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Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book. Start reading chapter 4.

Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes, tree outer bound

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17):

L15 (11/19):

L16 (11/24):

L17 (11/26):

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (13.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) = M ∆
=

{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}

(13.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.
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Mean Parameters and Marginal Polytopes

Mean parameters are now true (fully specified) marginals, i.e.,
µv(j) = p(xv = j) and µst(j, k) = p(xs = j, xt = k) since

µv,j = Ep[1(xv = j)] = p(xv = j) (13.20)

µst,jk = Ep[1(xs = j, xt = k)] = p(xs = j, xt = k) (13.21)

Such an M is called the marginal polytope for discrete graphical
models. Any µ must live in the polytope that corresponds to node
and edge true marginals.

We can also associate such a polytope with a graph G, where we take
only (s, t) ∈ E(G). Denote this as M(G).

This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we’ll see.
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Learning is the dual of Inference

We can view the inference problem as moving from the canonical
parameters θ to the point in the marginal polytope, called forward
mapping, moving from θ ∈ Ω to µ ∈ M.

We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Maximum entropy estimation

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (13.14)

where H(p) = −
∫
p(x) log p(x)ν(dx), and ∀α ∈ I

Ep[φα(X)] =

∫

DX

φα(x)p(x)ν(dx). (13.15)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) and then by
finding canonical parameters θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I. (13.16)
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Learning is the dual of Inference

Ex: Estimate θ with θ̂ based on data D = {x̄(i)}Mi=1 of size M ,
likelihood function

%(θ,D) =
1

M

M∑

i=1

log pθ(x̄
(i)) =

1

M

M∑

i=1

(〈
θ,φ(x̄(i))

〉
−A(θ)

)
(13.20)

= 〈θ, µ̂〉 −A(θ) (13.21)

where empirical means
are given by:

µ̂ = Ê[φ(X)] =
1

M

M∑

i=1

φ(x̄(i)) (13.22)

By taking derivatives of the above, it is easy to see that solution is the
point θ̂ = θ(µ̂) such that empirical matches expected means, or what
are called the moment matching conditions:

Eθ̂[φ(X)] = µ̂ (13.23)

this is the the backward mapping problem, going from µ to θ.

Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy
Entropy definition again: H(p) = −

∫
p(x) log p(x)ν(dx)

Given data, D = {x̄(i)}Mi=1, defines an empirical distribution

p̂(x) =
1

M

M∑

i=1

1(x = x̄(i)) (13.20)

so that Ep̂[φ(X)] =
∫
p̂(x)φ(x)ν(dx) = 1

M

∑M
i=1 φ(x̄

(i)) = µ̂
Starting from maximum likelihood solution θ(û), meaning we are at
moment matching conditions Epθ(û) [φ(X)] = µ̂ = Ep̂[φ(X)], we have

%(θ(û),D) = 〈θ(û), µ̂〉 −A(θ(û)) =
1

M

M∑

i=1

log pθ(û)(x̄
(i)) (13.21)

=

∫
p̂(x) log pθ(µ̂)(x)ν(dx) = Ep̂[log pθ(µ̂)(x)] (13.22)

= Epθ(µ̂)
[log pθ(µ̂)(x)] = −Hpθ(µ̂) [pθ(µ̂)(x)] (13.23)

Thus, maximum likelihood value and negative entropy are identical, at
least for empirical µ̂ (which is ∈ M).
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Dual Mappings: Summary

Summarizing these relationships

Forward mapping: moving from θ ∈ Ω to µ ∈ M, this is the inference
problem, getting the marginals.

Backwards mapping: moving from µ ∈ M to θ ∈ Ω, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

Turns out log partition function A, and its dual A∗ can give us these
mappings, and the mappings have interesting forms . . .
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Log partition (or cumulant) function: derivative offerings

A(θ) = log

∫

DX

exp 〈θ,φ(x)〉 ν(dx) (13.20)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (13.21)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(13.22)

Proof given in book (Proposition 3.1, page 62).
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Log partition function: properties

So derivative of log partition function w.r.t. θ is equal to our mean
parameter µ in the discrete case.

Given A(θ), we can recover the marginals for each potential function
φα,α ∈ I (when mean parameters lie in the marginal polytope).

If we can approximate A(θ) with Ã(θ) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall see in future lectures.

The Bethe approximation (as we’ll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

In some rarer cases, we can bound the approximation (current
research trend).
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Exponential Family: Recap

Exponential Family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (13.1)

with

A(θ) = log

∫

DX

〈θ,φ(x)〉 ν(dx) (13.2)

A(θ) is key.

Forward mapping, inference: from θ ∈ Ω to µ ∈ M, get marginals.

Backwards mapping, learning: from µ ∈ M to θ ∈ Ω, getting best
parameters associated with empirical facts (means).

So learning is dual of inference.
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µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Log partition function: Properties

So ∇A : Ω → M′, where M′ ⊆ M, and where
M =

{
µ ∈ Rd|∃p s.t. Ep[φ(X)] = µ

}
.

Proofs of the below are in our text:

For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between µ and θ.

For non-minimal exponential families, more than one θ for a given µ
(not surprising since multiple θ’s can yield the same distribution).

For non-exponential families, other distributions can yield µ, but the
exponential family one is the one that has maximum entropy.

ex1:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

Key point: all mean parameters that are realizable by some dist. are
also realizable by member of exp. family.
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Mappings - one-to-one

Expanding on one of the previous properties, . . .

Theorem 13.3.1

The gradient map ∇A is one-to-one iff the exponential representation is
minimal.

Proof basically uses property that if representation is non-minimal,
and 〈a,φ(x)〉 = c for all x, then we can form an affine set of
equivalent parameters θ + γa.

Other direction, uses strict convexity of A(θ)
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map ∇A is onto the interior
of M (denoted M◦). Consequently, for each µ ∈ M◦, there exists some
θ = θ(µ) ∈ Ω such that Eθ[φ(X)] = µ.

Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[XXT ]) can be realized by a Gaussian having those
same mean parameters (moments).

The Gaussian won’t nec. be the “true” distribtuion (in such case, the
“true” distribution would not be a Gaussian, and might be an
exponential family distribution with additional moments (e.g., 1D
Gaussians have zero skew and kurtosis) or might not be exponential
family at all).

The theorem here is more general and applies for any set of sufficient
statistics.
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Gaussians have zero skew and kurtosis) or might not be exponential
family at all).

The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

Consider maximum likelihood problem for exp. family

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(θ) is defined as:

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

So dual is optimal value of the ML problem, when µ ∈ M, and we
saw the relationship between ML and negative entropy before.
Key: when µ ∈ M, dual is negative entropy of exponential model
pθ(µ) where θ(µ) is the unique set of canonical parameters satisfying
this matching condition

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ (13.5)

When µ /∈ M, then A∗(µ) = +∞, optimization with dual need
consider points only in M.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 13.3.3 (Relationship between A and A∗)

(a) For any µ ∈ M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ ∈ M
(13.6)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

(c) For θ ∈ Ω, sup occurs at µ ∈ M◦ of moment matching conditions

µ =

∫

DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (13.8)
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Conjugate Duality

Note that A∗ isn’t exactly entropy, only entropy sometimes, and
depends on matching parameters to µ via the matching mapping θ(µ)
which achieves

Eθ(µ)[φ(X)] = µ (13.9)

A(θ) in Equation 13.7 is the “inference” problem (dual of the dual)
for a given θ, since computing it involves computing the desired
node/edge marginals.

Whenever µ /∈ M, then A∗(µ) returns ∞ which can’t be the resulting
sup in Equation 13.7, so Equation 13.7 need only consider M.
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Conjugate Duality

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

computing A(θ) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

Key: we compute the log partition function simultaneously with
solving inference, given the dual.

Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. !
Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. "
More bad news: A∗ not given explicitly in general and hard to
compute. "
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Conjugate Duality

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

Some good news: The above form gives us new avenues to do
approximation. !

For example, we might either relax M (making it less complex), relax
A∗(µ) (making it easier to compute over), or both. !
A∗(µ)’s relationship to entropy gives avenues for relaxation.

Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). !!
Much of the rest of the class will be above approaches to the above
— giving not only to junction tree algorithm (that we’ve seen) but
also to well-known approximation methods (LBP, mean-field, Bethe,
expectation-propagation (EP), Kikuchi methods, linear programming
relaxations, and semidefnite relaxations, some of which we will cover).
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Overcomplete, simple notation

We’ll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.

Recall: dealing only with pairwise interactions (natural for image
processing) – If not pairwise, we can convert from factor graph to
factor graph with factor-width 2 factors.

Exponential overcomplete family model of form

pθ(x) =
1

Z(θ)
exp





∑

v∈V (G)

θv(xv) +
∑

(s,t)∈E(G)

θst(xs, xt)






with simple new shorthand notation functions θv and θst.

θv(xv)
∆
=

∑

i

θv,i1(xv = i) and (13.10)

θs,t(xs, xt)
∆
=

∑

i,j

θst,ij1(xs = i, xt = j) (13.11)
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Marginal notation, and graph
Marginal polytope

We also have mean parameters that constitute the marginal polytope.

µv(xv)
∆
=

∑

i∈DXv

µv,i1(xv = i), for u ∈ V (G) (13.12)

µst(xs, xt)
∆
=

∑

(j,k)∈DX{s,t}

µst,jk1(xs = j, xt = k), for (s, t) ∈ E(G)

(13.13)

And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p ∈ F(G,M(f)) that contains only pairwise interactions.

Note, M(G) is respect to a graph G.

Recall, M can be represented as a convex hull of a set of points, or by
a set of linear inequality constraints.
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Local consistency polytope

An “outer bound” of M consists of a set L ⊇ M that contains M. If
formed from a subset of the linear inequalities (subset of the rows of
matrix module (A, b)), then it is a polyhedral outer bound.

Another way to form outer bound: require only consistency, i.e.,
consider set {τv, v ∈ V (G)} ∪ {τs,t, (s, t) ∈ E(G)} that is, always
non-negative , and that satisfies normalization

∑

xv

τv(xv) = 1 (13.14)

and pair-node marginal consistency constraints
∑

x′
t

τs,t(xs, x
′
t) = τs(xs) (13.15a)

∑

x′
s

τs,t(x
′
s, xt) = τt(xt) (13.15b)
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Local consistency polytope

Define L(G) to be the (locally consistent) polytope that obeys the
constraints in Equations 13.14 and 13.15.

Recall: local consistency was the necessary conditions for potentials
being marginals that, it turned out, for junction tree that also
guaranteed global consistency.

Clearly M ⊆ L(G) since any member of M (true marginals) will be
locally consistent.

When G is a tree, we say that local consistency implies global
consistency, so for any tree T , we have M(T ) = L(T )
When G has cycles, however, M(G) ⊂ L(G) strictly. We refer to
members of L(G) as pseudo-marginals

Key problem is that members of L might not be true possible
marginals for any distribution.
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Pseudo-marginals

τv(xv) = [0.5, 0.5], and τs,t(xs, xt) =

[
βst .5− βst

.5− βst βst

]
(13.16)

Consider on 3-cycle C3, satisfies local consistency.

But for this won’t give us a marginal. Below shows M(C3) for
µ1 = µ2 = µ3 = 1/2 and the L(C3) outer bound (dotted).
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Bethe Entropy Approximation

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

So inference corresponds to Equation 13.7, and we have two
difficulties M and A∗(µ).
Maybe it is hard to compute A∗(µ) but perhaps we can reasonably
approximate it.
In case when −A∗(µ) is the entropy, lets use an approximate entropy
based on L being those distributions that factor w.r.t. a tree.
When p ∈ F(G,M(f)) and G is a tree T , then we can write p as:

p(x1, . . . , xN ) =

∏
(i,j)∈E(T ) pij(xi, xj)

∏
v∈V (T ) pv(xv)

d(v)−1
(13.17)

=
∏

v∈V (T )

pv(xv)
∏

(i,j)∈E(T )

pij(xi, xj)

pi(xi)pj(xj)
(13.18)

where d(v) is the degree of v (shattering coefficient of v as separator)
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Bethe Entropy Approximation

In terms of current notation, we can let µ ∈ L(T ), the pseudo
marginals associated with T . Since local consistency requires global
consistency, for a tree, any µ ∈ L(T ) is such that µ ∈ M(T ), thus

pµ(x) =
∏

s∈V (T )

µs(xs)
∏

(s,t)∈E(T )

µst(xs, xt)

µs(xs)µt(xt)
(13.19)

When G = T is a tree, and µ ∈ L(T ) = M(T ) we have

−A∗(µ) = H(pµ) =
∑

v∈V (T )

H(Xv)−
∑

(s,t)∈E(T )

I(Xs;Xt) (13.20)

=
∑

v∈V (T )

Hv(µv)−
∑

(s,t)∈E(T )

Ist(µst) (13.21)

That is, for G = T , −A∗(µ) is very easy to compute (only need to
compute entropy and mutual information over at most pairs).
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Bethe Entropy Approximation

We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V,E) not nec. a tree.

That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph G, we can make an approximation
to −A∗(τ) based on equation that has same form, i.e.,

−A∗(τ) ≈ HBethe(τ)
∆
=

∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst) (13.22)

=
∑

v∈V (T )

(d(v)− 1)Hv(τv) +
∑

(i,j)∈E(T )

Hst(τs, τt) (13.23)

Key: HBethe(τ) is not necessarily concave as it is not a real entropy.
MI equation is not hard to compute O(r2).

Ist(τst) = Ist(τst(xs, xt)) (13.24)

=
∑

xs,xt

τst(xs, xt) log
τst(xs, xt)

τs(xs)τt(xt)
(13.25)
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Bethe Entropy Approximation
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.26)

Approximate variational representation of log partition function

ABethe(θ) = sup
τ∈L

{〈θ, τ〉+HBethe(τ)} (13.27)

= sup
τ∈L




〈θ, τ〉+
∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst)




 (13.28)

Exact when G = T but we do this for any G, still commutable

we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

We can optimize this directly using a Lagrangian formulation.
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Bethe Variational Problem and LBP

Lagrangian constraints for summing to unity at nodes

Cvv(τ) = 1−
∑

xv

τv(xv) (13.29)

Lagrangian constraints for local consistency

Cts(xs; τ) = τs(xs)−
∑

xt

τst(xs, xt) (13.30)

Yields following Lagrangian

L(τ,λ; θ) = 〈θ, τ〉+HBethe(τ) +
∑

v∈V
λvvCvv(τ) (13.31)

+
∑

(s,t)∈E(G)

[
∑

xs

λts(xs)Cts(xs; τ) +
∑

xt

λst(xt)Cst(xt; τ)

]

(13.32)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F31/70 (pg.76/192)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Fixed points: Variational Problem and LBP

Theorem 13.5.1

LBP updates are Lagrangian method for attempting to solve Bethe
variational problem:
(a) For any G, any LBP fixed point specifies a pair (τ∗,λ∗) s.t.

∇τL(τ∗,λ∗; θ) = 0 and ∇λL(τ∗,λ∗; θ) = 0 (13.33)

(b) For tree MRFs, Lagrangian equations have unique solution (τ∗,λ∗)
where τ∗ are exact node and edge marginals for the tree and the optimal
value obtained is the true log partition function.

Not guaranteed convex optimization, but is if graph is tree.

Remarkably, this means if we run loopy belief propagation, and we
reach a point where we have converged, then we will have achieved a
fixed-point of the above Lagrangian, and thus a (perhaps reasonable)
local optimum of the underlying variational problem.
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Fixed points: Variational Problem and LBP

The resulting Lagrange multipliers λst end up being exactly the
messages that we have defined. I.e., we get

λst(xt) = µs→t(xt) =
∑

xs

ψs,t(xs, xt)
∏

k∈δ(s)\{t}

µk→s(xs) (13.34)

Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

So we can now (at least) characterize any stable point of LBP.

This does not mean that it will converge.

For trees, we’ll get ABethe(θ) = A(θ), results of previous lectures
(parallel or MPP-based message passing).
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Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds?

Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (??)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (??)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).

Due to sup in Eq. (??), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.
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∆
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Bounds on A

In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.

Recall definition of the family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (13.35)

So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
To compute conditionals

p(xA|xB) =
p(xA∪B)

p(xB)
=

∑
xV \(A∪B)

p(x)
∑

xV \B
p(x)

(13.36)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.
Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
we can come up with other forms of bounds over other marginals.
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Recall definition of the family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (13.35)

So bounds on A can give us bounds on p. E.g., lower bounds on A
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want to upper or lower bound probability estimates.
Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
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So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
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we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.
Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
we can come up with other forms of bounds over other marginals.
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Recall definition of the family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (13.35)

So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
To compute conditionals

p(xA|xB) =
p(xA∪B)

p(xB)
=

∑
xV \(A∪B)
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∑

xV \B
p(x)

(13.36)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.

Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
we can come up with other forms of bounds over other marginals.
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Recall definition of the family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (13.35)

So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
To compute conditionals

p(xA|xB) =
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p(xB)
=

∑
xV \(A∪B)

p(x)
∑

xV \B
p(x)

(13.36)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.
Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
we can come up with other forms of bounds over other marginals.
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Lack of bounds for Bethe

Two reasons A might be inaccurate:

1) We have replaced M with
outer bound L; and 2) we’ve used HBethe in place of the true dual A∗.

Example of inaccuracy (example 4.2 from book), consider a 4-clique

µs(xs) = [0.5 0.5] for s = 1, 2, 3, 4 (13.37a)

µst(xs, xt) =

[
0.5 0
0 0.5

]
∀(s, t) ∈ E(G) (13.37b)

Valid marginals, equal 0.5 probability for (0, 0, 0, 0) and (1, 1, 1, 1).

Each Hs(µs) = log 2, and each Ist(µst) = log 2 giving

HBethe(µ) = 4 log 2− 6 log 2 = −2 log 2 < 0 (13.38)

which obviously can’t be a true entropy since we must have H > 0 for
discrete distributions.

True −A∗(µ) = log 2 > 0.
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What about L \M?

Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \M(G) (which we know to be non-empty for
non-tree graphs)?

Unfortunately, for all τ ∈ L(G), then it can be a fixed point for LBP
for some pθ.

true for Lagrangian optimization as well. "

Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,
φi(xi) =

∑
xV \{i}

p(x).

A goal of inference is to change factors to

become true marginals, can’t be done for graphs with cycles in
general.

Fixed points of LBP do not get marginal reparameterization but it
does get something identical when global renormalized.

That is, we have
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become true marginals, can’t be done for graphs with cycles in
general.

Fixed points of LBP do not get marginal reparameterization but it
does get something identical when global renormalized.

That is, we have
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Reparameterization Properties of Bethe Approximation

Proposition 13.5.2

Let τ∗ = (τ∗s , s ∈ V ; τ∗st, (s, t) ∈ E(G)) denote any optimum of the Bethe
variational principle defined by the distribution pθ. Then the distribution
defined by the fixed point as

pτ∗(x) !
1

Z(τ∗)

∏

s∈V
τ∗s (xs)

∏

(s,t)∈E(G)

τ∗st(xs, xt)

τ∗s (xs)τ
∗
t (xt)

(13.39)

is a reparameterization of the original. That is, we have pθ(x) = pτ∗(x)
for all x.

For trees, we have Z(τ∗) = 1.

Form gives strategies for seeing how bad we are doing for any given
instance (by, say, comparing marginals) - approximation error (possibly
a bound)
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A fixed point in L \M is possible.

Consider

θs(xs) = log τs(xs) = log[0.5 0.5] for s = 1, 2, 3, 4

(13.40a)

θst(xs, xt) = log
τst(xs, xt)

τs(xs)τt(xt)

= log 4

[
βst 0.5− βst

0.5− βst βst

]
∀(s, t) ∈ E(G) (13.40b)

We saw in the pseudo marginals slide that, for a 3-cycle, a choice of
parameters that gave us τ ∈ L \M. Is this achievable as fixed point of
LBP?

For this choice of parameters, if we start sending messages, starting
from the uniform messages, then this will be a fixed point. "

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F39/70 (pg.112/192)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

If not Bounds, then Better Approximation?

So we want bounds between A(θ) and ABethe(θ) in the ideal case.

Perhaps we can come up with an expression for A(θ)−ABethe(θ)

We don’t expect the expression to be easy to compute. Why?

Expression, however, could help make the difference smaller by
approximating the difference in a computationally practical way.

This is the idea behind Loop Series Expansions
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Generalized Loops

Recall vertex and edge induced subgraphs.

Notation: Given graph G = (V,E), we have

Given subset S ⊆ V , then G′ = (S,E(S)) is a vertex induced
subgraph.

Given subset Ẽ ⊆ E, then G(Ẽ) = (V (Ẽ), Ẽ) is edge-induced
subgraph.

Define the degree in the subgraph as ds(Ẽ) = |δs(Ẽ)| where
δs(Ẽ) =

{
t ∈ V |(s, t) ∈ Ẽ

}
is the set of neighbors of s in G(Ẽ).

Definition: a generalized loop is a subgraph G(Ẽ) where no node has
degree 1 (i.e., ds(Ẽ) 2= 1 for all s ∈ V (G(Ẽ)).
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Generalized Loops

Definition: a generalized loop is a subgraph G(Ẽ) where no node has
degree 1 (i.e., ds(Ẽ) 2= 1 for all s ∈ V (G(Ẽ)).

Example:

(e)
Illustration of generalized loops. (a) An original graph. (b)-(d)
Various generalized loops associated with the graph in (a). In this
particular case, the original graph is a generalized loop for itself. (e) is
not a generalized loop as it has a leaf node.
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Edge weights Generalized Loops

Consider LBP fixed point for binary pairwise MRF (Ising model), and
with unary and pairwise pseudomarginals parameterized as:

τs(xs) =

[
1− τs
τs

]
, and τst(xs, xt) =

[
1− τs − τt + τst τt − τst

τs − τst τst

]

(13.41)

Define edge weight as

βst !
τst − τsτt

τs(1− τs)τt(1− τt)
(13.42)

and extended to a general set of edges Ẽ

βst !
∏

(s,t)∈Ẽ

βst (13.43)
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Comparison of A and ABethe

Proposition 13.6.1

Consider a pairwise MRF with binary variables, with ABethe(θ) being the
optimized free energy evaluated at a LBP fixed point
τ = (τs, s ∈ V ; τst, (s, t) ∈ E(G)). Then we have the following
relationship with the cumulant function A(θ).

A(θ) = ABethe(θ) + log




1 +
∑

∅)=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]





(13.44)

For any Ẽ such that ∃s with ds(Ẽ) = 1, inner term is zero and
vanishes.

why? Thus, terms in the sum only exists for generalized
loops.
The generalized loops give the correction!
For trees, there are no generalized loops, and so if G is a tree then we
have an equality between A(θ) and ABethe(θ) (recall both defs here ).
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]





(13.44)
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Proof of Proposition 13.6.1

proof sketch.

Overcomplete, ∃ parameters θ̂ s.t.
〈
θ̂,φ(x)

〉
= c for all x.

Thus, we can show this for just one set of parameters θ.

Choose parameterization

θ̃s(xs) = log τs(xs), and θ̃st(xs, xt) = log
τst(xs, xt)

τs(xs)τt(xt)
(13.45)

With this paramterization, ABethe(θ̃) = 0 (since the optimization
attempts to maximize a set of negative KL-divergence terms).

Thus, we need only show

A(θ̃) = log




1 +
∑

∅)=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]



 (13.46)

. . .
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βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
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Proof of Proposition 13.6.1 cont.

proof sketch.

By checking for each value of (xs, xt) ∈ {0, 1}2, we have

τst(xs, xt)

τs(xs)τt(xt)
= 1 + βst(xs − τs)(xt − τt) (13.47)

Moreover, at current parameterization θ̃, we have

exp(A(θ̃)) =
∑

x∈{0,1}m

∏

s∈V
τs(xs)

∏

(s,t)∈E

τst(xs, xt)

τs(xs)τt(xt)
(13.48)

Let τfact =
∏

s τs(xs) and let E be w.r.t. τfact, then

exp(A(θ̃)) = E




∏

(s,t)∈E

(1 + βst(Xs − τs)(Xt − τt))



 (13.49)
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Proof of Proposition 13.6.1 cont.

proof sketch.

By polynomial expansion, linearity of expectation, we get

exp(A(θ̃)) = 1 +
∑

∅)=Ẽ⊆E

E




∏

(s,t)∈Ẽ

(βst(Xs − τs)(Xt − τt))



 (13.50)

And by independence of τfrac, we get

exp(A(θ̃)) = 1 +
∑

∅)=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]

(13.51)
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βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
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Comparison of A and ABethe

Proposition 13.6.1

Consider a pairwise MRF with binary variables, with ABethe(θ) being the
optimized free energy evaluated at a LBP fixed point
τ = (τs, s ∈ V ; τst, (s, t) ∈ E(G)). Then we have the following
relationship with the cumulant function A(θ).

A(θ) = ABethe(θ) + log




1 +
∑

∅)=Ẽ⊆E

βẼ

∏

s∈V
Eτs

[
(Xs − τs)

ds(Ẽ)
]





(13.44)

For any Ẽ such that ∃s with ds(Ẽ) = 1, inner term is zero and
vanishes. why? Thus, terms in the sum only exists for generalized
loops.
The generalized loops give the correction!
For trees, there are no generalized loops, and so if G is a tree then we
have an equality between A(θ) and ABethe(θ) (recall both defs here ).
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General idea of Kikuchi

Variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.52)

So far, we have used a replacement for −A∗(µ) inspired by trees.

But we know a tree is really a 1-tree. Why not k-tree?

Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with:

1) replacement for −A∗(µ) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and 3) a corresponding generalized polytope
associated with the hypergraph?

This is the Kikuchi variational approach.
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But we know a tree is really a 1-tree. Why not k-tree?

Why not some other junction tree?
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General idea of Kikuchi

Variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.52)

So far, we have used a replacement for −A∗(µ) inspired by trees.

But we know a tree is really a 1-tree. Why not k-tree?

Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with: 1) replacement for −A∗(µ) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and

3) a corresponding generalized polytope
associated with the hypergraph?

This is the Kikuchi variational approach.
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General idea of Kikuchi

Variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.52)

So far, we have used a replacement for −A∗(µ) inspired by trees.

But we know a tree is really a 1-tree. Why not k-tree?

Why not some other junction tree?

Junction trees are really hypertrees (special case of hypergraphs).

So can we come up with: 1) replacement for −A∗(µ) associated with
a hypertree/junction tree; 2) a generalization for this replacement for
any hypergraph; and 3) a corresponding generalized polytope
associated with the hypergraph?

This is the Kikuchi variational approach.
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Hypergraphs

A graph G = (V,E) is a set of nodes V and edges E where every
(s, t) = e ∈ E is only two nodes.

A hypergraph is a system (V,E) where every e ∈ E can consist of any
number of nodes. I.e., we might have (v1, v2, . . . , vk) = e ∈ E(G) for
a hypergraph.

A hypertree is a hypergraph that can be reduced to a tree in a
particular way, we’ve already seen them in the forms of junction trees.

A junction tree (which, recall, satisfies r.i.p.) is a hypertree where the
maxcliques (which are clusters of graph nodes) in the junction tree are
the edges of the hypertree.
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number of nodes. I.e., we might have (v1, v2, . . . , vk) = e ∈ E(G) for
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Hypergraphs

A graph G = (V,E) is a set of nodes V and edges E where every
(s, t) = e ∈ E is only two nodes.

A hypergraph is a system (V,E) where every e ∈ E can consist of any
number of nodes. I.e., we might have (v1, v2, . . . , vk) = e ∈ E(G) for
a hypergraph.

A hypertree is a hypergraph that can be reduced to a tree in a
particular way, we’ve already seen them in the forms of junction trees.

A junction tree (which, recall, satisfies r.i.p.) is a hypertree where the
maxcliques (which are clusters of graph nodes) in the junction tree are
the edges of the hypertree.
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Hypergraphs

Definition 13.7.1 (hypergraph)

A hypergraph H = (V,E) is a set of vertices V and a collection of
hyperedges E, where each element e ∈ E is a subset of V , so
∀e ∈ E, e ⊆ V . In a graph, |e| = 2. In a hypergraph, it can be larger.

Definition 13.7.2 (leaf)

A vertex v of H is called a leaf if it appears only in a single maximal
hyper-edge h ∈ H.

Definition 13.7.3 (acyclic)

A hypergraph H is called acyclic if it is empty, or if it contains a leaf v
such that induced hypergraph H(V − {v}) is acyclic (note, generalization
of perfect elimination order in a triangulated graph, junction tree).
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Hypergraphs and bipartite graphs

Hypergraphs can be represented by a bipartite G = (V, F,E) graphs
where V is a set of left-nodes, F is a set of right nodes, and E is a set of
size-two edges. Right nodes are hyperedges in the hypergraphs.
Some hand-drawn examples:
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Hypergraphs and posets

Graphical representations of hypergraphs. Subsets of nodes corresponding
to hyperedges are shown in rectangles, whereas the arrows represent
inclusion relations among hyperedges. (a) An ordinary single cycle graph
represented as a hypergraph. (b) A simple hypertree of width two. (c) A
more complex hypertree of width three.
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Hypergraphs and posets

As bipartite graphs:
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Partially ordered set

A partially ordered set (poset) is a set P of objects with an order.

Set of objects P and a binary relation 3 which can be read as “is
contained in” or “is part of” or “is less than or equal to”.

For any x, y ∈ P, we may ask is x 3 y which is either true or false.

In a poset, for any x, y, z ∈ P the following conditions hold (by
definition):

For all x, x 3 x. (Reflexive) (P1.)

If x 3 y and y 3 x, then x = y (Antisymmetriy) (P2.)

If x 3 y and y 3 z, then x 3 z. (Transitivity) (P3.)

We can use the above to get other operators as well such as “less
than” via x 3 y and x 2= y implies x ≺ y. Also, we get x 5 y if not
x 3 y. And x 6 y is read “x contains y”. And so on.
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Möbius Inversion Lemma

A zeta function of a poset is a mapping ζ : P × P → R defined by

ζ(g, h) =

{
1 if g 3 h,

0 otherwise.
(13.53)

The Möbius function ω : P × P → R is the multiplicative inverse of
this function. It is defined recursively:

ω(g, g) = 1 for all g ∈ P
ω(g, h) = 0 for all h : h ! g.

Given ω(g, f) defined for f such that g ⊆ f ⊆ h, we define

ω(g, h) = −
∑

{f |g⊆f⊂h}

ω(g, f) (13.54)

Then, ω and ζ are multiplicative inverses, in that
∑

f∈P
ω(g, f)ζ(f, h) =

∑

{f |g⊆f⊆h}

ω(g, f) = δ(g, h) (13.55)
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General Möbius Inversion Lemma

Lemma 13.7.4

Given real valued functions Υ and Ω defined on poset P, then Ω(h) may
be expressed via Υ(·) via

Ω(h) =
∑

g,h

Υ(g) for all h ∈ P (13.56)

iff Υ(h) may be expressed via Ω(·) via

Υ(h) =
∑

g,h

Ω(g)ω(g, h) for all h ∈ P (13.57)

When P = 2V for some set V (so this means that the poset consists of
sets and all subsets of an underlying set V ) this can be simplified, where
3 becomes ⊆; and 6 becomes ⊇.
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Möbius Inversion Lemma

Lemma 13.7.5 (Möbius Inversion Lemma)

Let Υ and Ω be functions defined on the set of all subsets of a finite set
V , taking values in an Abelian group (i.e., a group (closure, associativity,
identity, and inverse) for which the elements also commute, the real
numbers being just one example). The following two equations imply
each other.

∀A ⊆ V : Υ(A) =
∑

B:B⊆A

Ω(B) (13.58)

∀A ⊆ V : Ω(A) =
∑

B:B⊆A

(−1)|A\B|Υ(B) (13.59)
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Proof of Möbius Inversion Lemma

Proof.

∑

B:B⊆A

Ω(B) =
∑

B:B⊆A

∑

C:C⊆B

(−1)|B\C|Υ(C) (13.60)

=
∑

C:C⊆A

∑

B:C⊆B&B⊆A

Υ(C)(−1)|B\C| (13.61)

=
∑

C:C⊆A

Υ(C)
∑

B:C⊆B&B⊆A

(−1)|B\C| (13.62)

=
∑

C:C⊆A

Υ(C)
∑

H:H⊆A\C

(−1)|H| (13.63)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F58/70 (pg.165/192)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

Proof of Möbius Inversion Lemma

Proof Cont.

Also, note that for some set D,

∑

H:H⊆D

(−1)|H| =

|D|∑

i=0

(
|D|
i

)
(−1)i =

|D|∑

i=0

(
|D|
i

)
(−1)i(1)|D|−i (13.64)

= (1− 1)|D| =

{
1 if |D| = 0
0 otherwise

(13.65)

which means ∑

H:H⊆A\C

(−1)|H| =

{
1 if A = C
0 otherwise

(13.66)
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Proof of Möbius Inversion Lemma

Proof Cont.

This gives

∑

B:B⊆A

Ω(B) =
∑

C:C⊆A

Υ(C)1{A = C} = Υ(A) (13.67)

thus proving one direction. The other direction is very similar.
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Möbius Inversion Lemma and Inclusion-Exclusion
This is a general cased of inclusion-exclusion.
Given ground set V and A,B ⊆ V , to compute the size
|A ∪B| = |A|+ |B|− |A ∩B|.
A,B,C ⊆ V , then
|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|.
Start by including, then excluding, and then including again.

A

A

C

B

B

Also consider entropy: H(X,Y ) = H(X) +H(Y )− I(X;Y ).
H(X,Y, Z) =
H(X) +H(Y ) +H(Z)− I(X;Y )− I(X;Z)− I(Y ;Z) + I(X;Y ;Z).
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Möbius Inversion Lemma and Inclusion-Exclusion

General form of Inclusion-Exclusion: Given A1, A2, . . . , An ⊆ V ,

|∪n
i=1An| =

n∑

j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|Ai1∩Ai2∩· · ·∩Aij | (13.68)

This is a special case of Möbius Inversion Lemma:

∀A ⊆ V : Υ(A) =
∑

B:B⊆A

Ω(B) (13.69)

∀A ⊆ V : Ω(A) =
∑

B:B⊆A

(−1)|A\B|Υ(B) (13.70)

Möbius Inversion lemma is also used to prove the Hammersley-Clifford
theorem (that factorization and Markov property definitions of families
are identical for positive distributions).
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Back to Kikuchi: Möbius and expressions of factorization

Suppose we are given marginals that factor w.r.t. a hypergraph
G = (V,E), so we have µ = (µh, h ∈ E), then we can define new
functions ϕ = (ϕh, h ∈ E) via Möbius inversion lemma as follows

logϕh(xh) !
∑

g,h

ω(g, h) logµg(xg) (13.71)

(see Stanley, “Enumerative Combinatorics” for more info.)
From Möbius inversion lemma, this then gives us a new way to write
the log marginals, i.e., as

logµh(xh) =
∑

g,h

logϕg(xg) (13.72)

Key, when ϕh is defined as above, and G is a hypertree we have

pµ(x) =
∏

h∈E
ϕh(xh) (13.73)

⇒ general way to factorize a distribution that factors w.r.t. a
hypergraph. When a 1-tree, we recover factorization we already know.
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expressions of factorization and Möbius

When the graph is a tree (a 1-tree), we have ϕs(xs) = µs(xs) and

ϕst(xs, xt) =
µst(xs, xt)

µs(xs)µt(xt)
(13.74)

giving us the tree factorization we saw early in this course.

For more general hypertree, consider edge set
E = {(12345), (2356), (4578), (25), (45), (56), (58), (5)}. Check: is
this a junction tree of cliques?

Then

ϕ1245 =
µ1245

ϕ25ϕ45ϕ5
=

µ1245
µ25

µ5

µ45

µ5
µ5

=
µ1245µ5

µ25µ45
(13.75)
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New expressions of entropy

We can express entropic quantities as well, such as the hyperedge
entropy

Hh(µh) = −
∑

xh

µh(xh) logµh(xh) (13.76)

and the multi-information function

Ih(µh) =
∑

xh

µh(xh) logϕh(xh) (13.77)

In the case of a single tree edge h = (s, t), then Ih(µh) = I(Xs;Xt)
the standard mutual information.

Then the overall entropy of any hypertree distribution becomes

Hhyper(µ) = −
∑

h∈E
Ih(µh) (13.78)
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multi-information decomposition

Using Möbius, we can write

Ih(µh) =
∑

g,h

ω(g, h)

{
∑

xh

µh(xh) logµg(xg)

}
(13.79)

=
∑

f,h

∑

e.f

ω(e, f)





∑

xf

µf (xf ) logµf (xf )






(13.80)

= −
∑

f,h

c(f)Hf (µf )

(13.81)

where
c(f) !

∑

e.f

ω(f, e) (13.82)

This gives us a new expression for the hypertree entropy

Hhyper(µ) =
∑

h∈E
c(h)Hh(µh) (13.83)

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F66/70 (pg.177/192)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Bethe & Loop Series Kikuchi and Hypertree-based Methods Refs

multi-information decomposition
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Usable to get Kikuchi variational approximation

Given arbitrary hypergraph now, we’ll generalize the hypertree
expressions above this arbitrary hypergraph, which will give us a
variational expression that approximates cumulant.

Given hypergraph G = (V,E), we have

pθ(x) ∝ exp

{
∑

h∈E
σh(xh)

}
(13.84)

using same form of parameterization.

Hypergraph will give us local marginal constraints on hypergraph
pseudo marginals, i.e., for each h ∈ E, we form marginal τh(xh) and
define constraints, non-negative, and

∑

xh

τh(xh) = 1 (13.85)
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Usable to get Kikuchi variational approximation

Sum to one constraint:

∑

xh

τh(xh) = 1 (13.86)

Local agreement via the hypergraph constraint. For any g 3 h must
have marginalization condition

∑

xh\g

τh(xh) = τg(xg) (13.87)

Define new polyhedral constraint set Lt(G)

Lt(G) = {τ ≥ 0| Equations (13.86) ∀h, and (13.87) ∀g 3 h hold}
(13.88)
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Kikuchi variational approximation
Generalized entropy for the hypergraph:

Happ =
∑

g∈E
c(g)Hg(τg) (13.89)

where Hg is hyperedge entropy and overcounting number defined by:

c(g) =
∑

f.g

ω(g, f) (13.90)

This at last gets the Kikuchi variational approximation

AKikuchi(θ) = max
τ∈Lt(G)

{〈θ, τ〉+Happ(τ)} (13.91)

For a graph, this is exactly ABethe(θ). If, on the other hand, the graph
is a junction tree, then this is exact (although it might be expensive,
exponential in the tree-width to compute Happ).
Can define message passing algorithms on the hypertree, and show
that if it converges, it is a fixed point of the Lagrangian associated
with this.
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AKikuchi(θ) = max
τ∈Lt(G)

{〈θ, τ〉+Happ(τ)} (13.91)

For a graph, this is exactly ABethe(θ). If, on the other hand, the graph
is a junction tree, then this is exact (although it might be expensive,
exponential in the tree-width to compute Happ).
Can define message passing algorithms on the hypertree, and show
that if it converges, it is a fixed point of the Lagrangian associated
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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