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Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book. Start reading chapter 4.

Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes,

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17): Bethe entropy approx, loop
series correction

L15 (11/19): Hypergraphs, posets,
Mobius, Kikuchi

L16 (11/24):

L17 (11/26):

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (13.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(13.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.
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Mean Parameters and Marginal Polytopes

Mean parameters are now true (fully specified) marginals, i.e.,
µv(j) = p(xv = j) and µst(j, k) = p(xs = j, xt = k) since

µv,j = Ep[1(xv = j)] = p(xv = j) (13.20)

µst,jk = Ep[1(xs = j, xt = k)] = p(xs = j, xt = k) (13.21)

Such an M is called the marginal polytope for discrete graphical
models. Any µ must live in the polytope that corresponds to node
and edge true marginals.

We can also associate such a polytope with a graph G, where we take
only (s, t) ∈ E(G). Denote this as M(G).

This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we’ll see.
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Learning is the dual of Inference

We can view the inference problem as moving from the canonical
parameters θ to the point in the marginal polytope, called forward
mapping, moving from θ ∈ Ω to µ ∈M.

We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Logistics Review

Maximum entropy estimation

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (13.14)

where H(p) = −
∫
p(x) log p(x)ν(dx), and ∀α ∈ I

Ep[φα(X)] =

∫
DX

φα(x)p(x)ν(dx). (13.15)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) and then by
finding canonical parameters θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I. (13.16)
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Learning is the dual of Inference

Ex: Estimate θ with θ̂ based on data D = {x̄(i)}Mi=1 of size M ,
likelihood function

`(θ,D) =
1

M

M∑
i=1

log pθ(x̄
(i)) =

1

M

M∑
i=1

(〈
θ, φ(x̄(i))

〉
−A(θ)

)
(13.20)

= 〈θ, µ̂〉 −A(θ) (13.21)

where empirical means
are given by:

µ̂ = Ê[φ(X)] =
1

M

M∑
i=1

φ(x̄(i)) (13.22)

By taking derivatives of the above, it is easy to see that solution is the
point θ̂ = θ(µ̂) such that empirical matches expected means, or what
are called the moment matching conditions:

Eθ̂[φ(X)] = µ̂ (13.23)

this is the the backward mapping problem, going from µ to θ.

Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy
Entropy definition again: H(p) = −

∫
p(x) log p(x)ν(dx)

Given data, D = {x̄(i)}Mi=1, defines an empirical distribution

p̂(x) =
1

M

M∑
i=1

1(x = x̄(i)) (13.20)

so that Ep̂[φ(X)] =
∫
p̂(x)φ(x)ν(dx) = 1

M

∑M
i=1 φ(x̄(i)) = µ̂

Starting from maximum likelihood solution θ(û), meaning we are at
moment matching conditions Epθ(û) [φ(X)] = µ̂ = Ep̂[φ(X)], we have

`(θ(û),D) = 〈θ(û), µ̂〉 −A(θ(û)) =
1

M

M∑
i=1

log pθ(û)(x̄
(i)) (13.21)

=

∫
p̂(x) log pθ(µ̂)(x)ν(dx) = Ep̂[log pθ(µ̂)(x)] (13.22)

= Epθ(µ̂) [log pθ(µ̂)(x)] = −Hpθ(µ̂) [pθ(µ̂)(x)] (13.23)

Thus, maximum likelihood value and negative entropy are identical, at
least for empirical µ̂ (which is ∈M).
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Dual Mappings: Summary

Summarizing these relationships

Forward mapping: moving from θ ∈ Ω to µ ∈M, this is the inference
problem, getting the marginals.

Backwards mapping: moving from µ ∈M to θ ∈ Ω, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

Turns out log partition function A, and its dual A∗ can give us these
mappings, and the mappings have interesting forms . . .
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Log partition (or cumulant) function: derivative offerings

A(θ) = log

∫
DX

exp 〈θ, φ(x)〉 ν(dx) (13.20)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (13.21)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(13.22)

Proof given in book (Proposition 3.1, page 62).
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Log partition function: properties

So derivative of log partition function w.r.t. θ is equal to our mean
parameter µ in the discrete case.

Given A(θ), we can recover the marginals for each potential function
φα, α ∈ I (when mean parameters lie in the marginal polytope).

If we can approximate A(θ) with Ã(θ) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall soon see.

The Bethe approximation (as we’ll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

In some rarer cases, we can bound the approximation (current
research trend).
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Exponential Family: Recap

Exponential Family

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (13.1)

with

A(θ) = log

∫
DX

〈θ, φ(x)〉 ν(dx) (13.2)

A(θ) is key.

Forward mapping, inference: from θ ∈ Ω to µ ∈M, get marginals.

Backwards mapping, learning: from µ ∈M to θ ∈ Ω, getting best
parameters associated with empirical facts (means).

So learning is dual of inference.
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µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Log partition function: Properties

So ∇A : Ω→M′, where M′ ⊆M, and where
M =

{
µ ∈ Rd|∃p s.t. Ep[φ(X)] = µ

}
.

Proofs of the below are in our text:

For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between µ and θ.

For non-minimal exponential families, more than one θ for a given µ
(not surprising since multiple θ’s can yield the same distribution).

For non-exponential families, other distributions can yield µ, but the
exponential family one is the one that has maximum entropy.

ex1:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

Key point: all mean parameters that are realizable by some dist. are
also realizable by member of exp. family.
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µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Mappings - one-to-one

Expanding on one of the previous properties, . . .

Theorem 13.3.1

The gradient map ∇A is one-to-one iff the exponential representation is
minimal.

Proof basically uses property that if representation is non-minimal,
and 〈a, φ(x)〉 = c for all x, then we can form an affine set of
equivalent parameters θ + γa.

Other direction, uses strict convexity of A(θ)
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Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map ∇A is onto the interior
of M (denoted M◦). Consequently, for each µ ∈M◦, there exists some
θ = θ(µ) ∈ Ω such that Eθ[φ(X)] = µ.

Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[XXT ]) can be realized by a Gaussian having those
same mean parameters (moments).

The Gaussian won’t nec. be the “true” distribtuion (in such case, the
“true” distribution would not be a Gaussian, and might be an
exponential family distribution with additional moments (e.g., 1D
Gaussians have zero skew and kurtosis) or might not be exponential
family at all).

The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

Consider maximum likelihood problem for exp. family

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

Compare this to convex conjugate dual (also sometimes
Fenchel-Legendre dual or transform) of A(θ) is defined as:

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

So dual is optimal value of the ML problem, when µ ∈M, and we
saw the relationship between ML and negative entropy before.
Key: when µ ∈M, dual is negative entropy of exponential model
pθ(µ) where θ(µ) is the unique set of canonical parameters satisfying
this matching condition

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ (13.5)

When µ /∈M, then A∗(µ) = +∞, optimization with dual need
consider points only in M.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 13.3.3 (Relationship between A and A∗)

(a) For any µ ∈M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈M◦

+∞ if µ /∈M
(13.6)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

(c) For θ ∈ Ω, sup occurs at µ ∈M◦ of moment matching conditions

µ =

∫
DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (13.8)
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Conjugate Duality, and Inference

Note that A∗ isn’t exactly entropy, only entropy sometimes, and
depends on matching parameters to µ via the matching mapping θ(µ)
which achieves

Eθ(µ)[φ(X)] = µ (13.9)

A(θ) in Equation 13.7 is the “inference” problem (dual of the dual)
for a given θ, since computing it involves computing the desired
node/edge marginals.

Whenever µ /∈M, then A∗(µ) returns ∞ which can’t be the resulting
sup in Equation 13.7, so Equation 13.7 need only consider M.
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Conjugate Duality, Good and Bad News

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

Computing A(θ) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals).

Key: we compute the log partition function simultaneously with
solving inference, given the dual.

Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ,

Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. /

More bad news: A∗ not given explicitly in general and hard to
compute. /
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Conjugate Duality, Avenues to Approximation

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

Some good news: The above form gives us new avenues to do
approximation. ,

For example, we might either relax M (making it less complex), relax
A∗(µ) (making it easier to compute over), or both. ,
A∗(µ)’s relationship to entropy gives avenues for relaxation.

Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). ,,
Much of the rest of the class will be above approaches to the above
— giving not only to junction tree algorithm (that we’ve seen) but
also to well-known approximation methods (LBP, mean-field, Bethe,
expectation-propagation (EP), Kikuchi methods, linear programming
relaxations, and semidefnite relaxations, some of which we will cover).
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Overcomplete, simple notation

We’ll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.

Recall: dealing only with pairwise interactions (natural for image
processing) – If not pairwise, we can convert from factor graph to
factor graph with factor-width 2 factors.

Exponential overcomplete family model of form

pθ(x) =
1

Z(θ)
exp

 ∑
v∈V (G)

θv(xv) +
∑

(s,t)∈E(G)

θst(xs, xt)


with simple new shorthand notation functions θv and θst.

θv(xv)
∆
=
∑
i

θv,i1(xv = i) and (13.10)

θs,t(xs, xt)
∆
=
∑
i,j

θst,ij1(xs = i, xt = j) (13.11)
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Marginal notation, and graph
Marginal polytope

We also have mean parameters that constitute the marginal polytope.

µv(xv)
∆
=
∑
i∈DXv

µv,i1(xv = i), for u ∈ V (G) (13.12)

µst(xs, xt)
∆
=

∑
(j,k)∈DX{s,t}

µst,jk1(xs = j, xt = k), for (s, t) ∈ E(G)

(13.13)

And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p ∈ F(G,M(f)) that contains only pairwise interactions.

Note, M(G) is respect to a graph G.

Recall, M can be represented as a convex hull of a set of points, or by
a set of linear inequality constraints.
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Local consistency (tree outer bound) polytope

An “outer bound” of M consists of a set that contains M. If formed
from a subset of the linear inequalities (subset of the rows of matrix
module (A, b)), then it is a polyhedral outer bound.

A simple way to form outer bound: require only local consistency, i.e.,
consider set {τv, v ∈ V (G)} ∪ {τs,t, (s, t) ∈ E(G)} that is, always
non-negative , and that satisfies normalization∑

xv

τv(xv) = 1 (13.14)

and pair-node marginal consistency constraints∑
x′t

τs,t(xs, x
′
t) = τs(xs) (13.15a)

∑
x′s

τs,t(x
′
s, xt) = τt(xt) (13.15b)
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module (A, b)), then it is a polyhedral outer bound.

A simple way to form outer bound: require only local consistency, i.e.,
consider set {τv, v ∈ V (G)} ∪ {τs,t, (s, t) ∈ E(G)} that is, always
non-negative , and that satisfies normalization∑

xv

τv(xv) = 1 (13.14)

and pair-node marginal consistency constraints∑
x′t

τs,t(xs, x
′
t) = τs(xs) (13.15a)

∑
x′s

τs,t(x
′
s, xt) = τt(xt) (13.15b)
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Local consistency (tree outer bound) polytope: properties

Define L(G) to be the (locally consistent) polytope that obeys the
constraints in Equations 13.14 and 13.15.

Recall: local consistency was the necessary conditions for potentials
being marginals that, it turned out, for junction tree that also
guaranteed global consistency.

Clearly M ⊆ L(G) since any member of M (true marginals) will be
locally consistent.

When G is a tree, we say that local consistency implies global
consistency, so for any tree T , we have M(T ) = L(T )

When G has cycles, however, M(G) ⊂ L(G) strictly. We refer to
members of L(G) as pseudo-marginals

Key problem is that members of L might not be true possible
marginals for any distribution.
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Pseudo-marginals

τv(xv) = [0.5, 0.5], and τs,t(xs, xt) =

[
βst .5− βst

.5− βst βst

]
(13.16)

Consider on 3-cycle C3, satisfies local consistency.

But for this won’t give us a marginal. Below shows M(C3) for
µ1 = µ2 = µ3 = 1/2 and the L(C3) outer bound (dotted).
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Bethe Entropy Approximation

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

So inference corresponds to Equation 13.7, and we have two
difficulties M and A∗(µ).

Maybe it is hard to compute A∗(µ) but perhaps we can reasonably
approximate it.
In case when −A∗(µ) is the entropy, lets use an approximate entropy
based on L being those distributions that factor w.r.t. a tree.
When p ∈ F(G,M(f)) and G is a tree T , then we can write p as:

p(x1, . . . , xN ) =

∏
(i,j)∈E(T ) pij(xi, xj)∏
v∈V (T ) pv(xv)

d(v)−1
(13.17)

=
∏

v∈V (T )

pv(xv)
∏

(i,j)∈E(T )

pij(xi, xj)

pi(xi)pj(xj)
(13.18)

where d(v) is the degree of v (shattering coefficient of v as separator)
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Bethe Entropy Approximation
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Bethe Entropy Approximation

In terms of current notation, we can let µ ∈ L(T ), the pseudo
marginals associated with T . Since local consistency requires global
consistency, for a tree, any µ ∈ L(T ) is such that µ ∈M(T ), thus

pµ(x) =
∏

s∈V (T )

µs(xs)
∏

(s,t)∈E(T )

µst(xs, xt)

µs(xs)µt(xt)
(13.19)

When G = T is a tree, and µ ∈ L(T ) = M(T ) we have

−A∗(µ) = H(pµ) =
∑

v∈V (T )

H(Xv)−
∑

(s,t)∈E(T )

I(Xs;Xt) (13.20)

=
∑

v∈V (T )

Hv(µv)−
∑

(s,t)∈E(T )

Ist(µst) (13.21)

That is, for G = T , −A∗(µ) is very easy to compute (only need to
compute entropy and mutual information over at most pairs).
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Bethe Entropy Approximation

We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V,E) not nec. a tree.

That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph G, we can make an approximation
to −A∗(τ) based on equation that has same form, i.e.,

−A∗(τ) ≈ HBethe(τ)
∆
=

∑
v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst) (13.22)

=
∑

v∈V (G)

(d(v)− 1)Hv(τv) +
∑

(i,j)∈E(G)

Hst(τs, τt) (13.23)

Key: HBethe(τ) is not necessarily concave as it is not a real entropy.
MI equation is not hard to compute O(r2).

Ist(τst) = Ist(τst(xs, xt)) (13.24)

=
∑
xs,xt

τst(xs, xt) log
τst(xs, xt)

τs(xs)τt(xt)
(13.25)
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Bethe Entropy Approximation
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.26)

Approximate variational representation of log partition function

ABethe(θ) = sup
τ∈L
{〈θ, τ〉+HBethe(τ)} (13.27)

= sup
τ∈L

〈θ, τ〉+
∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst)

 (13.28)

Exact when G = T but we do this for any G, still commutable

we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

We can optimize this directly using a Lagrangian formulation.
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Bethe Variational Problem and LBP

Lagrangian constraints for summing to unity at nodes

Cvv(τ) = 1−
∑
xv

τv(xv) (13.29)

Lagrangian constraints for local consistency

Cts(xs; τ) = τs(xs)−
∑
xt

τst(xs, xt) (13.30)

Yields following Lagrangian

L(τ, λ; θ) = 〈θ, τ〉+HBethe(τ) +
∑
v∈V

λvvCvv(τ) (13.31)

+
∑

(s,t)∈E(G)

[∑
xs

λts(xs)Cts(xs; τ) +
∑
xt

λst(xt)Cst(xt; τ)

]
(13.32)
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Fixed points: Variational Problem and LBP

Theorem 13.5.1

LBP updates are Lagrangian method for attempting to solve Bethe
variational problem:
(a) For any G, any LBP fixed point specifies a pair (τ∗, λ∗) s.t.

∇τL(τ∗, λ∗; θ) = 0 and ∇λL(τ∗, λ∗; θ) = 0 (13.33)

(b) For tree MRFs, Lagrangian equations have unique solution (τ∗, λ∗)
where τ∗ are exact node and edge marginals for the tree and the optimal
value obtained is the true log partition function.

Not guaranteed convex optimization, but is if graph is tree.

Remarkably, this means if we run loopy belief propagation, and we
reach a point where we have converged, then we will have achieved a
fixed-point of the above Lagrangian, and thus a (perhaps reasonable)
local optimum of the underlying variational problem.
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Fixed points: Variational Problem and LBP

The resulting Lagrange multipliers λst end up being exactly the
messages that we have defined. I.e., we get

λst(xt) = µs→t(xt) =
∑
xs

ψs,t(xs, xt)
∏

k∈δ(s)\{t}

µk→s(xs) (13.34)

Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

So we can now (at least) characterize any stable point of LBP.

This does not mean that it will converge.

For trees, we’ll get ABethe(θ) = A(θ), results of previous lectures
(parallel or MPP-based message passing).
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Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

So we can now (at least) characterize any stable point of LBP.

This does not mean that it will converge.

For trees, we’ll get ABethe(θ) = A(θ), results of previous lectures
(parallel or MPP-based message passing).
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Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds?

Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).

Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.86/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).

Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.87/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).

Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.88/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).
Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.89/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).

Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.90/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).
Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),

mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.91/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).
Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).

For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.92/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A: why would we want them?
Does not mean ABethe(θ) will be a bound on A(θ) rather an
approximation to it. Why want bounds? Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (13.3)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (13.4)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (13.7)

and some approximation to A(θ), say Aapprox(θ).
Due to sup in Eq. (13.3), might want upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 13 - Nov 12th, 2014 F34/37 (pg.93/107)



µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Bounds on A

In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.

Recall definition of the family

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (13.35)

So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
To compute conditionals

p(xA|xB) =
p(xA∪B)

p(xB)
=

∑
xV \(A∪B)

p(x)∑
xV \B

p(x)
(13.36)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.
Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
we can come up with other forms of bounds over other marginals.
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Lack of bounds for Bethe

Two reasons A might be inaccurate:

1) We have replaced M with
outer bound L; and 2) we’ve used HBethe in place of the true dual A∗.

Example of inaccuracy (example 4.2 from book), consider a 4-clique

µs(xs) = [0.5 0.5] for s = 1, 2, 3, 4 (13.37a)

µst(xs, xt) =

[
0.5 0
0 0.5

]
∀(s, t) ∈ E(G) (13.37b)

Valid marginals, equal 0.5 probability for (0, 0, 0, 0) and (1, 1, 1, 1).

Each Hs(µs) = log 2, and each Ist(µst) = log 2 giving

HBethe(µ) = 4 log 2− 6 log 2 = −2 log 2 < 0 (13.38)

which obviously can’t be a true entropy since we must have H > 0 for
discrete distributions.

True −A∗(µ) = log 2 > 0.
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.

aspx?product=MAL&doi=2200000001
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