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Announcements

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&do0i1=2200000001

@ Read chapters 1,2, and 3 in this book. Start reading chapter 4.

@ Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families, @ L11 (11/5): LBP, exponential models,
Semantics @ L12 (11/10): exponential models, mean
L2 (10/1): MRFs, elimination, Inference params and polytopes,

on Trees @ L13 (11/12): polytopes, tree outer bound,
L3 (10/6): Tree inference, message Bethe entropy approx.

passing, more general queries, non-tree) ¢ L14 (11/17): Bethe entropy approx, loop
L4 (10/8): Non-trees, perfect elimination, series correction

triangulated graphs @ L15 (11/19): Hypergraphs, posets,

L5 (10/13): triangulated graphs, k-trees, Mobius, Kikuchi

the triangulation process/heuristics @ L16 (11/24):

L6 (10/15): multiple queries, @ L17 (11/26):

decomposable models, junction trees o L18 (12/1):

!_7 (10/2'0): junction trees, begin o L19 (12/3):

Intersection graphs ® Final Presentations: (12/10):

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

Finals Week: Dec 8th-12th, 2014.
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Mean Parameters, Convex Cores

e Consider quantities u, associated with statistic ¢, defined as:

o = Epl6a(X0)] = [ dal@p()v(dz)

@ this defines a vector of “mean parameters” (u1, p2, - . -

d=|T|.

(13.10)

, lq) with

@ Define all possible such vectors, with d = |Z],

M(9)

M é {,u (= Rd : E|p s.t. YVa € I,,Lba = Ep[gboz(X)] }

(13.11)

We don't say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p’ will lead to convex combinations of i and p/

@ M is like a “convex core” of all distributions expressed via ¢.
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Mean Parameters and Marginal Polytopes

@ Mean parameters are now true (fully specified) marginals, i.e.,
to(J) = p(zy = j) and ps(j, k) = p(xs = j, 71 = k) since

to,j = Ep[1(zy = j)] = p(zs = j) (13.20)
pst ik = Ep[l(zs = j,x¢ = k)] = p(zs = j,x¢ = k) (13.21)

@ Such an M is called the marginal polytope for discrete graphical
models. Any p must live in the polytope that corresponds to node
and edge true marginals.

@ We can also associate such a polytope with a graph G, where we take
only (s,t) € E(G). Denote this as M(G).

@ This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we'll see.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 6 to the point in the marginal polytope, called forward
mapping, moving from 6 € 2 to yu € M.

@ We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

@ graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Maximum entropy estimation

@ Goal (“estimation”, or “machine learning") is to find

p* € argmax H(p) s.t. Ep[¢a(X)] = fia YVa €L (13.14)
peU
where H(p) = — [ p(z)log p(x)v(dx), and Va € T
Ep[¢a(X)] = . o (x)p(x)v(d). (13.15)

o E,[¢o(X)] is mean value as measured by potential function, so above
is a form of moment matching.

@ Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pg(z) = exp((0, ¢(x)) — A(0)) and then by
finding canonical parameters 6 that solves

Ep,[¢a(X)] = fiq for all a € T. (13.16)
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Learning is the dual of Inference

o Ex: Estimate 6 with § based on data D = {zOYM ) of size M,
likelihood function

I\ iy _ Ly -(0)
(0,D) = Zlogpg(x )= — Z (<e e )> _ A(e)) (13.20)
= (0, i) — A(9) y (13.21)
where empirical means f= E[qﬁ(X)] = % Z ¢(a_j(i)) (13.22)

are given by:

e By taking derivatives of the above, it is easy to see that solution is the
point 0 = O(j1) such that empirical matches expected means, or what
are called the moment matching conditions:

E,[6(X)] = j (13.23)

this is the the backward mapping problem, going from u to 6.
@ Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy

o Entropy definition again: H(p) = — [ p(z) log p(z)v(dx)
o Given data, D = {z(¥ M deflnes an empirical distribution

1 & .
= o7 > 1z =z) (13.20)
=1

so that E;[¢(X)] = [ p(z)¢(a)v(de) = 57 X252, ¢(2Y) = o
@ Starting from maximum likelihood solution 9(11) meaning we are at
moment matching conditions E,, . [¢(X)] Es[¢(X)], we have

a
£(6(a), D) = (B(a), /) ~ AB(@)) = = > logpon(@?)  (13.21)
— / B() 1og pogay (2)v(dz) = Egllog poy(z)]  (13.22)
]Epe(ﬁ) [logPG(ﬂ) (37)] = _Hpe(ﬁ) [Pe(,z) (x)] (13'23)

@ Thus, maximum likelihood value and negative entropy are identical, at
least for empirical i1 (which is € M).
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Dual Mappings: Summary

Summarizing these relationships

@ Forward mapping: moving from 6 € ) to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € 2, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

@ Turns out log partition function A, and its dual A* can give us these
mappings, and the mappings have interesting forms . ..
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Log partition (or cumulant) function: derivative offerings

A(0) = log/D exp (0, ¢(x)) v(dx) (13.20)

@ If we know the log partition function, we know a lot for an exponential
family model. In particular, we know
A(0) is convex in 0 (strictly so if minimal representation).
It yields cumulants of the random vector ¢(X)
0A
0. (0) = Eolda(X)] = /%(X)pe(ﬂ?)lf(dw) = Ha (13.21)

in general, derivative of log part. function is expected value of feature
o Also, we get

92A
000, 00,

(6) = Eo[Pay (X)Pas (X)] = Eol¢a (X)]Eg[pa, (X))
(13.22)
@ Proof given in book (Proposition 3.1, page 62).
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Log partition function: properties

@ So derivative of log partition function w.r.t. 8 is equal to our mean
parameter u in the discrete case.

@ Given A(0), we can recover the marginals for each potential function
Ga, @ € T (when mean parameters lie in the marginal polytope).

o If we can approximate A(6) with A(6) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall soon see.

@ The Bethe approximation (as we'll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

@ In some rarer cases, we can bound the approximation (current
research trend).
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Exponential Family: Recap

@ Exponential Family

po(x) = exp((0, ¢(x)) — A(6)) (13.1)

with
A9) = log/D 0, p(x)) v(dr) (13.2)

o A(0) is key.
@ Forward mapping, inference: from 6 € ) to u € M, get marginals.

@ Backwards mapping, learning: from u € M to 0 € 2, getting best
parameters associated with empirical facts (means).

@ So learning is dual of inference.
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Log partition function: Properties

@ SoVA:Q — M, where M’ C M, and where
M= {peRyTFps.t. Ep(X)] = p}.
@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between p and 6.

@ For non-minimal exponential families, more than one 6 for a given u
(not surprising since multiple €'s can yield the same distribution).

@ For non-exponential families, other distributions can yield u, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

@ Key point: all mean parameters that are realizable by some dist. are
also realizable by member of exp. family.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F14/37 (pg.14/37)



w Param./Marg. Polytope

Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1
The gradient map V A is one-to-one iff the exponential representation is
minimal.

@ Proof basically uses property that if representation is non-minimal,
and (a, ¢(x)) = c for all =, then we can form an affine set of
equivalent parameters 6 + va.

@ Other direction, uses strict convexity of A(0)
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M°). Consequently, for each n € M°, there exists some
0 = 6(n) € Q such that Eg[op(X)] = p.

@ Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[X XT]) can be realized by a Gaussian having those
same mean parameters (moments).

@ The Gaussian won't nec. be the “true” distribtuion (in such case, the
“true” distribution would not be a Gaussian, and might be an
exponential family distribution with additional moments (e.g., 1D
Gaussians have zero skew and kurtosis) or might not be exponential
family at all).

@ The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family
0* € argmax ({0, i) — A(6)) (13.3)
6

e Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(#) is defined as:

INE sup (0, 1) = A(6) (13.4)

@ So dual is optimal value of the ML problem, when 1 € M, and we
saw the relationship between ML and negative entropy before.

@ Key: when i € M, dual is negative entropy of exponential model
Po(u) Where 0(p) is the unique set of canonical parameters satisfying
this matching condition

Eo(uo(X)] = VA(O(1)) = p (13.5)
@ When p ¢ M, then A*() = 400, optimization with dual need
consider points only in M.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 13.3.3 (Relationship between A and A*)

(a) For any p € M°, 6(u) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A% (p) = Sup ({0, ) — A(0)) =

{H(pg(u)) if pe M (136)

+00 if g M
(b) Partition function has variational representation (dual of dual)

A(f) = SSBW,M) — A% ()} (13.7)

(c) For 8 € Q, sup occurs at ;n € M° of moment matching conditions

n= ol ¢(x)pg(x)v(dr) = Eo[p(X)] = VA(O) (13.8)
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Conjugate Duality, and Inference

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to u via the matching mapping 6(u)
which achieves

Ep(ul6(X)] = s (13.9)

e A(0) in Equation 13.7 is the “inference” problem (dual of the dual)
for a given 6, since computing it involves computing the desired
node/edge marginals.

@ Whenever u ¢ M, then A*(u) returns oo which can't be the resulting
sup in Equation 13.7, so Equation 13.7 need only consider M.
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Conjugate Duality, Good and Bad News

A(B) = sup ({0, 1) ~ A1)} (13.7)

e Computing A(6) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

e Key: we compute the log partition function simultaneously with
solving inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©

@ Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. ®

@ More bad news: A* not given explicitly in general and hard to
compute. ®
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Conjugate Duality, Avenues to Approximation

A(0) = sup {(0, ) — A™(n)} (13.7)

@ Some good news: The above form gives us new avenues to do
approximation. ©

@ For example, we might either relax M (making it less complex), relax
A*(u) (making it easier to compute over), or both. ©

@ A*(u)'s relationship to entropy gives avenues for relaxation.

@ Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). ©®

@ Much of the rest of the class will be above approaches to the above
— giving not only to junction tree algorithm (that we've seen) but
also to well-known approximation methods (LBP, mean-field, Bethe,
expectation-propagation (EP), Kikuchi methods, linear programming
relaxations, and semidefnite relaxations, some of which we will cover).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F21/37 (pg.21/37)

LBP and Tree Outer Bound
| RRRN

Overcomplete, simple notation

@ We'll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.

@ Recall: dealing only with pairwise interactions (natural for image
processing) — If not pairwise, we can convert from factor graph to
factor graph with factor-width 2 factors.

@ Exponential overcomplete family model of form

pg(:c)zzge) exp Z Oy (zy) + Z Os(xs, 1)

with simple new shorthand notation functions 6, and 6;.

261”1 ) and (13.10)

st 3737371‘,) Zestz] =1, Tt :]) (1311)
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Marginal notation, and graph

Marginal polytope

@ We also have mean parameters that constitute the marginal polytope.

o (24) 2 Z oy il(xy = 1), for u e V(G) (13.12)
iEDXv

A .
pst(Ts, ) = E st jkl(zs = j, 2 = k), for (s,t) € E(G)
(jvk)EDX{S’t}

(13.13)

@ And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p € f(G,M(f)) that contains only pairwise interactions.

o Note, M(G) is respect to a graph G.

@ Recall, M can be represented as a convex hull of a set of points, or by
a set of linear inequality constraints.
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Local consistency (tree outer bound) polytope

@ An “outer bound” of M consists of a set that contains M. If formed
from a subset of the linear inequalities (subset of the rows of matrix
module (A, b)), then it is a polyhedral outer bound.

@ A simple way to form outer bound: require only local consistency, i.e.,
consider set {7,,v € V(G)} U{7s4, (s,t) € E(G)} that is, always
non-negative , and that satisfies normalization

and pair-node marginal consistency constraints

ZTs,t(x&m:g) = T5(xs) (13.15a)

Ty

ZTs,t(ﬂﬁ;,xt) = T (x¢) (13.15b)
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Local consistency (tree outer bound) polytope: properties

@ Define L(G) to be the (locally consistent) polytope that obeys the
constraints in Equations 13.14 and 13.15.

@ Recall: local consistency was the necessary conditions for potentials
being marginals that, it turned out, for junction tree that also
guaranteed global consistency.

@ Clearly M C IL(G) since any member of M (true marginals) will be
locally consistent.

@ When G is a tree, we say that local consistency implies global
consistency, so for any tree 7', we have M(7T") = L(T)

@ When G has cycles, however, M[(G) C L(G) strictly. We refer to
members of L(G) as pseudo-marginals

@ Key problem is that members of I might not be true possible
marginals for any distribution.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F25/37 (pg.25/37)

LBP and Tree Outer Bound
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Pseudo-marginals

ru(w0) = [0.5,0.5], and 7,.(ws, 21) = 5?% i il ICERT

@ Consider on 3-cycle (3, satisfies local consistency.
@ But for this won't give us a marginal. Below shows M(C'3) for
p1 = po = ps = 1/2 and the IL(C3) outer bound (dotted).

23
0.5
o3

0.4 0.1
0.1 04

(07 0, %)

H12
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Bethe Entropy Approximation

A(0) = sup {(0,p) — A" (p) } (13.7)
HeEM

@ So inference corresponds to Equation 13.7, and we have two
difficulties M and A*(p).

@ Maybe it is hard to compute A*(u) but perhaps we can reasonably
approximate it.

@ In case when —A*(u) is the entropy, lets use an approximate entropy
based on IL being those distributions that factor w.r.t. a tree.

o When p € F(G,M®) and G is a tree T, then we can write p as:

H(z’,j)eE(T) pij (@i, ;)

p(x1,...,xN) = — (13.17)
HveV(T) pv(mv)d( =
pij(Ti, T5)
= 11 pv v) [ A5 (13.18)
VeV (T (i./)CE(T) pi(wi)p;j(z;)

where d(v) is the degree of v (shattering coefficient of v as separator)
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Bethe Entropy Approximation

@ In terms of current notation, we can let u € IL(T'), the pseudo
marginals associated with T". Since local consistency requires global
consistency, for a tree, any p € IL(T') is such that p € M(T), thus

= I w@) ] i, 1) (13.19)

seV(T) (s,t)€E(T) Ns(xs):ut(xt)

@ When G =T is a tree, and p € L(T) = M(T') we have

—A*(w) = H(p) = Y HX S (X X)) (13.20)
veV(T) (s,t)EE(T)
Z Hv(ﬂv - Z st(,“st) (13-21)
veV(T) (s,;t)€E(T)

@ That is, for G =T, —A*(u) is very easy to compute (only need to
compute entropy and mutual information over at most pairs).
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Bethe Entropy Approximation

@ We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V| E) not nec. a tree.

@ That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph GG, we can make an approximation
to —A*(7) based on equation that has same form, i.e.,

A7)~ Hpene(T) 2 Y Hy(m) = Y. ILa(me) (13.22)

veV(G) (s,t)eE(G)
= Y @)= DH,(m) + Y Halrem) (13.23)
veV(G) (4,))€EE(Q)

o Key: Hpethe(T) is not necessarily concave as it is not a real entropy.
e MI equation is not hard to compute O(r?).

Ist(Tst) =S Ist(Tst(x& xt)) (1324)
Tst(l"s, xt)
— s S 1 — 13.2
xszmt T, t(x .fCt) 0g Ts(xs)Tt(xt) ( 3 5)
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(B) = sup ({0, 1) ~ A1)} (13.26)

Approximate variational representation of log partition function

Agethe(0) = SEE {{0, T) + Hpethe(T)} (13.27)

=sup{ (0,7)+ > Hy(r)— Y Tal(ra)p (13.28)
)

T€L VeV (G (s,)EE(G)

@ Exact when G =T but we do this for any G, still commutable

@ we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

@ We can optimize this directly using a Lagrangian formulation.
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Bethe Variational Problem and LBP

@ Lagrangian constraints for summing to unity at nodes
T)=1-> 7(zv) (13.29)
Ty

@ Lagrangian constraints for local consistency

Cis(zs;7) = Ts(x5) ZTSt Ts, Ty) (13.30)

@ Yields following Lagrangian

L(T,;60) = (0,7) + Hpethe(T) + Y _ ApwClou(7) (13.31)
veV
+ Z [Z /\ts $3 Cts 3757 + Z)\st xt st xtv )]
(s,t)eE(G) L zs
(13.32)
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Bethe Entropy Approx
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Fixed points: Variational Problem and LBP

Theorem 13.5.1

LBP updates are Lagrangian method for attempting to solve Bethe
variational problem:
(a) For any G, any LBP fixed point specifies a pair (7%, \*) s.t

VAL(7*,\*;0) = 0 and VAL(T*,\*;0) = 0 (13.33)

(b) For tree MRFs, Lagrangian equations have unique solution (7%, \*)
where T* are exact node and edge marginals for the tree and the optimal
value obtained is the true log partition function.

@ Not guaranteed convex optimization, but is if graph is tree.

@ Remarkably, this means if we run loopy belief propagation, and we
reach a point where we have converged, then we will have achieved a
fixed-point of the above Lagrangian, and thus a (perhaps reasonable)
local optimum of the underlying variational problem.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F32/37 (pg.32/37)



Bethe Entropy Approx
LEErrimnd

Fixed points: Variational Problem and LBP

@ The resulting Lagrange multipliers A\g; end up being exactly the
messages that we have defined. l.e., we get

Aot(mr) = prose(z) = Csa(@e,m) [ mros(zs)  (13.34)
Ts ked(s)\{t}

@ Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

@ So we can now (at least) characterize any stable point of LBP.
@ This does not mean that it will converge.

@ For trees, we'll get Agethe(0) = A(0), results of previous lectures
(parallel or MPP-based message passing).
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Bethe Entropy Approx
LErrrrrned

Bounds on A: why would we want them?

@ Does not mean Agethe(6) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0* € argmax ({0, 1) — A(6)) (13.3)
0
and convex conjugate dual of A(6)
wr \ A
A¥ () = sup (€0, 1) — A(0)) (13.4)
€

@ Recall again the expression for the partition function

A(9) = sup (0, 1) = A™(p) } (13.7)

and some approximation to A(#), say Aapprox(8).

Due to sup in Eq. (13.3), might want upper bound A,pprox(6) > A(0),
mean-field methods (ch 5 in book) provides lower bound on A(6).

For certain “attractive” potential functions, we get Agethe(6) < A(0),
these are common in computer vision and are related to graph cuts.
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Bethe Entropy Approx
LErrrrrnn

Bounds on A

@ In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.
@ Recall definition of the family

po(x) = exp((6, o(x)) — A(0)) (13.35)

@ So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
@ To compute conditionals

p(xAUB) . Z$V\(AUB) p(az)

pxs) Xy, P(2)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.

@ Perhaps more importantly, exp(A(f)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(6),
we can come up with other forms of bounds over other marginals.

p(zalrp) = (13.36)
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Bethe Entropy Approx
Lerrerrneen

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpgethe in place of the true dual A*.

@ Example of inaccuracy (example 4.2 from book), consider a 4-clique

f1s(zs) = [0.5 0.5] for s =1,2,3,4 (13.37a)

0.5 0]

Wst(Ts, Tt) = [ 0 05 V(s,t) € E(Q) (13.37b)

e Valid marginals, equal 0.5 probability for (0,0,0,0) and (1,1,1,1).
@ Each Hs(us) =log?2, and each I (ust) = log?2 giving
Hpethe(pt) = 4log2 — 6log2 = —2log2 < 0 (13.38)

which obviously can’t be a true entropy since we must have H > 0 for
discrete distributions.

@ True —A*(u) =log2 > 0.
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Sources for Today's Lecture

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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