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Announcements

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&do0i1=2200000001

@ Read chapters 1,2, and 3 in this book. Start reading chapter 4.

@ Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Theorem 12.2.1 (Power method lemma)

Let A be a matrix with eigenvalues \1, ..
order) and corresponding eigenvectors x1,xa, . .
(strict), then the update '™ = a Az converges to a multiple of x;
starting from any initial vector z° = >; Bizi provided that 51 # 0. The
convergence rate factor is given by |As/\1|.

-y An, (sorted in decreasing
ST IF AL > | A2
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 12.2.1

1. uy_1 converges to the principle eigenvector of M.

2. us_,1 converges to the principle eigenvector of M i

3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M.

4. The diagonal elements of M correspond to correct marginal p(x1)

5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = fp(z1) + (1 — B)q(x1) where 3 is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M.

See Weiss2000. ]
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exponential family models

@ ¢ = (o, €T) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d = |Z|.

e Each ¢, is a function of x, ¢,(x) but it usually does not use all of x

(only a subset of elements). Notation ¢, (z¢, ) assumed implicitly
understood, where C,, C V(G).

e 0 is a vector of canonical parameters (same length, |Z|). § € Q C R?
where d = |Z|.
@ We can define a family as

po(x) = exp({0, o(x)) — A(0)) (12.12)

where (0, ¢(z)) = >, 0aPa(z). Note that we're using ¢ here in the
exponent, before we were using it out of the exponent.

o Note that ¢(x) = (¢1(x), ¢2(x), . . ., ¢z7)) where again each ¢;(z)
might use only some of the elements in vector z. ¢ : Dx™ — R%.
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Log partition (cumulant) function

@ Based on underlying set of parameters 6, we have family of models

po(z) = 7

7) P {Z Ha%(w)} = exp((0, ¢(x)) — A(0)) (12.12)
acl
@ To ensure normalized, we use log partition (cumulant) function
A(0) = log/ exp ((0, ¢(x))) v(dx) (12.13)
Dx
with 6 € @ £ {6 € RYA(6) < +o0}

@ A(0) is convex function of 6, so 2 is convex.

@ Exponential family for which €2 is open is called regular
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Maximum entropy estimation

@ Goal (“estimation”, or “machine learning") is to find

p* € argmax H(p) s.t. Ep[¢a(X)] = fia YVa €L (12.14)
peU
where H(p) = — [ p(z)log p(x)v(dx), and Va € T
Ep[¢a(X)] = . o ()p(x)v(d). (12.15)

o E,[¢o(X)] is mean value as measured by potential function, so above
is a form of moment matching.

@ Maximum entropy (MaxEnt) distribution is solved by taking

distribution in form of pg(z) = exp((0, ¢(x)) — A(0)) and then by
finding canonical parameters 6 that solves

Ep,[¢a(X)] = fiq for all a € . (12.16)
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Maximum entropy solution

@ Solution to maxent problem

p* € argmax H(p) s.t. Ej[pa(X)] = fia Ya €T (12.14)
pEU

has the form of an exponential model:

po(x) = exp({6, p(x)) — A(9)) (12.15)
where A(0) = 10g/D exp ((0, ¢(x))) v(dx) (12.16)

@ Exercise: show that solution to Eqn (12.14) has this form.
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Minimal Representation of Exponential Family

@ Minimal representation - Does not exist a nonzero vector v € R? for
which (v, ¢(x)) is constant Vx (that are v-measurable).

o l.e., guarantee that, for all non-zero v € R?, there exists 1 # 2,
with v(z1),v(22) > 0, such that (y, ¢(z1)) # (7, ¢(22))-

@ essential idea: that for a set of sufficient stats Z, there is not a
lower-dimensional vector |Z'| < |Z| that is also sufficient (a min suf
stat is a function of all other suf stats).

@ We can't reduce the dimensionality d without changing the family.
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Overcomplete Representation

po(x) = exp((0, ¢(x)) — A(0)) (12.14)
where A(0) = log/D exp ((0, o(x))) v(dx) (12.15)

@ Overcomplete representation d = |Z| higher than need be

@ le, 3y #0s.t. (7,¢(x)) = ¢, Vx where ¢ = constant.

@ |l.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given v # 0 s.t.,
(v, ¢(x)) = ¢ and some other parameters 6, we have , we have

Po+~(x) = exp(((6 + 7), ¢(x)) — A(6 + 7)) (12.16)

= exp((0, ¢(z)) + (7, ¢(z)) — A6 + 7)) (12.17)

=exp((0, o(x)) +c— A0+ 7)) (12.18)

= exp((0, ¢(z)) — A(0)) = po(x) (12.19)

@ True for any Ay with A € R, so affine set of identical distributions!
o We'll see later, this useful in understanding BP algorithm.
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(z|y) = exp(yz — A(7)) (12.1)
Sop(X =1)=1-p(X =0) =exp(y — A(y)) and

p(X = 0) = exp(—A(7)).
@ overcomplete rep of Bernoulli dist.

p(z|0o,01) = exp((0, ¢(z)) — A(0)) (12.2)
= exp(Op(1 — x) + 61z — A(0)) (12.3)

where 6 = (0y,01) and ¢(z) = (1 — z,x).

@ Is there a non-zero vector a s.t. (a,p(x)) = c for all x, v-a.e.?

o If a=(1,1) then (a,¢(z)) = (1 —x)+z=1

@ This is overcomplete since there is a linear combination of feature
functions that are constant.

@ Since Oy(1 — z) + 612 = 6y + x(01 — Oy), any parameters 601, s such
that 6; — 6y = ~y gives same distribution determined by .
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Famous Example - Ising Model

@ Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model
becomes

po(x) = exp Z 0y Ty + Z Osxswy — A(9) 5, (12.4)
veV (s,;t)EE
with
A(0) = log Z exp Z Oy Ty + Z OstTsTs (12.5)
z€{0,1}™ veV (s;t)eE

@ Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

@ Note, in this case Z is all singletons (unaries) and all pairs, so that
{Gate = {Hamikoo (oi0:t gy )

@ We can easily generalize this via a set system. l.e., consider (V, V),
where V = {Vl, Vo,..., V|V|} and where Vi, V; C V.

o We can form sufficient statistic set via {Cu}, = {{zv } ey }-

o Could have, for example that ¢o = [];cc.

@ Hence, it is possible to generalize with higher order factors (which are
also called “interaction functions”, “potential functions”, or
“sufficient statistics” ).
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Multivalued variables

@ Variables need not binary, instead Dx = {0,1,...,r — 1} for r > 2.
@ We can define a set of indicator functions constituting sufficient
statistics. That is

1 ifxg=7
]-s;j(xs) = {O clse (126)

and

1 ifxs=jand z; =k,

1st;jk($87xt) = { (127)

0 else

@ Model becomes

r—1
pg(x) = exp Z Z Hv;jls;j(xu) + Z Z est;ijlst;jk(xm xt) - A(e) )
veV 1=0 (s,t)EE 3,k
(12.8)

@ Is this overcomplete? Yes. Why?
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po(r) = exp {(0, x) + % (©,zxT) — A(6, @)} (12.9)

O,xxT) = > ..0O;:;x;x; is Frobenius inner product.
<< 1 J J

So sufficient statistics are (z;)7; and (x;x});

O;+ = 0 means identical to missing edge in corresponding graph
(marginal independence). © is negative inverse covariance matrix.

Any other constraints on ©7 negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pg_(ys, xs)).
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Other examples

A few other examples in the book
@ Mixture models

@ Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

@ Models with hard constraints, or having zero probabilities — key thing
is to place the hard constraints in the v measure. Sufficient statistics
become easy if complexity is encoded in the measure. Alternative is to
allow features over extended reals (i.e., a feature can provide —oo but
this leads to certain technical difficulties that they would rather not
deal with).
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Mean Parameters, Convex Cores

e Consider quantities u, associated with statistic ¢, defined as:

o = Byloa(X)] = [ dal@pla(dz)  (1210)

@ this defines a vector of “mean parameters” (u1, p2, - ., ftq) With
d=|Z|.
@ Define all possible such vectors, with d = |Z],

M(9) = ME {pe R : Ipsit. Va e o= Eylga(X)] |
(12.11)

We don't say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p’ will lead to convex combinations of 1 and u

/

@ M is like a “convex core” of all distributions expressed via ¢.
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Mean Parameters and Gaussians

@ Here, we have E[X XT] = C and = EX. Question is, how to define
M?

Given definition of C and p, then C — ppu™ must be valid covariance
matrix (since this is E[X — EX|[X — EX|T = C — puT).

Thus, C — pupT > 0, thus p.s.d. matrix.

On the other hand, if this is true, we can form a Gaussian using
C — pupT as the covariance matrix.

@ Thus, for Gaussian MRFs, M has the form

M={(p,C) eR™ x ST|C — pu™ = 0} (12.12)

where 8™ is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

@ “lllustration of the set M for a 11
scalar Gaussian: the model has
two mean parameters p = E[X]
and Y11 = E[X?], which must M
satisfy the quadratic contraint
Y11 — p#? > 0. Notice that M is
convex, which is a general
property.” but is not a polytope.
@ Also, don't confuse the “mean
parameters” with the means of a
Gaussian. The typical means of H
Gaussians are means in this new
sense, but those means are not
all of the means. ©®
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Mean Parameters and Polytopes
@ When X is discrete, we get a polytope since
M = {,u eRY:p= Z ¢(x)p(x) for some p € I/{} (12.13)

= conv {¢(x),x € Dx (that are v-measurable),} (12.14)

where conv {-} is the convex hull of the items in argument set.

@ So we have a convex polytope
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Mean Parameters and Polytopes

@ Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J| x d matrix A and |J|-element column vector b with

M:{,LLE]Rd:A,uzb} Z{,LLERd:<(Ij,,LL>ij,VjEJ}

(12.15)
with A having rows a;.
< P(x)
A
X |
& PR
”
T
3‘& z/"OT (3 ) < bj
o
g
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

$(x) = {xs,5 € V;meay, (s,t) € BE(G)} € RVIHIE (12.16)
we get
oy =EBp[X, ] =p(Xy =1) Yo eV (12.17)

por = E [ XXy = p(Xs =1,X, =1) V(s,t) € B(G)  (12.18)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(x),z € {0,1}"}.

@ Gives complete marginal since ps(1) = 1 — ps(0),
ps,t(17 0) = ps(l) - ps,t(17 1)1 ps,t(oa 1) = pt(l) - ps,t(la 1)' etc.

@ Recall: marginals are often the goal of inference. Coincidence?
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Example: 2-variable Ising

H12

“Ising model with two variables (X1, X3) € {0,1}*. Three mean
parameters py = E[X1], po = E[Xs], p12 = E[X2X5s], must satisfy
constraints 0 < p1o0 < p; fort =1,2, and 1 + p12 — 1 — pz > 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0,1]3.”
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Mean Parameters and Overcomplete Representation

@ We can use overcomplete representation and get a “marginal
polytope”, a polytope that represents the marginal distributions at
each potential function.

@ Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

Vo € V(G),j € {0...r — 1}, define ¢, j(z,) = L(z, = j) (12.19)

V(s,t) € E(G),j,k€{0...r — 1}, we define: (12.20)
Dst,jk(Ts, Tt) = 1(zs =j,2e = k) = L(zs = j)1(z = k)
(12.21)

@ So we now have |V|r + 2| E|r? functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

@ Mean parameters are now true (fully specified) marginals, i.e.,
po(j) = p(zy = j) and psi(j, k) = p(xs = j, 2 = k) since

po,; = Ep[L(zy = j)] = p(zv = J) (12.22)
stk = Ep[L(xs = jyz = k)] = p(zs = j, 21 = k) (12.23)

@ Such an M is called the marginal polytope for discrete graphical
models. Any p must live in the polytope that corresponds to node
and edge true marginals.

@ We can also associate such a polytope with a graph G, where we take
only (s,t) € E(G). Denote this as M(G).

@ This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we'll see.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.

e “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

@ For k-trees, complexity grows exponentially in &

@ Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 6 to the point in the marginal polytope, called forward
mapping, moving from 6 € 2 to yu € M.

@ We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

@ graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.
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Maximum entropy estimation

@ Goal (“estimation”, or “machine learning") is to find

p* € argmax H(p) s.t. Ep[¢a(X)] = fia YVa €L (12.14)
peU
where H(p) = — [ p(z)log p(x)v(dx), and Va € T
Ep[¢a(X)] = . o ()p(x)v(d). (12.15)

o E,[¢o(X)] is mean value as measured by potential function, so above
is a form of moment matching.

@ Maximum entropy (MaxEnt) distribution is solved by taking

distribution in form of pg(z) = exp((0, ¢(x)) — A(0)) and then by
finding canonical parameters 6 that solves

Ep,[¢a(X)] = fiq for all a € . (12.16)
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Learning is the dual of Inference

o Ex: Estimate 6 with 4 based on data D = {zOYM ) of size M,
likelihood function

1\ oy _ L% (i)
(6,D) = — Zlogpg(az )= — Z (<9 (T )> ~ A(e)) (12.24)
= (0, ) — A(0) Ny (12.25)
where empirical means [ = E[qﬁ(X)] — % Z ¢(§;(i)) (12.26)

are given by:

e By taking derivatives of the above, it is easy to see that solution is the
point 6 = O(f1) such that empirical matches expected means, or what
are called the moment matching conditions:

E,[6(X)] = j (12.27)

this is the the backward mapping problem, going from u to 6.
@ Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy

o Entropy definition again: H(p) = — [ p(z) log p(z)v(dx)
o Given data, D = {z( M deflnes an empirical distribution

p(x) = % Z 1(z =z") (12.28)

so that E;[¢(X)] = [ p(2)¢(x)v(dx) = 57 3it, #(2W) = i
@ Starting from maximum likelihood soluti
moment matching conditions Ey, . [¢(X

((0(a), D) = (0(a), o) — A(6(1)) = % Zlogpe(a) (i‘(i)) (12.29)

SH

~—
—

= /]5(37) log pg(p) (x)v(dx) = Es[log py(py ()]  (12.30)

]Epe(,z) [logPG(ﬂ)(m)] - _Hpe(,z) [pe(m ()] (12.31)
@ Thus, maximum likelihood value and negative entropy are identical, at
least for empirical i1 (which is € M).
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Learning is the dual of Inference

@ l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[¢(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.

@ If we do maximum entropy learning, where does the exp(:) function
come from? From the entropy function. l.e., the exponential form is
the distribution that has maximum entropy having those constraints.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F33/37 (pg.33/37)

o Param./Marg. Polytope
[EEERE RN RN

Dual Mappings: Summary

Summarizing these relationships

@ Forward mapping: moving from 6 € ) to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € 2, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

@ Turns out log partition function A, and its dual A* can give us these
mappings, and the mappings have interesting forms . ..
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Log partition (or cumulant) function: derivative offerings

A(0) = log/D exp (0, ¢(x)) v(dx) (12.32)

@ If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(0) is convex in 6 (strictly so if minimal representation).

It yields cumulants of the random vector ¢(X)

0A

S2(6) = Eal6a(X)] = [ 0a(Om@v(de) = o (1233

in general, derivative of log part. function is expected value of feature
o Also, we get

92A
900, 00y

(6) = Eo[Pas (X)Pas (X)] = Eol¢as (X)]Eg[pa, (X))
(12.34)
@ Proof given in book (Proposition 3.1, page 62).
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o Param./Marg. Polytope
Lerrrrrrerrerrrrenn

Log partition function: properties

@ So derivative of log partition function w.r.t. 8 is equal to our mean
parameter u in the discrete case.

@ Given A(0), we can recover the marginals for each potential function
Ga, @ € T (when mean parameters lie in the marginal polytope).

o If we can approximate A(6) with A(6) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall soon see.

@ The Bethe approximation (as we'll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

@ In some rarer cases, we can bound the approximation (current
research trend).
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Sources for Today's Lecture

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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