \leq 1 \quad \forall s \in V, \text { and } \mu_{s t}=\mu_{s} \mu_{t} \forall\right\}
$$

- Key is that for $\mu \in \mathcal{M}_{F_{0}}(G)$, dual is not hard to calculate, that is

$$
\begin{equation*}
-A_{F_{0}}^{*}(\mu)=\sum_{s \in V} H_{s}\left(\mu_{s}\right) \tag{16.56}
\end{equation*}
$$

which are sum of unary entropy terms, very cheap.

## Naïve Mean field for Ising Model

- A classic example of mean-field (goes back to statistical physics)
- Mean parameters for Ising: $\mu_{s}=\mathbb{E}\left[X_{s}\right]=p\left(X_{s}=1\right)$, $\mu_{s t}=\mathbb{E}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right)$, thus $\mu \in \mathbb{R}^{|V|+|E|}$.
- Let $F_{0}=(V, \emptyset)$ be our mean field approximation family. Thus,

$$
\mathcal{M}_{F_{0}}(G)=\left\{\mu \in \mathbb{R}^{|V|+|E|} \mid 0 \leq \mu_{s} \leq 1 \quad \forall s \in V, \text { and } \mu_{s t}=\mu_{s} \mu_{t} \forall\right\}
$$

- Key is that for $\mu \in \mathcal{M}_{F_{0}}(G)$, dual is not hard to calculate, that is

$$
\begin{equation*}
-A_{F_{0}}^{*}(\mu)=\sum_{s \in V} H_{s}\left(\mu_{s}\right) \tag{16.56}
\end{equation*}
$$

which are sum of unary entropy terms, very cheap.

- Moreover, polytope for $M_{F_{0}}(G)$ is also very simple, namely the hypercube $[0,1]^{m}$.


## Naive Mean field for Ising Model

- We get variational lower bound problem

$$
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\}
$$

## Naive Mean field for Ising Model

- We get variational lower bound problem

$$
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\}
$$

- Have constrained form of edge mean parameters $\mu_{s t}=\mu_{s} \mu_{t}$


## Naive Mean field for Ising Model

- We get variational lower bound problem

$$
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\}
$$

- Have constrained form of edge mean parameters $\mu_{s t}=\mu_{s} \mu_{t}$
- $\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}$ is $m$-D hypercube.


## Naive Mean field for Ising Model

- We get variational lower bound problem

$$
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\}
$$

- Have constrained form of edge mean parameters $\mu_{s t}=\mu_{s} \mu_{t}$
- $\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}$ is $m$-D hypercube.
- Once again, we have a non-convex problem.


## Naive Mean field for Ising Model

- We get variational lower bound problem

$$
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\}
$$

- Have constrained form of edge mean parameters $\mu_{s t}=\mu_{s} \mu_{t}$
- $\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}$ is $m$-D hypercube.
- Once again, we have a non-convex problem.
- One way to optimize is to do coordinate ascent (given otherwise fixed vector, optimize one value at a time).


## Naive Mean field for Ising Model

- We get variational lower bound problem

$$
\begin{equation*}
A(\theta) \geq \max _{\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}}\left\{\sum_{s \in V} \theta_{s} \mu_{s}+\sum_{(s, t) \in E} \theta_{s t} \mu_{s} \mu_{t}+\sum_{s \in V} H_{s}\left(\mu_{s}\right)\right\} \tag{16.57}
\end{equation*}
$$

- Have constrained form of edge mean parameters $\mu_{s t}=\mu_{s} \mu_{t}$
- $\left(\mu_{1}, \ldots, \mu_{m}\right) \in[0,1]^{m}$ is $m$-D hypercube.
- Once again, we have a non-convex problem.
- One way to optimize is to do coordinate ascent (given otherwise fixed vector, optimize one value at a time).
- If each coordinate optimization is optimal, we'll get a stationary point.


## Naive Mean field for Ising Model

- coordinate ascent: choose some $s$ and optimize $\mu_{s}$ fixing all $\mu_{t}$ for $t \neq s$.


## Naive Mean field for Ising Model

- coordinate ascent: choose some $s$ and optimize $\mu_{s}$ fixing all $\mu_{t}$ for $t \neq s$.
- Taking derivatives w.r.t. $\mu_{s}$, we get the following update rule for element $\mu_{s}$

$$
\begin{equation*}
\mu_{s} \leftarrow \sigma\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \mu_{t}\right) \tag{16.58}
\end{equation*}
$$

where $\sigma(z)=[1+\exp (-z)]^{-1}$ is the sigmoid (logistic) function.

## Naive Mean field for Ising Model

- coordinate ascent: choose some $s$ and optimize $\mu_{s}$ fixing all $\mu_{t}$ for $t \neq s$.
- Taking derivatives w.r.t. $\mu_{s}$, we get the following update rule for element $\mu_{s}$

$$
\begin{equation*}
\mu_{s} \leftarrow \sigma\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \mu_{t}\right) \tag{16.58}
\end{equation*}
$$

where $\sigma(z)=[1+\exp (-z)]^{-1}$ is the sigmoid (logistic) function.

- This is the standard mean-field update that is quite well known, but derived from coordinate assent optimization of a variational perspective of the problem.


## Naive Mean field for Ising Model

- coordinate ascent: choose some $s$ and optimize $\mu_{s}$ fixing all $\mu_{t}$ for $t \neq s$.
- Taking derivatives w.r.t. $\mu_{s}$, we get the following update rule for element $\mu_{s}$

$$
\begin{equation*}
\mu_{s} \leftarrow \sigma\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \mu_{t}\right) \tag{16.58}
\end{equation*}
$$

where $\sigma(z)=[1+\exp (-z)]^{-1}$ is the sigmoid (logistic) function.

- This is the standard mean-field update that is quite well known, but derived from coordinate assent optimization of a variational perspective of the problem.
- The variational approach indeed seems quite general and powerful.


## Example of Lack of Convexity

- Consider simple two variable example $\left(X_{1}, X_{2}\right), X_{i} \in\{-1,+1\}$.


## Example of Lack of Convexity

- Consider simple two variable example $\left(X_{1}, X_{2}\right), X_{i} \in\{-1,+1\}$.
- Exponential family form

$$
\begin{equation*}
p_{\theta}(x) \propto \exp \left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{12} x_{1} x_{2}\right) \tag{16.59}
\end{equation*}
$$

having mean parameters $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and $\mu_{12}=\mathbb{E}\left[X_{1} X_{2}\right]$.

## Example of Lack of Convexity

- Consider simple two variable example $\left(X_{1}, X_{2}\right), X_{i} \in\{-1,+1\}$.
- Exponential family form

$$
\begin{equation*}
p_{\theta}(x) \propto \exp \left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{12} x_{1} x_{2}\right) \tag{16.59}
\end{equation*}
$$

having mean parameters $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and $\mu_{12}=\mathbb{E}\left[X_{1} X_{2}\right]$.

- Impose constraint $\mu_{12}=\mu_{1} \mu_{2}$, we get mean field objective

$$
\begin{equation*}
f\left(\mu_{1}, \mu_{2} ; \theta\right)=\theta_{12} \mu_{1} \mu_{2}+\theta_{1} \mu_{1}+\theta_{2} \mu_{2}+H\left(\mu_{1}\right)+H\left(\mu_{2}\right) \tag{16.60}
\end{equation*}
$$

where $H\left(\mu_{i}\right)=-\frac{1}{2}\left(1+\mu_{i}\right) \log \frac{1}{2}\left(1+\mu_{i}\right)-\frac{1}{2}\left(1-\mu_{i}\right) \log \frac{1}{2}\left(1-\mu_{i}\right)$
Note that $p\left(X_{i}=+1\right)=\frac{1}{2}\left(1+\mu_{i}\right)$

## Example of Lack of Convexity

- Consider simple two variable example $\left(X_{1}, X_{2}\right), X_{i} \in\{-1,+1\}$.
- Exponential family form

$$
\begin{equation*}
p_{\theta}(x) \propto \exp \left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{12} x_{1} x_{2}\right) \tag{16.59}
\end{equation*}
$$

having mean parameters $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and $\mu_{12}=\mathbb{E}\left[X_{1} X_{2}\right]$.

- Impose constraint $\mu_{12}=\mu_{1} \mu_{2}$, we get mean field objective

$$
\begin{equation*}
f\left(\mu_{1}, \mu_{2} ; \theta\right)=\theta_{12} \mu_{1} \mu_{2}+\theta_{1} \mu_{1}+\theta_{2} \mu_{2}+H\left(\mu_{1}\right)+H\left(\mu_{2}\right) \tag{16.60}
\end{equation*}
$$

where $H\left(\mu_{i}\right)=-\frac{1}{2}\left(1+\mu_{i}\right) \log \frac{1}{2}\left(1+\mu_{i}\right)-\frac{1}{2}\left(1-\mu_{i}\right) \log \frac{1}{2}\left(1-\mu_{i}\right)$

- Consider sub-models of the form:

$$
\begin{equation*}
\left(\theta_{1}, \theta_{2}, \theta_{12}\right)=\left(0,0, \frac{1}{4} \log \frac{q}{1-q}\right) \triangleq \theta(q) \tag{16.61}
\end{equation*}
$$

where $q \in(0,1)$ is a parameter such that, for any $q$ we have $\mathbb{E}\left[X_{i}\right]=0$. It turns out that in this form, we have $q=p\left(X_{1}=X_{2}\right)$.

## Example of Lack of Convexity

- Consider simple two variable example $\left(X_{1}, X_{2}\right), X_{i} \in\{-1,+1\}$.
- Exponential family form

$$
\begin{equation*}
p_{\theta}(x) \propto \exp \left(\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{12} x_{1} x_{2}\right) \tag{16.59}
\end{equation*}
$$

having mean parameters $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and $\mu_{12}=\mathbb{E}\left[X_{1} X_{2}\right]$.

- Impose constraint $\mu_{12}=\mu_{1} \mu_{2}$, we get mean field objective

$$
\begin{equation*}
f\left(\mu_{1}, \mu_{2} ; \theta\right)=\theta_{12} \mu_{1} \mu_{2}+\theta_{1} \mu_{1}+\theta_{2} \mu_{2}+H\left(\mu_{1}\right)+H\left(\mu_{2}\right) \tag{16.60}
\end{equation*}
$$

where $H\left(\mu_{i}\right)=-\frac{1}{2}\left(1+\mu_{i}\right) \log \frac{1}{2}\left(1+\mu_{i}\right)-\frac{1}{2}\left(1-\mu_{i}\right) \log \frac{1}{2}\left(1-\mu_{i}\right)$

- Consider sub-models of the form:

$$
\begin{equation*}
\left(\theta_{1}, \theta_{2}, \theta_{12}\right)=\left(0,0, \frac{1}{4} \log \frac{q}{1-q}\right) \triangleq \theta(q) \tag{16.61}
\end{equation*}
$$

where $q \in(0,1)$ is a parameter such that, for any $q$ we have $\mathbb{E}\left[X_{i}\right]=0$. It turns out that in this form, we have $q=p\left(X_{1}=X_{2}\right)$.

- Is mean field objective in this case convex for all $q$ ?


## Lack of Convexity example

- For $q=0.5$, objective $f\left(\mu_{1}, \mu_{2} ; \theta(0.5)\right)$ has global maximum at $\left(\mu_{1}, \mu_{2}\right)=(0,0)$ so mean field is exact and convex. This corresponds to $p\left(X_{1}=X_{2}\right)=0$.


## Lack of Convexity example

- For $q=0.5$, objective $f\left(\mu_{1}, \mu_{2} ; \theta(0.5)\right)$ has global maximum at $\left(\mu_{1}, \mu_{2}\right)=(0,0)$ so mean field is exact and convex. This corresponds to $p\left(X_{1}=X_{2}\right)=0$.
- When $q$ gets small, $f$ becomes non-convex, e.g., has multiple modes in figure.


## Lack of Convexity example

- For $q=0.5$, objective $f\left(\mu_{1}, \mu_{2} ; \theta(0.5)\right)$ has global maximum at $\left(\mu_{1}, \mu_{2}\right)=(0,0)$ so mean field is exact and convex. This corresponds to $p\left(X_{1}=X_{2}\right)=0$.
- When $q$ gets small, $f$ becomes non-convex, e.g., has multiple modes in figure.



## Sources for Today's Lecture

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001

