EE512A - Advanced Inference in Graphical Models
 - Fall Quarter, Lecture 12 -
 http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes
Nov 10th, 2014

Logistics
 Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Read chapters 1,2 , and 3 in this book. Start reading chapter 4.
- Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding final project proposals (one page max).

Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, k-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP
- L11 (11/5): LBP, exponential models,
- L12 (11/10): exponential models, mean params and polytopes, tree outer bound
- L13 (11/12): polytopes, tree outer bound, Bethe entropy approx.
- L14 (11/17):
- L15 (11/19):
- L16 (11/24):
- L17 (11/26):
- L18 (12/1):
- L19 (12/3):
- Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.

Power method lemma

Theorem 12.2.1 (Power method lemma)

Let A be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (sorted in decreasing order) and corresponding eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ (strict), then the update $x^{t+1}=\alpha A x^{t}$ converges to a multiple of x_{1} starting from any initial vector $x^{0}=\sum_{i} \beta_{i} x_{i}$ provided that $\beta_{1} \neq 0$. The convergence rate factor is given by $\left|\lambda_{2} / \lambda_{1}\right|$.

Logistics
 Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 12.2.1

1. $\mu_{\ell \rightarrow 1}$ converges to the principle eigenvector of M.
2. $\mu_{2 \rightarrow 1}$ converges to the principle eigenvector of M^{T}
3. The convergence rate is determined by the ratio of the largest and second largest eigenvalue of M.
4. The diagonal elements of M correspond to correct marginal $p\left(x_{1}\right)$
5. The steady state "pseudo-marginal" $b\left(x_{1}\right)$ is related to the true marginal by $b\left(x_{1}\right)=\beta p\left(x_{1}\right)+(1-\beta) q\left(x_{1}\right)$ where β is the ratio of the largest eigenvalue of M to the sum of all eigenvalues, and $q\left(x_{1}\right)$ depends on the eigenvectors of M.

Proof.

See Weiss2000.

exponential family models

- $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ is a collection of functions known as potential functions, sufficient statistics, or features. \mathcal{I} is an index set of size $d=|\mathcal{I}|$.
- Each ϕ_{α} is a function of $x, \phi_{\alpha}(x)$ but it usually does not use all of x (only a subset of elements). Notation $\phi_{\alpha}\left(x_{C_{\alpha}}\right)$ assumed implicitly understood, where $C_{\alpha} \subseteq V(G)$.
- θ is a vector of canonical parameters (same length, $|\mathcal{I}|$). $\theta \in \Omega \subseteq \mathbb{R}^{d}$ where $d=|\mathcal{I}|$.
- We can define a family as

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.12}
\end{equation*}
$$

where $\langle\theta, \phi(x)\rangle=\sum_{\alpha} \theta_{\alpha} \phi_{\alpha}(x)$. Note that we're using ϕ here in the exponent, before we were using it out of the exponent.

- Note that $\phi(x)=\left(\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{|\mathcal{I}|}\right)$ where again each $\phi_{i}(x)$ might use only some of the elements in vector $x . \phi: \mathrm{D}_{X}{ }^{m} \rightarrow \mathbb{R}^{d}$.

Log partition (cumulant) function

- Based on underlying set of parameters θ, we have family of models

$$
\begin{equation*}
p_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{\alpha \in \mathcal{I}} \theta_{\alpha} \phi_{\alpha}(x)\right\}=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.12}
\end{equation*}
$$

- To ensure normalized, we use log partition (cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp (\langle\theta, \phi(x)\rangle) \nu(d x) \tag{12.13}
\end{equation*}
$$

with $\theta \in \Omega \triangleq\left\{\theta \in \mathbb{R}^{d} \mid A(\theta)<+\infty\right\}$

- $A(\theta)$ is convex function of θ, so Ω is convex.
- Exponential family for which Ω is open is called regular

Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

$$
\begin{equation*}
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \quad \forall \alpha \in \mathcal{I} \tag{12.14}
\end{equation*}
$$

where $H(p)=-\int p(x) \log p(x) \nu(d x)$, and $\forall \alpha \in \mathcal{I}$

$$
\begin{equation*}
\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int_{\mathrm{D}_{X}} \phi_{\alpha}(x) p(x) \nu(d x) . \tag{12.15}
\end{equation*}
$$

- $\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]$ is mean value as measured by potential function, so above is a form of moment matching.
- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of $p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta))$ and then by finding canonical parameters θ that solves

$$
\begin{equation*}
E_{p_{\theta}}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \text { for all } \alpha \in \mathcal{I} . \tag{12.16}
\end{equation*}
$$

Maximum entropy solution

- Solution to maxent problem

$$
\begin{equation*}
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \forall \alpha \in \mathcal{I} \tag{12.14}
\end{equation*}
$$

has the form of an exponential model:

$$
\begin{align*}
p_{\theta}(x) & =\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.15}\\
& \text { where } A(\theta)=\log \int_{\mathrm{D}_{X}} \exp (\langle\theta, \phi(x)\rangle) \nu(d x) \tag{12.16}
\end{align*}
$$

- Exercise: show that solution to Eqn (12.14) has this form.

Logistics
 Minimal Representation of Exponential Family

- Minimal representation - Does not exist a nonzero vector $\gamma \in \mathbb{R}^{d}$ for which $\langle\gamma, \phi(x)\rangle$ is constant $\forall x$ (that are ν-measurable).
- I.e., guarantee that, for all non-zero $\gamma \in \mathbb{R}^{d}$, there exists $x_{1} \neq x_{2}$, with $\nu\left(x_{1}\right), \nu\left(x_{2}\right)>0$, such that $\left\langle\gamma, \phi\left(x_{1}\right)\right\rangle \neq\left\langle\gamma, \phi\left(x_{2}\right)\right\rangle$.
- essential idea: that for a set of sufficient stats \mathcal{I}, there is not a lower-dimensional vector $\left|\mathcal{I}^{\prime}\right|<|\mathcal{I}|$ that is also sufficient (a min suf stat is a function of all other suf stats).
- We can't reduce the dimensionality d without changing the family.

Overcomplete Representation

$$
\begin{align*}
p_{\theta}(x) & =\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.14}\\
& \text { where } A(\theta)=\log \int_{\mathrm{D}_{X}} \exp (\langle\theta, \phi(x)\rangle) \nu(d x) \tag{12.15}
\end{align*}
$$

- Overcomplete representation $d=|\mathcal{I}|$ higher than need be
- I.e., $\exists \gamma \neq 0$ s.t. $\langle\gamma, \phi(x)\rangle=c, \forall x$ where $c=$ constant.
- I.e., Exists affine hyperplane of different parameters that induce exactly same distribution. Assume overcomplete, given $\gamma \neq 0$ s.t., $\langle\gamma, \phi(x)\rangle=c$ and some other parameters θ, we have, we have

$$
\begin{align*}
p_{\theta+\gamma}(x) & =\exp (\langle(\theta+\gamma), \phi(x)\rangle-A(\theta+\gamma)) \tag{12.16}\\
& =\exp (\langle\theta, \phi(x)\rangle+\langle\gamma, \phi(x)\rangle-A(\theta+\gamma)) \tag{12.17}\\
& =\exp (\langle\theta, \phi(x)\rangle+c-A(\theta+\gamma)) \tag{12.18}\\
& =\exp (\langle\theta, \phi(x)\rangle-A(\theta))=p_{\theta}(x) \tag{12.19}
\end{align*}
$$

- True for any $\lambda \gamma$ with $\lambda \in \mathbb{R}$, so affine set of identical distributions!
- We'll see later, this useful in understanding BP algorithm.
l।।l

Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

So $p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma))$ and $p(X=0)=\exp (-A(\gamma))$.

- overcomplete rep of Bernoulli dist.

$$
\begin{align*}
p\left(x \mid \theta_{0}, \theta_{1}\right) & =\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.2}\\
& =\exp \left(\theta_{0}(1-x)+\theta_{1} x-A(\theta)\right) \tag{12.3}
\end{align*}
$$

where $\theta=\left(\theta_{0}, \theta_{1}\right)$ and $\phi(x)=(1-x, x)$.

- Is there a non-zero vector a s.t. $\langle a, \phi(x)\rangle=c$ for all x, ν-a.e.?
- If $a=(1,1)$ then $\langle a, \phi(x)\rangle=(1-x)+x=1$
- This is overcomplete since there is a linear combination of feature functions that are constant.
- Since $\theta_{0}(1-x)+\theta_{1} x=\theta_{0}+x\left(\theta_{1}-\theta_{0}\right)$, any parameters θ_{1}, θ_{2} such that $\theta_{1}-\theta_{0}=\gamma$ gives same distribution determined by γ.

Famous Example - Ising Model

- Famous example is the Ising model in statistical physics. We have a grid network with pairwise interactions, each variable is $0 / 1$-valued binary, and parameters associated with pairs being both on. Model becomes

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\sum_{v \in V} \theta_{v} x_{v}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}-A(\theta)\right\} \tag{12.4}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \sum_{x \in\{0,1\}^{m}} \exp \left\{\sum_{v \in V} \theta_{v} x_{v}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right\} \tag{12.5}
\end{equation*}
$$

- Note that this is in minimal form. Any change to parameters will result in different distribution

exponential models
 Ising Model and Immediate Generalization

- Note, in this case \mathcal{I} is all singletons (unaries) and all pairs, so that $\left\{C_{\alpha}\right\}_{\alpha}=\left\{\left\{x_{i}\right\}_{i},\left\{x_{i} x_{j}\right\}_{(i, j) \in E}\right\}$.
- We can easily generalize this via a set system. I.e., consider (V, \mathcal{V}), where $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{|\mathcal{V}|}\right\}$ and where $\forall i, V_{i} \subseteq V$.
- We can form sufficient statistic set via $\left\{C_{\alpha}\right\}_{\alpha}=\left\{\left\{x_{V}\right\}_{V \in \mathcal{V}}\right\}$.
- Could have, for example that $\phi_{\alpha}=\prod_{i \in C_{\alpha}} x_{i}$.
- Hence, it is possible to generalize with higher order factors (which are also called "interaction functions", "potential functions", or "sufficient statistics").

Multivalued variables

- Variables need not binary, instead $\mathrm{D}_{X}=\{0,1, \ldots, r-1\}$ for $r>2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$
\mathbf{1}_{s ; j}\left(x_{s}\right)= \begin{cases}1 & \text { if } x_{s}=j \tag{12.6}\\ 0 & \text { else }\end{cases}
$$

and

$$
\mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)= \begin{cases}1 & \text { if } x_{s}=j \text { and } x_{t}=k, \tag{12.7}\\ 0 & \text { else }\end{cases}
$$

- Model becomes

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v ; j} \mathbf{1}_{s ; j}\left(x_{v}\right)+\sum_{(s, t) \in E} \sum_{j, k} \theta_{s t ; i j} \mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)-A(\theta)\right\} \tag{12.8}
\end{equation*}
$$

- Is this overcomplete? Yes. Why?

Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.
- So sufficient statistics are $\left(x_{i}\right)_{i=1}^{n}$ and $\left(x_{i} x_{j}\right)_{i, j}$
- $\Theta_{s, t}=0$ means identical to missing edge in corresponding graph (marginal independence). Θ is negative inverse covariance matrix.
- Any other constraints on Θ ? negative definite
- Mixtures of Gaussians can also be parameterized in exponential form (but note, key is that it is the joint distribution $p_{\theta_{s}}\left(y_{s}, x_{s}\right)$).

Other examples

A few other examples in the book

- Mixture models
- Latent Dirichlet Allocation, and general hierarchical Bayesian models. Key here is that it is for one expansion, not variable.
- Models with hard constraints, or having zero probabilities - key thing is to place the hard constraints in the ν measure. Sufficient statistics become easy if complexity is encoded in the measure. Alternative is to allow features over extended reals (i.e., a feature can provide $-\infty$ but this leads to certain technical difficulties that they would rather not deal with).

mpentir meats
 Mean Parameters, Convex Cores

- Consider quantities μ_{α} associated with statistic ϕ_{α} defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.
- Define all possible such vectors, with $d=|\mathcal{I}|$,

$$
\begin{equation*}
\mathcal{M}(\phi)=\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \quad \forall \alpha \in \mathcal{I}, \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]\right\} \tag{12.11}
\end{equation*}
$$

- We don't say p was necessarily exponential family
- \mathcal{M} is convex since expected value is a linear operator. So convex combinations of p and p^{\prime} will lead to convex combinations of μ and μ^{\prime}
- \mathcal{M} is like a "convex core" of all distributions expressed via ϕ.

Mean Parameters and Gaussians

- Here, we have $\mathbb{E}\left[X X^{\top}\right]=C$ and $\mu=\mathbb{E} X$. Question is, how to define \mathcal{M} ?
- Given definition of C and μ, then $C-\mu \mu^{\top}$ must be valid covariance matrix (since this is $\mathbb{E}[X-\mathbb{E} X][X-\mathbb{E} X]^{\top}=C-\mu \mu^{\top}$).
- Thus, $C-\mu \mu^{\top} \succeq 0$, thus p.s.d. matrix.
- On the other hand, if this is true, we can form a Gaussian using $C-\mu \mu^{\top}$ as the covariance matrix.
- Thus, for Gaussian MRFs, \mathcal{M} has the form

$$
\begin{equation*}
\mathcal{M}=\left\{(\mu, C) \in \mathbb{R}^{m} \times \mathcal{S}_{+}^{m} \mid C-\mu \mu^{\top} \succeq 0\right\} \tag{12.12}
\end{equation*}
$$

where \mathcal{S}_{+}^{m} is the set of symmetric positive semi-definite matrices.

- "Illustration of the set \mathcal{M} for a scalar Gaussian: the model has two mean parameters $\mu=\mathbb{E}[X]$ and $\Sigma_{11}=\mathbb{E}\left[X^{2}\right]$, which must satisfy the quadratic contraint $\Sigma_{11}-\mu^{2} \geq 0$. Notice that \mathcal{M} is convex, which is a general property." but is not a polytope.
- Also, don't confuse the "mean parameters" with the means of a Gaussian. The typical means of Gaussians are means in this new sense, but those means are not
 all of the means. ©

Mean Parameters and Polytopes

- When X is discrete, we get a polytope since

$$
\begin{align*}
\mathcal{M} & =\left\{\mu \in \mathbb{R}^{b}: \mu=\sum_{x} \phi(x) p(x) \text { for some } p \in \mathcal{U}\right\} \tag{12.13}\\
& =\operatorname{conv}\left\{\phi(x), x \in \mathrm{D}_{X} \text { (that are } \nu \text {-measurable) }\right\} \tag{12.14}
\end{align*}
$$

where conv $\{\cdot\}$ is the convex hull of the items in argument set.

- So we have a convex polytope

exponential models
 Mean Parameters and Polytopes

- Polytopes can be represented as a set of linear inequalities, i.e., there is a $|J| \times d$ matrix A and $|J|$-element column vector b with

$$
\begin{equation*}
M=\left\{\mu \in \mathbb{R}^{d}: A \mu \geq b\right\} \quad=\left\{\mu \in \mathbb{R}^{d}:\left\langle a_{j}, \mu\right\rangle \geq b_{j}, \forall j \in J\right\} \tag{12.15}
\end{equation*}
$$

with A having rows a_{j}.

Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

$$
\begin{equation*}
\phi(x)=\left\{x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E(G)\right\} \in \mathbb{R}^{|V|+|E|} \tag{12.16}
\end{equation*}
$$

we get

$$
\begin{align*}
\mu_{v} & =\mathbb{E}_{p}\left[X_{v}\right]=p\left(X_{v}=1\right) \forall v \in V \tag{12.17}\\
\mu_{s, t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right) \forall(s, t) \in E(G) \tag{12.18}
\end{align*}
$$

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1,1 for each node and edge in the graph $=\operatorname{conv}\left\{\phi(x), x \in\{0,1\}^{m}\right\}$.
- Gives complete marginal since $p_{s}(1)=1-p_{s}(0)$, $p_{s, t}(1,0)=p_{s}(1)-p_{s, t}(1,1), p_{s, t}(0,1)=p_{t}(1)-p_{s, t}(1,1)$, etc.
- Recall: marginals are often the goal of inference. Coincidence?

Ememit modes
 Example: 2-variable Ising

"Ising model with two variables $\left(X_{1}, X_{2}\right) \in\{0,1\}^{2}$. Three mean parameters $\mu_{1}=\mathbb{E}\left[X_{1}\right], \mu_{2}=\mathbb{E}\left[X_{2}\right], \mu_{12}=\mathbb{E}\left[X_{2} X_{2}\right]$, must satisfy constraints $0 \leq \mu_{12} \leq \mu_{i}$ for $i=1,2$, and $1+\mu_{12}-\mu_{1}-\mu_{2} \geq 0$. These constraints carve out a polytope with four facets, contained within the unit hypercube $[0,1]^{3}$."

exponential models

Mean Parameters and Overcomplete Representation

- We can use overcomplete representation and get a "marginal polytope", a polytope that represents the marginal distributions at each potential function.
- Example: Ising overcomplete potential functions (generalization of Bernoulli example we saw before)

$$
\begin{equation*}
\forall v \in V(G), j \in\{0 \ldots r-1\}, \text { define } \phi_{v, j}\left(x_{v}\right) \triangleq \mathbf{1}\left(x_{v}=j\right) \tag{12.19}
\end{equation*}
$$

$$
\begin{equation*}
\forall(s, t) \in E(G), j, k \in\{0 \ldots r-1\}, \text { we define: } \tag{12.20}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{s t, j k}\left(x_{s}, x_{t}\right) \triangleq \mathbf{1}\left(x_{s}=j, x_{t}=k\right)=\mathbf{1}\left(x_{s}=j\right) \mathbf{1}\left(x_{t}=k\right) \tag{12.21}
\end{equation*}
$$

- So we now have $|V| r+2|E| r^{2}$ functions each with a corresponding parameter.

 Mean Parameters and Marginal Polytopes

- Mean parameters are now true (fully specified) marginals, i.e., $\mu_{v}(j)=p\left(x_{v}=j\right)$ and $\mu_{s t}(j, k)=p\left(x_{s}=j, x_{t}=k\right)$ since

$$
\begin{align*}
\mu_{v, j} & =\mathbb{E}_{p}\left[\mathbf{1}\left(x_{v}=j\right)\right]=p\left(x_{v}=j\right) \tag{12.22}\\
\mu_{s t, j k} & =\mathbb{E}_{p}\left[\mathbf{1}\left(x_{s}=j, x_{t}=k\right)\right]=p\left(x_{s}=j, x_{t}=k\right) \tag{12.23}
\end{align*}
$$

- Such an \mathcal{M} is called the marginal polytope for discrete graphical models. Any μ must live in the polytope that corresponds to node and edge true marginals.
- We can also associate such a polytope with a graph G, where we take only $(s, t) \in E(G)$. Denote this as $\mathbb{M}(G)$.
- This polytope can help us to characterize when BP converges (there might be an outer bound of this polytope), or it might characterize the result of a mean-field approximation (an inner bound of this polytope) as we'll see.

exponential models $\quad \mu$ Param./Marg. Polytope
 Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- "facet complexity" of \mathcal{M} depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.
- For k-trees, complexity grows exponentially in k
- Key idea: use polyhedral approximations to produce model and inference approximations.

manemil meats
 Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters θ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.
- We can view the (maximum likelihood) learning problem as moving from a point in the polytope (given by the empirical distribution) to the canonical parameters. Called backwards mapping
- graph structure (e.g., tree-width) makes this easy or hard, and also characterizes the polytope (how complex it is in terms of number of faces).

Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.

Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

$$
\begin{equation*}
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \quad \forall \alpha \in \mathcal{I} \tag{12.14}
\end{equation*}
$$

where $H(p)=-\int p(x) \log p(x) \nu(d x)$, and $\forall \alpha \in \mathcal{I}$

$$
\begin{equation*}
\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int_{\mathrm{D}_{X}} \phi_{\alpha}(x) p(x) \nu(d x) . \tag{12.15}
\end{equation*}
$$

- $\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]$ is mean value as measured by potential function, so above is a form of moment matching.
- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of $p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta))$ and then by finding canonical parameters θ that solves

$$
\begin{equation*}
E_{p_{\theta}}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \text { for all } \alpha \in \mathcal{I} . \tag{12.16}
\end{equation*}
$$

Learning is the dual of Inference

- Ex: Estimate θ with $\hat{\theta}$ based on data $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$ of size M, likelihood function

$$
\begin{align*}
\ell(\theta, \mathbf{D}) & =\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}\left(\bar{x}^{(i)}\right)=\frac{1}{M} \sum_{i=1}^{M}\left(\left\langle\theta, \phi\left(\bar{x}^{(i)}\right)\right\rangle-A(\theta)\right) \tag{12.24}\\
& =\langle\theta, \hat{\mu}\rangle-A(\theta) \tag{12.25}
\end{align*}
$$

where empirical means are given by:

$$
\begin{equation*}
\hat{\mu}=\hat{\mathbb{E}}[\phi(X)]=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right) \tag{12.26}
\end{equation*}
$$

- By taking derivatives of the above, it is easy to see that solution is the point $\hat{\theta}=\theta(\hat{\mu})$ such that empirical matches expected means, or what are called the moment matching conditions:

$$
\begin{equation*}
\mathbb{E}_{\hat{\theta}}[\phi(X)]=\hat{\mu} \tag{12.27}
\end{equation*}
$$

this is the the backward mapping problem, going from μ to θ.

- Here, maximum likelihood is identical to maximum entropy problem.

Likelihood and negative entropy

- Entropy definition again: $H(p)=-\int p(x) \log p(x) \nu(d x)$
- Given data, $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$, defines an empirical distribution

$$
\begin{equation*}
\hat{p}(x)=\frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\left(x=\bar{x}^{(i)}\right) \tag{12.28}
\end{equation*}
$$

so that $\mathbb{E}_{\hat{p}}[\phi(X)]=\int \hat{p}(x) \phi(x) \nu(d x)=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right)=\hat{\mu}$

- Starting from maximum likelihood solution $\theta(\hat{u})$, meaning we are at moment matching conditions $\mathbb{E}_{p_{\theta(\hat{u})}}[\phi(X)]=\hat{\mu}=\mathbb{E}_{\hat{p}}[\phi(X)]$, we have

$$
\begin{align*}
\ell(\theta(\hat{u}), \mathbf{D}) & =\langle\theta(\hat{u}), \hat{\mu}\rangle-A(\theta(\hat{u}))=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta(\hat{u})}\left(\bar{x}^{(i)}\right) \tag{12.29}\\
& =\int \hat{p}(x) \log p_{\theta(\hat{\mu})}(x) \nu(d x)=\mathbb{E}_{\hat{p}}\left[\log p_{\theta(\hat{\mu})}(x)\right] \tag{12.30}\\
& =\mathbb{E}_{p_{\theta(\hat{\mu})}}\left[\log p_{\theta(\hat{\mu})}(x)\right]=-H_{p_{\theta(\hat{\mu})}}\left[p_{\theta(\hat{\mu})}(x)\right] \tag{12.31}
\end{align*}
$$

- Thus, maximum likelihood value and negative entropy are identical, at least for empirical $\hat{\mu}$ (which is $\in \mathcal{M}$).

exponential models

 Learning is the dual of Inference

 Learning is the dual of Inference}

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by $\mathbb{E}_{\theta}[\phi(X)]=\hat{\mu}$) is the same as maximum likelihood learning of an exponential model form.
- If we do maximum entropy learning, where does the $\exp (\cdot)$ function come from? From the entropy function. I.e., the exponential form is the distribution that has maximum entropy having those constraints.

minminatin
 Dual Mappings: Summary

Summarizing these relationships

- Forward mapping: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.
- Backwards mapping: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).
- In exponential family case, this is maximum entropy and is equivalent to maximum likelihood learning on an exponential family model.
- Turns out \log partition function A, and its dual A^{*} can give us these mappings, and the mappings have interesting forms...

Log partition (or cumulant) function: derivative offerings

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{12.32}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- $A(\theta)$ is convex in θ (strictly so if minimal representation).
- It yields cumulants of the random vector $\phi(X)$

$$
\begin{equation*}
\frac{\partial A}{\partial \theta_{\alpha}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(X) p_{\theta}(x) \nu(d x)=\mu_{\alpha} \tag{12.33}
\end{equation*}
$$

in general, derivative of log part. function is expected value of feature

- Also, we get

$$
\begin{equation*}
\frac{\partial^{2} A}{\partial \theta_{\alpha_{1}} \partial \theta_{\alpha_{2}}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X) \phi_{\alpha_{2}}(X)\right]-\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X)\right] \mathbb{E}_{\theta}\left[\phi_{\alpha_{2}}(X)\right] \tag{12.34}
\end{equation*}
$$

- Proof given in book (Proposition 3.1, page 62).

exponential models
 Log partition function: properties

- So derivative of \log partition function w.r.t. θ is equal to our mean parameter μ in the discrete case.
- Given $A(\theta)$, we can recover the marginals for each potential function $\phi_{\alpha}, \alpha \in \mathcal{I}$ (when mean parameters lie in the marginal polytope).
- If we can approximate $A(\theta)$ with $\tilde{A}(\theta)$ then we can get approximate marginals. Perhaps we can bound it without inordinate compute resources. Why do we want bounds? We shall soon see.
- The Bethe approximation (as we'll also see) is such an approximation and corresponds to fixed points of loopy belief propagation.
- In some rarer cases, we can bound the approximation (current research trend).
- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001

