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Announcements

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

@ Read chapters 1,2, and 3 in this book. Start reading chapter 4.

@ Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)
L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

®© ©6 6 6 6 0 ¢

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes, tree outer bound

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17):
L15 (11/19):
L16 (11/24):
L17 (11/26):
L18 (12/1):
L19 (12/3):
Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:
o = Epda(X)] = / (i) (13.10)

o this defines a vector of “mean parameters” (p1, 2, .. ., ftq) With
d=1Z|.
@ Define all possible such vectors, with d = |Z|,

M(@) = M2 {peR: Ipst. Va €T, pa =Ey[pa(X)] }
(13.11)

@ We don't say p was necessarily exponential family

@ M is convex since expected value is a linear operator. So convex

combinations of p and p’ will lead to convex combinations of y and p/

@ M is like a “convex core” of all distributions expressed via ¢.
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Mean Parameters and Marginal Polytopes

@ Mean parameters are now true (fully specified) marginals, i.e.,
:uv(j) = p($v = ]) and Mst(ja k) <J, Tt = k) since

@ Such an M is called the marginal polytope for discrete graphical
models. Any g must live in the polytope that corresponds to node
and edge true marginals.

@ We can also associate such a polytope with a graph G, where we take
only (s,t) € E(G). Denote this as M(G).

@ This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we'll see.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 0 to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.

@ We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

@ graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Maximum entropy estimation

e Goal (“estimation”, or “machine learning”) is to find

p* € argmax H(p) s.t. Ey[¢q(X)] = fia Yo €T (13.14)
peEU
where H(p) = — [ p(z)logp(z)v(dz), and Va € T
Ep[¢a(X)] = . ¢a(@)p(z)v(dr). (13.15)

o E,[¢q(X)] is mean value as measured by patential function, so above

is a form of moment match+

Ep,[¢a(X)] = fiq for all o € T. (13.16)
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Learning is the dual of Inference

o Ex: Estimate # with § based on data D = {z()}M  of size M,
likelihood function

M M
(6,0) = - > loapo(a®) = - 3~ ((0,6")) — 4(9))  (13:20)
i i=1
(13.21)
where em 0 N (')) (13.22)
pirical means i =Elp(X)] = — o(z\ )
are given by: 8 o) b ; “

o By taking derivatives of the above, it is easy to see that solution is the
point # = (/1) such that empirical matches expected means, or what
are called the moment matching conditions:

Eglo(X)] = A (13.23)

this is the the backward mapping problem, going from u to 6.
@ Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy

e Entropy definition again: H(p) = — [ p(z) log p(z)v(dx)
o Given data, D = {#(V}M  defines an empirical distribution

= /13(33) log po(py (z)v(dz) = Epllog pgpy (v)]  (13.22)

= Epy ;) 108 pop) ()] = —Hpy;, [Po() (2)] (13.23)
@ Thus, maximum likelihood value and negative entropy are identical, at

least for empirical i (which is € M).
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

@ Turns out log partition function A, and its dual A* can give us these
mappings, and the mappings have interesting forms . ..
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Log partition (or cumulant) function: derivative offerings

A(6) = log /D exp (0, 6(x)) v(dz) (13.20)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(0) is convex in 6 (strictly so if minimal representation).

o It yields cumulants of the random vector ¢(X)

§£<9> Eg[¢a(X / b (X)po(x)(de) = o (13.21)

in general, derivative of log part. function is expected value of feature
@ Also, we get

8951(;49”(9) = Eg[da, (X)bay (X)] — Eg[pa, (X)]Eg[pa, (X)]
(13.22)

@ Proof given in book (Proposition 3.1, page 62).
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Log partition function: properties

@ So derivative of log partition function w.r.t. 6 is equal to our mean
parameter p in the discrete case.

e Given A(f), we can recover the marginals for each potential function
¢o, € T (when mean parameters lie in the marginal polytope).

o If we can approximate A(f) with A(6) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall see in future lectures.

@ The Bethe approximation (as we'll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

@ In some rarer cases, we can bound the approximation (current

research trend). —

— -
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Exponential Family: Recap

@ Exponential Family

po(w) = exp((0, ¢(x)) — A(6)) (13.1)

with

A(f) = log/D 0, ¢(z)) v(dx) (13.2)
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Exponential Family: Recap

@ Exponential Family

po(x) = exp((0, o(x)) — A(0)) (13.1)

with
A(0) = log/D 0, ¢(z)) v(dx) (13.2)

o A(0) is key.
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Exponential Family: Recap

@ Exponential Family
po(x) = exp((0, o(x)) — A(0)) (13.1)
with

A(0) = log/D 0, ¢(z)) v(dx) (13.2)

o A(0) is key.
@ Forward mapping, inference: from 6 € ) to u € M, get marginals.
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Exponential Family: Recap

@ Exponential Family

po(x) = exp((0, o(x)) — A(0)) (13.1)

with
A(0) = log/D 0, ¢(z)) v(dx) (13.2)

o A(0) is key.
o Forward mapping, inference: from 6 € Q) to u € M, get marginals.

@ Backwards mapping, learning: from pu € M to 0 € (), getting best
parameters associated with empirical facts (means).
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Exponential Family: Recap

@ Exponential Family

po(x) = exp((0, ¢(x)) — A(0)) (13.1)

with
A(6) = log /D (0, 6()) v(dz) (13.2)

o A(0) is key.
o Forward mapping, inference: from 6 € Q) to u € M, get marginals.

@ Backwards mapping, learning: from pu € M to 6 € (), getting best
parameters associated with empirical facts (means).

@ So learning is dual of inference.
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Log partition function: Properties

@ SoVA:Q — M, where M’ C M, and where
M={peR¥Tpst. Ep[p(X)] =p}.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F14/70 (pg.18/192)



1 Param./Marg. Polytope
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M ={peRY3pst. Eyp(X)] = p}.
@ Proofs of the below are in our text:
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M ={peRY3pst. Eyp(X)] = p}.
@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between p and 6.
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M ={peRY3pst. Eyp(X)] = p}.
@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between y and 6.

@ For non-minimal exponential families, more than one 6 for a given p
(not surprising since multiple 6's can yield the same distribution).
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M ={peRY3pst. Eyp(X)] = p}.

@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between p and 6.

@ For non-minimal exponential families, more than one 6 for a given p
(not surprising since multiple 0's can yield the same distribution).

@ For non-exponential families, other distributions can yield pu, but the
exponential family one is the one that has maximum entropy.
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M= {peRBp st. Ey[p(X)] = u}.

@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between y and 6.

@ For non-minimal exponential families, more than one 6 for a given p
(not surprising since multiple 0's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance.
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M= {peRBp st. Ey[p(X)] = u}.

@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between y and 6.

@ For non-minimal exponential families, more than one 6 for a given p
(not surprising since multiple 0's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.
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Log partition function: Properties

@ SoVA:Q — M’ where M' C M, and where
M= {peRBp st. Ey[p(X)] = u}.

@ Proofs of the below are in our text:

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between y and 6.

@ For non-minimal exponential families, more than one 6 for a given p
(not surprising since multiple 0's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

@ Key point: all mean parameters that are realizable by some dist. are
also realizable by member of exp. family.
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Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1

The gradient map V A is one-to-one iff the exponential representation is
minimal.
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Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1

The gradient map V A is one-to-one iff the exponential representation is
minimal.

@ Proof basically uses property that if representation is non-minimal,
and (a, ¢(x)) = c for all z, then we can form an affine set of
equivalent parameters 0 + ~a.
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Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1

The gradient map V A is one-to-one iff the exponential representation is
minimal.

@ Proof basically uses property that if representation is non-minimal,
and (a, ¢(x)) = ¢ for all x, then we can form an affine set of
equivalent parameters 6 + ~a.

@ Other direction, uses strict convexity of A(f)
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M?°). Consequently, for each jn € M°, there exists some
0 = 0(u) € Q such that Eg[p(X)] = p.
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M°). Consequently, for each . € M°, there exists some
0 =0(u) € Q such that Eg[p(X)] = p.

@ Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[X X7]) can be realized by a Gaussian having those
same mean parameters (moments).
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M°). Consequently, for each . € M°, there exists some
0 = 0(n) € Q such that Eg[p(X)] = p.

e Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[X X7]) can be realized by a Gaussian having those
same mean parameters (moments).

@ The Gaussian won't nec. be the “true” distribtuion (in such case, the
“true” distribution would not be a Gaussian, and might be an
exponential family distribution with additional moments (e.g., 1D
Gaussians have zero skew and kurtosis) or might not be exponential
family at all).
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M°). Consequently, for each . € M°, there exists some
0 = 0(n) € Q such that Eg[p(X)] = p.

e Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[X X7]) can be realized by a Gaussian having those
same mean parameters (moments).

@ The Gaussian won't nec. be the “true” distribtuion (in such case, the
“true” distribution would not be a Gaussian, and might be an
exponential family distribution with additional moments (e.g., 1D
Gaussians have zero skew and kurtosis) or might not be exponential
family at all).

@ The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family
0* € argmax ({6, 1) — A(9)) (13.3)
0

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F17/70 (pg.33/192)



1 Param./Marg. Polytope
[NRRRNRN

Conjugate Duality

@ Consider maximum likelihood problem for exp. family
0* € argmax ({0, 1) — A(9)) (13.3)
0

e Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(#) is defined as:

A*(1) = sup (8, ) — A(6)) (13.4)
A ///\Z LGr2-Aty) sl
ALB)
AlB ZL 0,7
- A*(r)

Ale)=t - o =
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family
0" € argmax ({0, 1) — A(6)) (13.3)
0

e Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual-er+transform) of A(f) is defined as:

sup ({6, 1) — A(9)) (13.4)
0e2
@ So dual is optim vt he ML problem, when € M, and we

saw the relationship between ML and negative entropy before.
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family
0* € argmax ({0, 1) — A(9)) (13.3)
0

e Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(#) is defined as:

A*(p) £ sup ((6,11) = A(9)) (13.4)

@ So dual is optimal value of the ML problem, when . € M, and we
saw the relationship between ML and negative entropy before.

o Key: when p € M, dual is negative entropy of exponential model
Po(u) Where 0(p) is the unique set of canonical parameters satisfying
this matching condition

By [(X)] = VA0 (1)) = 1 (13.5)

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F17/70 (pg.36/192)



1 Param./Marg. Polytope
[NRRRNRN

Conjugate Duality

@ Consider maximum likelihood problem for exp. family
0* € argmax ({0, 1) — A(9)) (13.3)
0

e Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(#) is defined as:

A*(p) £ sup ((6,11) = A(9)) (13.4)

@ So dual is optimal value of the ML problem, when o € M, and we
saw the relationship between ML and negative entropy before.

o Key: when p € M, dual is negative entropy of exponential model
Po(u) Where O(u) is the unique set of canonical parameters satisfying
this matching condition

By [¢(X)] = VA0 (1)) = (13.5)
@ When p ¢ M, then A*(p) = +o0, optimization with dual need
consider points only in M.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 13.3.3 (Relationship between A and A*)

(a) For any u € M°, 6(u) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A°(4) = sup (0.1 = A®) = {;fo (2sc2) ;z ; o (130

(b) Partition function has variational representation (dual of dual)

CA@) = Suj {(0,1) — A*(1)} (13.7)

(c) For 6 € 2, sup occurs at i € M* of moment matching conditions

n= ¢(z)pe(z)v(dr) = Eo[p(X)] = VA(0) (13.8)
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Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to p via the matching mapping 6(u)
which achieves

Eg([6(X)] = p (13.9)
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Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to p via the matching mapping 0(u)
which achieves

Eg([o(X)] = p (13.9)

@ A(6) in Equation 13.7 is the “inference” problem (dual of the dual)
for a given 6, since computing it involves computing the desired
node/edge marginals.
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Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to p via the matching mapping 0(u)
which achieves

Eg([o(X)] = p (13.9)

e A(#) in Equation 13.7 is the “inference” problem (dual of the dual)
for a given 6, since computing it involves computing the desired
node/edge marginals.

@ Whenever u ¢ M, then A*(u) returns oo which can't be the resulting
sup in Equation 13.7, so Equation 13.7 need only consider M.
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Conjugate Duality

A(6) = sup {(0, 1) — A* ()} (13.7)
HEM

e computing A(#) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F20/70 (pg.42/192)



1 Param./Marg. Polytope
[NRRRNA N

Conjugate Duality

A®) = sup {(0.1) — (13.7)

e computing A(#) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

o Key: we compute the log partition function simultaneously with

solving inference, given the dual.
r——
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Conjugate Duality

A(0) = sup {(0, ) — A"(n)} (13.7)
HEM

e computing A(#) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

o Key: we compute the log partition function simultaneously with
solving inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©®

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F20/70 (pg.44/192)



1 Param./Marg. Polytope
[NRRRNA N

Conjugate Duality

A(0) = sup {(0,p) — A" ()} (13.7)
HEM

e computing A(#) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

o Key: we compute the log partition function simultaneously with
solving inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©®

@ Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. ®
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1 Param./Marg. Polytope
[NRRRNR N

Conjugate Duality

A(6) = sup {(0, 1) — A*(n)} (13.7)
HEM

e computing A(#) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

o Key: we compute the log partition function simultaneously with
solving inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©®

@ Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. ®

@ More bad news: A* not given explicitly in general and hard to
compute. @
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1 Param./Marg. Polytope
[NRRRNAY

Conjugate Duality

A(6) = sup{ (6, 1) A () (13.7)
HeEM

@ Some good news: The above form gives us new avenues to do
approximation. ®
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1 Param./Marg. Polytope
[NRRRNAY

Conjugate Duality

A@©) = sup {(6,1) —[4%()) (13.7)
HeM
@ Some good news: The above form gives us new avenues to do
approximation. ©
@ For example, we might either relax M (making it less complex), relax
A*(u) (making it easier to compute over), or both. ©®
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o Param./Marg. Polytope
[NNANNRY |

Conjugate Duality

A(6) = sup {(6,1) — A" ()} (13.7)
HeM
@ Some good news: The above form gives us new avenues to do
approximation. ©
@ For example, we might either relax M (making it less complex), relax
A*(p) (making it easier to compute over), or both. ©
o A*(u)'s relationship to entropy gives avenues for relaxation.
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1 Param./Marg. Polytope
[NRRRNAY

Conjugate Duality

A(0) = sup {(0, ) — A™(n)} (13.7)
HeM

@ Some good news: The above form gives us new avenues to do
approximation. ©

@ For example, we might either relax M (making it less complex), relax
A*(u) (making it easier to compute over), or both. ©

@ A*(u)'s relationship to entropy gives avenues for relaxation.

@ Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). @®
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1 Param./Marg. Polytope
[NRRRNAY

Conjugate Duality

A(0) = sup {(0, ) — A™(n)} (13.7)
HeEM

@ Some good news: The above form gives us new avenues to do
approximation. ©

e For example, we might either relax M (making it less complex), relax
A*(p) (making it easier to compute over), or both. ®

e A*(1)'s relationship to entropy gives avenues for relaxation.

@ Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). @®

@ Much of the rest of the class will be above approaches to the above
— giving not only to junction tree algorithm (that we've seen) but
also to well-known,approxima method

—1—propagat|on (E P)&lkuchl methods, linear programming
relaxations, and semidefnite relaxationsysome of which we will cover).
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LBP and Tree Outer Bound
[NRRN

Overcomplete, simple notation

e We'll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.
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LBP and Tree Outer Bound
[NRRN

Overcomplete, simple notation

o We'll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.
@ Recall: dealing only with pairwise interactions (natural for image

processing) — If not pairwise, we can convert from factor graph to
factor graph with factor-width 2 factors.
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LBP and Tree Outer Bound
[NERN

Overcomplete, simple notation

o We'll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.

@ Recall: dealing only with pairwise interactions (natural for image
processing) — If not pairwise, we can convert from factor graph to
factor graph with factor-width 2 factors.

@ Exponential overcomplete family model of form

pG(x):Z(H) exp Z O (zy) Z Ost (s, ¢)

veV (G (s,t)EE(G)

with simple new shorthand notation functions 6, and 6.

) 25 0,:1(z, = ) and (13.10)
=,
Hst (w5, 7¢) Zest ij (rs =i, 24 = ) (13.11)
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LBP and Tree Outer Bound
(RERN

Marginal notation, and graph
Marginal polytope

@ We also have mean parameters that constitute the marginal polytope.

A .
po(0) = D pil(zy = 1), foru e V(G) (13.12)
iEDXv

Z :U/st,jkl(ms =J,x = k)a for (Svt) € E(G)
(jvk)eDX{sA[}

A
,U/st(m& mt) =

(13.13)
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LBP and Tree Outer Bound
(RERN

Marginal notation, and graph
Marginal polytope

@ We also have mean parameters that constitute the marginal polytope.

o () = Z ty,il(xy = 1), for u e V(G) (13.12)

iEDXv

Z /Lst,jkl(l‘s = jv Ty = k)a for (Svt) € E(G)
(jvk)EDX{S’t}

A
Mst(ﬂUs,fEt) =

(13.13)

e And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p € F(G, M) that contains only pairwise interactions.
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LBP and Tree Outer Bound
(RERN

Marginal notation, and graph
Marginal polytope

@ We also have mean parameters that constitute the marginal polytope.

o () = Z ty,il(xy = 1), for u e V(G) (13.12)

’iEDXv

Z Mst,jkl(xs = jv Ty = k)a for (87t> € E(G)
(jvk)EDX{S’t}

A
Mst(l‘s,fft) =

(13.13)

e And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p € F(G, M) that contains only pairwise interactions.

e Note, M((G) is respect to a graph G.
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LBP and Tree Outer Bound
(LERN

Marginal notation, and graph
Marginal polytope

@ We also have mean parameters that constitute the marginal polytope.

o () = Z ty,il(xy = 1), for u e V(G) (13.12)
iEDXv
/Lst(l‘s»l't) é Z /Lst,jkl(xs =J,x¢ = k)a for (Svt) € E(G)

(j’k)eDX{s,t}
(13.13)

e And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p € F(G, M) that contains only pairwise interactions.

o Note, M(G) is respect to a graph G.

@ Recall, M can be represented as a convex hull of a set of points, or by
a set of linear inequality constraints.
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LBP and Tree Outer Bound
(NR RN

Local consistency polytope

@ An “outer bound” of M consists of a set . O M that contains M. If
formed from a subset of the linear inequalities (subset of the rows of
matrix module (A, b)), then it is a polyhedral outer bOl}nd.

(
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LBP and Tree Outer Bound
(NR RN

Local consistency polytope

@ An “outer bound” of M consists of a set L. O M that contains M. If
formed from a subset of the linear inequalities (subset of the rows of
matrix module (A, b)), then it is a polyhedral outer bound.

@ Another way to form outer bound: require only consistency, i.e.,
consider set {7,,v € V(G)} U {754, (s,t) € E(G)} that is, always
non-negative , and that satisfies normalization

ZTv(xv) =1l (1314)

and pair-node marginal consistency constraints

&" x ZTSt Tw:rt =3 Ts(xs) (13.158)
%
X ¢ ZTw o, wy) = e(24) (13.15b)
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LBP and Tree Outer Bound
(NRA R

Local consistency polytope

e Define L(G) to be the (locally consistent) polytope that obeys the
constraints in Equations 13.14 and 13.15.

@ Recall: local consistency was the necessary conditions for potentials
being marginals that, it turned out, for junction tree that also
guaranteed global consistency.

@ Clearly M C LL(G) since any member of M (true marginals) will be
locally consistent.

@ When G is a tree, we say that local consistency implies global
consistency, so for any tree T', we have M(T") = L(T)

@ When G has cycles, however, M(G) C L(G) strictly. We refer to
members of L(G) as pseudo-marginals

o Key problem is that members of . might not be true possible
marginals for any distribution. !
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LBP and Tree Outer Bound
(NNAL ]

Pseudo-marginals

7o (%) = [0.5,0.5], and 7 4(xs, 2;) = [5&% ‘555“] (13.16)
«J T Pst st
0£ (4 205
o Consider on 3-cycle (5, satisfies local consistency.
@ But for this won't give us a marginal. Below shows M(C3) for
p1 = po = ps = 1/2 and the IL(C3) outer bound (dotted).

12

(b)
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Bethe Entropy Approx
[ERRRERRRNANN]

Bethe Entropy Approximation

A(0) = sup {(0, 1) — A"(n)} (13.7)
HEM

@ So inference corresponds to Equation 13.7, and we have two
difficulties M and A*(p).

@ Maybe it is hard to compute A*(u) but perhaps we can reasonably
approximate it.

@ In case when —A* () is the entropy, lets use an approximate entropy
based on L being those distributions that factor w.r.t. a tree.

o When p € F(G,M®)) and G is a tree T, then we can write p as:

1 H(i,j)eE(@ g X,
p(x1,...,xN) = d(v) ;(ﬂ_ (13.17)

e PHEIP; x”

where d(v) is the degree of v (shattering coefficient of v as separator)
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Bethe Entropy Approx
(R ANRNRRRRNRN]

Bethe Entropy Approximation

@ In terms of current notation, we can let € IL(7'), the pseudo
marginals associated with T". Since local consistency requires global
consistency, for a tree, any p € IL(T) is such that p € M(T), thus

pll H ,u H M (13_19)

seV(T) (s,t)GE(T} ps(@s) e ()
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Bethe Entropy Approx
(RERRNARNRRNN]

Bethe Entropy Approximation
@ In terms of current notation, we can let u € IL(T'), the pseudo

marginals associated with T". Since local consistency requires global
consistency, for a tree, any p € L(T) is such that u € M(T), thus

(13.19)

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F28/70 (pg.65/192)



Bethe Entropy Approx
(EERRNARNRRNN]

Bethe Entropy Approximation

@ In terms of current notation, we can let u € IL(T'), the pseudo
marginals associated with T". Since local consistency requires global
consistency, for a tree, any p € L(T) is such that u € M(T), thus

= I w@ ] _Hst(@syT0) (13.19)

seV(T) (e Mo (T (Tt)
@ When G =T is a tree, and p € L(T') = M(T) we have

~A () =Hp) = Y HX,)— Y I(XsX) (13.20)

veV(T) (s,t)eE(T)
= > H(w)— > Ta(ps) (13.21)
veV(T) (s,t)eE(T)

@ Thatis, for G =T, —A*(u) is very easy to compute (only need to
compute entropy and mutual information over at most pairs).
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Bethe Entropy Approx
(R ARNARNRRNN]

Bethe Entropy Approximation

@ We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V, E) not nec. a tree.
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Bethe Entropy Approx
(R ARNARNRRNN]

Bethe Entropy Approximation

@ We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V, E) not nec. a tree.

@ That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph G, we can make an approximation
to —A*(7) based on equation that has same form, i.e.,

_A*(T) ~ HBethe(T) é Z H/u('ﬂ;) — Z Ist(Tst) (13.22)

veV(G) (s,;t)eE(G)
= > (dw)-DHy(r)+ > Ha(rem) (13.23)
veV (&) (i.))EE@
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Bethe Entropy Approx
(R ARNARNRRNN]

Bethe Entropy Approximation

@ We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V, E) not nec. a tree.

@ That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph G, we can make an approximation
to —A*(7) based on equation that has same form, i.e.,

—AN(T) & Heeme(T) = Y Hy(m) = Y ILa(ra) (13.22)

veV(Q) (s,t)EE(QG)
= > (dv)-DHy(r)+ > Ha(rem) (13.23)
veV(T) (1,)EE(T)

o Key: Hpetne(T) is not necessarily concave as it is not a real entropy.
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Bethe Entropy Approx
(R ARNARNRRNN]

Bethe Entropy Approximation

@ We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V, E) not nec. a tree.

@ That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph G, we can make an approximation
to —A*(7) based on equation that has same form, i.e.,

—AN(T) & Heeme(T) = Y Hy(m) = Y ILa(ra) (13.22)

veV(Q) (s,t)EE(QG)
= > (dv)-DHy(r)+ > Ha(rem) (13.23)
veV(T) (1,)EE(T)

o Key: Hpgetne(T) is not necessarily concave as it is not a real entropy.
@ MI equation is not hard to compute O(r?).

Lot (Tst) = Lst(Tst(xs, x¢)) (13.24)
=N (e 3) log Tt T Tt
;; st(Zs, T¢) | 8 e m (@) (13.25)
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Bethe Entropy Approx
(N RNARNRRNN]

Bethe Variational Problem and LBP

Original variational representation of log partition function

A(B) = sup {(6. 1) — A™(w)} (13.26)
pneM
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Bethe Entropy Approx
(N RNARNRRNN]

Bethe Variational Problem and LBP

Original variational representation of log partition function

A(0) = sup {(0, )= AT ()} (13.26)

Approximate variational representation of log partition function

Agethe () = sup {(0, 7|5 Heethe(T) (13.27)
Tl —

= sup Z Hy(m) Z Tsi(7st) (13.28)

T€L veV (G (s,)€E(G)
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Bethe Entropy Approx
(N RNARNRRNN]

Bethe Variational Problem and LBP

Original variational representation of log partition function

AB) = sup {(6, 1) — A*(u)} (13.26)
HEM

Approximate variational representation of log partition function

ABethe(0) = SEE {(0,7) + Hpethe(7)} (13.27)

=supy (0,7) + Z Hy(1y) — Z Isi(7se) ¢ (13.28)

€L veV(Q) (s,0)EE(G)

@ Exact when G =T but we do this for any G, still commutable
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Bethe Entropy Approx
(N RNARNRRNN]

Bethe Variational Problem and LBP

Original variational representation of log partition function

AB) = sup {(6, 1) — A*(u)} (13.26)
HEM

Approximate variational representation of log partition function

ABethe(0) = SEE {(0,7) + Hpethe(7)} (13.27)

=supy (0,7) + Z Hy(1y) — Z Isi(7se) ¢ (13.28)

€L veV(Q) (s,0)EE(G)

@ Exact when G =T but we do this for any G, still commutable

@ we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.
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Bethe Entropy Approx
(N RNARNRRNN]

Bethe Variational Problem and LBP

Original variational representation of log partition function

AB) = sup {(6, 1) — A*(u)} (13.26)
HEM

Approximate variational representation of log partition function

ABethe(0) = SEE {(0,7) + Hpethe(7)} (13.27)

=supy (0,7) + Z Hy(1y) — Z Isi(7se) ¢ (13.28)

€L veV(Q) (s,0)EE(G)

@ Exact when G =T but we do this for any G, still commutable

@ we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

@ We can optimize this directly using a Lagrangian formulation.
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Bethe Entropy Approx
(NERY NRRNRRNN]

Bethe Variational Problem and LBP

@ Lagrangian constraints f ing to unity at nodes

Con() £ 1= 7y(m0) (13.29)

o Lagrangian constrai cal consistency

Ts(ws) — ZTst(%,xt) (13.30)

@ Yields following LCagrangian

‘C(Tv A; 0) N (97 T> ‘ HBethe(T) + Z )\m;cvv(T) (1331)
veV

+ Z l: )\ts (xs)cts (ws; 7_) -+ Z )\st (xt)cst(xt; 7_)
(s;)EE(G) L s o L/A
(13.32)

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F31/70 (pg.76/192)



Bethe Entropy Approx  Bethe & L Kikuchi and Hypertree-base

y LBP fixed point specifies a pair (7%, \*) s.t
VAL(T X5 0) =0 and VAL(T*,\*;0) =0 (13.33)

(b) For tree MRFs, Lagrangian equations have uhique solution (7, \*)
where T° are exact node and edge marginals for the tree and the optimal
value obtained is the true log partition function.

@ Not guaranteed convex optimization, but is if graph is tree.

e Remarkably; fﬁimm we
reach a point'where we have converged, then we will"have achieved a
fixed-point of the above Lagrangian, and thus a (perhaps reasonable)
local optimum of the underlying variational problem.
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Bethe Entropy Approx
(NENRNE RRRNRN]

Fixed points: Variational Problem and LBP

@ The resulting Lagrange multipliers \g; end up being exactly the
messages that we have defined. l.e., we get

)\st(xt) Hs—t — Z¢s,t(x8a -'Bt) H /“c—)s(xs) (13-34’)
4

Ts ked(s)\{t}
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Bethe Entropy Approx
(NENRRE RRRARN]

Fixed points: Variational Problem and LBP

@ The resulting Lagrange multipliers Ag; end up being exactly the
messages that we have defined. l.e., we get

)\st(xt) = Ms—)t(xt) = Zdﬂs,t(@ﬁ xt) H ,Ufk%s(xs) (1334)

e ked(s)\{t}

@ Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).
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Bethe Entropy Approx
(NERRNE RRRRNN]

Fixed points: Variational Problem and LBP

@ The resulting Lagrange multipliers Ag; end up being exactly the
messages that we have defined. l.e., we get

)\st(xt) = Ms—>t(xt) = Zws,t(x& xt) H Nk%s(xs) (1334)

e ked(s)\{t}

@ Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

@ So we can now (at least) characterize any stable point of LBP.
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Bethe Entropy Approx
(NERRNE RRRRNN]

Fixed points: Variational Problem and LBP

@ The resulting Lagrange multipliers Ag; end up being exactly the
messages that we have defined. l.e., we get

Nat(@e) = posi(w) =Y tsu(we, ) [ mwoslas)  (13.34)
Ts kes(s)\{t}

@ Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

@ So we can now (at least) characterize any stable point of LBP.

@ This does not mean that it will converge.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F33/70 (pg.81/192)



Bethe Entropy Approx
(NERRNE RRRRNN]

Fixed points: Variational Problem and LBP

@ The resulting Lagrange multipliers Ag; end up being exactly the
messages that we have defined. l.e., we get

)\st(xt) = Ms—>t(xt) = Zws,t(x& xt) H Nk%s(xs) (1334)

e ked(s)\{t}

@ Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

@ So we can now (at least) characterize any stable point of LBP.
@ This does not mean that it will converge.

@ For trees, we'll get Agethe(f) = A(0), results of previous lectures
(parallel or MPP-based message passing).
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Bethe Entropy Approx
(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds?
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Bethe Entropy Approx
(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0" € argrenax (0, 1y — A(6)) (??7)
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Bethe Entropy Approx
(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0* € argmax ({0, 1) — A(9)) (??)
0
and convex conjugate dual of A(0)
A" (1) 2 sup ({0, 1) — A(9)) (72)
0eQ

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F34/70 (pg.85/192)



Bethe Entropy Approx
(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0* € argmax ({0, 1) — A(9)) (??)
0
and convex conjugate dual of A(0)
wr \ A
A" () = sup ((6, ) — A(0)) (?7)
0eQ

@ Recall again the expression for the partition function

AB) = sup {(6, 1) — A*(u)} (13.7)
HeEM

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F34/70 (pg.86/192)



Bethe Entropy Approx
(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0* € argmax ({0, 1) — A(9)) (??)
0
and convex conjugate dual of A(0)
wr \ A
A" () = sup ((6, ) — A(0)) (?7)
0eQ

@ Recall again the expression for the partition function
A(0) = sup {{f, ) — A*(p)} (13.7)
HeEM

and some approximation to A(#), say Aapprox(f)-
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(NENRRRY AR

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0" e arggnax (0, 1) — A(9))

and convex conjugate dual of A(0)

A*(p) 2 sup ((6,11) = A(9)) (77)

@ Recall again the expression for the partition function
A(0) = sup {(0, ) — A™(n)} (13.7)
HeEM

and some approximation to A(6), say Aapprox(6)-
@ Due to sup in Eq. (3might want upper bound Az oo (0) > A(6),
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(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0* € argmax ({0, 1) — A(9)) (??)
0
and convex conjugate dual of A(0)
wr \ A
A" () = sup ((6, ) — A(0)) (?7)
0eQ

@ Recall again the expression for the partition function
A(0) = sup {{f, ) — A*(p)} (13.7)
HeEM

and some approximation to A(6), say Aapprox(6)-
@ Due to sup in Eq. (??), might want upper bound A,pprox(0) > A(6),
e mean-field methods (ch 5 in book) provides lower bound on A(6).
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Bethe Entropy Approx
(NERRNRY RRRNN]

Bounds on A: why would we want them?

@ Does not mean Agetne(#) will be a bound on A(#) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

0* € argmax ({0, 1) — A(9)) (??)
0
and convex conjugate dual of A(0)
wr \ A
A" () = sup ((6, ) — A(0)) (?7)
0eQ
@ Recall again the expression for the partition function
A(0) = sup {(0, u) — A™()} (13.7)
HeEM
and some approximation to A(6), say Aapprox(6)-
@ Due to sup in Eq. (??), might want upper bound A,pprox(0) > A(6),
e mean-field methods (ch 5 in book) provides lower bound on A(6).
@ For certain “attractive” potential functions, we get Agethe(6) < A(0),

these are common in computer vision and are related to graph cuts.
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(NERRNARY NRNN]

Bounds on A

@ In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.
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Bethe Entropy Approx
(NERRNARY NRNN]

Bounds on A

@ In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.
@ Recall definition of the family

po() = exp((0, ¢(x)) — A(6)) (13.35)
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Bethe Entropy Approx
(NERRNARY NRNN]

Bounds on A

@ In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.
@ Recall definition of the family

po(x) = exp((0, o(x)) — A(0)) (13.35)

@ So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
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Bethe Entropy Approx
(NERRNARY NRNN]

Bounds on A

@ In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.
@ Recall definition of the family

po(x) = exp((0, o(x)) — A(0)) (13.35)

@ So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
@ To compute conditionals

ralzn) = p(rAuB) va\(AUB) p(x)
p(zalzp) = p(zp) va\Bp(x) (13.36)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.
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Bethe Entropy Approx
(NENRNRRR RNRN

Bounds on A

@ In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.
@ Recall definition of the family

po(x) = exp((0, o(x)) — A(0)) (13.35)

@ So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.

@ To compute conditionals

x
p($A|$B) _ p(CUAUB) _ ZSEV\(AUB) p( ) (13.36)
Pem) | Ty, p@)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.

@ Perhaps more importantly, exp(A(#)) is a marginal in and of itself
(recall it is marginalization over everything). If we cafilbound A(&),
we can come up with other forms of bounds over other marginals.
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Lack of bounds for Bethe

@ Two reasons A might be inaccurate:
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Bethe Entropy Approx
(NERRNARNT RNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L;
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Bethe Entropy Approx
(NERRNARNT RNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpethe in place of the true dual A*.
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Bethe Entropy Approx
(NERRNARNT NNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpgethe in place of the true dual A*.

@ Example of inaccuracy (example 4.2 from book), consider a 4-clique

ps(zs) =105 0.5] for s =1,2,3,4 (13.37a)
W ) = [ 0(')5 095 ] Y(s,t) € E(G) (13.37b)
\ 1

y S
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Bethe Entropy Approx
(NERRNARNT NNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpgethe in place of the true dual A*.

@ Example of inaccuracy (example 4.2 from book), consider a 4-clique

pis(z5) = [0.5 0.5] for s =1,2,3,4 (13.37a)

0.5 O}

pst(xs, x4) = { 0 05 V(s,t) € E(G) (13.37b)

e Valid marginals, @équal 0.5 probability for (0,0,0,0) and (1,1,1,1).
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(NERRNARNT NNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpgethe in place of the true dual A*.

@ Example of inaccuracy (example 4.2 from book), consider a 4-clique

1s(z5) = [0.5 0.5] for s =1,2,3,4 (13.37a)
o) = | 0 ] veneE@ s

e Valid marginals, equal 0.5 probability for (0,0,0,0) and (1,1,1,1).
o Each Hy(us) =log?2, and each Iy (ust) = log2 giving

Hpethe(1)@ 4log2 — 6log2 = —2log2 < 0 (13.38)
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Bethe Entropy Approx
(NERRNARNT RNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpgethe in place of the true dual A*.

@ Example of inaccuracy (example 4.2 from book), consider a 4-clique

1s(z5) = [0.5 0.5] for s =1,2,3,4 (13.37a)
o) = | 0 ] veneE@ s

e Valid marginals, equal 0.5 probability for (0,0,0,0) and (1,1,1,1).
e Each H,(us) =log2, and each I (us) = log2 giving

Hpethe (1) = 4log2 — 6log2 = —2log2 < 0 (13.38)

which obviously can't be a true entropy since we must have H > 0 for
discrete distributions.
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Bethe Entropy Approx
(NERRNARNT RNN]

Lack of bounds for Bethe

@ Two reasons A might be inaccurate: 1) We have replaced M with
outer bound L; and 2) we've used Hpgethe in place of the true dual A*.

@ Example of inaccuracy (example 4.2 from book), consider a 4-clique

pis(z5) = [0.5 0.5] for s =1,2,3,4 (13.37a)

0.5 O}

pst(xs, x4) = { 0 05 V(s,t) € E(G) (13.37b)

e Valid marginals, equal 0.5 probability for (0,0,0,0) and (1,1,1,1).
e Each H,(us) =log2, and each I (us) = log2 giving

Hpethe (1) = 4log2 — 6log2 = —2log2 < 0 (13.38)

which obviously can’t be a true entropy since we must have H > 0 for
discrete distributions.

@ True —A*(p) =log2 > 0.
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(NENRRRRRRN NN

What about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for
non-tree graphs)?
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Bethe Entropy Approx
(NERRNARNRI AN

What about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for

non-tree graphs)?
e Unfortunately, for all 7 € L(G), then it can be a fixed point for LBP
for some py.
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What about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for
non-tree graphs)?

e Unfortunately, for all 7 € L(G), then it can be a fixed point for LBP
for some py. true for Lagrangian optimization as well. ®
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Bethe Entropy Approx
(NERRNARNRI AN

at about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for
non-tree graphs)?

e Unfortunately, for all 7 € L(G), then it can be a fixed point for LBP
for some py. true for Lagrangian optimization as well. ®

@ Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,

0i(a0) = S, ()
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What about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for
non-tree graphs)?

e Unfortunately, for all 7 € L(G), then it can be a fixed point for LBP
for some py. true for Lagrangian optimization as well. ®

@ Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,
¢i(x;) = EIV\{i} p(x). A goal of inference is to change factors to
become true marginals, can't be done for graphs with cycles in
general.
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What about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for
non-tree graphs)?

e Unfortunately, for all 7 € L(G), then it can be a fixed point for LBP
for some py. true for Lagrangian optimization as well. ®

@ Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,
¢i(x;) = Ezv\{} p(z). A goal of inference is to change factors to
become true marginals, can't be done for graphs with cycles in
general.

@ Fixed points of LBP do not get marginal reparameterization but it
does get something identical when global renormalized.
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What about IL \ M?

@ Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \ M(G) (which we know to be non-empty for
non-tree graphs)?

e Unfortunately, for all 7 € L(G), then it can be a fixed point for LBP
for some py. true for Lagrangian optimization as well. ®

@ Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,
¢i(x;) = va\{,} p(z). A goal of inference is to change factors to

become true marginals, can't be done for graphs with cycles in
general.

o Fixed points of LBP do not get marginal reparameterization but it
does get something identical when global renormalized.

@ That is, we have
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(NERRNARNRRY ¥

Reparameterization Properties of Bethe Approximation

Proposition 13.5.2
Let 7 = (17,5 € V74, (s,t) € E(G)) denote any optimum of the Bethe

variational principle defined by the distribution pg. Then the distribution
defined by the fixed point as

pT*(w)ﬁz(lT*)ng:(ws) [[ —Dtle (13.39)

is a reparameterization of the original. That is, we have py(x) = pr+(x)
for all x.

@ For trees, we have Z(7*) = 1.

@ Form gives strategies for seeing how bad we are doing for any given
instance (by, say, comparing marginals) - approximation error (possibly
a bound)
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Bethe Entropy Approx
[NERRNARRRNNY ]

A fixed point in L \ M is possible.

@ Consider
Os(xs) = log Ts(xs) = log[0.5 0.5] for s =1,2,3,4
(13.40a)
Tst(xawt)
Ost (s, 2¢) = log ——————~
t(.’lf fL't) 0og Ts(ms)']—t(xt>
Bst 0.5 — ﬂst

=logd | (S0 V(s,t) € E(G) (13.40b)

@ We saw in the slide that, for a 3-cycle, a choice of

parameters that gave us 7 € L \ M. Is this achievable as fixed point of
LBP?

@ For this choice of parameters, if we start sending messages, starting
from the uniform messages, then this will be a fixed point. ®

Prof. Jeff Bilmes
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If not Bounds, then Better Approximation?

@ So we want bounds between A(f) and Agethe(f) in the ideal case.
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Bethe & Loop Series
[NRRNRARAT

If not Bounds, then Better Approximation?

@ So we want bounds between A(f) and Agethe(6) in the ideal case.

@ Perhaps we can come up with an expression for A(f) — Agethe(6)
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Bethe & Loop Series
[NRRNRARAT

If not Bounds, then Better Approximation?

@ So we want bounds between A(f) and Agethe(6) in the ideal case.
@ Perhaps we can come up with an expression for A(f) — Agethe(6)

@ We don't expect the expression to be easy to compute. Why?
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[NRRNRARAT

If not Bounds, then Better Approximation?

@ So we want bounds between A(f) and Agethe(6) in the ideal case.
@ Perhaps we can come up with an expression for A(f) — Agethe(6)
@ We don't expect the expression to be easy to compute. Why?

@ Expression, however, could help make the difference smaller by
approximating the difference in a computationally practical way.
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Bethe & Loop Series
[NRRNRARAT

If not Bounds, then Better Approximation?

So we want bounds between A(f) and Apethe(#) in the ideal case.
Perhaps we can come up with an expression for A(f) — Agethe(6)

We don't expect the expression to be easy to compute. Why?

Expression, however, could help make the difference smaller by
approximating the difference in a computationally practical way.

This is the idea behind Loop Series Expansions
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[N NRNRRRY]

Generalized Loops

@ Recall vertex and edge induced subgraphs.

o Notation: Given graph G = (V, E), we have

e Given subset S C V, then G’ = (S, E(S)) is a vertex induced
subgraph.

o Given subset £ C E, then G(E) = (V(E), E) is edge-induced
subgraph.

o Define the degree in the subgraph as d(E) = |0(E)| where
6s(E) = {t e V|(s,t) € E} is the set of neighbors of s in G(E).

o Definition: a generalized loop is a subgraph G(E ) where no node has
degree 1 (i.e., ds(F) # 1 for all s € V(G(E)).
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Bethe & Loop Series
[NLRRRRRY]

Generalized Loops

o Definition: a generalized loop is a subgraph G(E) where no node has
degree 1 (i.e., ds(E) # 1 for all s € V(G(E)).

o Example:

N N
§ O O z 2 @—§
(a) (b) (c) (d) (e)

lllustration of generalized loops. (a) An original graph. (b)-(d)
Various generalized loops associated with the graph in (a). In this
particular case, the original graph is a generalized loop for itself. (e) is
not a generalized loop as it has a leaf node.
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[NNE NRRRY]

Edge weights Generalized Loops

e Consider LBP fixed point for binary pairwise MRF (Ising model), and
with unary and pairwise pseudomarginals parameterized as:

Ts(ws) = [ !

— Ts l—Ts—T+7Ts T8 — Tst
] , and T (xs, 1) = [

Ts Ts — Tst Tst
(13.41)
@ Define edge weight as
A Tst — TsTt
£ 13.42
Bst Ts(1 — 75)1e(1 — 71) ( )
e and extended to a general set of edges E
Ba2t [ Be (13.43)

(s,t)EE
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Bethe & Loop Series
[NRRR NRRY]

Comparison of A and Apethe

Proposition 13.6.1
Consider a pairwise MRF with binary variables, with Apgethe(6) being the

optimized free energy evaluated at a LBP fixed point
T = (75,58 € V;7st, (s,t) € E(G)). Then we have the following

relationship with the cumulant function A(6).

A(0) = Agethe(0) +log S 1+ > BEHIETS[ =7 (E)}

0£ECE seV

(13.44)

@ For any E such that 3s with d,(E) = 1, inner term is zero and

vanishes.

F44/70 (pg.121/192
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Bethe & Loop Series
[NRRR NRRY]

Comparison of A and Apethe

Proposition 13.6.1
Consider a pairwise MRF with binary variables, with Apgethe(6) being the

optimized free energy evaluated at a LBP fixed point
T = (75,58 € V;7st, (s,t) € E(G)). Then we have the following

relationship with the cumulant function A(6).

A(0) = Agethe(0) +log S 1+ > BEHIETS[ s — 1) (E)}

0£ECE seV

(13.44)

e For any E such that 3s with d,(E) = 1, inner term is zero and

vanishes. why?
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Bethe & Loop Series
[NRRR NRRY]

Comparison of A and Apethe

Proposition 13.6.1
Consider a pairwise MRF with binary variables, with Apgethe(6) being the

optimized free energy evaluated at a LBP fixed point
T = (75,58 € V;7st, (s,t) € E(G)). Then we have the following

relationship with the cumulant function A(6).

A(0) = Agethe(0) +log S 1+ > BEHIETS[ =7 (E)}

0£ECE seV

(13.44)

e For any E such that 3s with d,(E) = 1, inner term is zero and
vanishes. why? Thus, terms in the sum only exists for generalized

loops.

F44/70 (pg.123/192
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Bethe & Loop Series
[NRRR NRRY]

Comparison of A and Apethe

Proposition 13.6.1

Consider a pairwise MRF with binary variables, with Apgethe(6) being the
optimized free energy evaluated at a LBP fixed point

T = (75,8 € V74, (s,t) € E(G)). Then we have the following
relationship with the cumulant function A(6).

A(0) = Agethe(0) +log S 1+ > BEHIETS[ s — 1) (E)}

0£ECE seV

(13.44)

e For any E such that 3s with d,(E) = 1, inner term is zero and
vanishes. why? Thus, terms in the sum only exists for generalized

loops.
@ The generalized loops give the correction!

F44/70 (pg.124/192
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Bethe & Loop Series
[NRRR NRRY]

Comparison of A and Apethe

Proposition 13.6.1
Consider a pairwise MRF with binary variables, with Apgethe(6) being the

optimized free energy evaluated at a LBP fixed point
T = (75,58 € V;7st, (s,t) € E(G)). Then we have the following

relationship with the cumulant function A(6).

A(0) = Agethe(0) +log S 1+ > BEHIETS[ s — 1) (E)}
0£ECE seV
(13.44)

e For any E such that 3s with d,(E) = 1, inner term is zero and
vanishes. why? Thus, terms in the sum only exists for generalized

loops.
@ The generalized loops give the correction!
@ For trees, there are no generalized loops, and so if G is a tree then we

Nt ean A4 a¥a BEVA IS = o
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Bethe & Loop Series
[NEARR ARY]

Proof of Proposition 13.6.1

A~

@ Overcomplete, 3 parameters 6 s.t. <6’,¢(x)> = ¢ for all z.
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Bethe & Loop Series
[NEARR ARY]

Proof of Proposition 13.6.1

e Overcomplete, 3 parameters 6 s.t. <é,q§(w)> = ¢ for all z.

@ Thus, we can show this for just one set of parameters 6.
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Bethe & Loop Series
[NEARR ARY]

Proof of Proposition 13.6.1

e Overcomplete, 3 parameters 6 s.t. <é,q§(w)> = ¢ for all z.

@ Thus, we can show this for just one set of parameters 6.
@ Choose parameterization

~ Tst(l's, -Tt)

Os(xs) = log 7s(xs), and O (s, ;) = log Py Py vy (13.45)
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Bethe & Loop Series
[NEARR ARY]

Proof of Proposition 13.6.1

e Overcomplete, 3 parameters 6 s.t. <é,q§(w)> = ¢ for all z.

@ Thus, we can show this for just one set of parameters 6.

@ Choose parameterization

Tst($37$t)

és(a;s) = log 75(xs), and ést(xs,xt) = log Py e g

(13.45)

e With this paramterization, Agethe(f)) = 0 (since the optimization
attempts to maximize a set of negative KL-divergence terms).
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Bethe & Loop Series
[NEARR ARY]

Proof of Proposition 13.6.1

e Overcomplete, 3 parameters 6 s.t. <é,q§(w)> = ¢ for all z.

@ Thus, we can show this for just one set of parameters 6.

@ Choose parameterization

Tst($37$t)

és(:cs) = log 75(xs), and ést(xs,xt) = log Py e g

(13.45)

With this paramterization, Agethe() = 0 (since the optimization
attempts to maximize a set of negative KL-divergence terms).

@ Thus, we need only show

A@)=10g31+ > B[] En |(X, —7)"®) (13.46)
p£ECE  s€V
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Bethe & Loop Series
[NNANNA NN

Proof of Proposition 13.6.1 cont.

@ By checking for each value of (z, ;) € {0,1}?, we have

Tst(xs-, xt)

@)@ LT P =)@ =) (13.47)
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Bethe & Loop Series
[NNANNA NN

Proof of Proposition 13.6.1 cont.

@ By checking for each value of (z, ;) € {0,1}?, we have

Tst(!Es,fUt)

Py 1+ Bst(xs — 75) (T — %) (13.47)

@ Moreover, at current parameterization 6, we have

ep(A@)= Y [[n) [ 2022 (134s)

z€{0,1}™ s€V (st)EE Ts (@) e (1)
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Bethe & Loop Series
[NNANNA NN

Proof of Proposition 13.6.1 cont.

@ By checking for each value of (z, ;) € {0,1}?, we have

Tst(!Es,fUt)

Py 1+ Bst(xs — 75) (T — %) (13.47)

@ Moreover, at current parameterization 6, we have

ep @)= Y [[n) [ 2022 (134s)

z€{0,1}"" s€V (s,;t)eE TS(mS)Tt(xt)

o Let Tract = [ [, 7s(xs) and let E be w.r.t. Tget, then

exp(A()) =E | [] (1+Ba(Xs — 7)(Xe — 7)) (13.49)
(s,t)eE
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Bethe & Loop Series
[NRANRRT Y]

Proof of Proposition 13.6.1 cont.

proof sketch.

@ By polynomial expansion, linearity of expectation, we get

exp(A(é)) =1+ Z E H (/Bst(Xs - TS)(Xt - Tt)) (1350)

0£ECE (s,;t)eE

0J
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Bethe & Loop Series
[NRANRRT Y]

Proof of Proposition 13.6.1 cont.

proof sketch.

@ By polynomial expansion, linearity of expectation, we get

exp(A0) =1+ > E| ] (Bet(Xs—7)(X:—m))| (13.50)

0£ECE (s,;t)eE

@ And by independence of 7f,c, we get

exp(A@) =1+ Y Bz [ E- [(XS . Ts)ds@)} (13.51)

(Z);éEgE seV

0J
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Bethe & Loop Series
[NERRRARY

Comparison of A and Apethe

Proposition 13.6.1
Consider a pairwise MRF with binary variables, with Apgethe(6) being the

optimized free energy evaluated at a LBP fixed point
T = (75,58 € V;7st, (s,t) € E(G)). Then we have the following

relationship with the cumulant function A(6).

A(0) = Agethe(0) +log S 1+ > BEHIETS[ s — 1) (E)}
0£ECE seV
(13.44)

e For any E such that 3s with d,(E) = 1, inner term is zero and
vanishes. why? Thus, terms in the sum only exists for generalized

loops.
@ The generalized loops give the correction!
@ For trees, there are no generalized loops, and so if G is a tree then we

Nt ean A4 a¥a BEVA IS = o
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function

A(f) = sup {(0, ) — A" ()} (13.52)
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function

A(0) = sup {0, ) — A" ()} (13.52)

@ So far, we have used a replacement for —A*(1) inspired by trees.
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function

A(0) = sup {0, ) — A" ()} (13.52)

@ So far, we have used a replacement for —A*(u) inspired by trees.

@ But we know a tree is really a 1-tree. Why not k-tree?
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function

A(0) = sup {0, ) — A" ()} (13.52)

@ So far, we have used a replacement for —A*(u) inspired by trees.
@ But we know a tree is really a 1-tree. Why not k-tree?

@ Why not some other junction tree?
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function
A(f) = sup {(0,p) — A" ()} (13.52)
HeEM

So far, we have used a replacement for —A*(u) inspired by trees.
But we know a tree is really a 1-tree. Why not k-tree?

Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function
A(f) = sup {(0,p) — A" ()} (13.52)
HeEM

So far, we have used a replacement for —A*(u) inspired by trees.
But we know a tree is really a 1-tree. Why not k-tree?
Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with:
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function
A(f) = sup {(0,p) — A" ()} (13.52)
HeEM

So far, we have used a replacement for —A*(u) inspired by trees.
But we know a tree is really a 1-tree. Why not k-tree?
Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with: 1) replacement for —A*(u) associated with
a hypertree/junction tree;
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function
A(f) = sup {(0,p) — A" ()} (13.52)
HeEM

So far, we have used a replacement for —A*(u) inspired by trees.
But we know a tree is really a 1-tree. Why not k-tree?
Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with: 1) replacement for —A*(u) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function
A(f) = sup {(0,p) — A" ()} (13.52)
HeEM

So far, we have used a replacement for —A*(u) inspired by trees.
But we know a tree is really a 1-tree. Why not k-tree?
Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with: 1) replacement for —A*(u) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and 3) a corresponding generalized polytope
associated with the hypergraph?
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Kikuchi and Hypertree-based Methods
[ERRRRRN AR NRRNARRARN

General idea of Kikuchi

@ Variational representation of log partition function
A(f) = sup {(0,p) — A" ()} (13.52)
HeEM

So far, we have used a replacement for —A*(u) inspired by trees.
But we know a tree is really a 1-tree. Why not k-tree?
Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with: 1) replacement for —A*(u) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and 3) a corresponding generalized polytope
associated with the hypergraph?

@ This is the Kikuchi variational approach.
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Kikuchi and Hypertree-based Methods
(LRNRRNNARRRRRNNRNNY

Hypergraphs

@ A graph G = (V, E) is a set of nodes V' and edges E where every
(s,t) = e € E is only two nodes.
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Kikuchi and Hypertree-based Methods
(LRNRRNNARRRRRNNRNNY

Hypergraphs

e A graph G = (V, E) is a set of nodes V' and edges E where every
(s,t) = e € FE is only two nodes.

@ A hypergraph is a system (V, E) where every e € E can consist of any
number of nodes. l.e., we might have (v, ve,...,v;) = e € E(G) for
a hypergraph.
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Kikuchi and Hypertree-based Methods
(LRNRRNNARRRRRNNRNNY

Hypergraphs

e A graph G = (V, E) is a set of nodes V' and edges E where every
(s,t) = e € FE is only two nodes.

@ A hypergraph is a system (V, E) where every e € E can consist of any
number of nodes. l.e., we might have (v, ve,...,v;) = e € E(G) for
a hypergraph.

@ A hypertree is a hypergraph that can be reduced to a tree in a
particular way, we've already seen them in the forms of junction trees.
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Kikuchi and Hypertree-based Methods
(LRNRRNNARRRRRNNRNNY

Hypergraphs

e A graph G = (V, E) is a set of nodes V' and edges E where every
(s,t) = e € FE is only two nodes.

@ A hypergraph is a system (V, E) where every e € E can consist of any
number of nodes. l.e., we might have (v, ve,...,v;) = e € E(G) for
a hypergraph.

@ A hypertree is a hypergraph that can be reduced to a tree in a
particular way, we've already seen them in the forms of junction trees.

@ A junction tree (which, recall, satisfies r.i.p.) is a hypertree where the
maxcliques (which are clusters of graph nodes) in the junction tree are
the edges of the hypertree.
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Kikuchi and Hypertree-based Methods
(L RNNRNNARRRRRNNRNNY

Hypergraphs

Definition 13.7.1 (hypergraph)

A hypergraph H = (V, E) is a set of vertices V' and a collection of
hyperedges E, where each element e € E is a subset of V, so

Ve € E,e C V. In a graph, |e] = 2. In a hypergraph, it can be larger.
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Kikuchi and Hypertree-based Methods
(L RNNRNNARRRRRNNRNNY

Hypergraphs

Definition 13.7.1 (hypergraph)

A hypergraph H = (V, E) is a set of vertices V' and a collection of
hyperedges E, where each element e € E is a subset of V, so
Ve € E,e C V. In a graph, |e] = 2. In a hypergraph, it can be larger.

Definition 13.7.2 (leaf)

A vertex v of H is called a /eaf if it appears only in a single maximal
hyper-edge h € H.
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Kikuchi and Hypertree-based Methods
(L RNNRNNARRRRRNNRNNY

Hypergraphs

Definition 13.7.1 (hypergraph)

A hypergraph H = (V, E) is a set of vertices V' and a collection of
hyperedges E, where each element e € E is a subset of V, so
Ve € E,e C V. In a graph, |e| = 2. In a hypergraph, it can be larger.

Definition 13.7.2 (leaf)

A vertex v of H is called a /eaf if it appears only in a single maximal
hyper-edge h € H.

Definition 13.7.3 (acyclic)

A hypergraph H is called acyclic if it is empty, or if it contains a leaf v
such that induced hypergraph H(V — {v}) is acyclic (note, generalization
of perfect elimination order in a triangulated graph, junction tree).
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Kikuchi and Hypertree-based Methods
(NRE ARRNNARRRRRNNRNNY

Hypergraphs and bipartite graphs

Hypergraphs can be represented by a bipartite G = (V, F, E) graphs
where V' is a set of left-nodes, F' is a set of right nodes, and E is a set of
size-two edges. Right nodes are hyperedges in the hypergraphs.

Some hand-drawn examples:
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Kikuchi and Hypertree-based Methods
(AR NRRNARRRRRNNRNRY

Hypergraphs and posets

(a) (b) (c)
Graphical representations of hypergraphs. Subsets of nodes corresponding
to hyperedges are shown in rectangles, whereas the arrows represent
inclusion relations among hyperedges. (a) An ordinary single cycle graph
represented as a hypergraph. (b) A simple hypertree of width two. (c) A
more complex hypertree of width three.
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Kikuchi and Hypertree-based Methods
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Hypergraphs and posets

(a) (b) (c)
As bipartite graphs:
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Kikuchi and Hypertree-based Methods
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Partially ordered set

@ A partially ordered set (poset) is a set P of objects with an order.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F54/70 (pg.157/192



Kikuchi and Hypertree-based Methods
(RN ANNARRRRRNNRNNY

Partially ordered set

@ A partially ordered set (poset) is a set P of objects with an order.

@ Set of objects P and a binary relation < which can be read as “is
contained in" or “is part of” or “is less than or equal to".
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Kikuchi and Hypertree-based Methods
(RN ANNARRRRRNNRNNY

Partially ordered set

@ A partially ordered set (poset) is a set P of objects with an order.

@ Set of objects P and a binary relation < which can be read as “is
contained in” or “is part of” or “is less than or equal to".

e For any x,y € P, we may ask is x = y which is either true or false.
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Kikuchi and Hypertree-based Methods
(RN ANNARRRRRNNRNNY

Partially ordered set

@ A partially ordered set (poset) is a set P of objects with an order.

@ Set of objects P and a binary relation < which can be read as “is
contained in" or “is part of” or “is less than or equal to".

@ For any x,y € P, we may ask is x = y which is either true or false.

@ In a poset, for any x,y, z € P the following conditions hold (by

definition):
For all z,z < x. (Reflexive) (P1.)
If z <yandy <z, thenx =y (Antisymmetriy) (P2.)
If 2 <yand y <z, then z < z. (Transitivity) (P3.)
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Kikuchi and Hypertree-based Methods
(RN ANNARRRRRNNRNNY

Partially ordered set

@ A partially ordered set (poset) is a set P of objects with an order.

@ Set of objects P and a binary relation < which can be read as “is
contained in” or “is part of” or “is less than or equal to".

@ For any x,y € P, we may ask is x = y which is either true or false.

@ In a poset, for any x,y, z € P the following conditions hold (by
definition):

For all z,z < x. (Reflexive) (P1.)
Ifz <yandy <z, thenz =y (Antisymmetriy) (P2.)
If x <yand y <z, then x < 2. (Transitivity) (P3.)

@ We can use the above to get other operators as well such as “less
than” via ¢ <y and x # y implies © < y. Also, we get x > y if not
x =y. And x > y is read "z contains y". And so on.
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Kikuchi and Hypertree-based Methods
(NRRNNI ARARRRRRNNRNAY

Mobius Inversion Lemma

@ A zeta function of a poset is a mapping ¢ : P x P — R defined by

1 ifg=h,
¢(g,h) = . (13.53)
0 otherwise.

@ The Mobius function w : P x P — R is the multiplicative inverse of
this function. It is defined recursively:

w(g,g) =1forallgeP

w(g,h) =0forall h:h ¢ g.

Given w(g, f) defined for f such that g C f C h, we define

wig,h) == > wlgf) (13.54)
{flgCsfch}
Then, w and ¢ are multiplicative inverses, in that

Swlg. NS = Y wlg. f) =dg.h) (13.55)

fep {flgCsrch}
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Kikuchi and Hypertree-based Methods
(NRRNNRY NRRRRRRNNRNAY

General Mobius Inversion Lemma

Lemma 13.7.4
Given real valued functions T and € defined on poset P, then Q(h) may
be expressed via Y (-) via

=> Y(g) forallheP (13.56)

g=h
iff Y(h) may be expressed via €)(-) via

=Y Q(g)w(g,h) forallheP (13.57)
g=h

When P = 2V for some set V (so this means that the poset consists of
sets and all subsets of an underlying set V') this can be simplified, where
= becomes C; and = becomes D.
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Kikuchi and Hypertree-based Methods
(NRRNRRNR ARRRARNNRNAY

Mobius Inversion Lemma

Lemma 13.7.5 (Md&bius Inversion Lemma)

Let Y and Q) be functions defined on the set of all subsets of a finite set
V', taking values in an Abelian group (i.e., a group (closure, associativity,
identity, and inverse) for which the elements also commute, the real
numbers being just one example). The following two equations imply
each other.

VACV:Y(A)= > QB) (13.58)
B:BCA
VACV:94)= ) (-1)4Flr(B) (13.59)
B:BCA
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Kikuchi and Hypertree-based Methods
(NRRNRRNNE ARRRRNNRNRY

Proof of Mobius Inversion Lemma

> B) = (-1)IB\Clr () (13.60)

= > rO)(-n)iB“l (13.61)

C:CCA B:CCB&BCA

= re) > (-pBve (13.62)
C:CCA B:CCB&BCA

= re) > (- (13.63)
C:CCA H:HCA\C
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Proof of Mobius Inversion Lemma

Proof Cont.

Also, note that for some set D,

D]

|D|
Z (_1)|H| — Z (’D‘> (_1)’i — Z <|D’> (_1)i(1)|D\—z‘ (13.64)
H:HCD i—o \ ! g\
= 0 0P1= 5 e (13.69)

which means

S :{ L a=cC (13.66)

0 otherwise
H:HCA\C
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Kikuchi and Hypertree-based Methods
(NRRNRRRNART RRRNNRNAY

Proof of Mobius Inversion Lemma

Proof Cont.
This gives

> aB)= ) TOL{A=C}=T(4) (13.67)

B:BCA C:CCA

thus proving one direction. The other direction is very similar.
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Mobius Inversion Lemma and Inclusion-Exclusion
ISTIS a general cased OoT Inciusion-exciusion.

@ Given ground set V and A, B C V, to compute the size
|JAUB|=|A|+ |B|—|ANB|.

e A,B,C CV, then
|JAUBUC| = |A|+|B|+|C|—|ANB|—|ANC|—|BNC|+|ANBNC]|.
Start by including, then excluding, and then including again.

C

A

A B

@ Also consider entropy: H(X,Y)=H(X)+ H(Y) - I(X;Y).
H(X,)Y,Z) =
HX)+HY)+H(Z) - I(X;Y)-I(X; Z) - I(Y; Z) + I(X Y;2).
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Kikuchi and Hypertree-based Methods
(NRRNRRNNARRRT ANNRNAY

Mobius Inversion Lemma and Inclusion-Exclusion

@ General form of Inclusion-Exclusion: Given A1, As,..., A, CV,
Uy A =) (1) > |4, N AN -NA;| (13.68)
7j=1 1<i1 <ig<-<i;<n

@ This is a special case of Mobius Inversion Lemma:

VACV:T(A) = > QB) (13.69)
B:BCA
VACV:Q4)= Y (-1)*Flr(B) (13.70)
B:BCA

@ Mobius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).
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Back to Kikuchi: Mobius and expressions of factorization

@ Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V,E), so we have 1 = (up, h € E), then we can define new
functions ¢ = (¢p, h € E) via Mdbius inversion lemma as follows

log ¢n(wn) 2 Y w(g, h)log pg () (13.71)
g=h

(see Stanley, "Enumerative Combinatorics” for more info.)
@ From Mobius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

log pp(xp) Zlog 0g(xg) (13.72)
g=h
@ Key, when (¢}, is defined as above, and G is a hypertree we have
) =[] enlan) (13.73)
heE

= general way to factorize a distribution that factors w.r.t. a

hypergraph. When a 1-tree, we recover factorization we already know.
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expressions of factorization and Mobius

@ When the graph is a tree (a 1-tree), we have ¢s(zs) = ps(zs) and

/Lst(m& l’t)

PREATRCD)] (13.74)

9951‘,(5173: xt) =

giving us the tree factorization we saw early in this course.
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expressions of factorization and Mobius

@ When the graph is a tree (a 1-tree), we have ¢s(zs) = ps(zs) and

,ust(ffs, il‘t)

PRERTEN (13.74)

(Pst(xSu xt) =

giving us the tree factorization we saw early in this course.

@ For more general hypertree, consider edge set
E = {(12345), (2356), (4578), (25), (45), (56), (58), (5)}. Check: is

’

this a junction tree of cliques?
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expressions of factorization and Mobius

@ When the graph is a tree (a 1-tree), we have ¢s(zs) = ps(zs) and

,ust(ffs, il‘t)

PRERTEN (13.74)

(Pst(xSu xt) =

giving us the tree factorization we saw early in this course.

@ For more general hypertree, consider edge set
E = {(12345), (2356), (4578), (25), (45), (56), (58), (5)}. Check: is
this a junction tree of cliques?

@ Then

11245 H1245 1245145
#1245 = = 25 pas =
P25P4595 T M H25 45

(13.75)
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New expressions of entropy

@ We can express entropic quantities as well, such as the hyperedge
entropy

Hy(pn) = =Y () log () (13.76)

Th

and the multi-information function

In(pn) = pn(n) log on () (13.77)

Th
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Kikuchi and Hypertree-based Methods
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New expressions of entropy

@ We can express entropic quantities as well, such as the hyperedge
entropy

Hy(pn) = = pn(wn) log () (13.76)

Th

and the multi-information function

In(pn) =Y pn(wn) log on () (13.77)

Th

@ In the case of a single tree edge h = (s,t), then Ip(up) = I(Xs; Xy)
the standard mutual information.
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Kikuchi and Hypertree-based Methods
(NRRRRRNNARRRRRNR RAAY

New expressions of entropy

@ We can express entropic quantities as well, such as the hyperedge
entropy

Hpy(pn) = =Y pn(wn) log i (n) (13.76)
zp
and the multi-information function

In(pn) =Y pn(wn) log on () (13.77)

Th

@ In the case of a single tree edge h = (s,t), then Ip(up) = I(Xs; Xy)
the standard mutual information.

@ Then the overall entropy of any hypertree distribution becomes

Hhyper(1) = — Z Iy (f2n) (13.78)
heE

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F65/70 (pg.176/192



Kikuchi and Hypertree-based Methods
(NRRNRRNNARRRRRNNT AR

multi-information decomposition

@ Using Mobius, we can write

In(pn) =Y _w(g,h) { > pn(an) log /Lg(l’g)} (13.79)

g=h Th

(13.80)

(13.81)
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multi-information decomposition

@ Using Mobius, we can write

In(un) =Y wl(g, h){z uh(mh)logug(mg)} (13.79)

gjh Th

= > wle, Y pplay)log pup(xy) (13.80)

J=hexf Ty

(13.81)
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Kikuchi and Hypertree-based Methods
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multi-information decomposition

@ Using Mobius, we can write

In(un) =Y wl(g, h){z uh(mh)logug(mg)} (13.79)

gjh Th

= ZZw(e,n Zuf(xf)loguf(xf) (13.80)

f2hexf xy

==Y c(f)Hp(uy) (13.81)
f=h
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multi-information decomposition

@ Using Mobius, we can write

In(p

where

Prof. Jeff Bilmes

B = wg, h){z pn () logug(m’g)}
g=h Th
=Y > wle, )3 D nslxs)logpg(wy)
f2hexf Ty
=~ c(f)Hy(ny)
F=h

o(f) £ w(fe)

exf

EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014

(13.79)

(13.80)

(13.81)

(13.82)




Kikuchi and Hypertree-based Methods
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multi-information decomposition

@ Using Mobius, we can write

In(un) =Y wl(g, h){z uh(mh)logug(mg)} (13.79)

gjh Th

= ZZw(e,n Zuf(xf)loguf(xf) (13.80)

fXhe-f zy
==Y c(f)Hp(uy) (13.81)
f=h

where

c(f) £ w(fe) (13.82)

exf

@ This gives us a new expression for the hypertree entropy

Hhyper(1t) = E c(h)Hp(pn) (13.83)
heE
Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 13 - Nov 12th, 2014 F66/70 (pg.181/192



Kikuchi and Hypertree-based Methods
(NRRNRRNNARRRRRNNAY O

Usable to get Kikuchi variational approximation

@ Given arbitrary hypergraph now, we'll generalize the hypertree
expressions above this arbitrary hypergraph, which will give us a
variational expression that approximates cumulant.
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Kikuchi and Hypertree-based Methods
(NRRNRRNNARRRRRNNAY O

Usable to get Kikuchi variational approximation

@ Given arbitrary hypergraph now, we'll generalize the hypertree
expressions above this arbitrary hypergraph, which will give us a
variational expression that approximates cumulant.

e Given hypergraph G = (V, E), we have

po(x) ox exp {Z (rh(.rh)} (13.84)

heE

using same form of parameterization.
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Kikuchi and Hypertree-based Methods
(NRRNRRNNARRRRRNNAY O

Usable to get Kikuchi variational approximation

@ Given arbitrary hypergraph now, we'll generalize the hypertree
expressions above this arbitrary hypergraph, which will give us a
variational expression that approximates cumulant.

e Given hypergraph G = (V, E), we have

po(x) o< exp {Z ah(xh)} (13.84)

heE

using same form of parameterization.

@ Hypergraph will give us local marginal constraints on hypergraph
pseudo marginals, i.e., for each h € E, we form marginal 7,(zp) and
define constraints, non-negative, and

> ruwn) =1 (13.85)

Th
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Usable to get Kikuchi variational approximation

@ Sum to one constraint:

> Tulzn) =1 (13.86)

Tp
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Kikuchi and Hypertree-based Methods
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Usable to get Kikuchi variational approximation

@ Sum to one constraint:

> Tulzn) =1 (13.86)

@ Local agreement via the hypergraph constraint. For any g < h must
have marginalization condition

> n(an) = 74(xg) (13.87)

Th\g
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Kikuchi and Hypertree-based Methods
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Usable to get Kikuchi variational approximation

@ Sum to one constraint:

> Tulzn) =1 (13.86)

@ Local agreement via the hypergraph constraint. For any g < h must
have marginalization condition

> mn(zn) = () (13.87)

Zh\g
@ Define new polyhedral constraint set L;(G)

Li(G) = {7 > 0] Equations (13.86) Vh, and (13.87) Vg =< h hold}
(13.88)
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Kikuchi variational approximation
@ Generalized entropy for the hypergraph:

Happ = Z c(g)Hgy(1g) (13.89)
gelR

where H, is hyperedge entropy and overcounting number defined by:

clg) = wlg, f) (13.90)

f=g
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Kikuchi variational approximation
@ Generalized entropy for the hypergraph:

Happ = Z c(9)Hy(7g) (13.89)
geE

where H, is hyperedge entropy and overcounting number defined by:
clg) =Y wlg, f) (13.90)
frg
@ This at last gets the Kikuchi variational approximation

Akikuchi(0) = fnax {(0,7) + Happ(7)} (13.91)
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Kikuchi variational approximation
@ Generalized entropy for the hypergraph:

Happ = > c(g)Hy(7g) (13.89)
geE

where H, is hyperedge entropy and overcounting number defined by:

clg) =Y wlg, f) (13.90)
frg
o This at last gets the Kikuchi variational approximation

AKikuchi(G) = Tgllji(}é) {(9, T> + Happ(T)} (13.91)

@ For a graph, this is exactly Agethe(f). If, on the other hand, the graph
is a junction tree, then this is exact (although it might be expensive,
exponential in the tree-width to compute Hypp).
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Kikuchi and Hypertree-based Methods

Kikuchi variational approximation
@ Generalized entropy for the hypergraph:

Happ = > c(g)Hy(7g) (13.89)
geE

where H, is hyperedge entropy and overcounting number defined by:

clg) =Y wlg, f) (13.90)
frg
o This at last gets the Kikuchi variational approximation

AKikuchi(G) = Tgllji(}é) {(9, T> + Happ(T)} (13.91)

@ For a graph, this is exactly Agethe(f). If, on the other hand, the graph
is a junction tree, then this is exact (although it might be expensive,
exponential in the tree-width to compute Hypp).

@ Can define message passing algorithms on the hypertree, and show
that if it converges, it is a fixed point of the Lagrangian associated
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Sources for Today's Lecture

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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