EE512A - Advanced Inference in Graphical Models

- Fall Quarter, Lecture 13 -
http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Nov 12th, 2014

Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Read chapters 1,2 , and 3 in this book. Start reading chapter 4.
- Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding final project proposals (one page max).

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, k-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP

Finals Week: Dec 8th-12th, 2014.

Mean Parameters, Convex Cores

- Consider quantities μ_{α} associated with statistic ϕ_{α} defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{13.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.
- Define all possible such vectors, with $d=|\mathcal{I}|$,

$$
\begin{equation*}
\mathcal{M}(\phi)=\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \quad \forall \alpha \in \mathcal{I}, \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]\right\} \tag{13.11}
\end{equation*}
$$

- We don't say p was necessarily exponential family
- \mathcal{M} is convex since expected value is a linear operator. So convex combinations of p and p^{\prime} will lead to convex combinations of μ and μ^{\prime}
- \mathcal{M} is like a "convex core" of all distributions expressed via ϕ.

Mean Parameters and Marginal Polytopes

- Mean parameters are now true (fully specified) marginals, i.e.,

$$
\begin{align*}
& \mu_{v}(j)=p\left(x_{v}=j\right) \text { and } \mu_{s t}(j, k)=p\left(x_{s}=j, x_{t}=k\right) \text { since } \\
& \mu_{v, j}=\mathbb{E}_{p}\left[\mathbf{1}\left(x_{v}=j\right)\right]=p\left(x_{v}=j\right) \tag{13.20}\\
& \mu_{s t, j k}=\mathbb{E}_{p}\left[\mathbf{1}\left(x_{s}=j, x_{t}=k\right)\right]=p\left(x_{s}=j, x_{t}=k\right) \tag{13.21}
\end{align*}
$$

- Such an \mathcal{M} is called the marginal polytope for discrete graphical models. Any μ must live in the polytope that corresponds to node and edge true marginals.
- We can also associate such a polytope with a graph G, where we take only $(s, t) \in E(G)$. Denote this as $\mathbb{M}(G)$.
- This polytope can help us to characterize when BP converges (there might be an outer bound of this polytope), or it might characterize the result of a mean-field approximation (an inner bound of this polytope) as we'll see.

Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters θ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.
- We can view the (maximum likelihood) learning problem as moving from a point in the polytope (given by the empirical distribution) to the canonical parameters. Called backwards mapping
- graph structure (e.g., tree-width) makes this easy or hard, and also characterizes the polytope (how complex it is in terms of number of faces).

Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

$$
\begin{equation*}
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \forall \alpha \in \mathcal{I} \tag{13.14}
\end{equation*}
$$

where $H(p)=-\int p(x) \log p(x) \nu(d x)$, and $\forall \alpha \in \mathcal{I}$

$$
\begin{equation*}
\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int_{\mathrm{D}_{X}} \phi_{\alpha}(x) p(x) \nu(d x) \tag{13.15}
\end{equation*}
$$

- $\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]$ is mean value as measured by potential function, so above is a form of moment matching.
- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of $p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta))$ and then by finding canonical parameters θ that solves

$$
\begin{equation*}
E_{p_{\theta}}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \text { for all } \alpha \in \mathcal{I} \tag{13.16}
\end{equation*}
$$

Learning is the dual of Inference

- Ex: Estimate θ with $\hat{\theta}$ based on data $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$ of size M, likelihood function

$$
\begin{align*}
\ell(\theta, \mathbf{D}) & =\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}\left(\bar{x}^{(i)}\right)=\frac{1}{M} \sum_{i=1}^{M}\left(\left\langle\theta, \phi\left(\bar{x}^{(i)}\right)\right\rangle-A(\theta)\right) \tag{13.20}\\
& =\langle\theta, \hat{\mu}\rangle-A(\theta) \tag{13.21}
\end{align*}
$$

where empirical means are given by:

$$
\begin{equation*}
\hat{\mu}=\hat{\mathbb{E}}[\phi(X)]=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right) \tag{13.22}
\end{equation*}
$$

- By taking derivatives of the above, it is easy to see that solution is the point $\hat{\theta}=\theta(\hat{\mu})$ such that empirical matches expected means, or what are called the moment matching conditions:

$$
\begin{equation*}
\mathbb{E}_{\hat{\theta}}[\phi(X)]=\hat{\mu} \tag{13.23}
\end{equation*}
$$

this is the the backward mapping problem, going from μ to θ.

- Here, maximum likelihood is identical to maximum entropy problem.

Likelihood and negative entropy

- Entropy definition again: $H(p)=-\int p(x) \log p(x) \nu(d x)$
- Given data, $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$, defines an empirical distribution

$$
\begin{equation*}
\hat{p}(x)=\frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\left(x=\bar{x}^{(i)}\right) \tag{13.20}
\end{equation*}
$$

so that $\mathbb{E}_{\hat{p}}[\phi(X)]=\int \hat{p}(x) \phi(x) \nu(d x)=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right)=\hat{\mu}$

- Starting from maximum likelihood solution $\theta(\hat{u})$, meaning we are at moment matching conditions $\mathbb{E}_{p_{\theta(\hat{u})}}[\phi(X)]=\hat{\mu}=\mathbb{E}_{\hat{p}}[\phi(X)]$, we have

$$
\begin{align*}
\ell(\theta(\hat{u}), \mathbf{D}) & =\langle\theta(\hat{u}), \hat{\mu}\rangle-A(\theta(\hat{u}))=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta(\hat{u})}\left(\bar{x}^{(i)}\right) \tag{13.21}\\
& =\int \hat{p}(x) \log p_{\theta(\hat{\mu})}(x) \nu(d x)=\mathbb{E}_{\hat{p}}\left[\log p_{\theta(\hat{\mu})}(x)\right] \tag{13.22}\\
& =\mathbb{E}_{p_{\theta(\hat{\mu})}}\left[\log p_{\theta(\hat{\mu})}(x)\right]=-H_{p_{\theta(\hat{\mu})}}\left[p_{\theta(\hat{\mu})}(x)\right] \tag{13.23}
\end{align*}
$$

- Thus, maximum likelihood value and negative entropy are identical, at least for empirical $\hat{\mu}$ (which is $\in \mathcal{M}$).

Dual Mappings: Summary

Summarizing these relationships

- Forward mapping: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.
- Backwards mapping: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).
- In exponential family case, this is maximum entropy and is equivalent to maximum likelihood learning on an exponential family model.
- Turns out log partition function A, and its dual A^{*} can give us these mappings, and the mappings have interesting forms ...

Log partition (or cumulant) function: derivative offerings

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{13.20}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- $A(\theta)$ is convex in θ (strictly so if minimal representation).
- It yields cumulants of the random vector $\phi(X)$

$$
\begin{equation*}
\frac{\partial A}{\partial \theta_{\alpha}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(X) p_{\theta}(x) \nu(d x)=\mu_{\alpha} \tag{13.21}
\end{equation*}
$$

in general, derivative of log part. function is expected value of feature

- Also, we get

$$
\begin{equation*}
\frac{\partial^{2} A}{\partial \theta_{\alpha_{1}} \partial \theta_{\alpha_{2}}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X) \phi_{\alpha_{2}}(X)\right]-\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X)\right] \mathbb{E}_{\theta}\left[\phi_{\alpha_{2}}(X)\right] \tag{13.22}
\end{equation*}
$$

- Proof given in book (Proposition 3.1, page 62).

Log partition function: properties

- So derivative of \log partition function w.r.t. θ is equal to our mean parameter μ in the discrete case.
- Given $A(\theta)$, we can recover the marginals for each potential function $\phi_{\alpha}, \alpha \in \mathcal{I}$ (when mean parameters lie in the marginal polytope).
- If we can approximate $A(\theta)$ with $\tilde{A}(\theta)$ then we can get approximate marginals. Perhaps we can bound it without inordinate compute resources. Why do we want bounds? We shall soon see.
- The Bethe approximation (as we'll also see) is such an approximation and corresponds to fixed points of loopy belief propagation.
- In some rarer cases, we can bound the approximation (current research trend).

Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{13.2}
\end{equation*}
$$

Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{13.2}
\end{equation*}
$$

- $A(\theta)$ is key.

Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{13.2}
\end{equation*}
$$

- $A(\theta)$ is key.
- Forward mapping, inference: from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, get marginals.

Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{13.2}
\end{equation*}
$$

- $A(\theta)$ is key.
- Forward mapping, inference: from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, get marginals.
- Backwards mapping, learning: from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, getting best parameters associated with empirical facts (means).

Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{13.2}
\end{equation*}
$$

- $A(\theta)$ is key.
- Forward mapping, inference: from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, get marginals.
- Backwards mapping, learning: from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, getting best parameters associated with empirical facts (means).
- So learning is dual of inference.

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- Proofs of the below are in our text:

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}[\phi(X)]=\mu\right\}
$$

- Proofs of the below are in our text:
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}[\phi(X)]=\mu\right\} .
$$

- Proofs of the below are in our text:
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.
- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ 's can yield the same distribution).

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}[\phi(X)]=\mu\right\} .
$$

- Proofs of the below are in our text:
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.
- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ 's can yield the same distribution).
- For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy.

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where

$$
\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p \text { s.t. } \mathbb{E}_{p}[\phi(X)]=\mu\right\} .
$$

- Proofs of the below are in our text:
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.
- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ 's can yield the same distribution).
- For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance.

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- Proofs of the below are in our text:
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.
- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ 's can yield the same distribution).
- For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance. ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.

Log partition function: Properties

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- Proofs of the below are in our text:
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between μ and θ.
- For non-minimal exponential families, more than one θ for a given μ (not surprising since multiple θ 's can yield the same distribution).
- For non-exponential families, other distributions can yield μ, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance. ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.
- Key point: all mean parameters that are realizable by some dist. are also realizable by member of exp. family.

Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1

The gradient map ∇A is one-to-one iff the exponential representation is minimal.

Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1

The gradient map ∇A is one-to-one iff the exponential representation is minimal.

- Proof basically uses property that if representation is non-minimal, and $\langle a, \phi(x)\rangle=c$ for all x, then we can form an affine set of equivalent parameters $\theta+\gamma a$.

Mappings - one-to-one

Expanding on one of the previous properties, ...

Theorem 13.3.1

The gradient map ∇A is one-to-one iff the exponential representation is minimal.

- Proof basically uses property that if representation is non-minimal, and $\langle a, \phi(x)\rangle=c$ for all x, then we can form an affine set of equivalent parameters $\theta+\gamma a$.
- Other direction, uses strict convexity of $A(\theta)$

Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}\left[X X^{T}\right]$) can be realized by a Gaussian having those same mean parameters (moments).

Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}\left[X X^{T}\right]$) can be realized by a Gaussian having those same mean parameters (moments).
- The Gaussian won't nec. be the "true" distribtuion (in such case, the "true" distribution would not be a Gaussian, and might be an exponential family distribution with additional moments (e.g., 1D Gaussians have zero skew and kurtosis) or might not be exponential family at all).

Mappings - onto

Theorem 13.3.2

In a minimal exponential family, the gradient map ∇A is onto the interior of \mathcal{M} (denoted \mathcal{M}°). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}\left[X X^{T}\right]$) can be realized by a Gaussian having those same mean parameters (moments).
- The Gaussian won't nec. be the "true" distribtuion (in such case, the "true" distribution would not be a Gaussian, and might be an exponential family distribution with additional moments (e.g., 1D Gaussians have zero skew and kurtosis) or might not be exponential family at all).
- The theorem here is more general and applies for any set of sufficient statistics.

Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

- Compare this to convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

- Compare this to convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- So dual is optimal value of the ML problem, when $\mu \in \mathcal{M}$, and we saw the relationship between ML and negative entropy before.

Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

- Compare this to convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- So dual is optimal value of the ML problem, when $\mu \in \mathcal{M}$, and we saw the relationship between ML and negative entropy before.
- Key: when $\mu \in \mathcal{M}$, dual is negative entropy of exponential model $p_{\theta(\mu)}$ where $\theta(\mu)$ is the unique set of canonical parameters satisfying this matching condition

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\nabla A(\theta(\mu))=\mu \tag{13.5}
\end{equation*}
$$

Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

- Compare this to convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- So dual is optimal value of the ML problem, when $\mu \in \mathcal{M}$, and we saw the relationship between ML and negative entropy before.
- Key: when $\mu \in \mathcal{M}$, dual is negative entropy of exponential model $p_{\theta(\mu)}$ where $\theta(\mu)$ is the unique set of canonical parameters satisfying this matching condition

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\nabla A(\theta(\mu))=\mu \tag{13.5}
\end{equation*}
$$

- When $\mu \notin \mathcal{M}$, then $A^{*}(\mu)=+\infty$, optimization with dual need consider points only in \mathcal{M}.

Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 13.3.3 (Relationship between A and A^{*})

(a) For any $\mu \in \mathcal{M}^{\circ}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ} \tag{13.6}\\ +\infty & \text { if } \mu \notin \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{13.8}
\end{equation*}
$$

Conjugate Duality, and Inference

- Note that $A *$ isn't exactly entropy, only entropy sometimes, and depends on matching parameters to μ via the matching mapping $\theta(\mu)$ which achieves

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\mu \tag{13.9}
\end{equation*}
$$

Conjugate Duality, and Inference

- Note that $A *$ isn't exactly entropy, only entropy sometimes, and depends on matching parameters to μ via the matching mapping $\theta(\mu)$ which achieves

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\mu \tag{13.9}
\end{equation*}
$$

- $A(\theta)$ in Equation 13.7 is the "inference" problem (dual of the dual) for a given θ, since computing it involves computing the desired node/edge marginals.

Conjugate Duality, and Inference

- Note that $A *$ isn't exactly entropy, only entropy sometimes, and depends on matching parameters to μ via the matching mapping $\theta(\mu)$ which achieves

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\mu \tag{13.9}
\end{equation*}
$$

- $A(\theta)$ in Equation 13.7 is the "inference" problem (dual of the dual) for a given θ, since computing it involves computing the desired node/edge marginals.
- Whenever $\mu \notin \mathcal{M}$, then $A^{*}(\mu)$ returns ∞ which can't be the resulting sup in Equation 13.7, so Equation 13.7 need only consider \mathcal{M}.

Conjugate Duality, Good and Bad News

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals).

Conjugate Duality, Good and Bad News

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals).
- Key: we compute the log partition function simultaneously with solving inference, given the dual.

Conjugate Duality, Good and Bad News

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals).
- Key: we compute the log partition function simultaneously with solving inference, given the dual.
- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. ©

Conjugate Duality, Good and Bad News

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals).
- Key: we compute the log partition function simultaneously with solving inference, given the dual.
- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. ©
- Bad news: \mathcal{M} is quite complicated to characterize, depends on the complexity of the graphical model. ©

Conjugate Duality, Good and Bad News

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals).
- Key: we compute the log partition function simultaneously with solving inference, given the dual.
- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. ©
- Bad news: \mathcal{M} is quite complicated to characterize, depends on the complexity of the graphical model. ©
- More bad news: A^{*} not given explicitly in general and hard to compute. ©

Conjugate Duality, Avenues to Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation.

Conjugate Duality, Avenues to Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. :)
- For example, we might either relax \mathcal{M} (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©)

Conjugate Duality, Avenues to Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. ©
- For example, we might either relax \mathcal{M} (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©
- $A^{*}(\mu)$'s relationship to entropy gives avenues for relaxation.

Conjugate Duality, Avenues to Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. ©
- For example, we might either relax \mathcal{M} (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©)
- $A^{*}(\mu)$'s relationship to entropy gives avenues for relaxation.
- Surprisingly, this is strongly related to belief propagation (i.e., the sum-product commutative semiring). © ();

Conjugate Duality, Avenues to Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. :)
- For example, we might either relax \mathcal{M} (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©
- $A^{*}(\mu)$'s relationship to entropy gives avenues for relaxation.
- Surprisingly, this is strongly related to belief propagation (i.e., the sum-product commutative semiring). ©) ©
- Much of the rest of the class will be above approaches to the above - giving not only to junction tree algorithm (that we've seen) but also to well-known approximation methods (LBP, mean-field, Bethe, expectation-propagation (EP), Kikuchi methods, linear programming relaxations, and semidefnite relaxations, some of which we will cover).

Overcomplete, simple notation

- We'll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.

Overcomplete, simple notation

- We'll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.
- Recall: dealing only with pairwise interactions (natural for image processing) - If not pairwise, we can convert from factor graph to factor graph with factor-width 2 factors.

Overcomplete, simple notation

- We'll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.
- Recall: dealing only with pairwise interactions (natural for image processing) - If not pairwise, we can convert from factor graph to factor graph with factor-width 2 factors.
- Exponential overcomplete family model of form

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{v \in V(G)} \theta_{v}\left(x_{v}\right)+\sum_{(s, t) \in E(G)} \theta_{s t}\left(x_{s}, x_{t}\right)\right\}
$$

with simple new shorthand notation functions θ_{v} and $\theta_{s t}$.

$$
\begin{array}{r}
\theta_{v}\left(x_{v}\right) \triangleq \sum_{i} \theta_{v, i} \mathbf{1}\left(x_{v}=i\right) \text { and } \\
\theta_{s, t}\left(x_{s}, x_{t}\right) \triangleq \sum_{i, j} \theta_{s t, i j} \mathbf{1}\left(x_{s}=i, x_{t}=j\right) \tag{13.11}
\end{array}
$$

Marginal notation, and graph

Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G) \tag{13.12}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G) \tag{13.13}
\end{align*}
$$

Marginal notation, and graph

Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G) \tag{13.12}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G) \tag{13.13}
\end{align*}
$$

- And $\mathbb{M}(G)$ corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ that contains only pairwise interactions.

Marginal notation, and graph

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G) \tag{13.12}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G) \tag{13.13}
\end{align*}
$$

- And $\mathbb{M}(G)$ corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ that contains only pairwise interactions.
- Note, $\mathbb{M}(G)$ is respect to a graph G.

Marginal notation, and graph

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G) \tag{13.12}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{\mathrm{Y}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G) \tag{13.13}
\end{align*}
$$

- And $\mathbb{M}(G)$ corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ that contains only pairwise interactions.
- Note, $\mathbb{M}(G)$ is respect to a graph G.
- Recall, \mathbb{M} can be represented as a convex hull of a set of points, or by a set of linear inequality constraints.

Local consistency (tree outer bound) polytope

- An "outer bound" of \mathbb{M} consists of a set that contains \mathbb{M}. If formed from a subset of the linear inequalities (subset of the rows of matrix module $(A, b))$, then it is a polyhedral outer bound.

Local consistency (tree outer bound) polytope

- An "outer bound" of \mathbb{M} consists of a set that contains \mathbb{M}. If formed from a subset of the linear inequalities (subset of the rows of matrix module $(A, b))$, then it is a polyhedral outer bound.
- A simple way to form outer bound: require only local consistency, i.e., consider set $\left\{\tau_{v}, v \in V(G)\right\} \cup\left\{\tau_{s, t},(s, t) \in E(G)\right\}$ that is, always non-negative, and that satisfies normalization

$$
\begin{equation*}
\sum_{x_{v}} \tau_{v}\left(x_{v}\right)=1 \tag{13.14}
\end{equation*}
$$

and pair-node marginal consistency constraints

$$
\begin{align*}
& \sum_{x_{t}^{\prime}} \tau_{s, t}\left(x_{s}, x_{t}^{\prime}\right)=\tau_{s}\left(x_{s}\right) \tag{13.15a}\\
& \sum_{x_{s}^{\prime}} \tau_{s, t}\left(x_{s}^{\prime}, x_{t}\right)=\tau_{t}\left(x_{t}\right) \tag{13.15b}
\end{align*}
$$

Local consistency (tree outer bound) polytope: properties

- Define $\mathbb{L}(G)$ to be the (locally consistent) polytope that obeys the constraints in Equations 13.14 and 13.15.
- Recall: local consistency was the necessary conditions for potentials being marginals that, it turned out, for junction tree that also guaranteed global consistency.
- Clearly $\mathbb{M} \subseteq \mathbb{L}(G)$ since any member of \mathbb{M} (true marginals) will be locally consistent.
- When G is a tree, we say that local consistency implies global consistency, so for any tree T, we have $\mathbb{M}(T)=\mathbb{L}(T)$
- When G has cycles, however, $\mathbb{M}(G) \subset \mathbb{L}(G)$ strictly. We refer to members of $\mathbb{L}(G)$ as pseudo-marginals
- Key problem is that members of \mathbb{L} might not be true possible marginals for any distribution.

Pseudo-marginals

$$
\tau_{v}\left(x_{v}\right)=[0.5,0.5], \text { and } \tau_{s, t}\left(x_{s}, x_{t}\right)=\left[\begin{array}{cc}
\beta_{s t} & .5-\beta_{s t} \tag{13.16}\\
.5-\beta_{s t} & \beta_{s t}
\end{array}\right]
$$

- Consider on 3-cycle C_{3}, satisfies local consistency.
- But for this won't give us a marginal. Below shows $\mathbb{M}\left(C_{3}\right)$ for $\mu_{1}=\mu_{2}=\mu_{3}=1 / 2$ and the $\mathbb{L}\left(C_{3}\right)$ outer bound (dotted).

(a)

(b)

Bethe Entropy Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- So inference corresponds to Equation 13.7, and we have two difficulties \mathcal{M} and $A^{*}(\mu)$.

Bethe Entropy Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- So inference corresponds to Equation 13.7, and we have two difficulties \mathcal{M} and $A^{*}(\mu)$.
- Maybe it is hard to compute $A^{*}(\mu)$ but perhaps we can reasonably approximate it.

Bethe Entropy Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- So inference corresponds to Equation 13.7, and we have two difficulties \mathcal{M} and $A^{*}(\mu)$.
- Maybe it is hard to compute $A^{*}(\mu)$ but perhaps we can reasonably approximate it.
- In case when $-A^{*}(\mu)$ is the entropy, lets use an approximate entropy based on \mathbb{L} being those distributions that factor w.r.t. a tree.

Bethe Entropy Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

- So inference corresponds to Equation 13.7, and we have two difficulties \mathcal{M} and $A^{*}(\mu)$.
- Maybe it is hard to compute $A^{*}(\mu)$ but perhaps we can reasonably approximate it.
- In case when $-A^{*}(\mu)$ is the entropy, lets use an approximate entropy based on \mathbb{L} being those distributions that factor w.r.t. a tree.
- When $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ and G is a tree T, then we can write p as:

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{N}\right) & =\frac{\prod_{(i, j) \in E(T)} p_{i j}\left(x_{i}, x_{j}\right)}{\prod_{v \in V(T)} p_{v}\left(x_{v}\right)^{d(v)-1}} \tag{13.17}\\
& =\prod_{v \in V(T)} p_{v}\left(x_{v}\right) \prod_{(i, j) \in E(T)} \frac{p_{i j}\left(x_{i}, x_{j}\right)}{p_{i}\left(x_{i}\right) p_{j}\left(x_{j}\right)} \tag{13.18}
\end{align*}
$$

where $d(v)$ is the degree of v (shattering coefficient of v as separator)

Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with T. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$
\begin{equation*}
p_{\mu}(x)=\prod_{s \in V(T)} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E(T)} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \tag{13.19}
\end{equation*}
$$

Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with T. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$
\begin{equation*}
p_{\mu}(x)=\prod_{s \in V(T)} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E(T)} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \tag{13.19}
\end{equation*}
$$

- When $G=T$ is a tree, and $\mu \in \mathbb{L}(T)=\mathbb{M}(T)$ we have

$$
\begin{align*}
-A^{*}(\mu) & =H\left(p_{\mu}\right)=\sum_{v \in V(T)} H\left(X_{v}\right)-\sum_{(s, t) \in E(T)} I\left(X_{s} ; X_{t}\right) \tag{13.20}\\
& =\sum_{v \in V(T)} H_{v}\left(\mu_{v}\right)-\sum_{(s, t) \in E(T)} I_{s t}\left(\mu_{s t}\right) \tag{13.21}
\end{align*}
$$

Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with T. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$
\begin{equation*}
p_{\mu}(x)=\prod_{s \in V(T)} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E(T)} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \tag{13.19}
\end{equation*}
$$

- When $G=T$ is a tree, and $\mu \in \mathbb{L}(T)=\mathbb{M}(T)$ we have

$$
\begin{align*}
-A^{*}(\mu) & =H\left(p_{\mu}\right)=\sum_{v \in V(T)} H\left(X_{v}\right)-\sum_{(s, t) \in E(T)} I\left(X_{s} ; X_{t}\right) \tag{13.20}\\
& =\sum_{v \in V(T)} H_{v}\left(\mu_{v}\right)-\sum_{(s, t) \in E(T)} I_{s t}\left(\mu_{s t}\right) \tag{13.21}
\end{align*}
$$

- That is, for $G=T,-A^{*}(\mu)$ is very easy to compute (only need to compute entropy and mutual information over at most pairs).

Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.

Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph G, we can make an approximation to $-A^{*}(\tau)$ based on equation that has same form, i.e.,

$$
\begin{align*}
-A^{*}(\tau) & \approx H_{\text {Bethe }}(\tau) \triangleq \sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right) \tag{13.22}\\
& =\sum_{v \in V(G)}(d(v)-1) H_{v}\left(\tau_{v}\right)+\sum_{(i, j) \in E(G)} H_{s t}\left(\tau_{s}, \tau_{t}\right) \tag{13.23}
\end{align*}
$$

Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph G, we can make an approximation to $-A^{*}(\tau)$ based on equation that has same form, i.e.,

$$
\begin{align*}
-A^{*}(\tau) & \approx H_{\text {Bethe }}(\tau) \triangleq \sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right) \tag{13.22}\\
& =\sum_{v \in V(G)}(d(v)-1) H_{v}\left(\tau_{v}\right)+\sum_{(i, j) \in E(G)} H_{s t}\left(\tau_{s}, \tau_{t}\right) \tag{13.23}
\end{align*}
$$

- Key: $H_{\text {Bethe }}(\tau)$ is not necessarily concave as it is not a real entropy.

Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph G, we can make an approximation to $-A^{*}(\tau)$ based on equation that has same form, i.e.,

$$
\begin{align*}
-A^{*}(\tau) & \approx H_{\mathrm{Bethe}}(\tau) \triangleq \sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right) \tag{13.22}\\
& =\sum_{v \in V(G)}(d(v)-1) H_{v}\left(\tau_{v}\right)+\sum_{(i, j) \in E(G)} H_{s t}\left(\tau_{s}, \tau_{t}\right) \tag{13.23}
\end{align*}
$$

- Key: $H_{\text {Bethe }}(\tau)$ is not necessarily concave as it is not a real entropy.
- Ml equation is not hard to compute $O\left(r^{2}\right)$.

$$
\begin{align*}
I_{s t}\left(\tau_{s t}\right) & =I_{s t}\left(\tau_{s t}\left(x_{s}, x_{t}\right)\right) \tag{13.24}\\
& =\sum_{x_{s}, x_{t}} \tau_{s t}\left(x_{s}, x_{t}\right) \log \frac{\tau_{s t}\left(x_{s}, x_{t}\right)}{\tau_{s}\left(x_{s}\right) \tau_{t}\left(x_{t}\right)} \tag{13.25}
\end{align*}
$$

Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.26}
\end{equation*}
$$

Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.26}
\end{equation*}
$$

Approximate variational representation of log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\} \tag{13.27}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{13.28}
\end{align*}
$$

Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.26}
\end{equation*}
$$

Approximate variational representation of \log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\} \tag{13.27}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{13.28}
\end{align*}
$$

- Exact when $G=T$ but we do this for any G, still commutable

Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.26}
\end{equation*}
$$

Approximate variational representation of \log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\} \tag{13.27}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{13.28}
\end{align*}
$$

- Exact when $G=T$ but we do this for any G, still commutable
- we get an approximate log partition function, and approximate (pseudo) marginals (in \mathbb{L}), but this is perhaps much easier to compute.

Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.26}
\end{equation*}
$$

Approximate variational representation of \log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\} \tag{13.27}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{13.28}
\end{align*}
$$

- Exact when $G=T$ but we do this for any G, still commutable
- we get an approximate log partition function, and approximate (pseudo) marginals (in \mathbb{L}), but this is perhaps much easier to compute.
- We can optimize this directly using a Lagrangian formulation.

Bethe Variational Problem and LBP

- Lagrangian constraints for summing to unity at nodes

$$
\begin{equation*}
C_{v v}(\tau)=1-\sum_{x_{v}} \tau_{v}\left(x_{v}\right) \tag{13.29}
\end{equation*}
$$

- Lagrangian constraints for local consistency

$$
\begin{equation*}
C_{t s}\left(x_{s} ; \tau\right)=\tau_{s}\left(x_{s}\right)-\sum_{x_{t}} \tau_{s t}\left(x_{s}, x_{t}\right) \tag{13.30}
\end{equation*}
$$

- Yields following Lagrangian

$$
\begin{align*}
\mathcal{L}(\tau, \lambda ; \theta) & =\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)+\sum_{v \in V} \lambda_{v v} C_{v v}(\tau) \tag{13.31}\\
& +\sum_{(s, t) \in E(G)}\left[\sum_{x_{s}} \lambda_{t s}\left(x_{s}\right) C_{t s}\left(x_{s} ; \tau\right)+\sum_{x_{t}} \lambda_{s t}\left(x_{t}\right) C_{s t}\left(x_{t} ; \tau\right)\right] \tag{13.32}
\end{align*}
$$

Fixed points: Variational Problem and LBP

Theorem 13.5.1

LBP updates are Lagrangian method for attempting to solve Bethe variational problem:
(a) For any G, any LBP fixed point specifies a pair $\left(\tau^{*}, \lambda^{*}\right)$ s.t.

$$
\begin{equation*}
\nabla_{\tau} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)=0 \text { and } \nabla_{\lambda} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)=0 \tag{13.33}
\end{equation*}
$$

(b) For tree MRFs, Lagrangian equations have unique solution $\left(\tau^{*}, \lambda^{*}\right)$ where τ^{*} are exact node and edge marginals for the tree and the optimal value obtained is the true log partition function.

- Not guaranteed convex optimization, but is if graph is tree.
- Remarkably, this means if we run loopy belief propagation, and we reach a point where we have converged, then we will have achieved a fixed-point of the above Lagrangian, and thus a (perhaps reasonable) local optimum of the underlying variational problem.

Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{13.34}
\end{equation*}
$$

Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{13.34}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).

Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{13.34}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
- So we can now (at least) characterize any stable point of LBP.

Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{13.34}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
- So we can now (at least) characterize any stable point of LBP.
- This does not mean that it will converge.

Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{13.34}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
- So we can now (at least) characterize any stable point of LBP.
- This does not mean that it will converge.
- For trees, we'll get $A_{\text {Bethe }}(\theta)=A(\theta)$, results of previous lectures (parallel or MPP-based message passing).

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds?

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

- Due to sup in Eq. (13.3), might want upper bound $A_{\text {approx }}(\theta) \geq A(\theta)$,

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

- Due to sup in Eq. (13.3), might want upper bound $A_{\text {approx }}(\theta) \geq A(\theta)$,
- mean-field methods (ch 5 in book) provides lower bound on $A(\theta)$.

Bounds on A : why would we want them?

- Does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why want bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{13.3}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{13.4}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{13.7}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

- Due to sup in Eq. (13.3), might want upper bound $A_{\text {approx }}(\theta) \geq A(\theta)$,
- mean-field methods (ch 5 in book) provides lower bound on $A(\theta)$.
- For certain "attractive" potential functions, we get $A_{\text {Bethe }}(\theta) \leq A(\theta)$, these are common in computer vision and are related to graph cuts.

Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.

Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.35}
\end{equation*}
$$

Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.35}
\end{equation*}
$$

- So bounds on A can give us bounds on p. E.g., lower bounds on A will give us upper bounds on p.

Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.35}
\end{equation*}
$$

- So bounds on A can give us bounds on p. E.g., lower bounds on A will give us upper bounds on p.
- To compute conditionals

$$
\begin{equation*}
p\left(x_{A} \mid x_{B}\right)=\frac{p\left(x_{A \cup B}\right)}{p\left(x_{B}\right)}=\frac{\sum_{x_{V \backslash(A \cup B)}} p(x)}{\sum_{x_{V \backslash B}} p(x)} \tag{13.36}
\end{equation*}
$$

we would like both upper and lower bounds on A depending on if we want to upper or lower bound probability estimates.

Bounds on A

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{13.35}
\end{equation*}
$$

- So bounds on A can give us bounds on p. E.g., lower bounds on A will give us upper bounds on p.
- To compute conditionals

$$
\begin{equation*}
p\left(x_{A} \mid x_{B}\right)=\frac{p\left(x_{A \cup B}\right)}{p\left(x_{B}\right)}=\frac{\sum_{x_{V \backslash(A \cup B)}} p(x)}{\sum_{x_{V \backslash B}} p(x)} \tag{13.36}
\end{equation*}
$$

we would like both upper and lower bounds on A depending on if we want to upper or lower bound probability estimates.

- Perhaps more importantly, $\exp (A(\theta))$ is a marginal in and of itself (recall it is marginalization over everything). If we can bound $A(\theta)$, we can come up with other forms of bounds over other marginals.

Lack of bounds for Bethe

- Two reasons A might be inaccurate:

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L};

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual A^{*}.

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual A^{*}.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{array}{rlr}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \tag{13.37a}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G)
\end{array}
$$

(13.37b)

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual A^{*}.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{array}{rlr}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{13.37b}
\end{array}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual A^{*}.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{array}{rlr}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{13.37b}
\end{array}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.
- Each $H_{s}\left(\mu_{s}\right)=\log 2$, and each $I_{s t}\left(\mu_{s t}\right)=\log 2$ giving

$$
\begin{equation*}
H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0 \tag{13.38}
\end{equation*}
$$

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual A^{*}.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{align*}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \tag{13.37a}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{13.37b}
\end{align*}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.
- Each $H_{s}\left(\mu_{s}\right)=\log 2$, and each $I_{s t}\left(\mu_{s t}\right)=\log 2$ giving

$$
\begin{equation*}
H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0 \tag{13.38}
\end{equation*}
$$

which obviously can't be a true entropy since we must have $H>0$ for discrete distributions.

Lack of bounds for Bethe

- Two reasons A might be inaccurate: 1) We have replaced \mathbb{M} with outer bound \mathbb{L}; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual A^{*}.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{align*}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \tag{13.37a}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{13.37b}
\end{align*}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.
- Each $H_{s}\left(\mu_{s}\right)=\log 2$, and each $I_{s t}\left(\mu_{s t}\right)=\log 2$ giving

$$
\begin{equation*}
H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0 \tag{13.38}
\end{equation*}
$$

which obviously can't be a true entropy since we must have $H>0$ for discrete distributions.

- True $-A^{*}(\mu)=\log 2>0$.

Sources for Today's Lecture

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001

