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Announcements

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

@ Should have read chapters 1,2, 3, 4 in this book. Read chapter 5.

@ Assignment due Wednesday (Nov 26th) night, 11:45pm. Final project
proposal updates and progress report (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)
L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

®© ©6 6 6 ¢

L11 (11/5): LBP, exponential models,
L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24):

L17 (11/26):

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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@ Hypergraph (shaded regions) on left, while bipartite graph
representation on thetright.

(=)
N
®
YD
Sleletelelelclelelele

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 16 - Nov 24th, 2014 F4/59 (pg.4/205)



Review
NNRRRRRYE

Hypergraph, edge representations

@ It is possible to represent hypergraphs by only showing their AN >

hyperedges.

@ Here, we see graphical representations of three hypergraphs. Subsets
of nodes.corresponding to hyperedges are shown in rectangles,
whereas the arrows represent inclusion relations among hyperedges.

/
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@ Which ones, if any, are in reduced representation?
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Mobius Inversion Lemma and Inclusion-Exclusion

e For any A C V, define two functions 2 :2V — Rand T:2V = R.

@ Then the above inclusion-exclusion principle is one instance of the
more general Mobius Inversion lemma, namely that each of the below
two equations implies the other.

VACV:YT(A)= > QB) (16.13)
B:BCA
VACV:QA)= Y (-1)*Flr(B) (16.14)
B:BCA

@ Mobius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).

@ We use it here to come up with alternative expressions for the entropy
and for the marginal polytope.
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Mobius Inversion Lemma for posets

Let P be a partially ordered set with binary relation <.
A zeta function of a poset is a mapping ¢ : P x P — R defined by

1 ifg=h,
C(g,h) = _ (16.23)
0 otherwise.

@ The Mobius function w : P x P — R is the multiplicative inverse of
this function. It is defined recursively:

w(g,g) =1forallgeP

w(g,h) =0forall h:h £g.

Given w(g, f) defined for f such that g < f < h, we define

{flg=f=<h}
Then, w and ¢ are multiplicative inverses, in that

D wlg, HCfh) = Y wlg, f)=6(g,h) (16.25)

fep {flg=f=h}
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General Mobius Inversion Lemma for Posets

Lemma 16.2.8 (General Mdbius Inversion Lemma)

Given real valued functions T and § defined on poset P, then Q(h) may
be expressed via Y (-) via

=> Y(g) forallheP (16.23)
g=h

iff Y(h) may be expressed via €)(-) via

=Y Q(g)w(g,h) forallhcP (16.24)
g=h

When P = 2V for some set V' (so this means that the poset consists of
sets and all subsets of an underlying set V) this can be simplified, where
< becomes C; and > becomes D, like we saw above.

(see Stanley, “Enumerative Combinatorics” for more info.)
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Back to Kikuchi: Mobius and expressions of factorization

@ Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V,E), so we have yn = (up, h € E), then we can define new
functions ¢ = (¢n, h € E) via Mdbius inversion lemma as follows

log pn(zn) = > w(g, h)log pg(z) (16.23)
g=h

@ From Mobius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

log pp(zp,) Zlog 0g(xg) (16.24)
g=h
o Key, when ¢}, is defined.as-above;"and G is a hypertree we have
x) = H on(xh) (16.25)
heE

= general way to factorize a_distributionsthat factors w.r.t. a
hypergraph.
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multi-information decomposition

@ Using Mobius, and Eqn. (??) we can write

In(pn) = pn(wn) log on(xn) Zuh zn) | Y w(g,h)log pg(xy)

Tp g=h
=Y wlg,h) {Z pin (1) log ug(xg)}
g=h Th

— Zzw(f’ e) Z,uf(wf)loguf(wf) =- Zc(f)Hf(Nf)

f3hexf Tf f=2h
where we define overcounting numbers (~ shattering coefficient)
co(f) £ w(fe) (16.31)
exf

@ This gives us a new expression for the hypertree entropy

thper(:u) = E C(h)Hh(/J’h) (1632)
heE
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Usable to get Kikuchi variational approximation

@ Sum to one constraint:

> Tulzn) =1 (16.33)

@ Local agreement via the hypergraph constraint. For any g < h must
have marginalization condition

Z Th(zh) = T4(2g) (16.34)

Zh\g
@ Define new polyhedral constraint set L;(G)

Li(G) = {7 > 0] Equations (16.47) Yh, and (16.55) Vg < h hold}
(16.35)
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Kikuchi variational approximation, entropy approx

o Generalized approximate (app) entropy for the hypergraph:

Happ = > c(g)Hy(7g) (16.33)
geE

where H, is hyperedge entropy and overcounting number defined by:

c(g) = wl(g, f) (16.34)

frg
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Variational Approach Amenable to Approximation

@ Original variational representation of log partition function

A(f) = sup {(0, ) — A" ()} (16.1)

where dual takes form:

A% (p) = Sup (0, 1) — A(9)) =

(6.2

—H(pg(u)) if we M°
+o0 if ué M
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Variational Approach Amenable to Approximation

@ Original variational representation of log partition function

A(f) = sup {(0, 1) — A* (1) } (16.1)

where dual takes form:

A% (p) = sup (0, 1) — A(9)) =

{—H(pg(u)) if pe M° (16.2)

+o00 if ué M

@ Given efficient expression for A(6), we can compute marginals of
interest.
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Variational Approach Amenable to Approximation

@ Original variational representation of log partition function

A(f) = ;gﬁ{w,m — A%} (16.1)

where dual takes form:

A*(u)zggg«e,m—w»:{;fo@““)) ifj;ﬁ (16.2)

e Given efficient expression for A(f), we can compute marginals of
interest.

@ Above expression (dual of the dual) offers strategies to approximate or

(upper or lower) bound A(f). We either approximate Mo —A*(u) or
(most likely) both.
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Variational Approximations we cover

QO Set M « L and —A*(u) < Hpethe(7) to get Bethe variational
approximation, LBP fixed point.
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Variational Approximations we cover

Q Set M + L and —A* (i) < Hpgethe(T) to get Bethe variational
approximation, LBP fixed point.

@ Set M + Li(G) (hypergraph marginal polytope), =A*(p) < Happ(7)
where Happ = )70 s ¢(g)Hy(7g) (via M&bius) to get Kikuchi
variational approximation, message passing on hypergraphs.
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Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation

@ This at last gets the Kikuchi variational approximation

Akikuchi(0) = Téﬁ?(}é) {(0, 7) + Happ(7)} (16.1)
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Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation

o This at last gets the Kikuchi variational approximation

Akikuchi (0) = D {0, 7) + Happ(7)} (16.1)

@ For a graph, this is exactly Agethe(f).
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Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation

o This at last gets the Kikuchi variational approximation

Akikuchi(0) = max {(0,7) + Happ(7)} (16.1)
T€L(G)
@ For a graph, this is exactly Agethe(6).
@ Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency
implies global consistency), then also exact (although expensive,
exponential in the tree-width to compute H,pp).
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Kikuchi variational approximation

o This at last gets the Kikuchi variational approximation

Akikuchi(#) = max {(0,7) + Happ(7)} (16.1)
TELL(G)

e For a graph, this is exactly Agethe(6).

@ Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency
implies global consistency), then also exact (although expensive,
exponential in the tree-width to compute Hypp).

@ We can define message passing algorithms on the hypertree, and show
that if it converges, it is a fixed point of the associated Lagrangian.
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Kikuchi variational approximation, 3x3 grid example

@ Example, left is 3x3 grid, right is optimal junction tree cover.
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Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation, 3x3 grid example

o Example, left is 3x3 grid, right is optimal junction tree cover.

@ @ &) (©
@ ® © @)
@ ® © @

@ @ © ©

@ Treewidth is 4, so complexity is O(r°).
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Kikuchi variational approximation, 3x3 grid example

o Example, left is 3x3 grid, right is optimal junction tree cover.

@ @ &) (©
@ ® © @)
@ ® © @

@ @ © ©

e Treewidth is 4, so complexity is O(r°).

@ In general, for n x n grid strutured graph, treewidth is O(n) (grows as
the square root of the number of nodes).
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Kikuchi variational approximation, 3x3 grid example

o Left is clustering of vertices in 3x3 grid, and right is hyperedge
graph/region graph.
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Kikuchi and Hypertree-based Methods
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Kikuchi variational approximation, 3x3 grid example

o Left is clustering of vertices in 3x3 grid, and right is hyperedge
graph/region graph.
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e Complexity is only O(r*) and will stay O(r*) even as n gets bigger
(since clusters are at most size four).
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Generalized BP (GBP): Key idea

o Key idea: sets of nodes send messages to other sets of nodes.
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Kikuchi and Hypertree-based Methods
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Generalized BP (GBP): Key idea

o Key idea: sets of nodes send messages to other sets of nodes.

@ The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)
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Kikuchi and Hypertree-based Methods
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Generalized BP (GBP): Key idea

o Key idea: sets of nodes send messages to other sets of nodes.

@ The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)

@ Standard LBP algorithm is merely a special case of GBP
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Generalized BP (GBP): Key idea

o Key idea: sets of nodes send messages to other sets of nodes.

@ The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)

@ Standard LBP algorithm is merely a special case of GBP

@ Different choices of node sets/hyperedges and message passings give
different GBP algorithms.
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Kikuchi and Hypertree-based Methods
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Generalized BP (GBP): Key idea

o Key idea: sets of nodes send messages to other sets of nodes.

@ The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)

@ Standard LBP algorithm is merely a special case of GBP

e Different choices of node sets/hyperedges and message passings give
different GBP algorithms.

@ This gives the user a gradual tradeoff between the most expensive,
intractable, and accurate junction tree algorithm, and the least
expensive but possibly quite inaccurate LBP algorithm.
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Generalized BP (GBP): Key idea

o Key idea: sets of nodes send messages to other sets of nodes.

@ The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)

@ Standard LBP algorithm is merely a special case of GBP

e Different choices of node sets/hyperedges and message passings give
different GBP algorithms.

@ This gives the user a gradual tradeoff between the most expensive,
intractable, and accurate junction tree algorithm, and the least
expensive but possibly quite inaccurate LBP algorithm.

@ Allows a trade-off between complexity for accuracy!
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Kikuchi and Hypertree-based Methods

Generalized BP (GBP): Key idea

Key idea: sets of nodes send messages to other sets of nodes.

The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)
Standard LBP algorithm is merely a special case of GBP

e Different choices of node sets/hyperedges and message passings give

different GBP algorithms.

This gives the user a gradual tradeoff between the most expensive,
intractable, and accurate junction tree algorithm, and the least
expensive but possibly quite inaccurate LBP algorithm.

Allows a trade-off between complexity for accuracy!

In many cases, convergence of GBP will be at fixed points of the
Lagrangian for the generalized variational approximation

Akikuchi(0) = e {{0,7) + Happ(7)} (16.2)
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GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

® arrows point from parent (superset)
to child (subset). Ex: on the right,
set {1,2,4,5} is the parent of both
{2,5} and {4,5}.
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GBP examples: parent-to-child

In hypergraph Hasse-like diagram,
® arrows point from parent (superset)
to child (subset). Ex: on the right,
set {1,2,4,5} is the parent of both
{2,5} and {4,5}.
@ For h € E, let Par(h) be the set of parents. Also define descendants
as D(h) = {g € E|g < h} and ancestors as A(h) = {g € E|g > h}.
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Kikuchi and Hypertree-based Methods
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GBP examples: parent-to-child

In hypergraph Hasse-like diagram,
® arrows point from parent (superset)
to child (subset). Ex: on the right,
set {1,2,4,5} is the parent of both
{2,5} and {4,5}.
e For h € E, let Par(h) be the set of parents. Also define descendants
as D(h) = {g € E|g < h} and ancestors as A(h) = {g € E|g > h}.

e Also define DT (h) = D(h) U {h} and AT (h) = A(h) U {h}
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Kikuchi and Hypertree-based Methods
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GBP examples: parent-to-child

In hypergraph Hasse-like diagram,

arrows point from parent (superset)

to child (subset). Ex: on the right,

set {1,2,4,5} is the parent of both

{2,5} and {4,5}.

e For h € E, let Par(h) be the set of parents. Also define descendants
as D(h) = {g € E|g < h} and ancestors as A(h) = {g € E|g > h}.

@ Also define DT (h) = D(h) U {h} and AT (h) = A(h) U {h}
e If f = g then z; has more variables than z, and one can perform a

message of the form My_,(zq) =3\, T(xf) = 3 p o T(Tg, Tp\g)
F - _d
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Kikuchi and Hypertree-based Methods
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GBP examples: parent-to-child message

@ Then parent-to-child message passing takes the form:

mh(zn) o | [ exp(8(zy)) 11 11 Myq(zg)

gD+ (h) gDt (h) fePar(g)\D+ (k)
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Kikuchi and Hypertree-based Methods

GBP examples: parent-to-child message

@ Then parent-to-child message passing takes the form:

mi@n) o | [[ exp0@y))| | 1] I[I Myl

g€D*(h)

We form marginal at h
@ from the factors associated
with each hyperedge, namely
exp(6(z4)), and by the mes-
sages sent to h and h's de-
scendants from other parents.
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GBP examples: parent-to-child message, grid graph

e Consider message for hyperedge h = {1,2,4,5}, which has factors ¢’
associated with (regular graph) edges MS} {4,5}, and {1,4}
and also unary factors for each of the node§ 1} 2, 4, and 5 (eg., to
associate evidence into the model).
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Kikuchi and Hypertree-based Methods
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GBP examples: parent-to-child message, grid graph

o Consider message for hyperedge h = {1,2,4,5}, which has factors ¢/
associated with (regular graph) edges {1,2}, {2,5}, {4,5}, and {1,4}
and also unary factors for each of the nodes 1, 2, 4, and 5 (eg., to
associate evidence into the model).

o Then D+(h) = {{1,2,4,5},{4,5},12,5),45} ).
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Kikuchi and Hypertree-based Methods
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GBP examples: parent-to-child micssage, grid graph

associated with (regular graph) edges {1, 2}, {2,5},
and also unary factors for each of the nodes 1, 2, 4, and 5 (eg., to
associate evidence into the model).

o Then D*(h) = {{1,2,4,5},{4,5},{2,5}, {5}}.
@ We get and expression for the marginal at A using the above formula.

T1,2,4,5 X 1//1,27#'/1,4%,5%,5%%#4% (16.4)
(M35, 675 (25h M 14,5,7,8)— {45V Mi5,6) {5} (5,8}~ {5}
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GBP examples: parent-to-child message, grid graph

o Consider message for hyperedge h = {1,2,4,5}, which has factors v/
associated with (regular graph) edges {1,2}, {2,5}, {4,5}, and {1,4}
and also unary factors for each of the nodes 1, 2, 4, and 5 (eg., to
associate evidence into the model).

e Then DT (h) = {{1,2,4,5},{4,5},{2,5},{5}}.

@ We get and expression for the marginal at A using the above formula.

T12.4,5 X V) o) 40 510 50 o Wyils (16.4)
X M2 3 56y(2,5) M{a,5,78) {45 M{5.6) (53 M{581 {5}

@ This could repeat for each of the largest clusters, until convergence.
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EP like variants
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 16.4.3 (Relationship between A and A*)

(a) For any pu € M°, 6(u) unique canonical parameter sat. matching
condition, then conj. dual takes form:

—H(pg( )) if uw e M°
A*(p) = sup ((0, n) — A(0)) = i - 16.3
(1) = sup ({6, 1) = A(6)) {+OO i M (16.3)
(b) Partition function has variational representation (dual of dual)

A(0) = sup {(0, ) — A ()} (16.4)

HEM

(c) For 6 € , sup occurs at 1 € M° of moment matching conditions

n= ¢(z)pe(z)v(dr) = Eg[p(X)] = VA(0) (16.5)
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).
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EP like variants
(RERRNARRRRRNNARERRN

Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).
@ Doing full inference involves exponential computation.
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

@ Before going further, we “project” this new distribution back down to
a class of simple distributions.
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

@ Before going further, we “project” this new distribution back down to
a class of simple distributions.

@ We then repeat the above step with a bit more of inference, different
than what we did above.
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

@ Before going further, we “project” this new distribution back down to
a class of simple distributions.

@ We then repeat the above step with a bit more of inference, different
than what we did above.

@ We keep repeating: do a bit of inference, and project, until all
inference has been done.
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Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

@ Before going further, we “project” this new distribution back down to
a class of simple distributions.

@ We then repeat the above step with a bit more of inference, different
than what we did above.

@ We keep repeating: do a bit of inference, and project, until all
inference has been done.

@ The difference between ADF and EP is that, with ADF at this stage
we're done. With EP we can keep repeating the process of inference,
projection.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 16 - Nov 24th, 2014 F22/59 (pg.51/205)



EP like variants
(RERRNARRRRRNNARERRN

Expectation Propagation: basic idea

@ Came from a method called “assumed density filtering” (ADF).

@ Doing full inference involves exponential computation.

@ We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

@ Before going further, we “project” this new distribution back down to
a class of simple distributions.

@ We then repeat the above step with a bit more of inference, different
than what we did above.

@ We keep repeating: do a bit of inference, and project, until all
inference has been done.

@ The difference between ADF and EP is that, with ADF at this stage
we're done. With EP we can keep repeating the process of inference,
projection.

@ EP can be seen as a generalization of BP.
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Expectation Propagation: basic idea

Came from a method called “assumed density filtering” (ADF).
Doing full inference involves exponential computation.

We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.

Before going further, we “project” this new distribution back down to
a class of simple distributions.

We then repeat the above step with a bit more of inference, different
than what we did above.

We keep repeating: do a bit of inference, and project, until all
inference has been done.

The difference between ADF and EP is that, with ADF at this stage
we're done. With EP we can keep repeating the process of inference,
projection.

EP can be seen as a generalization of BP.

Interestingly, EPis instance of our variational framework, Equation 77.
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Term Decoupling

@ Partition the d sufficient statistg‘into two parts, the tractable ones

(of which there are dr) and the intracxtable ones (of which there are
d]). Thus, d = dp + dj.
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Term Decoupling

o Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dr) and the intracxtable ones (of which there are
d]). Thus, d = dp + d;.

@ Tractable component

¢é (¢17¢27"-a¢dT) (165)
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Term Decoupling

o Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dr) and the intracxtable ones (of which there are

d]). Thus, d = dp + d;.

@ Tractable component

¢é (¢17¢27-"7¢dT> (165)

@ Intractable component

o2 (@2 ... o) (16.6)
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Term Decoupling

o Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dr) and the intracxtable ones (of which there are

d]). Thus, d = dp + d;.

@ Tractable component

¢é (¢17¢27”‘7¢d7~> (165)

@ Intractable component

o2 (0L 02 ... %) (16.6)
@ ¢; are typically univariate, while ®* are multivariate (b-dimensional).
F23/59 (pg.57,/205)
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Term Decoupling

o Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dr) and the intracxtable ones (of which there are

d]). Thus, d = dp + d;.

@ Tractable component

¢ = (P1,02,- -, Pay) (16.5)
@ Intractable component

oL (@92, oh) (16.6)
@ ¢; are typically univariate, while ®* are multivariate (b-dimensional).

e Consider exponential families associated with subcollection (¢, ®).
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Tractable component

@ Tractable component

¢é (¢17¢27"-7¢dT) (167)
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Tractable component

@ Tractable component
gbé (d)lad)%"'?qde) (167)

@ So ¢ : X™ — RIT with vector of parameters § € R,
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Tractable component

@ Tractable component
gbé (d)lad)%"'?gde) (167)

@ So ¢ : X™ — RIT with vector of parameters § € R,

@ Could instantiate model based only on this subcomponent, called the
base model
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Intractable component

@ Intractable component

DL (D, Dy,...,D,,) (16.8)
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Intractable component

@ Intractable component

d L (B, Dg,...,P4,) (16.8)

@ Each ®; : X™ — R?,

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 16 - Nov 24th, 2014 F25/59 (pg.63/205)



EP like variants
(NN NRRRRRRRNARNARN

Intractable component

@ Intractable component

d L (B, Dg,...,P4,) (16.8)

e Each ®; : X™ — R?,
o<I>:Xm
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Intractable component

Intractable component
d L (B, Dg,...,P4,) (16.8)
Each ®; : X™ — R®,

P XM — ROX

@ Parameters § € RV>dr
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Associated Distributions

@ The associated exponential family

p(230,0) < exp ({0, ¢(z))) exp

= exp ((0, ¢(x
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Associated Distributions

@ The associated exponential family

p(2:0,0) o exp ({0, 6(x))) exp (<e ‘I>(x)>> (16.9)
=exp ({0, p(x))) ﬁexp (<9~Z, (I>Z(a:)>> (16.10)
=1

@ Base model is tractable

A .
p(;6,0) o< exp ((0, ¢(x))) (16.11)
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Associated Distributions

@ The associated exponential family

p(2:0,0) o exp ({0, 6(x))) exp (<e ‘I>(x)>> (16.9)
=exp ({0, p(x))) ﬁexp (<9~Z, (I>Z(a:)>> (16.10)
=1

@ Base model is tractable

p(x;6,0) o exp ({6, ¢(x))) (16.11)
e d-augmented model
(a8, 6% o exp ({8, (x))) exp (<él’, (IDi(:L')>> (16.12)
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Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between ¢ and
D are:

@ |t is possible to compute marginals exactly in polynomial time for
distributions of the base form (any member of the ¢-exponential
family).
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Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between ¢ and
D are:

@ It is possible to compute marginals exactly in polynomial time for
distributions of the base form (any member of the ¢-exponential
family).

@ For eachi=1,...,d;, exact polynomial-time computation is still
possible for any ®’-augmented form (any member of the
(¢, ®*)-exponential family).
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Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between ¢ and
D are:

@ It is possible to compute marginals exactly in polynomial time for
distributions of the base form (any member of the ¢-exponential
family).

@ For eachi=1,...,d;, exact polynomial-time computation is still
possible for any ®i-augmented form (any member of the
(¢, ®*)-exponential family).

@ Intractable to perform exact computations with the full
(¢, ®)-exponential family.
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Example: Mixture models

@ Let X € R™ be Gaussian with distribution N (0, X).
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Example: Mixture models

o Let X € R™ be Gaussian with distribution N (0, X).
@ Let ¢(y; 1, A) be Gaussian with mea variance A.

"o
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Example: Mixture models

o Let X € R™ be Gaussian with distribution N (0, X).

o Let ¢(y; u, A) be Gaussian with mean p covariance A.

@ Suppose y conditioned on z is a two-component Gaussian mixture
model taking the form:

PEIX =2) = (1 - )p(y; 0.95%) + okp(y; 2, 011) (16.13)

~—
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Example: Mixture models

o Let X € R™ be Gaussian with distribution N (0, X).

o Let ¢(y; u, A) be Gaussian with mean p covariance A.

@ Suppose y conditioned on z is a two-component Gaussian mixture
model taking the form:

p(Y|X = z) = (1 - )p(y; 0,051) + ap(y; , 071) (16.13)
@ Assume we have obtained 7 i.i.d. samples y', ..., 4" from mixture
density, and goal is to produce posterior p(z|y!,...,y"), similar to

Bayes-rule inverting a Naive-Bayes model.

%
VY
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Example: Mixture models

Let X € R™ be Gaussian with distribution @
e A.

Let ¢(y; 1, A) be Gaussian with mean p covs ¢
Suppose y conditioned on z is a two-componenp Gaussian mixture
model taking the form:

py|X =2) = (1 — a)p(y;0,081) + af

(y; z,071) (16.13)

, .-, y™ from mixture
f (33|?Jl, ...,y™), similar to

[[riix =) (s19)
—émTE_lw) exp {;logp(in = :c)}
(16.15)
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Example: Mixture models
o We equate exp (—3x ac) with exp((0, ¢(x))), with dp = m.
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.
@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A C [m]) from it is relatively “cheap” O(m?).
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.

@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A from it is relatively “cheap” O(m2

o exp{> I ' equates to Hf;l exp (<§’, {
with b = 1. d\the intractable factors.

logp(y'|X =z
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.

@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A C [m]) from it is relatively “cheap” O(m?).

o exp {37 logp(y'|X = x)} equates to U exp <<§i, <I>’(:r)>)
with b = 1. These are the intractable factors.

@ Base distribution p(x;@,ﬁ) o exp (—%xTJ_II) which is a Gaussian
and easy as mentioned above.
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.

@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A C [m]) from it is relatively “cheap” O(m?).

o exp {37 logp(y'|X = x)} equates to U exp <<§i, <I>’(:r)>)
with b = 1. These are the intractable factors.

e Base distribution p(z;6,0) o exp (—32To~'z) which is a Gaussian
and easy as mentioned above.

@ If we multiply in only one intractable term, complexity to produce
marginal still not so bad (quite easy in fact).
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.
@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A C [m]) from it is relatively “cheap” O(m?).

o exp {37 logp(y'|X = x)} equates to U exp (<§i, <I>’(;U)>>
with b = 1. These are the intractable factors.

e Base distribution p(z;6,0) o exp (—32To~'z) which is a Gaussian
and easy as mentioned above.

@ If we multiply in only one intractable term, complexity to produce
marginal still not so bad (quite easy in fact).

e l.e., ®'-augmented distribution is proportional to

1 | _
exp (—2$T0_196> [(1 = a)e(y';0,081) + ap(y';z,071)]  (16.16)
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.

@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A C [m]) from it is relatively “cheap” O(m?).

o exp {37 logp(y'|X = x)} equates to U exp (<§i, <I>’(;U)>)
with b = 1. These are the intractable factors.

e Base distribution p(z;6,0) o exp (—32To~'z) which is a Gaussian
and easy as mentioned above.

@ If we multiply in only one intractable term, complexity to produce
marginal still not so bad (quite easy in fact).
o l.e., P*-augmented distribution is proportional to

1 . .
exp (—2xTa_1:C> [(1—a)e(y';0,081) + ap(y';z,071)]  (16.16)

e Computing marginals is easy (mixture of only 2 components)
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Example: Mixture models

o We equate exp (—32To~'z) with exp((d, #(2))), with dp = m.

@ Such a distribution is multivariate Gaussian, and getting marginals
(say p(w4) for A C [m]) from it is relatively “cheap” O(m?).

o exp {37 logp(y'|X = x)} equates to U exp (<§i, <I>’(;U)>)
with b = 1. These are the intractable factors.

e Base distribution p(z;6,0) o exp (—32To~'z) which is a Gaussian
and easy as mentioned above.

@ If we multiply in only one intractable term, complexity to produce
marginal still not so bad (quite easy in fact).

o l.e., ®'-augmented distribution is proportional to

1 . .
exp (—2xTa_1:C> [(1—a)e(y';0,081) + ap(y';z,071)]  (16.16)

e Computing marginals is easy (mixture of only 2 components)
e If we multiply in all ®, becomes intractable (2" potentially distinct
components each of which requires marginalization).
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Polytope and Base case

@ We can partition the mean parameters (u, ji) € RIr+drxb
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Polytope and Base case

@ We can partition the mean parameters (u, ji) € RIr+drxb

@ Marginal polytope associated with these means

M(,®) = {(11, )] (1 i) = Ep[(#(X), ®(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
H (1, i) = —A* (1, ).
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Polytope and Base case

@ We can partition the mean parameters (u, ji) € RIr+drxb

@ Marginal polytope associated with these means

M(¢, @) = { (1, )| (. 1) = Ep[(¢(X), ®(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
H(ji, o) = —A* (1, )-
@ We also have polytope associated with only base distribution

M(@) = {1 € RY|u = Bp((X)) } (16.18)
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Polytope and Base case

@ We can partition the mean parameters (u, ji) € RIr+drxb

@ Marginal polytope associated with these means

M(¢, @) = { (1, )| (. 1) = Ep[(¢(X), ®(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
H(ji, o) = —A* (1, )-
@ We also have polytope associated with only base distribution

M(@) = { € R |u = By(6(X)) | (16.18)

@ Recall thm: any mean in the interior is realizable via an exponential
family model, and associated entropy H () is tractable.
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Augmented Base case

@ For each i = 1...d; we have a ®’-augmented exp. model and
polytope

M(, ) = { (u, i) € R (u, i) = B [(6(X), @ (X))] for some p}
(16.19)
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Augmented Base case

@ For each i = 1...d; we have a ®*-augmented exp. model and
polytope

M, @) = { (. ) € R (1, i) = By[($(X), B(X))] for some p}
(16.19)

@ Thus, any such mean parameters has instance for associated
exponential family, and also H (u, i*) is easy to compute.
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Augmented Base case

@ For each i = 1...d; we have a ®*-augmented exp. model and
polytope

M, @) = { (. ) € R (1, i) = By[($(X), B(X))] for some p}
(16.19)

@ Thus, any such mean parameters has instance for associated
exponential family, and also H (u, ii') is easy to compute.

@ Goal, variational approximation: Need outer bounds on M(¢, ®) and
expression for entropy (as is now normal).
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Augmented Base case

@ For each i = 1...d; we have a ®*-augmented exp. model and
polytope

M, @) = { (. ) € R (1, i) = By[($(X), B(X))] for some p}
(16.19)

@ Thus, any such mean parameters has instance for associated
exponential family, and also H (u, ii') is easy to compute.

@ Goal, variational approximation: Need outer bounds on M(¢, ®) and
expression for entropy (as is now normal).

@ Turns out we can do this, and an iterative algorithm to find fixed
points of associated Lagrangian, that correspond to EP.
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New outer bound

@ For any mean parms (7,7) where 7 = (71,7%,...,79), define
coordinate “projection operation”

(1, 7) — (7,79 (16.20)

This operator simply removes all but 7 from 7.
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New outer bound

o For any mean parms (7,7) where 7 = (71,7%,...,791), define
coordinate “projection operation”

(1, 7) — (1,79 (16.20)

This operator simply removes all but 7 from 7.

@ Define outer bound on true means M (¢, ®) (which is still convex)

L(),®) = {(r,7)|r € M(¢),IT'(1,7) € M(¢,®"), Vi}  (16.21)
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New outer bound

o For any mean parms (7,7) where 7 = (71,7%,...,791), define

coordinate “projection operation”
(1, 7) — (1,7%) (16.20)

This operator simply removes all but 7 from 7.

@ Define outer bound on true means M (¢, ®) (which is still convex)
£(6,®) = {(1.7)|r € M(9),ITi(r,7) € M(, '), Vi}  (16.21)

@ Note, based on a set of projections onto M(¢, ®*). Clearly outer
bound since M(¢, ®) C L(¢, D).
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New outer bound

o For any mean parms (7,7) where 7 = (71,7%,...,791), define

coordinate “projection operation”
(1, 7) — (1,7%) (16.20)

This operator simply removes all but 7 from 7.

@ Define outer bound on true means M (¢, ®) (which is still convex)
L6, @) = {(1.7)|r € M(9),ITi(r,7) € M(¢, '), Vi}  (16.21)

e Note, based on a set of projections onto M(¢, ®*). Clearly outer
bound since M(¢, ®) C L(¢, D).

e If ®% are edges of a graph (i.e. local consistency) then we get
standard L outer bound we saw before with Bethe approximation

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 16 - Nov 24th, 2014 F32/59 (pg.96/205)



EP like variants
(NERRNARRRRRE NRRNARN

Members in new outer bound

e For any mean parms (7,7) € L(¢, ®):
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Members in new outer bound

e For any mean parms (7,7) € L(¢, ®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7);
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Members in new outer bound

e For any mean parms (7,7) € L(¢,®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7); B)
Also, for i = 1...dj, there is a_member of the (¢, ®*)-exponential

family with mean parameter @ ith entropy H (7, 7).
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Members in new outer bound

e For any mean parms (7,7) € L(¢,®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7); B)
Also, for i = 1...dj, there is a member of the (¢, ®*)-exponential
family with mean parameters (7, 7%) with entropy H (7, 7).

@ Both entropy forms are easy to compute, and so is a new entropy
approximation:
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Members in new outer bound

e For any mean parms (7,7) € L(¢,®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7); B)
Also, for i = 1...dj, there is a member of the (¢, ®*)-exponential
family with mean parameters (7, 7%) with entropy H (7, 7).

@ Both entropy forms are easy to compute, and so is a new entropy
approximation:

dr
H(r,7) & Hep(r,7) 2 H(r) + > [H(r,7) = H(r)|  (16.22)
=1
@ With outer bound and entropy expression, we get new variational form

(D) EL(6,) {<T’ o)+ <T é> + Hep(7, ?)} (16.23)
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Members in new outer bound

e For any mean parms (7,7) € L(¢,®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7); B)
Also, for i = 1...dj, there is a member of the (¢, ®*)-exponential
family with mean parameters (7, 7%) with entropy H (7, 7).

@ Both entropy forms are easy to compute, and so is a new entropy
approximation:

H(r,7) ~ Hep(r, 7) ) + Z [ (7)} (16.22)
@ With outer bound and entropy expression, we get new variational form

e {(r.0)+ (7,0) + Hep(7,7) } (16.23)

@ This characterizes the EP algorithms.
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Members in new outer bound

e For any mean parms (7,7) € L(¢,®): A) There is a member of the
¢-exponential family which mean parameters 7 with entropy H(7); B)
Also, for i = 1...dj, there is a member of the (¢, ®*)-exponential
family with mean parameters (7, 7%) with entropy H (7, 7).

@ Both entropy forms are easy to compute, and so is a new entropy
approximation:

H(r,7) ~ Hep(r, 7) ) + Z [ (7)} (16.22)

@ With outer bound and entropy expression, we get new variational form
max  {(r,0) + <%,é> + Hop(r, 7 } 16.23

L {(0) o(r.7) (16.23)

@ This characterizes the EP algorithms.
e Given graph G = (V, E') when we take ¢ to be unaries V' and ® to be
edges F, we exactly recover Bethe approximation.
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Lagrangian optimization setup

e Make d; duplicates of vector 7 € R?T, call them 1’ € R for i € [dr].
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Lagrangian optimization setup

o Make d; duplicates of vector 7 € R, call them ' € R for i € [dr].

@ This gives large set of pseudo-mean parameters

{r,(n",7),i € [df]} € R x (R x R")% (16.24)
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Lagrangian optimization setup

o Make d; duplicates of vector 7 € R, call them ' € R for i € [dr].
@ This gives large set of pseudo-mean parameters

{r,(n",7),i € [df]} € R x (R x R")% (16.24)

@ We arrive at the optimization:

dr dy
L {<T, 6) + X; (7,87 + H(r) + 2; (H (i, 7) — H(j)] }

(16.25)

subject to 7 € M(¢), and for all i that 7 = 1 and that
(0", 7) € M(¢, ®°).
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Lagrangian optimization setup

o Make d; duplicates of vector 7 € R, call them ' € R for i € [dr].
@ This gives large set of pseudo-mean parameters

{r,(n",7),i € [df]} € R x (R x R")% (16.24)

@ We arrive at the optimization:

dr dr
max {(7‘,9>+Z<7~'i, ~i>+H(r)+Z [H(ni,%i)—H(ni)]}
i=1 i=1

{rimi )3}
(16.25)

subject to 7 € M(¢), and for all i that 7 = 1 and that
(', 7') € M(¢,2").

@ Use Lagrange multipliers to impose constrg and for
the rest of the constraints too.
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To Lagrangian optimization

@ We get a Lagrangian version of the objective
(1[ d[
L(t;\) = (1,6) +Z<T 02>+F (n*, 7 +Z T—n

(16.26)

where
F(r; (', 7) +Z ~H@)]  (16.27)

and where X\’ are the Lagrange multipliers assocaited with the
constraint n* = 7 for all i (other multipliers not shown).
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{7', (0", 7"),1 € [dﬂ} to the above Lagrangian, must have properties:
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{T, (n*,7"),i € [d]]} to the above Lagrangian, must have properties:
@ 7 belongs to relative interior, i.e., 7 € M°(6) of the base model.
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{T, (n*,7"),i € [d]]} to the above Lagrangian, must have properties:
@ 7 belongs to relative interior, i.e., 7 € M°(6) of the base model.
@ (1, 7%) belongs to relative interior of extended model, so
(', 7") € M°(¢, ®").
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{T, (n*,7"),i € [d]]} to the above Lagrangian, must have properties:
@ 7 belongs to relative interior, i.e., 7 € M°(6) of the base model.
@ (1%,7%) belongs to relative interior of extended model, so
(', 7') € M°(¢, ®").

© Means must agree, i.e., T = 7/i for all 7.
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{T, (n*,7"),i € [d]]} to the above Lagrangian, must have properties:
@ 7 belongs to relative interior, i.e., 7 € M°(6) of the base model.
@ (n°,7") belongs to relative interior of extended model, so
(0, 7) € M*(9, 7).
© Means must agree, i.e., T = ni for all 7.
@ First condition means we're a member of the ¢-exponential family,
and (it can be shown) has form:

dr
q(z;0,\) cxp{<9+2)\i,@(r£)>} (16.28)
i=1
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To Lagrangian optimization to Moment Matching

@ Considering optimality conditions on what must hold for a solution
{T, (n*,7"),i € [d]]} to the above Lagrangian, must have properties:
@ 7 belongs to relative interior, i.e., 7 € M°(6) of the base model.
@ (n°,7") belongs to relative interior of extended model, so
(0, 7) € M*(9, 7).
© Means must agree, i.e., T = ni for all 7.
@ First condition means we're a member of the ¢-exponential family,
and (it can be shown) has form:

dy
)@Xp 0+ ZAi,¢(m)>} (16.28)
i=1

@ Second condition means we're a member of the (¢, ®%)-exponential
family, and (it can be shown) has form:
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To Lagrangian optimization to Moment Matching

@ Thid condiiton is a form of moment-matching. l.e., we have
T = Ey[¢p(X)] and 0" = E,;i[¢(X)], so equating these gives:

[ a0 Ns@w(dn) = [ d@0.00@ridn)  (1630)

fro i € [df].
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Moment Matching — Expectation Propagation Updates

O At iteration n = 0, initialize the Lagrange multiplier vectors
(AL, ... i)
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Moment Matching — Expectation Propagation Updates

@ At iteration n = 0, initialize the Lagrange multiplier vectors
(AL .. )
@ At each iteration n = 1,2,... choose some index i(n) € {1,...,d;}.
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Moment Matching — Expectation Propagation Updates
@ At iteration n = 0, initialize the Lagrange multiplier vectors

(AL .. )
@ At each iteration n = 1,2,... choose some index i(n) € {1,...,d;}.

© Under the following augmented distribution

¢'(2;0,0%, \) x exp <0 + Z)\l, ¢(w)> + <9~Z,(I)l(ac)> , (16.31)
0+

compute the mean parameters 7 as follows:

i) — /qi<n)($)¢(x),,(d;g) = E itm [6(X))] (16.32)

F38/59 (pg.118/205
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Moment Matching — Expectation Propagation Updates

@ At iteration n = 0, initialize the Lagrange multiplier vectors
(AL .. )

@ At each iteration n = 1,2,... choose some index i(n) € {1,...,d;}.

© Under the following augmented distribution

¢'(2;0,0", \) x exp <0 + Z)\l,¢(x)> + <9~Z,<I>Z(x)> , (16.31)

0£i
compute the mean parameters 7 as follows:
7 = [ ¢ (@)o()w(dz) = By [6CX) (16.32)

© Form base distribution ¢ using Equation 16.28 and adjust A" to
satisfy the moment-matching condition

Eq[p(X)] = '™ (16.33)
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Moment Matching — Expectation Propagation Updates

@ At iteration n = 0, initialize the Lagrange multiplier vectors
(AL .. )

@ At each iteration n = 1,2,... choose some index i(n) € {1,...,ds}.

© Under the following augmented distribution

¢'(2;0,0", \) x exp <0 + Z)\l,¢(x)> + <9~Z,<I>Z(x)> , (16.31)

0£i
compute the mean parameters 7 as follows:
7 = [ @)o()wlde) = By [6(X) (16.32)

© Form base distribution ¢ using Equation 16.28 and adjust \¥(™) to
satisfy the moment-matching condition

Eq[¢(X)] = '™ (16.33)

© This is a KL-divergence minimization step, but done w. exponential

family models which thus corresponds to moment-matching.
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Example: Tree-structured EP

@ When base distribution is a tree, we get what is called tree-structured
EP
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Example: Tree-structured EP

@ When base distribution is a tree, we get what is called tree-structured
EP

@ Start with a graph G = (V, E) and form a spanning tree
T = (V, E(T)) in any arbitrary way.
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Example: Tree-structured EP

@ When base distribution is a tree, we get what is called tree-structured
EP

e Start with a graph G = (V, E) and form a spanning tree
T = (V,E(T)) in any arbitrary way.

@ Form base distribution as follows:

p(2:0,0) H exp(fs(zs)) H exp(Ost(zs, ) (16.34)

seV (s,t)eE(T)
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Example: Tree-structured EP

@ When base distribution is a tree, we get what is called tree-structured
EP

e Start with a graph G = (V, E) and form a spanning tree
T = (V,E(T)) in any arbitrary way.

@ Form base distribution as follows:

p(x:6,0) o H exp(fs(xs)) H exp(Ost(xs, 1)) (16.34)
seV (s,t)eE(T)

@ Then, each ®' corresponds to an edge in E\ E(T), and gives us, for
each edge (u,v) € E\ E(T), the $(**)-augmented distribution

p(;0,040) o (;0,0) exp(fu o (T, T2)) (16.35)
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EP as variational: Summary of key points

@ Fixed points of EP exist assuming Lagrangian form has at least one
optimum.
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EP as variational: Summary of key points

@ Fixed points of EP exist assuming Lagrangian form has at least one

optimum.
@ No guarantees that EP will converge, but if it does it will be at a

stationary point of the Lagrangian.
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EP as variational: Summary of key points

@ Fixed points of EP exist assuming Lagrangian form has at least one
optimum.
@ No guarantees that EP will converge, but if it does it will be at a

stationary point of the Lagrangian.
@ EP can be seen to be based on variational framework, using Bethe-like

entropy and convex outer bound for the mean parameters.

F40/59 (pg.127,/205
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EP as variational: Summary of key points

@ Fixed points of EP exist assuming Lagrangian form has at least one
optimum.

@ No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.

@ EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.

@ When base distribution is unaries and ® is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.
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EP as variational: Summary of key points

@ Fixed points of EP exist assuming Lagrangian form has at least one
optimum.

@ No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.

@ EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.

@ When base distribution is unaries and ® is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.

@ Moment matching of EP can be seen as striving for solution of
associated Lagrangian.
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EP as variational: Summary of key points

Fixed points of EP exist assuming Lagrangian form has at least one
optimum.

No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.

EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.

When base distribution is unaries and ®’ is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.

Moment matching of EP can be seen as striving for solution of
associated Lagrangian.

Lost of flexibility here, depending on what the base distribution is
(e.g., could be a k-tree or any other structure).
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EP as variational: Summary of key points

Fixed points of EP exist assuming Lagrangian form has at least one
optimum.

No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.

EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.

When base distribution is unaries and ®’ is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.

Moment matching of EP can be seen as striving for solution of
associated Lagrangian.

Lost of flexibility here, depending on what the base distribution is
(e.g., could be a k-tree or any other structure).

Can also be done for Gaussian mixture models.
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EP as variational: Summary of key points

@ Fixed points of EP exist assuming Lagrangian form has at least one
optimum.

@ No guarantees that EP will converge, but if it does it will be at a
stationary point of the Lagrangian.

@ EP can be seen to be based on variational framework, using Bethe-like
entropy and convex outer bound for the mean parameters.

@ When base distribution is unaries and ® is the edges of a graph, we
in fact get standard Bethe approximation, and standard sum-product
LBP.

@ Moment matching of EP can be seen as striving for solution of
associated Lagrangian.

@ Lost of flexibility here, depending on what the base distribution is
(e.g., could be a k-tree or any other structure).

@ Can also be done for Gaussian mixture models.
@ Many more details, variations, and possible roads to new research.

See text and also see Tom Minka's papers.

http://research.microsoft.com/en-us/um/people/minka/papers/

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F40/59 (pg.132/205



Mean Field
[ ERRRARN AR RN RN

Mean Field

@ So far, we have been using an outer bound on M.
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Mean Field

@ So far, we have been using an outer bound on M.

@ In mean-field methods, we use an “inner bound”, a subset of M
constructed so as to make the optimization of A(f) easier.
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Mean Field

@ So far, we have been using an outer bound on M.

@ In mean-field methods, we use an “inner bound”, a subset of M
constructed so as to make the optimization of A(f) easier.

@ Since subset, we get immediate bound on A(6).
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Mean Field

So far, we have been using an outer bound on M.

In mean-field methods, we use an “inner bound”, a subset of M
constructed so as to make the optimization of A(f) easier.

Since subset, we get immediate bound on A(#).

Key: we based the inner bound on a “tractable family” like a 1-tree or
even a O-tree (all independent) so that the variational problem can be
computed efficiently.
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Mean Field

So far, we have been using an outer bound on M.

@ In mean-field methods, we use an “inner bound”, a subset of M
constructed so as to make the optimization of A(f) easier.

@ Since subset, we get immediate bound on A(6).

o Key: we based the inner bound on a “tractable family” like a 1-tree or
even a O-tree (all independent) so that the variational problem can be
computed efficiently.

o Convexity is often lost still, however.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F41/59 (pg.137/205



Mean Field
TREEEEEE it

Tractable Families

@ We have graph G = (V, E') which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F = (V, Er) where Ep C E.
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Tractable Families

e We have graph G = (V, E)) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V,0)
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Tractable Families

e We have graph G = (V, E)) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V) all independence model.
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Tractable Families

e We have graph G = (V, E)) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V) all independence model.

@ Tree example: F' = (V, Er) where edges Ep C E constitute a
spanning tree.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F42/59 (pg.141/205



Mean Field
TREEEEEE it

Tractable Families

e We have graph G = (V, E)) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V) all independence model.

@ Tree example: ' = (V, E1) where edges Er C E constitute a
spanning tree.

e Exponential family, sufficient statistics ¢ = (¢4, € Z) associated
with this family Z(F') C Z. These are the statistics that need respect
the Markov properties of only the subgraph F'.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F42/59 (pg.142/205



Mean Field
TREEEEEE it

Tractable Families

e We have graph G = (V, E)) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V) all independence model.

@ Tree example: ' = (V, E1) where edges Er C E constitute a
spanning tree.

e Exponential family, sufficient statistics ¢ = (¢, € Z) associated
with this family Z(F') C Z. These are the statistics that need respect
the Markov properties of only the subgraph F'.

@ () gets smaller too. The parameters that respect F' are of the form:

RIS QF)2{0e€Qb,=0VaecI\I(F)}CQ  (16.36)
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Tractable Families

e We have graph G = (V, E)) which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V) all independence model.

@ Tree example: F' = (V| Ep) where edges Ep C E constitute a
spanning tree.

e Exponential family, sufficient statistics ¢ = (¢, € Z) associated
with this family Z(F') C Z. These are the statistics that need respect
the Markov properties of only the subgraph F'.

@ () gets smaller too. The parameters that respect F' are of the form:
RIS QF)2{0e€Qb,=0VaecI\I(F)}CQ  (16.36)
notice, all parameters associated with sufficient statistic not in Z(F)

are set to zero, those statistics are nonexistent in F.
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Tractable Families

We have graph G = (V, E') which is intractable and we find a
spanning subgraph (recall, spanning = all nodes, subgraph = subset
of edges), i..e, F' = (V, Er) where Er C E.

@ Simplest example: F' = (V) all independence model.
@ Tree example: F' = (V| Ep) where edges Ep C E constitute a

spanning tree.

Exponential family, sufficient statistics ¢ = (¢, @ € ) associated
with this family Z(F') C Z. These are the statistics that need respect
the Markov properties of only the subgraph F'.

Q) gets smaller too. The parameters that respect I’ are of the form:

RIS QF)2{0e€Qb,=0VaecI\I(F)}CQ  (16.36)

notice, all parameters associated with sufficient statistic not in Z(F)
are set to zero, those statistics are nonexistent in F.

If parameter was not zero, model would not respect the familiy of F'.
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Tractable Subgraphs: All Independent Example

o Ex: MRF with potential functions for nodes and edges.
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Tractable Subgraphs: All Independent Example

o Ex: MRF with potential functions for nodes and edges.
@ For each (s,t) € E(G), we have 0, ;).
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Tractable Subgraphs: All Independent Example

o Ex: MRF with potential functions for nodes and edges.
e For each (s,t) € E(G), we have 0, ;).
e Iy = (V,0) which yields

Q(F()) = {9 S Q|9(s,t) =0 V(S,t) € E(G)} (1637)
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Tractable Subgraphs: All Independent Example

Ex: MRF with potential functions for nodes and edges.
For each (s,t) € E(G), we have 0, ;).
Fy = (V,0) which yields

Q(Fo) = {0 € Qb5 =0 Y(s,t) € E(G)} (16.37)
@ This is the all independence model, giving family of distributions

po(x) = [ p(xs;05) (16.38)

seV
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Tractable Subgraphs: Tree Example

@ Ex: MRF with potential functions for nodes and edges.
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Tractable Subgraphs: Tree Example

@ Ex: MRF with potential functions for nodes and edges.
e For each (s,t) € E(G), we have 0, ;).
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Tractable Subgraphs: Tree Example

@ Ex: MRF with potential functions for nodes and edges.

e For each (s,t) € E(G), we have 0, .

e Fir = (V,T) where T' C E are edges that constitute a spanning tree
of G, giving

Q(Fo) = {0 € Qe =0 V(s,t) ¢ T} (16.39)
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Tractable Subgraphs: Tree Example

@ Ex: MRF with potential functions for nodes and edges.

e For each (s,t) € E(G), we have 0, .

o Fp = (V,T) where T C E are edges that constitute a spanning tree
of G, giving

Q(Fo) = {0 € Q) =0 Y(s,t) ¢ T} (16.39)
@ This gives a tree-dependent family

pole) = [[ o) J[ - Pomef) (16.40)

& b b 0)p (s 0)
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Inner bound Approximate Polytope

o Before, we had M(G; ¢)(= M¢a(G; ¢)), all possible mean parameters
associated with G and associated set of sufficient statistics ¢.
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Inner bound Approximate Polytope

o Before, we had M(G; ¢)(= Ma(G; ¢)), all possible mean parameters
associated with G and associated set of sufficient statistics ¢.

@ For a given subgraph F', we only consider those mean parameters
possible under such models. l.e.,

Mp(G;¢) = {u € RYu = Ey[p(z)] for some 0 € Q(F)} (16.41)
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Inner bound Approximate Polytope

o Before, we had M(G; ¢)(= Ma(G; ¢)), all possible mean parameters
associated with G and associated set of sufficient statistics ¢.

@ For a given subgraph F', we only consider those mean parameters
possible under such models. l.e.,

Mp(G;¢) = {u € R u = Ey[¢p(x)] for some 6 € Q(F)} (16.41)
@ Therefore, since 6 € Q(F) C 2, we have that
Mz (G;¢) € M°(G; 9) (16.42)

and so M%.(G; ¢) is an inner approximation of the set of realizable
mean parameters.
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Inner bound Approximate Polytope

o Before, we had M(G; ¢)(= Ma(G; ¢)), all possible mean parameters
associated with G and associated set of sufficient statistics ¢.

@ For a given subgraph F', we only consider those mean parameters
possible under such models. l.e.,

Mp(G;¢) = {u € R u = Ey[¢p(x)] for some 6 € Q(F)} (16.41)
@ Therefore, since 6 € Q(F') C €2, we have that
M5(G; 9) € M°(G; 9) (16.42)

and so M$%.(G; @) is an inner approximation of the set of realizable
mean parameters.

@ Shorthand notation: M7 (G) = M3 (G;¢) and M°(G) = M°(G; ¢)
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Mean field variational lower bound

@ Mean field methods generate lower bounds on their estimated A(6)
and approximate mean parameters 1 = Eg[¢(X)].

Proposition 16.5.1 (mean field lower bound)

Any mean parameter i € M° yields a lower bound on the cumulant
function:

A(6) > (6, 1) — A (n) (16.43)

Moreover, equality holds if and only if @ and p are dually coupled (i.e.,
pn = Eqg[p(X)]).
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Mean field variational lower bound

@ On the one hand, obvious due to A(f) = sup,cq {(0, 1) — A* (1) }
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Mean field variational lower bound

@ On the one hand, obvious due to A(f) = sup,caq {(0, 1) — A* (1) }
@ More traditional proof, let ¢ be any distribution that satisfies moment
matching E,[¢(X)] = pu, then:
A(f) = 10g/m q(r)emf(g(l»y(dr) (16.44)
> [ a@(6,0(a)) - loga(w)lw(da) (16.45)
= (0, Eq[op(X)]) — H(q) = (0, ) — H(q) (16.46)
L]
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Mean field variational lower bound

@ On the one hand, obvious due to A(f) = sup,caq {(0, 1) — A* (1) }

@ More traditional proof, let ¢ be any distribution that satisfies moment
matching E,[¢(X)] = p, then:

A9) = log/m q(:v)e)q);e(;j(mu(dx) (16.44)
> [ a@(0,0(a)) - logg(w)lw(da) (16.45)
= (0, B[6(X)) — Hlg) = (6,0) —H(a)  (16.46)

o If we optimize ¢ over all M(G), then we'll get equality.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F47/59 (pg.161/205



Mean Field
(NRRRNT RARRNRRNNY

Mean field variational lower bound

@ On the one hand, obvious due to A(f) = sup,caq {(0, 1) — A* (1) }

@ More traditional proof, let ¢ be any distribution that satisfies moment
matching E,[¢(X)] = p, then:

A9) = log/m q(:v)e)q);e(;j(mu(dm) (16.44)
> [ a@(0,0(a)) - logg(w)lw(da) (16.45)
= (0, B[6(X)) — Hlg) = (6,0) —H(a)  (16.46)

o If we optimize ¢ over all M(G), then we'll get equality.

o If we optimize ¢ over a subset of M(G) (e.g., such as Mp(G), then
we'll get inequality.

L]
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Tractable Dual

e Normally dual A* (1) = supgeq ((6, ) — A(0)) is intractable or
unavailable, but key idea is that if 4 € Mp(G) it will be possible to
compute easily.
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Tractable Dual

o Normally dual A*(p1) = supgeq ((8, ) — A(0)) is intractable or
unavailable, but key idea is that if 4 € Mp(G) it will be possible to
compute easily.

@ Thus, goal of mean field (from variational approximation perspective)
is to form Amg(0) where:

A(0) > max {{u,0) — Ap(u)} = Awr(9) (16.47)

HEME(G)

where A7.(11) corresponds to dual function restricted to inner bound
set F(G). l.e., when we expand A7,(x), we can take advantage of the
fact that p is restricted in all cases, so A}.(4) might be greatly
simplified relative to A* ().
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Tractable Dual

o Normally dual A*(p1) = supgeq ((8, ) — A(0)) is intractable or
unavailable, but key idea is that if 4 € Mp(G) it will be possible to
compute easily.

@ Thus, goal of mean field (from variational approximation perspective)
is to form Amg(0) where:

A0) = max {{1,0) = Ap(p)} 2 Avr(9) (16.47)

where A7.(11) corresponds to dual function restricted to inner bound
set F(G). l.e., when we expand A7.(x), we can take advantage of the
fact that p is restricted in all cases, so A}.(x1) might be greatly
simplified relative to A*(u).

e Note, for € Mp(G), A3(1) is not an approximation, rather it is
just easy to compute.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F48/59 (pg.165/205



Mean Field
IRNRRRRRY ARRRRRRRN

Mean field, KL-Divergence, Exponential Model Families

@ Given two distributions p, ¢, KL-Divergence of p w.r.t. ¢ is defined as

DGln) = [ a(o) log 453 via) (16.48)

p(z)
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Mean field, KL-Divergence, Exponential Model Families

@ Given two distributions p, ¢, KL-Divergence of p w.r.t. ¢ is defined as
q(x)
qu:/ q:c[log ]I/dx 16.48
) = [ o) |log 825 | vid) (16,48
@ In summation form, we have

Dl = 3 alx) [mg “’”] (16.49)

rexm ])(71)
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Mean field, KL-Divergence, Exponential Model Families

@ Given two distributions p, ¢, KL-Divergence of p w.r.t. ¢ is defined as
q(x)
qu:/ q:c[log ]I/dx 16.48
) = [ o) |log 825 | vid) (16,48
@ In summation form, we have

Dllp) = 3 a(a) [bg q”] (16.49)

reEX™ p(l’)

@ For exponential models this takes on some interesting forms, and more
over, we can see the variational approximation above as a
KL-divergence minimization problem.
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Mean field, KL-Divergence, Exponential Model Families

Given two distributions p, ¢, KL-Divergence of p w.r.t. ¢ is defined as

Dlalln) = [ ate) fiog 453 viae) (16.48)

p(z)
@ In summation form, we have

Dllp) = 3 a(a) [bg q”] (16.49)

reEX™ p(l’)

@ For exponential models this takes on some interesting forms, and more
over, we can see the variational approximation above as a
KL-divergence minimization problem.

@ Recall, exponential models can be parameterized using canonical
parameters 6 or mean parameters . We will use notational shortcuts:
D(0'110°) = D(pg:|Ipgz), D(p']|1*) = D(ppur||py2), and even
D(u'|6%) = D(py[Ipe2)-
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Mean field, KL-Divergence, Exponential Model Families
e Consider §',0% € Q
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Mean field, KL-Divergence, Exponential Model Families

e Consider §1,0% € Q
e Let D(6']|6) have aforementioned meaning (KL-divergence between
the two corresponding distributions), and let u’ = Ey:[¢(X)],
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Mean field, KL-Divergence, Exponential Model Families

e Consider §1,0% € Q

e Let D(6']|6?) have aforementioned meaning (KL-divergence between
the two corresponding distributions), and let u’ = Eg:[¢(X)],

@ Then we have a Bregman divergence form:

11192y _ o por(2)
D 11%) = B [1og 2271 (16 50)
= A(6%) — A(0") — (u',0% — 0") (16.51)

— A(6?) - [A(el) +(VA®0Y), 02 — 91>} (16.52)

02
D(o" |1 6%)

00) + (VA(OY), 0 — 01)

0
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Mean field, KL-Divergence, Exponential Model Families

@ Purely dual form of KL divergence can be formed as well, i.e.,

D(0M|6%) = D(p'||u®) = A* (') — A" (1) — (0%, 1" — 1*) (16.53)
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Mean field, KL-Divergence, Exponential Model Families

@ Purely dual form of KL divergence can be formed as well, i.e.,
DOM16%) = D(u12) = A*(u') — A*(u2) — (6%, 1" — u?) (16.53)

@ Dual Bregman form
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Mean field, KL-Divergence, Exponential Model Families

@ Mixed/hybrid form of KL in terms of dual
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Mean field, KL-Divergence, Exponential Model Families

e Mixed/hybrid form of KL in terms of dual

@ We can also write the KL as:
D(OY]]62) = D('[[62) = A(6?) + A*(u') — (u,6%)  (16.54)

which comes from dual expression A*(p') = (0, u') — A(6") for
dually coupled parameters u! = Egi [¢(X)].
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Mean field, KL-Divergence, Exponential Model Families

e Mixed/hybrid form of KL in terms of dual

@ We can also write the KL as:
D(0'16%) = D(u'||6%) = A(6%) + A*(ul) - (u*, 92> (16.54)

which comes from dual expressmn A*(u <01,,u1> A(6) for
dually coupled parameters u' = E91[¢(X)].
@ In particular, this equation (variational expression for the cumulant):

A(0) = sup {(0, 1) — A* (1) } (?7)
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Mean field, KL-Divergence, Exponential Model Families

e Mixed/hybrid form of KL in terms of dual

@ We can also write the KL as:
D(0'16%) = D(u'||6%) = A(6%) + A*(ul) - (u*, 92> (16.54)

which comes from dual expressmn A*(u <01,,u1> A(6) for
dually coupled parameters u' = E91[¢(X)].

@ In particular, this equation (variational expression for the cumulant):

A(6) = sup {(6,11) — A*(n)) (77)
HEM

@ ...can be written as:

f {A(0) + A* () — (0, )} = inf D(u||0) =0 16.55
JQM{ )+ A () — (0, 1)} Jnf, (110) ( )
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Mean field, KL-Divergence, Exponential Model Families

@ Since

inf {A(0) + A" () — (0, )} = i 116) = -
inf {AQO)+A4"(w) = (0,10} = inf D(ull6) =0 (16.55)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F53/59 (pg.179/205



Mean Field
IRERRRRRRRRRI NRRRN

Mean field, KL-Divergence, Exponential Model Families

@ Since

Jnf AA40) + A7) = (0, )} = inf D(ul|0) =0 (16.55)

@ Thus, solving the mean-field variational problem of:

2 L0) — A% 16.47
uem%{m ) — Ar(p)} ( )

is identical to minimizing KL Divergence D(pu||0) subject to constraint

we Mp(G).
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Mean field, KL-Divergence, Exponential Model Families

@ Since

Jnf AA40) + A7) = (0, )} = inf D(ul|0) =0 (16.55)

@ Thus, solving the mean-field variational problem of:

L {(n, 0) — Ap(p)} (16.47)

is identical to minimizing KL Divergence D(u||6) subject to constraint
1€ Mp(G).
@ |.e., mean field can be seen as finding the best approximation, in

terms of this particular KL-divergence, to py, over a family of “nice”
distributions Mp(G).
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Naive Mean field for Ising Model

@ A classic example of mean-field (goes back to statistical physics)
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Naive Mean field for Ising Model

@ A classic example of mean-field (goes back to statistical physics)

@ Mean parameters for Ising: ps = E[X ] = p(Xs = 1),
pst = B[ X X)) = p(X, =1,X, = 1), thus p € RIVIHIEL
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Naive Mean field for Ising Model

@ A classic example of mean-field (goes back to statistical physics)

@ Mean parameters for Ising: ps = E[X ] = p(Xs = 1),
pst = B[ XX = p(Xs =1, X; = 1), thus p € RIVIHIEL

@ Let Fy = (V, () be our mean field approximation family. Thus,

Mg (G) = {,u, eRVHEN) < gy <1 Vs eV, and g = pspu V}
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Naive Mean field for Ising Model

@ A classic example of mean-field (goes back to statistical physics)

@ Mean parameters for Ising: ps = E[X ] = p(Xs = 1),
pst = B[ XX = p(Xs =1, X; = 1), thus p € RIVIHIEL

@ Let Fy = (V, () be our mean field approximation family. Thus,
Mg, (G) = {,u € R'V‘HE'\O <pus <1 VseV, and pg = pspit V}
e Key is that for p € Mg, (G), dual is not hard to calculate, that is

(1) = > Helps) (16.56)

seV

which are sum of unary entropy terms, very cheap.
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Naive Mean field for Ising Model

@ A classic example of mean-field (goes back to statistical physics)

@ Mean parameters for Ising: ps = E[X ] = p(Xs = 1),
pst = E[X X¢) = p(Xs = 1,X; = 1), thus g € RIVIHIEL
@ Let Fy = (V, () be our mean field approximation family. Thus,

Mg, (G) = {,u € R'V‘HE'\O <pus <1 VseV, and pg = pspit V}

e Key is that for u € Mg, (G), dual is not hard to calculate, that is
—Agy (1) = Hy(ps) (16.56)
seV

which are sum of unary entropy terms, very cheap.

@ Moreover, polytope for Mg, (G) is also very simple, namely the
hypercube [0, 1]™
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Naive Mean field for Ising Model

@ We get variational lower bound problem

A(9) > max Zquer Z 9stﬂsut+ZH fhs)

(Ml,.... 6[0 1] seV Sf)EE seV
(16.57)
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Naive Mean field for Ising Model

@ We get variational lower bound problem

A(9) > max > Osps+ > Oaprep+ > Halps)

(1, otm) €™ | 27 (s:t)EE €V
(16.57)

@ Have constrained form of edge mean parameters fis¢ = pusfiy
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Naive Mean field for Ising Model

@ We get variational lower bound problem

A(9) > max > Osps+ > Oaprep+ > Halps)

(1, otm) €™ | 27 (s:t)EE €V
(16.57)

@ Have constrained form of edge mean parameters pgs = fisftt

@ (U1,...,m) € [0,1]™ is m-D hypercube.
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Naive Mean field for Ising Model

@ We get variational lower bound problem

A(9) > max > Osps+ > Oaprep+ > Halps)

(1, otm) €™ | 27 (s:t)EE €V
(16.57)

@ Have constrained form of edge mean parameters pgs = fisftt
® (U1,...,1m) € [0,1]™ is m-D hypercube.

@ Once again, we have a non-convex problem.
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Naive Mean field for Ising Model

@ We get variational lower bound problem

A(0) > max Z Ospis + Z Osthvstie + Z Hs(pus)
(1, ) €101]™ | 2= (st)EE seV

(16.57)

Have constrained form of edge mean parameters pg = puspi
(1. pm) € 10,1]™ is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).
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Naive Mean field for Ising Model

@ We get variational lower bound problem

A(G) > max Z Hs,us + Z estﬂs,ut + Z H :us

(1, otm) €™ | 27 (s:t)EE €V
(16.57)

Have constrained form of edge mean parameters pg = puspi
(1. pm) € 10,1]™ is m-D hypercube.

Once again, we have a non-convex problem.

One way to optimize is to do coordinate ascent (given otherwise fixed
vector, optimize one value at a time).

@ If each coordinate optimization is optimal, we'll get a stationary point.
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Naive Mean field for Ising Model

@ coordinate ascent: choose some s and optimize p5 fixing all pu; for

t#s.
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Naive Mean field for Ising Model

@ coordinate ascent: choose some s and optimize p; fixing all u; for
t#s.

@ Taking derivatives w.r.t. us, we get the following update rule for
element pg

ps <o | Os+ Y O (16.58)
teN(s)

where o(z) = [1 + exp(—2z)] ! is the sigmoid (logistic) function.
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Naive Mean field for Ising Model

@ coordinate ascent: choose some s and optimize p; fixing all u; for
t#s.

@ Taking derivatives w.r.t. us, we get the following update rule for
element pg

ps <o | Os+ Y O (16.58)
teEN(s)

where o(z) = [1 + exp(—2z)] " is the sigmoid (logistic) function.
@ This is the standard mean-field update that is quite well known, but

derived from coordinate assent optimization of a variational
perspective of the problem.
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Naive Mean field for Ising Model

@ coordinate ascent: choose some s and optimize p; fixing all u; for
t#s.

@ Taking derivatives w.r.t. us, we get the following update rule for
element i

ps <o | Os+ Y O (16.58)
teEN(s)

where o(z) = [1 + exp(—2z)] " is the sigmoid (logistic) function.
@ This is the standard mean-field update that is quite well known, but

derived from coordinate assent optimization of a variational
perspective of the problem.

@ The variational approach indeed seems quite general and powerful.
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Example of Lack of Convexity

e Consider simple two variable example (X1, X3), X; € {—1,+1}.
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Example of Lack of Convexity

o Consider simple two variable example (X1, X2), X; € {—1,+1}.
@ Exponential family form

po(x) o< exp(f1x1 + Oz + O127122) (16.59)
having mean parameters p; = E[X;] and p12 = E[X; X5].

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F57/59 (pg.198/205



Mean Field
IRERRRRRRRRRRNRRY N

Example of Lack of Convexity

o Consider simple two variable example (X3, X»2), X; € {—1,+1}.
@ Exponential family form

pg(.fv) X exp(91x1 + Oox9 + 912%11’2) (16.59)

having mean parameters p; = E[X;] and p12 = E[X X5).
@ Impose constraint p12 = pq 2, we get mean field objective

fur, po;0) = Orapi o + 011 + O2p0 + H(py) + H(pe)  (16.60)

where H(p;) = —3(1+ pi) log 2(1 + 1) — 3(1 — i) log (1 — ;)
Note that p(X; = +1) = 5 (1 4 )
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Example of Lack of Convexity

o Consider simple two variable example (X1, X2), X; € {—1,+1}.
@ Exponential family form

po(x) o< exp(brx1 + Oox9 + O122112) (16.59)
having mean parameters p; = E[X;] and p12 = E[X X5).
@ Impose constraint 10 = pq e, we get mean field objective
f(pa, po; 0) = Grappo + O1p1 + Oapio + H(pa) + H(pz)  (16.60)

where H (p1;) = —5(1 + i) log 5 (1 + i) — 5(1 — ) log (1 — pi)
@ Consider sub-models of the form:
1
(01,02, 012) = (0,0, > log —L— ) 2 6(q) (16.61)
4 1—gq
where ¢ € (0,1) is a parameter such that, for any ¢ we have
E[X;] = 0. It turns out that in this form, we have ¢ = p(X; = X2).
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Example of Lack of Convexity

o Consider simple two variable example (X1, X2), X; € {—1,+1}.
@ Exponential family form
po(x) ox exp(b121 + O222 + O127122) (16.59)
having mean parameters p; = E[X;] and p12 = E[X X5).
@ Impose constraint 10 = pq e, we get mean field objective
fpa, p2; 0) = Orapapo + 011 + O2p2 + H(p1) + H(pz)  (16.60)

where H (p1;) = —5(1 + i) log 5 (1 + i) — 5(1 — ) log (1 — pi)
@ Consider sub-models of the form:
1
(61,02,012) = (0,0, - log —— ) 2 4(q) (16.61)
4 1—gq
where ¢ € (0,1) is a parameter such that, for any ¢ we have
E[X;] = 0. It turns out that in this form, we have ¢ = p(X; = X2).
@ Is mean field objective in this case convex for all ¢7
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Lack of Convexity example

@ For ¢ = 0.5, objective f(u1,u2;6(0.5)) has global maximum at
(1, p2) = (0,0) so mean field is exact and convex. This corresponds
to p(X1 = X2) = 0.
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Lack of Convexity example

e For ¢ = 0.5, objective f(u1,p2;6(0.5)) has global maximum at
(p1, p2) = (0,0) so mean field is exact and convex. This corresponds
to p(X1 = X2) =0.

@ When ¢ gets small, f becomes non-convex, e.g., has multiple modes
in figure.
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Lack of Convexity example

e For ¢ = 0.5, objective f(u1,p2;6(0.5)) has global maximum at
(1, p2) = (0,0) so mean field is exact and convex. This corresponds
to p(X1 = X2) =0.

@ When ¢ gets small, f becomes non-convex, e.g., has multiple modes
in figure.

Symmetry breaking in naive mean field
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Sources for Today's Lecture

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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