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Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book. Start reading chapter 4.

Assignment due Friday (Nov 21st) morning, 9:am. Final project
proposals (one page max).
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24):

L17 (11/26):

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (15.14)

Approximate variational representation of log partition function

ABethe(θ) = sup
τ∈L
{〈θ, τ〉+HBethe(τ)} (15.15)

= sup
τ∈L

〈θ, τ〉+
∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst)

 (15.16)

Exact when G = T but we do this for any G, still commutable

we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

We can optimize this directly using a Lagrangian formulation.
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Logistics Review

Comparison of A and ABethe: loop series expansion

Proposition 15.2.2

Consider a pairwise MRF with binary variables, with ABethe(θ) being the
optimized free energy evaluated at a LBP fixed point
τ = (τs, s ∈ V ; τst, (s, t) ∈ E(G)). Then we have the following
relationship with the cumulant function A(θ).

A(θ) = ABethe(θ) + log

1 +
∑
∅6=Ẽ⊆E

βẼ

∏
s∈V

Eτs
[
(Xs − τs)ds(Ẽ)

] (15.6)

For any Ẽ such that ∃s with ds(Ẽ) = 1, inner term is zero and
vanishes. why? Since Eτs

[
(Xs − τs)d

]
is the dth central moment.

Thus, terms in the sum only exists for generalized loops.

The generalized loops give the correction!

For trees, there are no generalized loops, and so if G is a tree then we
have an equality between A(θ) and ABethe(θ) (recall both defs here ).
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Logistics Review

General idea of Kikuchi
Variational representation of log partition function

A(θ) = sup
µ∈M(G)

{〈θ, µ〉 −A∗(µ)} (15.14)

So far, we used a replacement for −A∗(µ) and M(G) inspired by trees.
A tree is just a 1-tree, so one simple generalization would be to use a
k-tree, for constant k, where k is not too large.
More generally still, why not some other structure, like junction tree
(embedable into a k-tree for k not too large).
Junction trees are hypertrees (to be defined) that satisfy r.i.p. (special
case of hypergraphs). Every clique need not be of size k + 1.
So approach is the following: 1) derive expression for −A∗(µ) associated
with a hypertree/junction tree; 2) generalize this expression for any
hypergraph; 3) consider local consistency properties of
hypertrees/junction tree; 4) use hypertrees local consistency property for
generalized polytope associated with any hypergraph.
⇒ Kikuchi variational approach (“clustered variational approximation”)
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Hypergraphs, Posets, Inclusion/Exclusion, and Möbius Kikuchi and Hypertree-based Methods Refs

Hypergraphs

Recall, a graph G = (V,E) is a set of nodes V and edges E where
every (s, t) = e ∈ E is only two nodes.

A hypergraph is a generalization of a graph.

Definition 15.3.1 (hypergraph)

A hypergraph H = (V,E) is a set of vertices V and a collection of
hyperedges E, where each element e ∈ E is a subset of V , so
∀e ∈ E, e ⊆ V .

Thus, a hypergraph is a set system (V,E) where every e ∈ E can
consist of any number of nodes. I.e., we might have
{v1, v2, . . . , vke} = e ∈ E(G) for a hypergraph.

In a graph, |e| = 2. Thus, a graph is a (restricted) hypergraph, but
not vice verse.
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Hypergraphs, Posets, Inclusion/Exclusion, and Möbius Kikuchi and Hypertree-based Methods Refs

Drawing/Visualizing Hypergraphs

A set of vertices, normally edges connect two nodes. Hypergraph:
hyperedges are shaded regions, each region a vertex cluster Shaded
regions are cluster edge cover of “conformal” graph
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Hypergraphs, Posets, Inclusion/Exclusion, and Möbius Kikuchi and Hypertree-based Methods Refs

Hypergraphs and bipartite graphs

Hypergraphs can be represented by a bipartite G = (V, F,E) graphs
where V is a set of left-nodes, F is a set of right nodes, and E is a set of
size-two edges. Right nodes are hyperedges in the hypergraphs.

Next slide shows an example.
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Hypergraphs, Posets, Inclusion/Exclusion, and Möbius Kikuchi and Hypertree-based Methods Refs

Drawing/Visualizing Hypergraphs as Bipartite Graphs
Hypergraph (shaded regions) on left, while bipartite graph
representation on the right.
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Graph of a hypergraph, conformal, and acyclic

Let H = (V,E) be a hypergraph with vertex set V and edge set E.

The graph of a hypergraph G(H) is a graph G(H) = (V,E′) where
E′ is a set of vertex pairs, and where there is an edge in E′ for every
pair of nodes that are in the same hyperedge.

A hypergraph H is conformal (to the graph G(H)) if every clique of
G(H) is contained in an edge of H.

A hypergraph H is acyclic if H is conformal and G(H) is
chordal/triangulated.
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Drawing/Visualizing Hypergraphs

A set of vertices, normally edges connect two nodes. Hypergraph:
hyperedges are shaded regions, each region a vertex cluster Shaded
regions are cluster edge cover of “conformal” graph
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Hypergraph vs. Reduced Hypergraph

A hypergraph is reduced if no edge is a subset of another edge.
Hypergraph (as shaded regions) on left, reduced hypergraph on the
right (i.e., hyper edge {E, J} ⊂ {E, J,D,K} is removed).
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Hypergraph vs. Reduced Hypergraph
A hypergraph is reduced if no edge is a subset of another edge.
Hypergraph (as bipartite graph) on left, reduced hypergraph on the
right (edge {E,J} removed).
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Hypergraphs and Junction Trees

A hypergraph path from s ∈ V to t ∈ V is a sequence of k ≥ 1 edges
(e1, e2, . . . , ek) such that s ∈ e1, t ∈ ek, and ei∩ei+1 6= ∅ for 1 ≤ i < k.

Recall, a junction tree is a tree of clusters of vertices of a graph,
where the tree satisfies r.i.p. (i.e., induced sub-tree property).

A hypertree is a hypergraph that can be transformed to a tree in a
particular way, we’ve already seen them in the forms of junction trees.

In fact, a junction tree is a hypertree where the cliques (which are
clusters of original graph nodes) in the junction tree are the edges of
the hypertree.
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Hypergraphs and Hypertrees

Definition 15.3.2 (leaf)

A vertex v ∈ V (H) of H is called a leaf if it appears only in a single
maximal hyper-edge h ∈ H (same as simplicial in G(H)).

Definition 15.3.3 (acyclic)

A hypergraph H is called acyclic if it is empty, or if it contains a leaf v
such that induced hypergraph H(V − {v}) is acyclic (note, generalization
of perfect elimination order in a triangulated graph, junction tree).

Definition 15.3.4 (acyclic)

A hypergraph H is called acyclic if it is conformal to a graph that that is
chordal. I.e., H is acyclic if G(H) is triangulated.

Definition 15.3.5 (hypertree)

A hypergraph H that is acyclic is called a hypertree.
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Partially ordered set (poset)

A partially ordered set (poset) is a set P of objects with an order.

Set of objects P and a binary relation � which can be read as “is
contained in” or “is part of” or “is less than or equal to”.

For any x, y ∈ P, we may ask is x � y which is either true or false.

In a poset, for any x, y, z ∈ P the following conditions hold (by
definition):

For all x, x � x. (Reflexive) (P1.)

If x � y and y � x, then x = y (Antisymmetriy) (P2.)

If x � y and y � z, then x � z. (Transitivity) (P3.)

We can use the above to get other operators as well such as “less
than” via x � y and x 6= y implies x ≺ y. And x � y is read “x
contains y”. And so on.
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Partially ordered set

Given two elements, we need not have either x � y or y � x be true,
i.e., these elements might not be comparable. If for all x, y ∈ V we
have x � y or y � x then the poset is totally ordered.

If total order exists, then x � y is identical to not x � y.

There may exist only one element x which satisfies x � y for all y: If
x � y for all y, and z � y for all y, then z � x and x � z implying
x = z.If it exists, we can name this element 0 (zero). The dual
maximal element is called 1.

We define a set of elements x1, x2, . . . , xn as a chain if
x1 � x2 � · · · � xn, which means x1 � x2 and x2 � x3 and
. . .xn−1 � xn. Normally think of chain elements as distinct, but they
need not be in general.

The length of a chain of n elements is n− 1.
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Hypergraph, edge representations

It is possible to represent hypergraphs by only showing their
hyperedges.

Here, we see graphical representations of three hypergraphs. Subsets
of nodes corresponding to hyperedges are shown in rectangles,
whereas the arrows represent inclusion relations among hyperedges.

Which ones, if any, are in reduced representation?
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Hypergraph, edge representations, bipartite graphs

Edge-representations of
hypergraphs and their
corresponding bipartite graph
representation.
An ordinary single 4-cycle
graph represented as a
hypergraph.
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Hypergraph, edge representations, bipartite graphs

Edge-representations of
hypergraphs and their
corresponding bipartite graph
representation.
A simple hypertree of
“width” two.
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Hypergraph, edge representations, bipartite graphs

Edge-representations of
hypergraphs and their
corresponding bipartite graph
representation.
A more complex hypertree of
“width” three.
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Hypergraph, edge representations, and posets

Hypergraphs and edge representations.

Here, a→ b if it is the case that b � a and there does not exist a c
such that b � c � a, similar to a Hasse lattice diagram.

Hence, the edges of a hypergraph form a partially ordered set.
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Inclusion-Exclusion
Given ground set U and A,B ⊆ U , we may express the size of A ∪B
as: |A ∪B| = |A|+ |B| − |A ∩B|.
More generally, given A,B,C ⊆ U , then
|A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|A∩C|−|B∩C|+ |A∩B∩C|.
Start by including, then excluding, and then including again.

A

A

C

B

B

In general, inclusion-exclusion refers to measuring a quantity by, first
“adding” some other quantities and overshooting, then “subtracting”
off some more quantities and undershooting,then “adding” some still
other quantities and again overshooting,then “subtracting” off some
still more quantities and again undershooting, and so on, until we
reach the right answer. “adding” might mean “multiplying”, etc.
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Entropic Inclusion-Exclusion

Inclusion/exclusion also applies to entropy.

That is, we have

H(X,Y ) = H(X) +H(Y )− I(X;Y ) (15.1)

H(X,Y, Z) = H(X) +H(Y ) +H(Z) (15.2)

− I(X;Y )− I(X;Z)− I(Y ;Z) (15.3)

+ I(X;Y ;Z). (15.4)

and so on (see Yeung’s book on information theory, the chapter on
information measures).
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Inclusion/Exclusion, general form for set measure

Given X1, X2, . . . , Xn ⊆ U ,
Exclusion/exclusion formula for cardinality set measure µ(X) = |X|:

µ(∩ni=1Xi) =
n∑
i=1

µ(Xi)−
∑

1≤i<j≤n
µ(Xi ∪Xj) (15.5)

+
∑

1≤i<j<k≤n
µ(Xi ∪Xj ∪Xk) + . . . (15.6)

+ (−1)n−1µ(X1 ∪X2 ∪ . . . ∪Xn) (15.7)

A “dual” form has the form:

µ(∪ni=1Xi) =

n∑
i=1

µ(Xi)−
∑

1≤i<j≤n
µ(Xi ∩Xj) (15.8)

+
∑

1≤i<j<k≤n
µ(Xi ∩Xj ∩Xk) + . . . (15.9)

+ (−1)n−1µ(X1 ∩X2 ∩ . . . ∩Xn) (15.10)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 15 - Nov 19th, 2014 F24/43 (pg.26/45)



Hypergraphs, Posets, Inclusion/Exclusion, and Möbius Kikuchi and Hypertree-based Methods Refs

Inclusion/Exclusion, general form for set measure

Another (easier, shorter) way of writing these is as:

µ(∩ni=1Xi) =
n∑
k=1

(−1)k+1

 ∑
1≤i1<i2<···<ik≤n

µ(Xi1 ∪ · · · ∪Xik)


(15.11)

and

µ(∪ni=1Xi) =

n∑
k=1

(−1)k+1

 ∑
1≤i1<i2<···<ik≤n

µ(Xi1 ∩ · · · ∩Xik)


(15.12)
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Möbius Inversion Lemma and Inclusion-Exclusion

For any A ⊆ V , define two functions Ω : 2V → R and Υ : 2V → R.

Then the above inclusion-exclusion principle is one instance of the
more general Möbius Inversion lemma, namely that each of the below
two equations implies the other.

∀A ⊆ V : Υ(A) =
∑

B:B⊆A
Ω(B) (15.13)

∀A ⊆ V : Ω(A) =
∑

B:B⊆A
(−1)|A\B|Υ(B) (15.14)

Möbius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).

We use it here to come up with alternative expressions for the entropy
and for the marginal polytope.
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Hammersley Clifford Theorem

Theorem 15.3.6

(Hammersley and Clifford) Let F+ be the family of distributions with
positive (and continuous in the continuous case) density (i.e., p(x) > 0
for all p ∈ F+). Then F+ ∩ F(G,M(f)) = F+ ∩ F(G,M(p)).

F(G,M(f)) is the family we’ve seen before in this class, namely those
distributions that factorize w.r.t. the cliques of graph G.

F(G,M(p)) refers to the pairwise Markov property which states that if
u, v ∈ V (G) are not connected by an edge, then Xu⊥⊥Xv⊥⊥XV \{u,v}.

In fact, F(G,M(p)) ⊇ F(G,M(f)). always holds. Hammersley and
Clifford theorem (which uses Möbius inversion lemma) shows that
F+(G,R(p)) ⊆ F+(G,R(f)), where F+(G,M) = F+ ∩ F(G,M).
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Möbius Inversion Lemma

Lemma 15.3.7 (Möbius Inversion Lemma (for sets))

Let Υ and Ω be functions defined on the set of all subsets of a finite set
V , taking values in an Abelian group (i.e., a set and an operator having

properties closure, associativity, identity, and inverse, and for which the elements also

commute, the real numbers being just one example). The following two equations
imply each other.

∀A ⊆ V : Υ(A) =
∑

B:B⊆A
Ω(B) (15.15)

∀B ⊆ V : Ω(B) =
∑

C:C⊆B
(−1)|B\C|Υ(C) (15.16)
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Proof of Möbius Inversion Lemma

Proof.

∑
B:B⊆A

Ω(B) =
∑

B:B⊆A

∑
C:C⊆B

(−1)|B\C|Υ(C) (15.17)

=
∑

C:C⊆A

∑
B:C⊆B&B⊆A

Υ(C)(−1)|B\C| (15.18)

=
∑

C:C⊆A
Υ(C)

∑
B:C⊆B&B⊆A

(−1)|B\C| (15.19)

=
∑

C:C⊆A
Υ(C)

∑
H:H⊆A\C

(−1)|H| (15.20)
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Proof of Möbius Inversion Lemma

Proof Cont.

Also, note that for any set D,

∑
H:H⊆D

(−1)|H| =

|D|∑
i=0

(
|D|
i

)
(−1)i =

|D|∑
i=0

(
|D|
i

)
(−1)i(1)|D|−i (15.21)

= (1− 1)|D| =

{
1 if |D| = 0
0 otherwise

(15.22)

which means that when we take D = A \ C, with C ⊆ A, we get

∑
H:H⊆A\C

(−1)|H| =

{
1 if A = C
0 otherwise

(15.23)
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Proof of Möbius Inversion Lemma

Proof Cont.

This gives ∑
B:B⊆A

Ω(B) =
∑

C:C⊆A
Υ(C)1{A = C} = Υ(A) (15.24)

thus proving one direction. The other direction is very similar.
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Möbius Inversion Lemma for posets

Let P be a partially ordered set with binary relation �.
A zeta function of a poset is a mapping ζ : P × P → R defined by

ζ(g, h) =

{
1 if g � h,
0 otherwise.

(15.25)

The Möbius function ω : P × P → R is the multiplicative inverse of
this function. It is defined recursively:
ω(g, g) = 1 for all g ∈ P
ω(g, h) = 0 for all h : h � g.
Given ω(g, f) defined for f such that g � f ≺ h, we define

ω(g, h) = −
∑

{f |g�f≺h}

ω(g, f) (15.26)

Then, ω and ζ are multiplicative inverses, in that∑
f∈P

ω(g, f)ζ(f, h) =
∑

{f |g�f�h}

ω(g, f) = δ(g, h) (15.27)
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General Möbius Inversion Lemma

Lemma 15.3.8 (General Möbius Inversion Lemma)

Given real valued functions Υ and Ω defined on poset P, then Ω(h) may
be expressed via Υ(·) via

Ω(h) =
∑
g�h

Υ(g) for all h ∈ P (15.28)

iff Υ(h) may be expressed via Ω(·) via

Υ(h) =
∑
g�h

Ω(g)ω(g, h) for all h ∈ P (15.29)

When P = 2V for some set V (so this means that the poset consists of
sets and all subsets of an underlying set V ) this can be simplified, where
� becomes ⊆; and � becomes ⊇, like we saw above.
(see Stanley, “Enumerative Combinatorics” for more info.)
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Back to Kikuchi: Möbius and expressions of factorization

Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V,E), so we have µ = (µh, h ∈ E), then we can define new
functions ϕ = (ϕh, h ∈ E) via Möbius inversion lemma as follows

logϕh(xh) ,
∑
g�h

ω(g, h) logµg(xg) (15.30)

From Möbius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

logµh(xh) =
∑
g�h

logϕg(xg) (15.31)

Key, when ϕh is defined as above, and G is a hypertree we have

pµ(x) =
∏
h∈E

ϕh(xh) (15.32)

⇒ general way to factorize a distribution that factors w.r.t. a
hypergraph.
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1-Tree factorization and Möbius

When a 1-tree, we recover factorization we already know.

That is, the hypergraph is just a tree (a 1-tree), then the hyperedges
E consist of a poset consising of both standard-graph edges and
standard graph nodes, where if (u, v) = e ∈ E with u, v ∈ V then
u ≺ e and v ≺ e.

In such case, from Equation (15.31), we have that for all s ∈ V ,
ϕs(xs) = µs(xs) and for all (s, v) = e ∈ E, we have:

ϕst(xs, xt) =
µst(xs, xt)

µs(xs)µt(xt)
(15.33)

Gives us the tree factorization we saw early in this course, namely:

p(x) =
∏
h∈E

ϕh(xh) =
∏
s∈V

µs(xs)
∏

(s,t)=e∈E

µst(xs, xt)

µs(xs)µt(xt)
(15.34)
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HyperTree factorization and Möbius

For the more general hyper-
tree, consider edge set E =
{(12345), (2356), (4578), (25), (45), (56), (58), (5)}.
Check: is this a junction tree of cliques?

Then, from Eqn. (15.31), we get unaries ϕs(xs) = µs(xs) and
pairwise (e.g., ϕ25 = µ25/µ5, etc.) and

ϕ1245 =
µ1245

ϕ25ϕ45ϕ5
=

µ1245
µ25
µ5

µ45
µ5
µ5

=
µ1245µ5
µ25µ45

(15.35)
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expressions of factorization and Möbius

Doing this for all maxcliques of the figure, we get a factorization of
the form:

pµ =
µ1245µ5
µ25µ45

µ2356µ5
µ25µ56

µ4578µ5
µ45µ58

µ25
µ5

µ45
µ5

µ56
µ5

µ58
µ5

µ5 (15.36)

=
µ1245µ2356µ4578

µ25µ45
(15.37)

This is the same as the junction tree factorization with max cliques
{1245}, {4578}, and {2356} and separators {25} and {45}.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 15 - Nov 19th, 2014 F37/43 (pg.39/45)

Hypergraphs, Posets, Inclusion/Exclusion, and Möbius Kikuchi and Hypertree-based Methods Refs

New expressions of entropy
Can express entropic quantities as well, such as the hyperedge entropy

Hh(µh) = −
∑
xh

µh(xh) logµh(xh) (15.38)

and the “multi-information” function

Ih(µh) =
∑
xh

µh(xh) logϕh(xh) (15.39)

E.g., singletons Is(µs) = −H(Xs) and pairs (in above hypergraph)
are I25(µ2,5) = H(X5)−H(X2, X5).
In the case of a single tree edge h =
(s, t), then Ih(µh) = I(Xs;Xt) the standard
mutual information (= H(Xs) + H(Xt) −
H(Xs, Xt)).

By Eqn (15.32), overall entropy of any hypertree distribution becomes

Hhyper(µ) = −
∑
h∈E

Ih(µh) (15.40)
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multi-information decomposition
Using Möbius, and Eqn. (15.30) we can write

Ih(µh) =
∑
xh

µh(xh) logϕh(xh) =
∑
xh

µh(xh)

∑
g�h

ω(g, h) logµg(xg)


=
∑
g�h

ω(g, h)

{∑
xh

µh(xh) logµg(xg)

}

=
∑
f�h

∑
e�f

ω(f, e)

∑
xf

µf (xf ) logµf (xf )

= −
∑
f�h

c(f)Hf (µf )

where we define overcounting numbers (∼ shattering coefficient)

c(f) ,
∑
e�f

ω(f, e) (15.41)

This gives us a new expression for the hypertree entropy

Hhyper(µ) =
∑
h∈E

c(h)Hh(µh) (15.42)
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Usable to get Kikuchi variational approximation

Given arbitrary hypergraph now, we can generalize the
hypertree-specific expressions above to this arbitrary hypergraph. This
will give us a variational expression that approximates cumulant.

Given hypergraph G = (V,E), we have

pθ(x) ∝ exp

{∑
h∈E

σh(xh)

}
(15.43)

using same form of parameterization.

Hypergraph will give us local marginal constraints on hypergraph
pseudo marginals, i.e., for each h ∈ E, we form marginal τh(xh) and
define constraints, non-negative, and∑

xh

τh(xh) = 1 (15.44)
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Usable to get Kikuchi variational approximation

Sum to one constraint: ∑
xh

τh(xh) = 1 (15.45)

Local agreement via the hypergraph constraint. For any g � h must
have marginalization condition∑

xh\g

τh(xh) = τg(xg) (15.46)

Define new polyhedral constraint set Lt(G)

Lt(G) = {τ ≥ 0| Equations (15.45) ∀h, and (15.46) ∀g � h hold}
(15.47)
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Kikuchi variational approximation

Generalized approximate (app) entropy for the hypergraph:

Happ =
∑
g∈E

c(g)Hg(τg) (15.48)

where Hg is hyperedge entropy and overcounting number defined by:

c(g) =
∑
f�g

ω(g, f) (15.49)
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001
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