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Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book. Start reading chapter 4.

Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17):

L15 (11/19):

L16 (11/24):

L17 (11/26):

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Conjugate Duality

Consider maximum likelihood problem for exp. family

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (14.3)

Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(θ) is defined as:

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (14.4)

So dual is optimal value of the ML problem, when µ ∈ M, and we
saw the relationship between ML and negative entropy before.
Key: when µ ∈ M, dual is negative entropy of exponential model
pθ(µ) where θ(µ) is the unique set of canonical parameters satisfying
this matching condition

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ (14.5)

When µ /∈ M, then A∗(µ) = +∞, optimization with dual need
consider points only in M.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 14.2.3 (Relationship between A and A∗)

(a) For any µ ∈ M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ ∈ M
(14.3)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (14.4)

(c) For θ ∈ Ω, sup occurs at µ ∈ M◦ of moment matching conditions

µ =

∫

DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (14.5)
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Conjugate Duality, Good and Bad News

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (??)

Computing A(θ) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

Key: we compute the log partition function simultaneously with
solving inference, given the dual.

Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. !
Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. "
More bad news: A∗ not given explicitly in general and hard to
compute. "
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Conjugate Duality, Avenues to Approximation

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (??)

Some good news: The above form gives us new avenues to do
approximation. !
For example, we might either relax M (making it less complex), relax
A∗(µ) (making it easier to compute over), or both. !
A∗(µ)’s relationship to entropy gives avenues for relaxation.

Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). !!
Much of the rest of the class will be above approaches to the above
— giving not only to junction tree algorithm (that we’ve seen) but
also to well-known approximation methods (LBP, mean-field, Bethe,
expectation-propagation (EP), Kikuchi methods, linear programming
relaxations, and semidefnite relaxations, some of which we will cover).
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Local consistency (tree outer bound) polytope

An “outer bound” of M consists of a set that contains M. If formed
from a subset of the linear inequalities (subset of the rows of matrix
module (A, b)), then it is a polyhedral outer bound.

A simple way to form outer bound: require only local consistency, i.e.,
consider set {τv, v ∈ V (G)} ∪ {τs,t, (s, t) ∈ E(G)} that is, always
non-negative , and that satisfies normalization

∑

xv

τv(xv) = 1 (14.8)

and pair-node marginal consistency constraints
∑

x′
t

τs,t(xs, x
′
t) = τs(xs) (14.9a)

∑

x′
s

τs,t(x
′
s, xt) = τt(xt) (14.9b)
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Local consistency (tree outer bound) polytope: properties

Define L(G) to be the (locally consistent) polytope that obeys the
constraints in Equations ?? and ??.

Recall: local consistency was the necessary conditions for potentials
being marginals that, it turned out, for junction tree that also
guaranteed global consistency.

Clearly M ⊆ L(G) since any member of M (true marginals) will be
locally consistent.

When G is a tree, we say that local consistency implies global
consistency, so for any tree T , we have M(T ) = L(T )
When G has cycles, however, M(G) ⊂ L(G) strictly. We refer to
members of L(G) as pseudo-marginals

Key problem is that members of L might not be true possible
marginals for any distribution.
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Bethe Entropy Approximation

In terms of current notation, we can let µ ∈ L(T ), the pseudo
marginals associated with T . Since local consistency requires global
consistency, for a tree, any µ ∈ L(T ) is such that µ ∈ M(T ), thus

pµ(x) =
∏

s∈V (T )

µs(xs)
∏

(s,t)∈E(T )

µst(xs, xt)

µs(xs)µt(xt)
(14.10)

When G = T is a tree, and µ ∈ L(T ) = M(T ) we have

−A∗(µ) = H(pµ) =
∑

v∈V (T )

H(Xv)−
∑

(s,t)∈E(T )

I(Xs;Xt) (14.11)

=
∑

v∈V (T )

Hv(µv)−
∑

(s,t)∈E(T )

Ist(µst) (14.12)

That is, for G = T , −A∗(µ) is very easy to compute (only need to
compute entropy and mutual information over at most pairs).
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (14.14)

Approximate variational representation of log partition function

ABethe(θ) = sup
τ∈L

{〈θ, τ〉+HBethe(τ)} (14.15)

= sup
τ∈L




〈θ, τ〉+
∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst)




 (14.16)

Exact when G = T but we do this for any G, still commutable

we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

We can optimize this directly using a Lagrangian formulation.
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Fixed points: Variational Problem and LBP

Theorem 14.2.3

LBP updates are Lagrangian method for attempting to solve Bethe
variational problem:
(a) For any G, any LBP fixed point specifies a pair (τ∗,λ∗) s.t.

∇τL(τ∗,λ∗; θ) = 0 and ∇λL(τ∗,λ∗; θ) = 0 (14.18)

(b) For tree MRFs, Lagrangian equations have unique solution (τ∗,λ∗)
where τ∗ are exact node and edge marginals for the tree and the optimal
value obtained is the true log partition function.

Not guaranteed convex optimization, but is if graph is tree.

Remarkably, this means if we run loopy belief propagation, and we
reach a point where we have converged, then we will have achieved a
fixed-point of the above Lagrangian, and thus a (perhaps reasonable)
local optimum of the underlying variational problem.
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Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

What about L \M?

Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \M(G) (which we know to be non-empty for
non-tree graphs)?

Unfortunately, for all τ ∈ L(G), then it can be a fixed point for LBP
for some pθ.

true for Lagrangian optimization as well. "

Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,
φi(xi) =

∑
xV \{i}

p(x).

A goal of inference is to change factors to

become true marginals, can’t be done for graphs with cycles in
general.

Fixed points of LBP do not get marginal reparameterization but it
does get something that does still preserve the original when global
renormalized.

That is, we have
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Reparameterization Properties of Bethe Approximation

Proposition 14.3.1

Let τ∗ = (τ∗s , s ∈ V ; τ∗st, (s, t) ∈ E(G)) denote any optimum of the Bethe
variational principle defined by the distribution pθ. Then the distribution
defined by the fixed point as

pτ∗(x) !
1

Z(τ∗)

∏

s∈V
τ∗s (xs)

∏

(s,t)∈E(G)

τ∗st(xs, xt)

τ∗s (xs)τ
∗
t (xt)

(14.1)

is a reparameterization of the original. That is, we have pθ(x) = pτ∗(x)
for all x.

For trees, we have Z(τ∗) = 1.

Form gives strategies for seeing how bad we are doing for any given
instance (by, say, comparing marginals) - approximation error (possibly
a bound)
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Review

the next slide is a repeat from lecture 13.
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Pseudo-marginals

τv(xv) = [0.5, 0.5], and τs,t(xs, xt) =

[
βst .5− βst

.5− βst βst

]
(14.8)

Consider on 3-cycle C3, satisfies local consistency.

But for this won’t give us a marginal. Below shows M(C3) for
µ1 = µ2 = µ3 = 1/2 and the L(C3) outer bound (dotted).
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A fixed point in L \M is possible.

Consider

θs(xs) = log τs(xs) = log[0.5 0.5] for s = 1, 2, 3, 4

(14.2a)

θst(xs, xt) = log
τst(xs, xt)

τs(xs)τt(xt)

= log 4

[
βst 0.5− βst

0.5− βst βst

]
∀(s, t) ∈ E(G) (14.2b)

We saw in the pseudo marginals slide that, for a 3-cycle, a choice of
parameters that gave us τ ∈ L \M. Is this achievable as fixed point of
LBP?

For this choice of parameters, if we start sending messages, starting
from the uniform messages, then this will be a fixed point. "
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (14.14)

Approximate variational representation of log partition function

ABethe(θ) = sup
τ∈L

{〈θ, τ〉+HBethe(τ)} (14.15)

= sup
τ∈L




〈θ, τ〉+
∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst)




 (14.16)

Exact when G = T but we do this for any G, still commutable

we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

We can optimize this directly using a Lagrangian formulation.
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If not Bounds, then Better Approximation?

We might want bounds between A(θ) and ABethe(θ) in the ideal case.

Perhaps we can come up with an expression for A(θ)−ABethe(θ)

We don’t expect the expression to be easy to compute. Why?

Expression, however, could help make the difference smaller by
approximating the difference in a computationally practical way. I.e.,

A(θ) = ABethe(θ) + A(θ)−ABethe(θ)︸ ︷︷ ︸
expression to approximate

(14.3)

This is the idea behind Loop Series Expansions
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Vertex and Edge Induced Subgraphs, Degree, and
Generalized Loops

Given a graph G = (V,E), it is possible to construct either a vertex-
or an edge-induced subgraph.

Given subset S ⊆ V , then G′ = (S,E(S)) is a vertex induced
subgraph, E(S) = E ∩ (S × S).

Given subset Ẽ ⊆ E, then G(Ẽ) = (V (Ẽ), Ẽ) is edge-induced

subgraph, V (Ẽ) = V ∩
{
u ∈ V : ∃v s.t. (u, v) ∈ Ẽ

}
.

Usually, “induced subgraph” means “vertex induced subgraph” when
it is not specified.

Define the degree of s in the subgraph as ds(Ẽ) = |δs(Ẽ)| where
δs(Ẽ) =

{
t ∈ V |(s, t) ∈ Ẽ

}
is the set of neighbors of s in G(Ẽ).

Definition: a generalized loop is a subgraph G(Ẽ) where no node has
degree 1 (i.e., ds(Ẽ) .= 1 for all s ∈ V (G(Ẽ)).
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degree 1 (i.e., ds(Ẽ) .= 1 for all s ∈ V (G(Ẽ)).
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δs(Ẽ) =
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subgraph, V (Ẽ) = V ∩
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δs(Ẽ) =
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δs(Ẽ) =
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Generalized Loops

Definition: a generalized loop is a subgraph G(Ẽ) where no node has
degree 1 (i.e., ds(Ẽ) .= 1 for all s ∈ V (G(Ẽ)).

Example:

(e)
Illustration of generalized loops. (a) An original graph. (b)-(d)
Various generalized loops associated with the graph in (a). In this
particular case, the original graph is a generalized loop for itself. (e) is
not a generalized loop as it has a leaf node.
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Edge weights Generalized Loops

Consider LBP fixed point for binary pairwise MRF (Ising model).

Unary and pairwise pseudomarginals can be parameterized using
{τs}s∈V and {τst}(s,t)∈E , where

τs(xs) =

[
1− τs
τs

]
, and τst(xs, xt) =

[
1− τs − τt + τst τt − τst

τs − τst τst

]

Being in local consistency (tree outer bound) polytope L(T ) is the
same as: τs ≥ 0, τst ≥ 0, 1− τs − τt + τst ≥ 0, and τs − τst ≥ 0.

Define an edge weight βst as follows:

βst !
τst − τsτt

τs(1− τs)τt(1− τt)
(14.4)

and the weight can be extended to an edge-induced subgraph via Ẽ

βẼ !
∏

(s,t)∈Ẽ

βst (14.5)
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Comparison of A and ABethe: loop series expansion

Proposition 14.4.1

Consider a pairwise MRF with binary variables, with ABethe(θ) being the
optimized free energy evaluated at a LBP fixed point
τ = (τs, s ∈ V ; τst, (s, t) ∈ E(G)). Then we have the following
relationship with the cumulant function A(θ).

A(θ) = ABethe(θ) + log




1 +
∑

∅&=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]



 (14.6)

For any Ẽ such that ∃s with ds(Ẽ) = 1, inner term is zero and
vanishes.

why? Since Eτs

[
(Xs − τs)

d
]
is the dth central moment.

Thus, terms in the sum only exists for generalized loops.

The generalized loops give the correction!

For trees, there are no generalized loops, and so if G is a tree then we
have an equality between A(θ) and ABethe(θ) (recall both defs here ).
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βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
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Proof of Proposition 14.4.1

proof sketch.

Overcomplete, ∃ parameters θ̂ s.t.
〈
θ̂,φ(x)

〉
= c for all x.

Thus, we can show this for just one set of parameters θ since A(θ)
and ABethe(θ) both shift by same amount.

We choose parameterization at a LBP fixed point, so

θ̃s(xs) = log τs(xs), and θ̃st(xs, xt) = log
τst(xs, xt)

τs(xs)τt(xt)
(14.7)

With this paramterization, ABethe(θ̃) = 0 (since the optimization
attempts to maximize a set of negative KL-divergence terms).

Thus, we need only show

A(θ̃) = log




1 +
∑

∅&=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]



 (14.8)

. . .
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Proof of Proposition 14.4.1 cont.

proof sketch.

By checking for each value of (xs, xt) ∈ {0, 1}2, we have

τst(xs, xt)

τs(xs)τt(xt)
= 1 + βst(xs − τs)(xt − τt) (14.9)

Moreover, at current parameterization θ̃, we have

exp(A(θ̃)) =
∑

x∈{0,1}m

∏

s∈V
τs(xs)

∏

(s,t)∈E

τst(xs, xt)

τs(xs)τt(xt)
(14.10)

Let τfact =
∏

s τs(xs) and let E be w.r.t. τfact, then

exp(A(θ̃)) = E




∏

(s,t)∈E

(1 + βst(Xs − τs)(Xt − τt))



 (14.11)

. . .Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 14 - Nov 17th, 2014 F25/52 (pg.52/122)



Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Proof of Proposition 14.4.1 cont.

proof sketch.

By checking for each value of (xs, xt) ∈ {0, 1}2, we have

τst(xs, xt)

τs(xs)τt(xt)
= 1 + βst(xs − τs)(xt − τt) (14.9)

Moreover, at current parameterization θ̃, we have

exp(A(θ̃)) =
∑

x∈{0,1}m

∏

s∈V
τs(xs)

∏

(s,t)∈E

τst(xs, xt)

τs(xs)τt(xt)
(14.10)

Let τfact =
∏

s τs(xs) and let E be w.r.t. τfact, then

exp(A(θ̃)) = E




∏

(s,t)∈E

(1 + βst(Xs − τs)(Xt − τt))



 (14.11)

. . .Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 14 - Nov 17th, 2014 F25/52 (pg.53/122)



Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Proof of Proposition 14.4.1 cont.

proof sketch.

By checking for each value of (xs, xt) ∈ {0, 1}2, we have

τst(xs, xt)

τs(xs)τt(xt)
= 1 + βst(xs − τs)(xt − τt) (14.9)

Moreover, at current parameterization θ̃, we have

exp(A(θ̃)) =
∑

x∈{0,1}m

∏

s∈V
τs(xs)

∏

(s,t)∈E

τst(xs, xt)

τs(xs)τt(xt)
(14.10)

Let τfact =
∏

s τs(xs) and let E be w.r.t. τfact, then

exp(A(θ̃)) = E




∏

(s,t)∈E

(1 + βst(Xs − τs)(Xt − τt))



 (14.11)
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Proof of Proposition 14.4.1 cont.

proof sketch.

By polynomial expansion, linearity of expectation, we get

exp(A(θ̃)) = 1 +
∑

∅&=Ẽ⊆E

E




∏

(s,t)∈Ẽ

(βst(Xs − τs)(Xt − τt))



 (14.12)

And by independence of τfrac, we get

exp(A(θ̃)) = 1 +
∑

∅&=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]

(14.13)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 14 - Nov 17th, 2014 F26/52 (pg.55/122)



Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Proof of Proposition 14.4.1 cont.

proof sketch.

By polynomial expansion, linearity of expectation, we get

exp(A(θ̃)) = 1 +
∑

∅&=Ẽ⊆E
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Comparison of A and ABethe: loop series expansion

Proposition 14.4.1

Consider a pairwise MRF with binary variables, with ABethe(θ) being the
optimized free energy evaluated at a LBP fixed point
τ = (τs, s ∈ V ; τst, (s, t) ∈ E(G)). Then we have the following
relationship with the cumulant function A(θ).

A(θ) = ABethe(θ) + log




1 +
∑

∅&=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]



 (14.6)

For any Ẽ such that ∃s with ds(Ẽ) = 1, inner term is zero and
vanishes. why? Since Eτs

[
(Xs − τs)

d
]
is the dth central moment.

Thus, terms in the sum only exists for generalized loops.

The generalized loops give the correction!

For trees, there are no generalized loops, and so if G is a tree then we
have an equality between A(θ) and ABethe(θ) (recall both defs here ).
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Loop Series Approximations

So, various forms of approximation can be made by taking, rather
than a sum over all 2E \ {∅}, some small set of subsets of ∅ /∈ E ⊆ 2E

for which the summation is tractable.

For attractive potentials (which we’ll define later in the class, and
which are related to submodular potentials, and which essentially
always encourage neighbors to be the same), it is the case that we
have:

ABethe(θ) ≤ A(θ) (14.14)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 14 - Nov 17th, 2014 F28/52 (pg.58/122)



Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Loop Series Approximations

So, various forms of approximation can be made by taking, rather
than a sum over all 2E \ {∅}, some small set of subsets of ∅ /∈ E ⊆ 2E

for which the summation is tractable.

For attractive potentials (which we’ll define later in the class, and
which are related to submodular potentials, and which essentially
always encourage neighbors to be the same), it is the case that we
have:

ABethe(θ) ≤ A(θ) (14.14)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 14 - Nov 17th, 2014 F28/52 (pg.59/122)



Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

General idea of Kikuchi

Variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (14.15)

So far, we have used a replacement for −A∗(µ) inspired by trees.

But we know a tree is really a 1-tree. Why not k-tree?

Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with:

1) replacement for −A∗(µ) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and 3) a corresponding generalized polytope
associated with the hypergraph?

This is the Kikuchi variational approach (or “clustered variational
approximation”).
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Hypergraphs

A graph G = (V,E) is a set of nodes V and edges E where every
(s, t) = e ∈ E is only two nodes.

A hypergraph is a system (V,E) where every e ∈ E can consist of any
number of nodes. I.e., we might have {v1, v2, . . . , vk} = e ∈ E(G) for
a hypergraph.

A hypertree is a hypergraph that can be reduced to a tree in a
particular way, we’ve already seen them in the forms of junction trees.

A junction tree (which, recall, satisfies r.i.p.) is a hypertree where the
cliques (which are clusters of graph nodes) in the junction tree are the
edges of the hypertree.
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Hypergraphs

Definition 14.5.1 (hypergraph)

A hypergraph H = (V,E) is a set of vertices V and a collection of
hyperedges E, where each element e ∈ E is a subset of V , so
∀e ∈ E, e ⊆ V . In a graph, |e| = 2. In a hypergraph, it can be larger.

Definition 14.5.2 (leaf)

A vertex v ∈ V (H) of H is called a leaf if it appears only in a single
maximal hyper-edge h ∈ H.

Definition 14.5.3 (acyclic)

A hypergraph H is called acyclic if it is empty, or if it contains a leaf v
such that induced hypergraph H(V − {v}) is acyclic (note, generalization
of perfect elimination order in a triangulated graph, junction tree).
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Hypergraphs and bipartite graphs

Hypergraphs can be represented by a bipartite G = (V, F,E) graphs
where V is a set of left-nodes, F is a set of right nodes, and E is a set of
size-two edges. Right nodes are hyperedges in the hypergraphs.
Some hand-drawn examples:
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Hypergraphs and posets

Graphical representations of hypergraphs. Subsets of nodes corresponding
to hyperedges are shown in rectangles, whereas the arrows represent
inclusion relations among hyperedges. (a) An ordinary single 4-cycle
graph represented as a hypergraph. (b) A simple hypertree of “width”
two. (c) A more complex hypertree of “width” three.
Here, a → b if it is the case that b 3 a and there does not exist a c such
that b 3 c 3 a, similar to a Hasse lattice diagram.
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Hypergraphs and posets

As bipartite graphs:
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Partially ordered set

A partially ordered set (poset) is a set P of objects with an order.

Set of objects P and a binary relation 3 which can be read as “is
contained in” or “is part of” or “is less than or equal to”.

For any x, y ∈ P, we may ask is x 3 y which is either true or false.

In a poset, for any x, y, z ∈ P the following conditions hold (by
definition):

For all x, x 3 x. (Reflexive) (P1.)

If x 3 y and y 3 x, then x = y (Antisymmetriy) (P2.)

If x 3 y and y 3 z, then x 3 z. (Transitivity) (P3.)

We can use the above to get other operators as well such as “less
than” via x 3 y and x .= y implies x ≺ y. Also, we get x 5 y if not
x 3 y. And x 6 y is read “x contains y”. And so on.
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Möbius Inversion Lemma

A zeta function of a poset is a mapping ζ : P × P → R defined by

ζ(g, h) =

{
1 if g 3 h,

0 otherwise.
(14.16)

The Möbius function ω : P × P → R is the multiplicative inverse of
this function. It is defined recursively:

ω(g, g) = 1 for all g ∈ P
ω(g, h) = 0 for all h : h ! g.

Given ω(g, f) defined for f such that g 3 f 3 h, we define

ω(g, h) = −
∑

{f |g(f≺h}

ω(g, f) (14.17)

Then, ω and ζ are multiplicative inverses, in that
∑

f∈P
ω(g, f)ζ(f, h) =

∑

{f |g⊆f⊆h}

ω(g, f) = δ(g, h) (14.18)
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General Möbius Inversion Lemma

Lemma 14.5.4 (General Möbius Inversion Lemma)

Given real valued functions Υ and Ω defined on poset P, then Ω(h) may
be expressed via Υ(·) via

Ω(h) =
∑

g(h

Υ(g) for all h ∈ P (14.19)

iff Υ(h) may be expressed via Ω(·) via

Υ(h) =
∑

g(h

Ω(g)ω(g, h) for all h ∈ P (14.20)

When P = 2V for some set V (so this means that the poset consists of
sets and all subsets of an underlying set V ) this can be simplified, where
3 becomes ⊆; and 6 becomes ⊇.
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Möbius Inversion Lemma

Lemma 14.5.5 (Möbius Inversion Lemma (for sets))

Let Υ and Ω be functions defined on the set of all subsets of a finite set
V , taking values in an Abelian group (i.e., a set and an operator having

properties closure, associativity, identity, and inverse, and for which the elements also

commute, the real numbers being just one example). The following two equations
imply each other.

∀A ⊆ V : Υ(A) =
∑

B:B⊆A

Ω(B) (14.21)

∀A ⊆ V : Ω(A) =
∑

B:B⊆A

(−1)|A\B|Υ(B) (14.22)
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Proof of Möbius Inversion Lemma

Proof.

∑

B:B⊆A

Ω(B) =
∑

B:B⊆A

∑

C:C⊆B

(−1)|B\C|Υ(C) (14.23)

=
∑

C:C⊆A

∑

B:C⊆B&B⊆A

Υ(C)(−1)|B\C| (14.24)

=
∑

C:C⊆A

Υ(C)
∑

B:C⊆B&B⊆A

(−1)|B\C| (14.25)

=
∑

C:C⊆A

Υ(C)
∑

H:H⊆A\C

(−1)|H| (14.26)
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Proof of Möbius Inversion Lemma

Proof Cont.

Also, note that for some set D,

∑

H:H⊆D

(−1)|H| =

|D|∑

i=0

(
|D|
i

)
(−1)i =

|D|∑

i=0

(
|D|
i

)
(−1)i(1)|D|−i (14.27)

= (1− 1)|D| =

{
1 if |D| = 0
0 otherwise

(14.28)

which means ∑

H:H⊆A\C

(−1)|H| =

{
1 if A = C
0 otherwise

(14.29)
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Proof of Möbius Inversion Lemma

Proof Cont.

This gives

∑

B:B⊆A

Ω(B) =
∑

C:C⊆A

Υ(C)1{A = C} = Υ(A) (14.30)

thus proving one direction. The other direction is very similar.
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Möbius Inversion Lemma and Inclusion-Exclusion
This is a general case of inclusion-exclusion.
Given ground set V and A,B ⊆ V , to compute the size
|A ∪B| = |A|+ |B|− |A ∩B|.
A,B,C ⊆ V , then
|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|.
Start by including, then excluding, and then including again.

A

A

C

B

B

Also consider entropy: H(X,Y ) = H(X) +H(Y )− I(X;Y ).
H(X,Y, Z) =
H(X) +H(Y ) +H(Z)− I(X;Y )− I(X;Z)− I(Y ;Z) + I(X;Y ;Z).
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Möbius Inversion Lemma and Inclusion-Exclusion

Ex: Set cardinality inclusion-exclusion: Given A1, A2, . . . , An ⊆ V ,

|∪n
i=1An| =

n∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|Ai1∩Ai2∩· · ·∩Aij | (14.31)

This is a special case of Möbius Inversion Lemma:

∀A ⊆ V : Υ(A) =
∑

B:B⊆A

Ω(B) (14.32)

∀A ⊆ V : Ω(A) =
∑

B:B⊆A

(−1)|A\B|Υ(B) (14.33)

Möbius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).
We use it here to come up with alternative expressions for the entropy
and for the marginal polytope.
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Möbius Inversion Lemma and Inclusion-Exclusion
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Möbius Inversion Lemma and Inclusion-Exclusion
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theorem (that factorization and Markov property definitions of families
are identical for positive distributions).
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and for the marginal polytope.
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Möbius Inversion Lemma and Inclusion-Exclusion
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Back to Kikuchi: Möbius and expressions of factorization

Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V,E), so we have µ = (µh, h ∈ E), then we can define new
functions ϕ = (ϕh, h ∈ E) via Möbius inversion lemma as follows

logϕh(xh) !
∑

g(h

ω(g, h) logµg(xg) (14.34)

(see Stanley, “Enumerative Combinatorics” for more info.)

From Möbius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

logµh(xh) =
∑

g(h

logϕg(xg) (14.35)

Key, when ϕh is defined as above, and G is a hypertree we have

pµ(x) =
∏

h∈E
ϕh(xh) (14.36)

⇒ general way to factorize a distribution that factors w.r.t. a
hypergraph. When a 1-tree, we recover factorization we already know.
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expressions of factorization and Möbius

When the graph is a tree (a 1-tree), we have ϕs(xs) = µs(xs) and

ϕst(xs, xt) =
µst(xs, xt)

µs(xs)µt(xt)
(14.37)

giving us the tree factorization we saw early in this course.

For the more general hypertree, consider edge set
E = {(12345), (2356), (4578), (25), (45), (56), (58), (5)}. Check: is
this a junction tree of cliques?
Then, from Eqn. (14.35), we get unaries ϕs(xs) = µs(xs) and
pairwise (e.g., ϕ25 = µ25/µ5, etc.) and

ϕ1245 =
µ1245

ϕ25ϕ45ϕ5
=

µ1245
µ25

µ5

µ45

µ5
µ5

=
µ1245µ5

µ25µ45
(14.38)
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expressions of factorization and Möbius

Doing this for all maxcliques of the figure, we get a factorization of
the form:

pµ =
µ1245µ5

µ25µ45

µ2356µ5

µ25µ56

µ4578µ5

µ45µ58

µ25

µ5

µ45

µ5

µ56

µ5

µ58

µ5
µ5 (14.39)

=
µ1245µ2356µ4578

µ25µ45
(14.40)
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New expressions of entropy

We can express entropic quantities as well, such as the hyperedge
entropy

Hh(µh) = −
∑

xh

µh(xh) logµh(xh) (14.41)

and the multi-information function

Ih(µh) =
∑

xh

µh(xh) logϕh(xh) (14.42)

In the case of a single tree edge h = (s, t), then Ih(µh) = I(Xs;Xt)
the standard mutual information.

Then the overall entropy of any hypertree distribution becomes

Hhyper(µ) = −
∑

h∈E
Ih(µh) (14.43)
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multi-information decomposition
Using Möbius, we can write

Ih(µh) =
∑

g(h

ω(g, h)

{
∑

xh

µh(xh) logµg(xg)

}
(14.44)

=
∑

f(h

∑

e,f

ω(e, f)





∑

xf

µf (xf ) logµf (xf )






(14.45)

= −
∑

f(h

c(f)Hf (µf )

(14.46)

where
c(f) !

∑

e,f

ω(f, e) (14.47)

This gives us a new expression for the hypertree entropy

Hhyper(µ) =
∑

h∈E
c(h)Hh(µh) (14.48)
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Usable to get Kikuchi variational approximation

Given arbitrary hypergraph now, we can generalize the
hypertree-specific expressions above to this arbitrary hypergraph. This
will give us a variational expression that approximates cumulant.

Given hypergraph G = (V,E), we have

pθ(x) ∝ exp

{
∑

h∈E
σh(xh)

}
(14.49)

using same form of parameterization.

Hypergraph will give us local marginal constraints on hypergraph
pseudo marginals, i.e., for each h ∈ E, we form marginal τh(xh) and
define constraints, non-negative, and

∑

xh

τh(xh) = 1 (14.50)
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Usable to get Kikuchi variational approximation

Sum to one constraint:

∑

xh

τh(xh) = 1 (14.51)

Local agreement via the hypergraph constraint. For any g 3 h must
have marginalization condition

∑

xh\g

τh(xh) = τg(xg) (14.52)

Define new polyhedral constraint set Lt(G)

Lt(G) = {τ ≥ 0| Equations (14.51) ∀h, and (14.52) ∀g 3 h hold}
(14.53)
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Kikuchi variational approximation

Generalized entropy for the hypergraph:

Happ =
∑

g∈E
c(g)Hg(τg) (14.54)

where Hg is hyperedge entropy and overcounting number defined by:

c(g) =
∑

f,g

ω(g, f) (14.55)
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Kikuchi variational approximation

This at last gets the Kikuchi variational approximation

AKikuchi(θ) = max
τ∈Lt(G)

{〈θ, τ〉+Happ(τ)} (14.56)

For a graph, this is exactly ABethe(θ)!

Also, if hypergraph is a junction tree (r.i.p. holds, and tree-local
consistency implies global consistency), then this is also exact
(although it might be expensive, exponential in the tree-width to
compute Happ).

We can define message passing algorithms on the hypertree, and show
that if it converges, it is a fixed point of the associated Lagrangian.
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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