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Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001

Should have read chapters 1,2, 3, 4 in this book. Read chapter 5.

Also should read “Divergence measures and message passing” by
Thomas Minka, and “Structured Region Graphs: Morphing EP into
GBP”, by Welling, Minka, and Teh.

Assignment due Wednesday (Nov 26th) night, 11:45pm. Final project
proposal updates and progress report (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24): Kikuchi, Expectation
Propagation

L17 (11/26): Expectation Propagation,
Mean Field

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Drawing/Visualizing Hypergraphs as Bipartite Graphs
Hypergraph (shaded regions) on left, while bipartite graph
representation on the right.
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Hypergraph, edge representations

It is possible to represent hypergraphs by only showing their
hyperedges.

Here, we see graphical representations of three hypergraphs. Subsets
of nodes corresponding to hyperedges are shown in rectangles,
whereas the arrows represent inclusion relations among hyperedges.

Which ones, if any, are in reduced representation?
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Möbius Inversion Lemma and Inclusion-Exclusion

For any A ⊆ V , define two functions Ω : 2V → R and Υ : 2V → R.

Then the above inclusion-exclusion principle is one instance of the
more general Möbius Inversion lemma, namely that each of the below
two equations implies the other.

∀A ⊆ V : Υ(A) =
∑

B:B⊆A
Ω(B) (16.13)

∀A ⊆ V : Ω(A) =
∑

B:B⊆A
(−1)|A\B|Υ(B) (16.14)

Möbius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).

We use it here to come up with alternative expressions for the entropy
and for the marginal polytope.
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Möbius Inversion Lemma for posets

Let P be a partially ordered set with binary relation �.
A zeta function of a poset is a mapping ζ : P × P → R defined by

ζ(g, h) =

{
1 if g � h,
0 otherwise.

(16.23)

The Möbius function ω : P × P → R is the multiplicative inverse of
this function. It is defined recursively:
ω(g, g) = 1 for all g ∈ P
ω(g, h) = 0 for all h : h � g.
Given ω(g, f) defined for f such that g � f ≺ h, we define

ω(g, h) = −
∑

{f |g�f≺h}

ω(g, f) (16.24)

Then, ω and ζ are multiplicative inverses, in that∑
f∈P

ω(g, f)ζ(f, h) =
∑

{f |g�f�h}

ω(g, f) = δ(g, h) (16.25)
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General Möbius Inversion Lemma for Posets

Lemma 16.2.8 (General Möbius Inversion Lemma)

Given real valued functions Υ and Ω defined on poset P, then Ω(h) may
be expressed via Υ(·) via

Ω(h) =
∑
g�h

Υ(g) for all h ∈ P (16.23)

iff Υ(h) may be expressed via Ω(·) via

Υ(h) =
∑
g�h

Ω(g)ω(g, h) for all h ∈ P (16.24)

When P = 2V for some set V (so this means that the poset consists of
sets and all subsets of an underlying set V ) this can be simplified, where
� becomes ⊆; and � becomes ⊇, like we saw above.
(see Stanley, “Enumerative Combinatorics” for more info.)
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Back to Kikuchi: Möbius and expressions of factorization

Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V,E), so we have µ = (µh, h ∈ E), then we can define new
functions ϕ = (ϕh, h ∈ E) via Möbius inversion lemma as follows

logϕh(xh) ,
∑
g�h

ω(g, h) logµg(xg) (16.23)

From Möbius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

logµh(xh) =
∑
g�h

logϕg(xg) (16.24)

Key, when ϕh is defined as above, and G is a hypertree we have

pµ(x) =
∏
h∈E

ϕh(xh) (16.25)

⇒ general way to factorize a distribution that factors w.r.t. a
hypergraph.
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multi-information decomposition
Using Möbius, and Eqn. (??) we can write

Ih(µh) =
∑
xh

µh(xh) logϕh(xh) =
∑
xh

µh(xh)

∑
g�h

ω(g, h) logµg(xg)


=
∑
g�h

ω(g, h)

{∑
xh

µh(xh) logµg(xg)

}

=
∑
f�h

∑
e�f

ω(f, e)

∑
xf

µf (xf ) logµf (xf )

= −
∑
f�h

c(f)Hf (µf )

where we define overcounting numbers (∼ shattering coefficient)

c(f) ,
∑
e�f

ω(f, e) (16.31)

This gives us a new expression for the hypertree entropy

Hhyper(µ) =
∑
h∈E

c(h)Hh(µh) (16.32)
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Usable to get Kikuchi variational approximation

Sum to one constraint: ∑
xh

τh(xh) = 1 (16.33)

Local agreement via the hypergraph constraint. For any g � h must
have marginalization condition∑

xh\g

τh(xh) = τg(xg) (16.34)

Define new polyhedral constraint set Lt(G)

Lt(G) = {τ ≥ 0| Equations (??) ∀h, and (??) ∀g � h hold}
(16.35)
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Kikuchi variational approximation, entropy approx

Generalized approximate (app) entropy for the hypergraph:

Happ =
∑
g∈E

c(g)Hg(τg) (16.33)

where Hg is hyperedge entropy and overcounting number defined by:

c(g) =
∑
f�g

ω(g, f) (16.34)
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Variational Approach Amenable to Approximation

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (16.1)

where dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦
+∞ if µ /∈M

(16.2)

Given efficient expression for A(θ), we can compute marginals of
interest.

Above expression (dual of the dual) offers strategies to approximate or
(upper or lower) bound A(θ). We either approximate M or −A∗(µ)
or (most likely) both.
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Variational Approximations we cover
1 Set M← L and −A∗(µ)← HBethe(τ) to get Bethe variational

approximation, LBP fixed point.

2 Set M← Lt(G) (hypergraph marginal polytope), −A∗(µ)← Happ(τ)
where Happ =

∑
g∈E c(g)Hg(τg) (via Möbius) to get Kikuchi

variational approximation, message passing on hypergraphs.
3 Partition τ into (τ, τ̃), and set M← L(φ,Φ) and set
−A∗(µ)← Hep(τ, τ̃) to get expectation propagation.

4 Mean field (from variational perspective) is (with MF (G) ⊆M)

A(θ) ≥ max
µ∈MF (G)

{〈µ, θ〉 −A∗F (µ)} = Amf(θ) (16.1)

5 Upper bound Convexified/tree reweighted LBP, entropy upper bounds
H(τ(F )) for all members F ∈ D of tractable substructures.

A(θ) ≤ BD(θ; ρ)
∆
= sup

τ∈L(G;D)

{
〈τ, θ〉+

∑
F∈D

ρ(F )H(τ(F ))

}
(16.2)

with L(G;D) =
⋂
F∈DM(F )
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Kikuchi and Hypertree-based Methods EP like variants Refs

Kikuchi variational approximation
This at last gets the Kikuchi variational approximation

AKikuchi(θ) = max
τ∈Lt(G)

{〈θ, τ〉+Happ(τ)} (16.1)

For a graph, this is exactly ABethe(θ).

Also, if hypergraph is junction tree (r.i.p. holds, tree-local consistency
implies global consistency), then also exact (although expensive,
exponential in the tree-width to compute Happ).

We can define message passing algorithms on the hypertree, and show
that if it converges, it is a fixed point of the associated Lagrangian.
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Kikuchi and Hypertree-based Methods EP like variants Refs

Kikuchi variational approximation, 3x3 grid example

Example, left is 3x3 grid, right is optimal junction tree cover.
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Treewidth is 4, so complexity is O(r5).

In general, for n× n grid strutured graph, treewidth is O(n) (grows as
the square root of the number of nodes).
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Kikuchi variational approximation, 3x3 grid example

Left is clustering of vertices in 3x3 grid, and right is hyperedge
graph/region graph.
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Complexity is only O(r4) and will stay O(r4) even as n gets bigger
(since clusters are at most size four).
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Kikuchi variational approximation, 3x3 grid example
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Kikuchi and Hypertree-based Methods EP like variants Refs

Generalized BP (GBP): Key idea

Key idea: sets of nodes send messages to other sets of nodes.

The node sets that communicate with each other represented using
hypergraph (hyperedges are the ndoe sets)

Standard LBP algorithm is merely a special case of GBP

Different choices of node sets/hyperedges and message passings give
different GBP algorithms.

This gives the user a gradual tradeoff between the most expensive,
intractable, and accurate junction tree algorithm, and the least
expensive but possibly quite inaccurate LBP algorithm.

Allows a trade-off between complexity for accuracy!

In many cases, convergence of GBP will be at fixed points of the
Lagrangian for the generalized variational approximation

AKikuchi(θ) = max
τ∈Lt(G)

{〈θ, τ〉+Happ(τ)} (16.2)
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GBP examples: parent-to-child

In hypergraph Hasse-like diagram,
arrows point from parent (superset)
to child (subset). Ex: on the right,
set {1, 2, 4, 5} is the parent of both
{2, 5} and {4, 5}.

1 2 4 5
52

2 3 5 6

5

54 7 8
5 8

5 6 8 9

4 5 5 6

For h ∈ E, let Par(h) be the set of parents. Also define descendants
as D(h) = {g ∈ E|g ≺ h} and ancestors as A(h) = {g ∈ E|g � h}.
Also define D+(h) = D(h) ∪ {h} and A+(h) = A(h) ∪ {h}
If f � g then xf has more variables than xg and one can perform a
message of the form Mf→g(xg) =

∑
f\g τ(xf ) =

∑
f\g τ(xg, xf\g)
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GBP examples: parent-to-child message

Then parent-to-child message passing takes the form:

τh(xh) ∝

 ∏
g∈D+(h)

exp(θ(xg))

 ∏
g∈D+(h)

∏
f∈Par(g)\D+(h)

Mf→g(xg)


(16.3)

We form marginal at h
from the factors associated
with each hyperedge, namely
exp(θ(xg)), and by the mes-
sages sent to h and h’s de-
scendants from other parents.

h

D+(h)

gg

Par(g) \ D+(h)

g′

Par(g) \ D +
(h)

′
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GBP examples: parent-to-child message, grid graph

1 2

87

4

3

9

5 6

1 2 4 5
52

2 3 5 6

5

54 7 8
5 8

5 6 8 9

4 5 5 6

Consider message for hyperedge h = {1, 2, 4, 5}, which has factors ψ′

associated with (regular graph) edges {1, 2}, {2, 5}, {4, 5}, and {1, 4}
and also unary factors for each of the nodes 1, 2, 4, and 5 (eg., to
associate evidence into the model).

Then D+(h) = {{1, 2, 4, 5}, {4, 5}, {2, 5}, {5}}.
We get and expression for the marginal at h using the above formula.

τ1,2,4,5 ∝ ψ′1,2ψ′1,4ψ′2,5ψ′4,5ψ′1ψ′2ψ′4ψ′5 (16.4)

×M{2,3,5,6}→{2,5}M{4,5,7,8}→{4,5}M{5,6}→{5}M{5,8}→{5}
This could repeat for each of the largest clusters, until convergence.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 16.4.3 (Relationship between A and A∗)

(a) For any µ ∈M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦
+∞ if µ /∈M

(16.3)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (16.4)

(c) For θ ∈ Ω, sup occurs at µ ∈M◦ of moment matching conditions

µ =

∫
DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (16.5)
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Expectation Propagation: basic idea

Came from a method called “assumed density filtering” (ADF).

Doing full inference involves exponential computation.
We do a bit of inference, involving reasonable computation, and
getting us a new distribution that is a bit more complex but not too
much more complex.
Before going further, we “project” this new distribution back down to
a class of simple distributions.
We then repeat the above step with a bit more of inference, different
than what we did above.
We keep repeating: do a bit of inference, and project, until all
inference has been done.
The difference between ADF and EP is that, with ADF at this stage
we’re done. With EP we can keep repeating the process of inference,
projection.
EP can be seen as a generalization of BP.
Interestingly, EP is instance of our variational framework, Equation
13.7.
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Term Decoupling in EP

Partition the d sufficient statistics into two parts, the tractable ones
(of which there are dT ) and the intracxtable ones (of which there are
dI). Thus, d = dT + dI .

Tractable component

φ , (φ1, φ2, . . . , φdT ) (16.5)

Intractable component

Φ , (Φ1,Φ2, . . . ,ΦdI ) (16.6)

φi are typically univariate, while Φi are typically multivariate
(b-dimensional we’ll assume), although this need not always be the
case (but will be for our exposition).

Consider exponential families associated with subcollection (φ,Φ).
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Tractable component

Tractable component

φ , (φ1, φ2, . . . , φdT ) (16.7)

So φ : Xm → RdT with vector of parameters θ ∈ RdT .

Could instantiate model based only on this subcomponent, called the
base model
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Intractable component

Intractable component

Φ , (Φ1,Φ2, . . . ,ΦdI ) (16.8)

Each Φi : Xm → Rb.
Φ : Xm → Rb×dI .

Parameters θ̃ ∈ Rb×dI .

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F25/39 (pg.62/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Intractable component

Intractable component

Φ , (Φ1,Φ2, . . . ,ΦdI ) (16.8)

Each Φi : Xm → Rb.

Φ : Xm → Rb×dI .

Parameters θ̃ ∈ Rb×dI .

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F25/39 (pg.63/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Intractable component

Intractable component

Φ , (Φ1,Φ2, . . . ,ΦdI ) (16.8)

Each Φi : Xm → Rb.
Φ : Xm → Rb×dI .

Parameters θ̃ ∈ Rb×dI .

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F25/39 (pg.64/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Intractable component

Intractable component

Φ , (Φ1,Φ2, . . . ,ΦdI ) (16.8)

Each Φi : Xm → Rb.
Φ : Xm → Rb×dI .

Parameters θ̃ ∈ Rb×dI .

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F25/39 (pg.65/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Associated Distributions: base and i-augmented

The associated exponential family

p(x; θ, θ̃) ∝ exp (〈θ, φ(x)〉) exp
(〈
θ̃,Φ(x)

〉)
(16.9)

= exp (〈θ, φ(x)〉)
dI∏
i=1

exp
(〈
θ̃i,Φi(x)

〉)
(16.10)

Base model is tractable

p(x; θ,~0) ∝ exp (〈θ, φ(x)〉) (16.11)

Φi-augmented model

p(x; θ, θ̃i) ∝ exp (〈θ, φ(x)〉) exp
(〈
θ̃i,Φi(x)

〉)
(16.12)
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Associated Distributions: key points

The basic premises in the tractable-intractable partitioning between φ and
Φ are:

It is possible to compute marginals exactly in polynomial time for
distributions of the base form (any member of the φ-exponential
family).

For each i = 1, . . . , dI , exact polynomial-time computation is still
possible for any Φi-augmented form (any member of the
(φ,Φi)-exponential family).

Intractable to perform exact computations with the full
(φ,Φ)-exponential family.
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Example: Mixture models

Let X ∈ Rm be Gaussian with distribution N(0,Σ).

Let ϕ(y;µ,Λ) be Gaussian with mean µ covariance Λ.
Suppose y conditioned on x is a two-component Gaussian mixture
model taking the form:

p(y|X = x) = (1− α)ϕ(y; 0, σ2
0I) + αϕ(y;x, σ2

1I) (16.13)

Assume we have obtained n i.i.d. samples y1, . . . , yn from mixture
density, and goal is to produce posterior p(x|y1, . . . , yn), similar to
Bayes-rule inverting a Naive-Bayes model.
Using Bayes rule, we get mixture model with 2n components!

p(x|y1, . . . , yn) ∝ exp

(
−1

2
xᵀΣ−1x

) n∏
i=1

p(yi|X = x) (16.14)

= exp

(
−1

2
xᵀΣ−1x

)
exp

{
n∑
i=1

log p(yi|X = x)

}
(16.15)
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Example: Mixture models

We equate exp
(
−1

2x
ᵀΣ−1x

)
with exp(〈θ, φ(x)〉), with dT = m.

Such a distribution is multivariate Gaussian, and getting marginals
(say p(xA) for A ⊆ [m]) from it is relatively “cheap” O(m3).

exp
{∑n

i=1 log p(yi|X = x)
}

equates to
∏dI
i=1 exp

(〈
θ̃i,Φi(x)

〉)
,

with b = 1. These are the intractable factors.

Base distribution p(x; θ,~0) ∝ exp
(
−1

2x
ᵀΣ−1x

)
which is a Gaussian

and easy as mentioned above.

If we multiply in only one intractable term, complexity to produce
marginal still not so bad (quite easy in fact).

I.e., Φi-augmented distribution is proportional to

exp

(
−1

2
xᵀΣ−1x

)[
(1− α)ϕ(yi; 0, σ2

0I) + αϕ(yi;x, σ2
1I)
]

(16.16)

Computing marginals is easy (mixture of only 2 components)

If we multiply in all Φi, becomes intractable (2n potentially distinct
components each of which requires marginalization).
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Polytope and Base case

We can partition the mean parameters (µ, µ̃) ∈ RdT +dI×b

Marginal polytope associated with these means

M(φ,Φ) = {(µ, µ̃)|(µ, µ̃) = Ep[(φ(X),Φ(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
H(µ, µ̃) = −A∗(µ, µ̃).

We also have polytope associated with only base distribution

M(φ) =
{
µ ∈ RdT |µ = Ep(φ(X))

}
(16.18)

Recall thm: any mean in the interior is realizable via an exponential
family model, and associated entropy H(µ) is tractable.
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H(µ, µ̃) = −A∗(µ, µ̃).

We also have polytope associated with only base distribution

M(φ) =
{
µ ∈ RdT |µ = Ep(φ(X))

}
(16.18)

Recall thm: any mean in the interior is realizable via an exponential
family model, and associated entropy H(µ) is tractable.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F30/39 (pg.86/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Polytope and Base case

We can partition the mean parameters (µ, µ̃) ∈ RdT +dI×b

Marginal polytope associated with these means

M(φ,Φ) = {(µ, µ̃)|(µ, µ̃) = Ep[(φ(X),Φ(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
H(µ, µ̃) = −A∗(µ, µ̃).

We also have polytope associated with only base distribution

M(φ) =
{
µ ∈ RdT |µ = Ep(φ(X))

}
(16.18)

Recall thm: any mean in the interior is realizable via an exponential
family model, and associated entropy H(µ) is tractable.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F30/39 (pg.87/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Polytope and Base case

We can partition the mean parameters (µ, µ̃) ∈ RdT +dI×b

Marginal polytope associated with these means

M(φ,Φ) = {(µ, µ̃)|(µ, µ̃) = Ep[(φ(X),Φ(X))] for some p} (16.17)

along with negative dual of cumulant, or entropy
H(µ, µ̃) = −A∗(µ, µ̃).

We also have polytope associated with only base distribution

M(φ) =
{
µ ∈ RdT |µ = Ep(φ(X))

}
(16.18)

Recall thm: any mean in the interior is realizable via an exponential
family model, and associated entropy H(µ) is tractable.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F30/39 (pg.88/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

Augmented Base case

For each i = 1 . . . dI we have a Φi-augmented exp. model and
polytope

M(φ,Φi) =
{

(µ, µ̃i) ∈ RdT +b|(µ, µ̃i) = Ep[(φ(X),Φi(X))] for some p
}

(16.19)

Thus, any such mean parameters has instance for associated
exponential family, and also H(µ, µ̃i) is easy to compute.

Goal, variational approximation: Need outer bounds on M(φ,Φ) and
expression for entropy (as is now normal).

Turns out we can do this, and an iterative algorithm to find fixed
points of associated Lagrangian, that correspond to EP.
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New EP-based outer bound
For any mean parms (τ, τ̃) where τ̃ = (τ̃1, τ̃2, . . . , τ̃dI ), define
coordinate “projection operation”

Πi(τ, τ̃)→ (τ, τ̃ i) (16.20)

This operator simply removes all but τ̃ i from τ̃ .

Define outer bound on true means M(φ,Φ) (which is still convex)

L(φ,Φ) =
{

(τ, τ̃)|τ ∈M(φ),Πi(τ, τ̃) ∈M(φ,Φi), ∀i
}

(16.21)

Note, based on a set of projections onto M(φ,Φi).
Outer bound, i.e., M(φ,Φ) ⊆ L(φ,Φ), since:

τ ∈M(φ)⇔ ∃p s.t. τ = Ep[φ(X)] (16.22)

(τ, τ̃) ∈ L(φ,Φ)⇔ τ ∈M(φ) & ∃p s.t. (τ, τ̃ i) = Ep[φ(X),Φi(X)]
(16.23)

(τ, τ̃) ∈M(φ,Φ)⇔ ∃p s.t. (τ, τ̃) = Ep[φ(X),Φ(X)] (16.24)

If Φi are edges of a graph (i.e. local consistency) then we get standard
L outer bound we saw before with Bethe approximation

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F32/39 (pg.93/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

New EP-based outer bound
For any mean parms (τ, τ̃) where τ̃ = (τ̃1, τ̃2, . . . , τ̃dI ), define
coordinate “projection operation”

Πi(τ, τ̃)→ (τ, τ̃ i) (16.20)

This operator simply removes all but τ̃ i from τ̃ .
Define outer bound on true means M(φ,Φ) (which is still convex)

L(φ,Φ) =
{

(τ, τ̃)|τ ∈M(φ),Πi(τ, τ̃) ∈M(φ,Φi), ∀i
}

(16.21)

Note, based on a set of projections onto M(φ,Φi).
Outer bound, i.e., M(φ,Φ) ⊆ L(φ,Φ), since:

τ ∈M(φ)⇔ ∃p s.t. τ = Ep[φ(X)] (16.22)

(τ, τ̃) ∈ L(φ,Φ)⇔ τ ∈M(φ) & ∃p s.t. (τ, τ̃ i) = Ep[φ(X),Φi(X)]
(16.23)

(τ, τ̃) ∈M(φ,Φ)⇔ ∃p s.t. (τ, τ̃) = Ep[φ(X),Φ(X)] (16.24)

If Φi are edges of a graph (i.e. local consistency) then we get standard
L outer bound we saw before with Bethe approximation

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F32/39 (pg.94/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

New EP-based outer bound
For any mean parms (τ, τ̃) where τ̃ = (τ̃1, τ̃2, . . . , τ̃dI ), define
coordinate “projection operation”

Πi(τ, τ̃)→ (τ, τ̃ i) (16.20)

This operator simply removes all but τ̃ i from τ̃ .
Define outer bound on true means M(φ,Φ) (which is still convex)

L(φ,Φ) =
{

(τ, τ̃)|τ ∈M(φ),Πi(τ, τ̃) ∈M(φ,Φi), ∀i
}

(16.21)

Note, based on a set of projections onto M(φ,Φi).

Outer bound, i.e., M(φ,Φ) ⊆ L(φ,Φ), since:

τ ∈M(φ)⇔ ∃p s.t. τ = Ep[φ(X)] (16.22)

(τ, τ̃) ∈ L(φ,Φ)⇔ τ ∈M(φ) & ∃p s.t. (τ, τ̃ i) = Ep[φ(X),Φi(X)]
(16.23)

(τ, τ̃) ∈M(φ,Φ)⇔ ∃p s.t. (τ, τ̃) = Ep[φ(X),Φ(X)] (16.24)

If Φi are edges of a graph (i.e. local consistency) then we get standard
L outer bound we saw before with Bethe approximation

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F32/39 (pg.95/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

New EP-based outer bound
For any mean parms (τ, τ̃) where τ̃ = (τ̃1, τ̃2, . . . , τ̃dI ), define
coordinate “projection operation”

Πi(τ, τ̃)→ (τ, τ̃ i) (16.20)

This operator simply removes all but τ̃ i from τ̃ .
Define outer bound on true means M(φ,Φ) (which is still convex)

L(φ,Φ) =
{

(τ, τ̃)|τ ∈M(φ),Πi(τ, τ̃) ∈M(φ,Φi), ∀i
}

(16.21)

Note, based on a set of projections onto M(φ,Φi).
Outer bound, i.e., M(φ,Φ) ⊆ L(φ,Φ), since:

τ ∈M(φ)⇔ ∃p s.t. τ = Ep[φ(X)] (16.22)

(τ, τ̃) ∈ L(φ,Φ)⇔ τ ∈M(φ) & ∃p s.t. (τ, τ̃ i) = Ep[φ(X),Φi(X)]
(16.23)

(τ, τ̃) ∈M(φ,Φ)⇔ ∃p s.t. (τ, τ̃) = Ep[φ(X),Φ(X)] (16.24)

If Φi are edges of a graph (i.e. local consistency) then we get standard
L outer bound we saw before with Bethe approximation

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F32/39 (pg.96/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

New EP-based outer bound
For any mean parms (τ, τ̃) where τ̃ = (τ̃1, τ̃2, . . . , τ̃dI ), define
coordinate “projection operation”

Πi(τ, τ̃)→ (τ, τ̃ i) (16.20)

This operator simply removes all but τ̃ i from τ̃ .
Define outer bound on true means M(φ,Φ) (which is still convex)

L(φ,Φ) =
{

(τ, τ̃)|τ ∈M(φ),Πi(τ, τ̃) ∈M(φ,Φi), ∀i
}

(16.21)

Note, based on a set of projections onto M(φ,Φi).
Outer bound, i.e., M(φ,Φ) ⊆ L(φ,Φ), since:

τ ∈M(φ)⇔ ∃p s.t. τ = Ep[φ(X)] (16.22)

(τ, τ̃) ∈ L(φ,Φ)⇔ τ ∈M(φ) & ∃p s.t. (τ, τ̃ i) = Ep[φ(X),Φi(X)]
(16.23)

(τ, τ̃) ∈M(φ,Φ)⇔ ∃p s.t. (τ, τ̃) = Ep[φ(X),Φ(X)] (16.24)

If Φi are edges of a graph (i.e. local consistency) then we get standard
L outer bound we saw before with Bethe approximation

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 16 - Nov 24th, 2014 F32/39 (pg.97/122)



Kikuchi and Hypertree-based Methods EP like variants Refs

EP outer bound entropy and opt

For any mean parms (τ, τ̃) ∈ L(φ,Φ):

A) There is a member of the
φ-exponential family which mean parameters τ with entropy H(τ); B)
Also, for i = 1 . . . dI , there is a member of the (φ,Φi)-exponential
family with mean parameters (τ, τ̃ i) with entropy H(τ, τ̃ i).

Both entropy forms are easy to compute, and so is a new entropy
approximation:

H(τ, τ̃) ≈ Hep(τ, τ̃) , H(τ) +

dI∑
`=1

[
H(τ, τ̃ l)−H(τ)

]
(16.25)

With outer bound and entropy expression, we get new variational form

max
(τ,τ̃)∈L(φ,Φ)

{
〈τ, θ〉+

〈
τ̃ , θ̃
〉

+Hep(τ, τ̃)
}

(16.26)

This characterizes the EP algorithms.

Given graph G = (V,E) when we take φ to be unaries V and Φ to be
edges E, we exactly recover Bethe approximation.
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Lagrangian optimization setup

Make dI duplicates of vector τ ∈ RdT , call them ηi ∈ RdT for i ∈ [dT ].

This gives large set of pseudo-mean parameters{
τ, (ηi, τ̃ i), i ∈ [dI ]

}
∈ RdT × (RdT × Rb)dI (16.27)

We arrive at the optimization:

max
{τ,{(ηi,τ̃ i)}i}

{
〈τ, θ〉+

dI∑
i=1

〈
τ̃ i, θ̃i

〉
+H(τ) +

dI∑
i=1

[
H(ηi, τ̃ i)−H(ηi)

]}
(16.28)

subject to τ ∈M(φ), and for all i that τ = ηi and that
(ηi, τ̃ i) ∈M(φ,Φi).

Use Lagrange multipliers to impose constraint ηi = τ for all i, and for
the rest of the constraints too.
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To Lagrangian optimization

We get a Lagrangian version of the objective

L(τ ;λ) = 〈τ, θ〉+

dI∑
i=1

〈
τ̃ i, θ̃i

〉
+ F (τ ; (ηi, τ̃ i)) +

dI∑
i=1

〈
λi, τ − ηi

〉
+ . . .

(16.29)

where

F (τ ; (ηi, τ̃ i)) = H(τ) +

dI∑
i=1

[
H(ηi, τ̃ i)−H(ηi)

]
(16.30)

and where λi are the Lagrange multipliers assocaited with the
constraint ηi = τ for all i (other multipliers not shown).
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To Lagrangian optimization to Moment Matching

Considering optimality conditions on what must hold for a solution{
τ, (ηi, τ̃ i), i ∈ [dI ]

}
to the above Lagrangian, must have properties:

1 τ belongs to relative interior, i.e., τ ∈M◦(θ) of the base model.
2 (ηi, τ̃ i) belongs to relative interior of extended model, so

(ηi, τ̃ i) ∈M◦(φ,Φi).
3 Means must agree, i.e., τ = ηi for all i.

First condition means we’re a member of the φ-exponential family,
and (it can be shown) has form:

q(x; θ, λ) ∝ exp

{〈
θ +

dI∑
i=1

λi, φ(x)

〉}
(16.31)

Second condition means we’re a member of the (φ,Φi)-exponential
family, and (it can be shown) has form:

qi(x, θ, θ̃i, λ) ∝ exp

〈θ +
∑
`6=i

λ`, φ(x)

〉
+
〈
θ̃i,Φi(x)

〉 (16.32)
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To Lagrangian optimization to Moment Matching

Thid condiiton is a form of moment-matching. I.e., we have
τ = Eq[φ(X)] and ηi = Eqi [φ(X)], so equating these gives:∫

q(x; θ, λ)φ(x)ν(dx) =

∫
qi(x; θ, θ̃i)φ(x)ν(dx) (16.33)

fro i ∈ [dI ].
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Moment Matching → Expectation Propagation Updates
1 At iteration n = 0, initialize the Lagrange multiplier vectors

(λ1, . . . , λdI )

2 At each iteration n = 1, 2, . . . choose some index i(n) ∈ {1, . . . , dI}.
3 Under the following augmented distribution

qi(x; θ, θ̃i, λ) ∝ exp

〈θ +
∑
` 6=i

λl, φ(x)

〉
+
〈
θ̃i,Φi(x)

〉 , (16.34)

compute the mean parameters ηi as follows:

ηi(n) =

∫
qi(n)(x)φ(x)ν(dx) = Eqi(n) [φ(X)] (16.35)

4 Form base distribution q using Equation 16.31 and adjust λi(n) to
satisfy the moment-matching condition

Eq[φ(X)] = ηi(n) (16.36)

5 This is a KL-divergence minimization step, but done w. exponential
family models which thus corresponds to moment-matching.
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001
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