## EE512A - Advanced Inference in Graphical Models

- Fall Quarter, Lecture 12 -
http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/


## Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Nov 10th, 2014


## Announcements

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001
- Read chapters 1,2 , and 3 in this book. Start reading chapter 4.
- Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding final project proposals (one page max).


## Class Road Map - EE512a

- L1 (9/29): Introduction, Families, Semantics
- L2 (10/1): MRFs, elimination, Inference on Trees
- L3 (10/6): Tree inference, message passing, more general queries, non-tree)
- L4 (10/8): Non-trees, perfect elimination, triangulated graphs
- L5 (10/13): triangulated graphs, $k$-trees, the triangulation process/heuristics
- L6 (10/15): multiple queries, decomposable models, junction trees
- L7 (10/20): junction trees, begin intersection graphs
- L8 (10/22): intersection graphs, inference on junction trees
- L9 (10/27): inference on junction trees, semirings,
- L10 (11/3): conditioning, hardness, LBP

Finals Week: Dec 8th-12th, 2014.

## Power method lemma

## Theorem 12.2.1 (Power method lemma)

Let $A$ be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (sorted in decreasing order) and corresponding eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ (strict), then the update $x^{t+1}=\alpha A x^{t}$ converges to a multiple of $x_{1}$ starting from any initial vector $x^{0}=\sum_{i} \beta_{i} x_{i}$ provided that $\beta_{1} \neq 0$. The convergence rate factor is given by $\left|\lambda_{2} / \lambda_{1}\right|$.

## Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

## Theorem 12.2.1

1. $\mu_{\ell \rightarrow 1}$ converges to the principle eigenvector of $M$.
2. $\mu_{2 \rightarrow 1}$ converges to the principle eigenvector of $M^{T}$.
3. The convergence rate is determined by the ratio of the largest and second largest eigenvalue of $M$.
4. The diagonal elements of $M$ correspond to correct marginal $p\left(x_{1}\right)$
5. The steady state "pseudo-marginal" $b\left(x_{1}\right)$ is related to the true marginal by $b\left(x_{1}\right)=\beta p\left(x_{1}\right)+(1-\beta) q\left(x_{1}\right)$ where $\beta$ is the ratio of the largest eigenvalue of $M$ to the sum of all eigenvalues, and $q\left(x_{1}\right)$ depends on the eigenvectors of $M$.

## Proof.

## exponential family models

- $\phi=\left(\phi_{\alpha}, \alpha \in \mathcal{I}\right)$ is a collection of functions known as potential functions, sufficient statistics, or features. $\mathcal{I}$ is an index set of size $d=|\mathcal{I}|$.
- Each $\phi_{\alpha}$ is a function of $x, \phi_{\alpha}(x)$ but it usually does not use all of $x$ (only a subset of elements). Notation $\phi_{\alpha}\left(x_{C_{\alpha}}\right)$ assumed implicitly understood, where $C_{\alpha} \subseteq V(G)$.
- $\theta$ is a vector of canonical parameters (same length, $|\mathcal{I}|$ ). $\theta \in \Omega \subseteq \mathbb{R}^{d}$ where $d=|\mathcal{I}|$.
- We can define a family as

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.12}
\end{equation*}
$$

where $\langle\theta, \phi(x)\rangle=\sum_{\alpha} \theta_{\alpha} \phi_{\alpha}(x)$. Note that we're using $\phi$ here in the exponent, before we were using it out of the exponent.

- Note that $\phi(x)=\left(\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{|\mathcal{I}|}\right)$ where again each $\phi_{i}(x)$ might use only some of the elements in vector $x . \phi: \mathrm{D}_{X}{ }^{m} \rightarrow \mathbb{R}^{d}$.


## Log partition (cumulant) function

- Based on underlying set of parameters $\theta$, we have family of models

$$
\begin{equation*}
p_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{\alpha \in \mathcal{I}} \theta_{\alpha} \phi_{\alpha}(x)\right\}=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.12}
\end{equation*}
$$

- To ensure normalized, we use log partition (cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp (\langle\theta, \phi(x)\rangle) \nu(d x) \tag{12.13}
\end{equation*}
$$

with $\theta \in \Omega \triangleq\left\{\theta \in \mathbb{R}^{d} \mid A(\theta)<+\infty\right\}$

- $A(\theta)$ is convex function of $\theta$, so $\Omega$ is convex.
- Exponential family for which $\Omega$ is open is called regular


## Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

$$
\begin{equation*}
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \forall \alpha \in \mathcal{I} \tag{12.14}
\end{equation*}
$$

where $H(p)=-\int p(x) \log p(x) \nu(d x)$, and $\forall \alpha \in \mathcal{I}$

$$
\begin{equation*}
\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int_{\mathrm{D}_{X}} \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.15}
\end{equation*}
$$

- $\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]$ is mean value as measured by potential function, so above is a form of moment matching.
- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of $p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta))$ and then by finding canonical parameters $\theta$ that solves

$$
\begin{equation*}
E_{p_{\theta}}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \text { for all } \alpha \in \mathcal{I} \tag{12.16}
\end{equation*}
$$

## Maximum entropy solution

- Solution to maxent problem

$$
\begin{equation*}
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \text { s.t. } \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \forall \alpha \in \mathcal{I} \tag{12.14}
\end{equation*}
$$

has the form of an exponential model:

$$
\begin{align*}
p_{\theta}(x) & =\exp (\langle\theta, \phi(x)\rangle-A(\theta))  \tag{12.15}\\
& \text { where } A(\theta)=\log \int_{\mathrm{D}_{X}} \exp (\langle\theta, \phi(x)\rangle) \nu(d x) \tag{12.16}
\end{align*}
$$

- Exercise: show that solution to Eqn (??) has this form.


## Minimal Representation of Exponential Family

- Minimal representation - Does not exist a nonzero vector $\gamma \in \mathbb{R}^{d}$ for which $\langle\gamma, \phi(x)\rangle$ is constant $\forall x$ (that are $\nu$-measurable).
- I.e., guarantee that, for all non-zero $\gamma \in \mathbb{R}^{d}$, there exists $x_{1} \neq x_{2}$, with $\nu\left(x_{1}\right), \nu\left(x_{2}\right)>0$, such that $\left\langle\gamma, \phi\left(x_{1}\right)\right\rangle \neq\left\langle\gamma, \phi\left(x_{2}\right)\right\rangle$.
- essential idea: that for a set of sufficient stats $\mathcal{I}$, there is not a lower-dimensional vector $\left|\mathcal{I}^{\prime}\right|<|\mathcal{I}|$ that is also sufficient (a min suf stat is a function of all other suf stats).
- We can't reduce the dimensionality $d$ without changing the family.


## Overcomplete Representation

$$
\begin{align*}
p_{\theta}(x) & =\exp (\langle\theta, \phi(x)\rangle-A(\theta))  \tag{12.14}\\
& \text { where } A(\theta)=\log \int_{\mathrm{D}_{X}} \exp (\langle\theta, \phi(x)\rangle) \nu(d x) \tag{12.15}
\end{align*}
$$

- Overcomplete representation $d=|\mathcal{I}|$ higher than need be
- I.e., $\exists \gamma \neq 0$ s.t. $\langle\gamma, \phi(x)\rangle=c, \forall x$ where $c=$ constant.
- I.e., Exists affine hyperplane of different parameters that induce exactly same distribution. Assume overcomplete, given $\gamma \neq 0$ s.t., $\langle\gamma, \phi(x)\rangle=c$ and some other parameters $\theta$, we have, we have

$$
\begin{align*}
(x) & =\exp (\langle(\theta+\gamma), \phi(x)\rangle-A(\theta+\gamma))  \tag{12.16}\\
& =\exp (\langle\theta, \phi(x)\rangle+\langle\gamma, \phi(x)\rangle-A(\theta+\gamma))  \tag{12.17}\\
& =\exp (\langle\theta, \phi(x)\rangle+c-A(\theta+\gamma))  \tag{12.18}\\
& =\exp \langle\theta, \phi(x)\rangle-A(\theta))=p_{\theta}(x) \tag{12.19}
\end{align*}
$$

- Trye far any $\lambda$ 入 with $\lambda \in \mathbb{R}$, so affine set of identical distributions!
- We'll see later, this useful in understanding BP algorithm.


## Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { So } p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma)) \text { and } \\
& p(X=0)=\exp (-A(\gamma))
\end{aligned}
$$

## Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

So $p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma))$ and $p(X=0)=\exp (-A(\gamma))$.

- overcomplete rep of Bernoulli dist.

$$
\begin{align*}
p\left(x \mid \theta_{0}, \theta_{1}\right) & =\exp (\langle\theta, \phi(x)\rangle)  \tag{12.2}\\
& =\exp \left(\theta_{0}(1-x)+\theta_{1} x-A(\gamma)\right) \tag{12.3}
\end{align*}
$$

where $\theta=\left(\theta_{0}, \theta_{1}\right)$ and $\phi(x)=(1-x, x)$.

## Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

So $p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma))$ and $p(X=0)=\exp (-A(\gamma))$.

- overcomplete rep of Bernoulli dist.

$$
\begin{align*}
p\left(x \mid \theta_{0}, \theta_{1}\right) & =\exp (\langle\theta, \phi(x)\rangle)  \tag{12.2}\\
& =\exp \left(\theta_{0}(1-x)+\theta_{1} x-A(\gamma)\right) \tag{12.3}
\end{align*}
$$

where $\theta=\left(\theta_{0}, \theta_{1}\right)$ and $\phi(x)=(1-x, x)$.

- Is there a non-zero vector $a$ s.t. $\langle a, \phi(x)\rangle=c$ for all $x, \nu$-a.e.?


## Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

So $p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma))$ and $p(X=0)=\exp (-A(\gamma))$.

- overcomplete rep of Bernoulli dist.

$$
\begin{align*}
p\left(x \mid \theta_{0}, \theta_{1}\right) & =\exp (\langle\theta, \phi(x)\rangle)  \tag{12.2}\\
& =\exp \left(\theta_{0}(1-x)+\theta_{1} x-A(\gamma)\right) \tag{12.3}
\end{align*}
$$

where $\theta=\left(\theta_{0}, \theta_{1}\right)$ and $\phi(x)=(1-x, x)$.

- Is there a non-zero vector $a$ s.t. $\langle a, \phi(x)\rangle=c$ for all $x, \nu$-a.e.?
- If $a=(1,1)$ then $\langle a, \phi(x)\rangle=(1-x)+x=1$


## Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

So $p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma))$ and $p(X=0)=\exp (-A(\gamma))$.

- overcomplete rep of Bernoulli dist.

$$
\begin{align*}
p\left(x \mid \theta_{0}, \theta_{1}\right) & =\exp (\langle\theta, \phi(x)\rangle)  \tag{12.2}\\
& =\exp \left(\theta_{0}(1-x)+\theta_{1} x-A(\gamma)\right) \tag{12.3}
\end{align*}
$$

where $\theta=\left(\theta_{0}, \theta_{1}\right)$ and $\phi(x)=(1-x, x)$.

- Is there a non-zero vector $a$ s.t. $\langle a, \phi(x)\rangle=c$ for all $x, \nu$-a.e.?
- If $a=(1,1)$ then $\langle a, \phi(x)\rangle=(1-x)+x=1$
- This is overcomplete since there is a linear combination of feature functions that are constant.


## Exponential family models

- Minimal representation of Bernoulli distribution is

$$
\begin{equation*}
p(x \mid \gamma)=\exp (\gamma x-A(\gamma)) \tag{12.1}
\end{equation*}
$$

So $p(X=1)=1-p(X=0)=\exp (\gamma-A(\gamma))$ and $p(X=0)=\exp (-A(\gamma))$.

- overcomplete rep of Bernoulli dist.

$$
\begin{align*}
p\left(x \mid \theta_{0}, \theta_{1}\right) & =\exp (\langle\theta, \phi(x)\rangle)-\mathcal{(}))  \tag{12.2}\\
& =\exp \left(\theta_{0}(1-x)+\theta_{1} x-A(\boldsymbol{x})\right) \tag{12.3}
\end{align*}
$$

where $\theta=\left(\theta_{0}, \theta_{1}\right)$ and $\phi(x)=(1-x, x)$.

- Is there a non-zero vector $a$ s.t. $\langle a, \phi(x)\rangle=c$ for all $x, \nu$-a.e.?
- If $a=(1,1)$ then $\langle a, \phi(x)\rangle=(1-x)+x=1$
- This is overcomplete since there is a linear combination of feature functions that are constant.
- Since $\theta_{0}(1-x)+\theta_{1} x=\theta_{0}+x\left(\theta_{1}-\theta_{0}\right)$, any parameters $\theta_{1}, \theta_{2}$ such that $\theta_{1}-\theta_{0}=\gamma$ gives same distribution determined by $\gamma$.


## Famous Example - Ising Model

- Famous example is the Ising model in statistical physics. We have a grid network with pairwise interactions, each variable is $0 / 1$-valued binary, and parameters associated with pairs being both on. Model becomes
with

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\sum_{v \in V} \theta_{v} x_{v}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}-A(\theta)\right\} \tag{12.4}
\end{equation*}
$$

$$
\begin{equation*}
A(\theta)=\log \sum_{x \in\{0,1\}^{m}} \exp \left\{\sum_{v \in V} \theta_{v} x_{v}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right. \tag{12.5}
\end{equation*}
$$

- Note that this is in minimal form. Any change to parameters will result in different distribution


## Ising Model and Immediate Generalization

- Note, in this case $\mathcal{I}$ is all singletons (unaries) and all pairs, so that $\left\{C_{\alpha}\right\}_{\alpha}=\left\{\left\{x_{i}\right\}_{i},\left\{x_{i} x_{j}\right\}_{(i, j) \in E}\right\}$.
- We can easily generalize this via a set system. I.e., consider $(V, \mathcal{V})$, where $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{|\mathcal{V}|}\right\}$ and where $\forall i, V_{i} \subseteq V$.
- We can form sufficient statistic set via $\left\{C_{\alpha}\right\}_{\alpha}=\left\{\left\{x_{V}\right\}_{V \in \mathcal{V}}\right\}$.
- Could have, for example that $\phi_{\alpha}=\prod_{i \in C_{\alpha}} x_{i}$.
- Hence, it is possible to generalize with higher order factors (which are also called "interaction functions", "potential functions", or "sufficient statistics").


## Multivalued variables

- Variables need not binary, instead $\mathrm{D}_{X}=\{0,1, \ldots, r-1\}$ for $r>2$.


## Multivalued variables

- Variables need not binary, instead $\mathrm{D}_{X}=\{0,1, \ldots, r-1\}$ for $r>2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$
\mathbf{1}_{s ; j}\left(x_{s}\right)= \begin{cases}1 & \text { if } x_{s}=j  \tag{12.6}\\ 0 & \text { else }\end{cases}
$$

and

$$
\mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)= \begin{cases}1 & \text { if } x_{s}=j \text { and } x_{t}=k  \tag{12.7}\\ 0 & \text { else }\end{cases}
$$

## Multivalued variables

- Variables need not binary, instead $\mathrm{D}_{X}=\{0,1, \ldots, r-1\}$ for $r>2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$
\mathbf{1}_{s ; j}\left(x_{s}\right)= \begin{cases}1 & \text { if } x_{s}=j  \tag{12.6}\\ 0 & \text { else }\end{cases}
$$

and

$$
\mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)= \begin{cases}1 & \text { if } x_{s}=j \text { and } x_{t}=k  \tag{12.7}\\ 0 & \text { else }\end{cases}
$$

- Model becomes

$$
p_{\theta}(x)=\exp \left\{\sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v ; j} \boldsymbol{1}_{s ; j}\left(x_{v}\right)+\sum_{(s, t) \in E} \sum_{j, k} \theta_{s t ; i j} \mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)-A(\theta)\right\}
$$

## Multivalued variables

- Variables need not binary, instead $\mathrm{D}_{X}=\{0,1, \ldots, r-1\}$ for $r>2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$
\mathbf{1}_{s ; j}\left(x_{s}\right)= \begin{cases}1 & \text { if } x_{s}=j  \tag{12.6}\\ 0 & \text { else }\end{cases}
$$

and

$$
\mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)= \begin{cases}1 & \text { if } x_{s}=j \text { and } x_{t}=k  \tag{12.7}\\ 0 & \text { else }\end{cases}
$$

- Model becomes

$$
p_{\theta}(x)=\exp \{\prod_{\vec{k}} \sum_{i=0}^{r-1} \theta_{v ; j} \mathbf{1}_{s ; j}\left(x_{v}\right)+\underbrace{}_{s, t) \in}
$$

(12.8)

- Is this overcomplete?


## Multivalued variables

- Variables need not binary, instead $\mathrm{D}_{X}=\{0,1, \ldots, r-1\}$ for $r>2$.
- We can define a set of indicator functions constituting sufficient statistics. That is

$$
\mathbf{1}_{s ; j}\left(x_{s}\right)= \begin{cases}1 & \text { if } x_{s}=j  \tag{12.6}\\ 0 & \text { else }\end{cases}
$$

and

$$
\mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)= \begin{cases}1 & \text { if } x_{s}=j \text { and } x_{t}=k  \tag{12.7}\\ 0 & \text { else }\end{cases}
$$

- Model becomes

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\sum_{v \in V} \sum_{i=0}^{r-1} \theta_{v ; j} \mathbf{1}_{s ; j}\left(x_{v}\right)+\sum_{(s, t) \in E} \sum_{j, k} \theta_{s t ; i j} \mathbf{1}_{s t ; j k}\left(x_{s}, x_{t}\right)-A(\theta)\right\} \tag{12.8}
\end{equation*}
$$

- Is this overcomplete? Yes. Why?


## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.


## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.
- So sufficient statistics are $\left(x_{i}\right)_{i=1}^{n}$ and $\left(x_{i} x_{j}\right)_{i, j}$


## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.
- So sufficient statistics are $\left(x_{i}\right)_{i=1}^{n}$ and $\left(x_{i} x_{j}\right)_{i, j}$
- $\Theta_{s, t}=0$ means identical to missing edge in corresponding graph (marginal independence). $\Theta$ is negative inverse covariance matrix.


## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.
- So sufficient statistics are $\left(x_{i}\right)_{i=1}^{n}$ and $\left(x_{i} x_{j}\right)_{i, j}$
- $\Theta_{s, t}=0$ means identical to missing edge in corresponding graph (marginal independence). $\Theta$ is negative inverse covariance matrix.
- Any other constraints on $\Theta$ ?


## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.
- So sufficient statistics are $\left(x_{i}\right)_{i=1}^{n}$ and $\left(x_{i} x_{j}\right)_{i, j}$
- $\Theta_{s, t}=0$ means identical to missing edge in corresponding graph (marginal independence). $\Theta$ is negative inverse covariance matrix.
- Any other constraints on $\Theta$ ? negative definite


## Multivariate Gaussian

- Usually, multivariate Gaussian is parameterized via mean and covariance matrix. For canonical exponential form, we use mean and correlation matrix. I.e.

$$
\begin{equation*}
p_{\theta}(x)=\exp \left\{\langle\theta, x\rangle+\frac{1}{2}\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle-A(\theta, \Theta)\right\} \tag{12.9}
\end{equation*}
$$

- $\left\langle\left\langle\Theta, x x^{\top}\right\rangle\right\rangle=\sum_{i j} \Theta_{i j} x_{i} x_{j}$ is Frobenius inner product.
- So sufficient statistics are $\left(x_{i}\right)_{i=1}^{n}$ and $\left(x_{i} x_{j}\right)_{i, j}$
- $\Theta_{s, t}=0$ means identical to missing edge in corresponding graph (marginal independence). $\Theta$ is negative inverse covariance matrix.
- Any other constraints on $\Theta$ ? negative definite
- Mixtures of Gaussians can also be parameterized in exponential form (but note, key is that it is the joint distribution $p_{\theta_{s}}\left(y_{s}, x_{s}\right)$ ).


## Other examples

## A few other examples in the book

- Mixture models


## Other examples

A few other examples in the book

- Mixture models
- Latent Dirichlet Allocation, and general hierarchical Bayesian models. Key here is that it is for one expansion, not variable.


## Other examples

A few other examples in the book

- Mixture models
- Latent Dirichlet Allocation, and general hierarchical Bayesian models. Key here is that it is for one expansion, not variable.
- Models with hard constraints, or having zero probabilities - key thing is to place the hard constraints in the $\nu$ measure. Sufficient statistics become easy if complexity is encoded in the measure. Alternative is to allow features over extended reals (i.e., a feature can provide $-\infty$ but this leads to certain technical difficulties that they would rather not deal with).


## Mean Parameters, Convex Cores

- Consider quantities $\mu_{\alpha}$ associated with statistic $\phi_{\alpha}$ defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

## Mean Parameters, Convex Cores

- Consider quantities $\mu_{\alpha}$ associated with statistic $\phi_{\alpha}$ defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.


## Mean Parameters, Convex Cores

- Consider quantities $\mu_{\alpha}$ associated with statistic $\phi_{\alpha}$ defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.
- Define all the possible such vectors

$$
\begin{aligned}
& \mathcal{M}(\phi)=\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right], \forall \alpha \in \mathcal{I}\right\} \\
& \mathcal{O} \mid
\end{aligned}
$$

## Mean Parameters, Convex Cores

- Consider quantities $\mu_{\alpha}$ associated with statistic $\phi_{\alpha}$ defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.
- Define all the possible such vectors

$$
\mathcal{M}(\phi)=\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right], \forall \alpha \in \mathcal{I}\right\}
$$

- We don't say $p$ was necessarily exponential family


## Mean Parameters, Convex Cores

- Consider quantities $\mu_{\alpha}$ associated with statistic $\phi_{\alpha}$ defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.
- Define all the possible such vectors

$$
\begin{equation*}
\mathcal{M}(\phi)=\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right], \forall \alpha \in \mathcal{I}\right\} \tag{12.11}
\end{equation*}
$$

- We don't say $p$ was necessarily exponential family
- $\mathcal{M}$ is convex since expected value is a linear operator. So convex combinations of $p$ and $p^{\prime}$ will lead to convex combinations of $\mu$ and $\mu^{\prime}$


## Mean Parameters, Convex Cores

- Consider quantities $\mu_{\alpha}$ associated with statistic $\phi_{\alpha}$ defined as:

$$
\begin{equation*}
\mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.10}
\end{equation*}
$$

- this defines a vector of "mean parameters" $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ with $d=|\mathcal{I}|$.
- Define all the possible such vectors

$$
\begin{equation*}
\mathcal{M}(\phi)=\mathcal{M} \triangleq\left\{\mu \in \mathbb{R}^{d}: \exists p \text { s.t. } \mu_{\alpha}=\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right], \forall \alpha \in \mathcal{I}\right\} \tag{12.11}
\end{equation*}
$$

- We don't say $p$ was necessarily exponential family
- $\mathcal{M}$ is convex since expected value is a linear operator. So convex combinations of $p$ and $p^{\prime}$ will lead to convex combinations of $\mu$ and $\mu^{\prime}$
- $\mathcal{M}$ is like a "convex core" of all distributions expressed via $\phi$.


## Mean Parameters and Gaussians

- Here, we have $\mathbb{E}\left[X X^{\top}\right]=C$ and $\mu=\mathbb{E} X$. Question is, how to define $\mathcal{M}$ ?
- Given definition of $C$ and $\mu$, then $C-\mu \mu^{\top}$ must be valid covariance matrix (since this is $\mathbb{E}[X-\mathbb{E} X][X-\mathbb{E} X]^{\top}=C-\mu \mu^{\top}$ ).
- Thus, $C-\mu \mu^{\top} \succeq 0$, thus p.s.d. matrix.
- On the other hand, if this is true, we can form a Gaussian using $C-\mu \mu^{\top}$ as the covariance matrix.
- Thus, for Gaussian MRFs, $\mathcal{M}$ has the form

$$
\begin{equation*}
\mathcal{M}=\left\{(\mu, C) \in \mathbb{R}^{m} \times \mathcal{S}_{+}^{m} \mid C-\mu \mu^{\top} \succeq 0\right\} \tag{12.12}
\end{equation*}
$$

where $\mathcal{S}_{+}^{m}$ is the set of symmetric positive semi-definite matrices.

## Mean Parameters and Gaussians

- "Illustration of the set $\mathcal{M}$ for a scalar Gaussian: the model has two mean parameters $\mu=\mathbb{E}[X]$ and $\Sigma_{11}=\mathbb{E}\left[X^{2}\right]$, which must satisfy the quadratic contraint $\Sigma_{11}-\mu^{2} \geq 0$. Notice that $\mathcal{M}$ is convex, which is a general property." but is not a polytope.



## Mean Parameters and Gaussians

- "Illustration of the set $\mathcal{M}$ for a scalar Gaussian: the model has two mean parameters $\mu=\mathbb{E}[X]$ and $\Sigma_{11}=\mathbb{E}\left[X^{2}\right]$, which must satisfy the quadratic contraint $\Sigma_{11}-\mu^{2} \geq 0$. Notice that $\mathcal{M}$ is convex, which is a general property." but is not a polytope.
- Also, don't confuse the "mean parameters" with the means of a Gaussian. The typical means of Gaussians are means in this new sense, but those means are not all of the means. ©


## Mean Parameters and Polytopes

- When $X$ is discrete, we get a polytope since

$$
\begin{align*}
\mathcal{M} & =\left\{\mu \in \mathbb{R}^{b}: \mu=\sum_{x} \phi(x) p(x) \text { for some } p \in \mathcal{U}\right\}  \tag{12.13}\\
& =\operatorname{conv}\left\{\phi(x), x \in \mathrm{D}_{X}(\text { that are } \nu \text {-measurable }),\right\} \tag{12.14}
\end{align*}
$$

where conv $\{\cdot\}$ is the convex hull of the items in argument set.

## Mean Parameters and Polytopes

- When $X$ is discrete, we get a polytope since

$$
\begin{align*}
\mathcal{M} & =\left\{\mu \in \mathbb{R}^{b}: \mu=\sum_{x} \phi(x) p(x) \text { for some } p \in \mathcal{U}\right\}  \tag{12.13}\\
& =\operatorname{conv}\left\{\phi(x), x \in \mathrm{D}_{X}(\text { that are } \nu \text {-measurable }),\right\} \tag{12.14}
\end{align*}
$$

where conv $\{\cdot\}$ is the convex hull of the items in argument set.

- So we have a convex polytope



## Mean Parameters and Polytopes

- Polytopes can be represented as a set of linear inequalities, i.e., there is a $|J| \times d$ matrix $A$ and $|J|$-element column vector $b$ with

$$
M=\left\{\mu \in \mathbb{R}^{d}: A \mu \geq b\right\} \quad=\left\{\mu \in \mathbb{R}^{d}:\left\langle a_{j}, \mu\right\rangle \geq b_{j}, \forall j \in J\right\}
$$

with $A$ having rows $a_{j}$.


## Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

$$
\begin{equation*}
\phi(x)=\left\{x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E(G)\right\} \in \mathbb{R}^{|V|+|E|} \tag{12.16}
\end{equation*}
$$

we get

$$
\begin{align*}
\mu_{v} & =\mathbb{E}_{p}\left[X_{v}\right]=p\left(X_{v}=1\right) \forall v \in V  \tag{12.17}\\
\mu_{s, t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right) \forall(s, t) \in E(G) \tag{12.18}
\end{align*}
$$

## Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

$$
\begin{equation*}
\phi(x)=\left\{x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E(G)\right\} \in \mathbb{R}^{|V|+|E|} \tag{12.16}
\end{equation*}
$$

we get

$$
\begin{align*}
\mu_{v} & =\mathbb{E}_{p}\left[X_{v}\right]=p\left(X_{v}=1\right) \forall v \in V  \tag{12.17}\\
\mu_{s, t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right) \forall(s, t) \in E(G) \tag{12.18}
\end{align*}
$$

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1,1 for each node and edge in the graph $=\operatorname{conv}\left\{\phi(x), x \in\{0,1\}^{m}\right\}$.


## Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

$$
\begin{equation*}
\phi(x)=\left\{x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E(G)\right\} \in \mathbb{R}^{|V|+|E|} \tag{12.16}
\end{equation*}
$$

we get

$$
\begin{align*}
\mu_{v} & =\mathbb{E}_{p}\left[X_{v}\right]=p\left(X_{v}=1\right) \quad \forall v \in V  \tag{12.17}\\
\mu_{s, t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right) \quad \forall(s, t) \in E(G) \tag{12.18}
\end{align*}
$$

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1,1 for each node and edge in the graph $=\operatorname{conv}\left\{\phi(x), x \in\{0,1\}^{m}\right\}$.
- Gives complete marginal since $p_{s}(1)=1-p_{s}(0)$,
$p_{s, t}(1,0)=p_{s}(1)-p_{s, t}(1,1), p_{s, t}(0,1)=p_{t}(1)-p_{s, t}(1,1)$, etc.


## Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

$$
\begin{equation*}
\phi(x)=\left\{x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E(G)\right\} \in \mathbb{R}^{|V|+|E|} \tag{12.16}
\end{equation*}
$$

we get

$$
\begin{align*}
\mu_{v} & =\mathbb{E}_{p}\left[X_{v}\right]=p\left(X_{v}=1\right) \forall v \in V  \tag{12.17}\\
\mu_{s, t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right) \forall(s, t) \in E(G) \tag{12.18}
\end{align*}
$$

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1,1 for each node and edge in the graph $=\operatorname{conv}\left\{\phi(x), x \in\{0,1\}^{m}\right\}$.
- Gives complete marginal since $p_{s}(1)=1-p_{s}(0)$, $p_{s, t}(1,0)=p_{s}(1)-p_{s, t}(1,1), p_{s, t}(0,1)=p_{t}(1)-p_{s, t}(1,1)$, etc.
- Recall: marginals are often the goal of inference.


## Mean Parameters and Polytopes

- Example: Ising mean parameters. Given sufficient statistics

$$
\begin{equation*}
\phi(x)=\left\{x_{s}, s \in V ; x_{s} x_{t},(s, t) \in E(G)\right\} \in \mathbb{R}^{|V|+|E|} \tag{12.16}
\end{equation*}
$$

we get

$$
\begin{align*}
\mu_{v} & =\mathbb{E}_{p}\left[X_{v}\right]=p\left(X_{v}=1\right) \forall v \in V  \tag{12.17}\\
\mu_{s, t} & =\mathbb{E}_{p}\left[X_{s} X_{t}\right]=p\left(X_{s}=1, X_{t}=1\right) \forall(s, t) \in E(G) \tag{12.18}
\end{align*}
$$

- Mean parameters lie in a polytope that represent the probabilities of a node being 1 or a pair of adjacent nodes being 1,1 for each node and edge in the graph $=\operatorname{conv}\left\{\phi(x), x \in\{0,1\}^{m}\right\}$.
- Gives complete marginal since $p_{s}(1)=1-p_{s}(0)$, $p_{s, t}(1,0)=p_{s}(1)-p_{s, t}(1,1), p_{s, t}(0,1)=p_{t}(1)-p_{s, t}(1,1)$, etc.
- Recall: marginals are often the goal of inference. Coincidence?


## Example: 2-variable Ising


"Ising model with two variables $\left(X_{1}, X_{2}\right) \in\{0,1\}^{2}$. Three mean parameters $\mu_{1}=\mathbb{E}\left[X_{1}\right], \mu_{2}=\mathbb{E}\left[X_{2}\right], \mu_{12}=\mathbb{E}\left[X_{2} X_{2}\right]$, must satisfy constraints $0 \leq \mu_{12} \leq \mu_{i}$ for $i=1,2$, and $1+\mu_{12}-\mu_{1}-\mu_{2} \geq 0$. These constraints carve out a polytope with four facets, contained within the unit hypercube $[0,1]^{3}$."

## Mean Parameters and Overcomplete Representation

- We can use overcomplete representation and get a "marginal polytope", a polytope that represents the marginal distributions at each potential function.
- Example: Ising overcomplete potential functions (generalization of Bernoulli example we saw before)

$$
\begin{equation*}
\forall v \in V(G), j \in\{0 \ldots r-1\}, \text { define } \phi_{v, j}\left(x_{v}\right) \triangleq \mathbf{1}\left(x_{v}=j\right) \tag{12.19}
\end{equation*}
$$

$$
\begin{equation*}
\forall(s, t) \in E(G), j, k \in\{0 \ldots r-1\}, \text { we define: } \tag{12.20}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{s t, j k}\left(x_{s}, x_{t}\right) \triangleq \mathbf{1}\left(x_{s}=j, x_{t}=k\right)=\mathbf{1}\left(x_{s}=j\right) \mathbf{1}\left(x_{t}=k\right) \tag{12.21}
\end{equation*}
$$

- So we now have $|V| r+2|E| r^{2}$ functions each with a corresponding parameter.


## Mean Parameters and Marginal Polytopes

- Mean parameters are now true (fully specified) marginals, i.e.,

$$
\begin{align*}
& \mu_{v}(j)=p\left(x_{v}=j\right) \text { and } \mu_{s t}(j, k)=p\left(x_{s}=j, x_{t}=k\right) \text { since } \\
& \mu_{v, j}=\mathbb{E}_{p}\left[\mathbf{1}\left(x_{v}=j\right)\right]=p\left(x_{v}=j\right)  \tag{12.22}\\
& \mu_{s t, j k}=\mathbb{E}_{p}\left[\mathbf{1}\left(x_{s}=j, x_{t}=k\right)\right]=p\left(x_{s}=j, x_{t}=k\right) \tag{12.23}
\end{align*}
$$

- Such an $\mathcal{M}$ is called the marginal polytope for discrete graphical models. Any $\mu$ must live in the polytope that corresponds to node and edge true marginals.
- We can also associate such a polytope with a graph $G$, where we take only $(s, t) \in E(G)$. Denote this as $\mathbb{M}(G)$.
- This polytope can help us to characterize when BP converges (there might be an outer bound of this polytope), or it might characterize the result of a mean-field approximation (an inner bound of this polytope) as we'll see.


## Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.


## Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.


## Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- "facet complexity" of $\mathcal{M}$ depends on the graph structure.


## Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- "facet complexity" of $\mathcal{M}$ depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.


## Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- "facet complexity" of $\mathcal{M}$ depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.
- For $k$-trees, complexity grows exponentially in $k$


## Marginal Polytopes and Facet complexity

- Number of facets (faces) of a polytope is often (but not always) a good indication of its complexity.
- Corresponds to number of linear constraints in set of linear inequalities describing the polytope.
- "facet complexity" of $\mathcal{M}$ depends on the graph structure.
- For 1-trees, marginal polytope characterized by local constraints only (pairs of variables on edges of the tree) and has linear growth with graph size.
- For $k$-trees, complexity grows exponentially in $k$
- Key idea: use polyhedral approximations to produce model and inference approximations.


## Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters $\theta$ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.


## Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters $\theta$ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.
- We can view the (maximum likelihood) learning problem as moving from a point in the polytope (given by the empirical distribution) to the canonical parameters. Called backwards mapping


## Learning is the dual of Inference

- We can view the inference problem as moving from the canonical parameters $\theta$ to the point in the marginal polytope, called forward mapping, moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$.
- We can view the (maximum likelihood) learning problem as moving from a point in the polytope (given by the empirical distribution) to the canonical parameters. Called backwards mapping
- graph structure (e.g., tree-width) makes this easy or hard, and also characterizes the polytope (how complex it is in terms of number of faces).


## Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.

## Maximum entropy estimation

- Goal ("estimation", or "machine learning") is to find

$$
p^{*} \in \underset{p \in \mathcal{U}}{\operatorname{argmax}} H(p) \operatorname{s.t.} \mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \forall \alpha \in \mathcal{I}
$$

where $H(p)=-\int p(x) \log p(x)(d x)$, and $\forall \alpha$

$$
\begin{equation*}
\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]=\int_{\mathrm{D}_{X}} \phi_{\alpha}(x) p(x) \nu(d x) \tag{12.15}
\end{equation*}
$$

- $\mathbb{E}_{p}\left[\phi_{\alpha}(X)\right]$ is mean value as measured by potential function, so above is a form of moment matching.
- Maximum entropy (MaxEnt) distribution is solved by taking distribution in form of $p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta))$ and then by finding canonicatparameters $\theta$ that solves

$$
\begin{equation*}
E_{p_{\theta}}\left[\phi_{\alpha}(X)\right]=\hat{\mu}_{\alpha} \text { for all } \alpha \in \mathcal{I} . \tag{12.16}
\end{equation*}
$$

## Learning is the dual of Inference

- Ex: Estimate $\theta$ with $\hat{\theta}$ based on data $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$ of size $M$, likelihood function

$$
\begin{equation*}
\ell(\theta, \mathbf{D})=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}\left(\bar{x}^{(i)}\right)=\langle\theta, \hat{\mu}\rangle-A(\theta) \tag{12.24}
\end{equation*}
$$

where empirical means given by

$$
\begin{equation*}
\hat{\mu}=\hat{\mathbb{E}}[\phi(X)]=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right) \tag{12.25}
\end{equation*}
$$

## Learning is the dual of Inference

- Ex: Estimate $\theta$ with $\hat{\theta}$ based on data $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$ of size $M$, likelihood function

$$
\begin{equation*}
\ell(\theta, \mathbf{D})=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}\left(\bar{x}^{(i)}\right)=\langle\theta, \hat{\mu}\rangle-A(\theta) \tag{12.24}
\end{equation*}
$$

where empirical means given by

$$
\begin{equation*}
\hat{\mu}=\hat{\mathbb{E}}[\phi(X)]=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right) \tag{12.25}
\end{equation*}
$$

- By taking derivatives of the above, it is easy to see that solution is the point $\hat{\theta}=\theta(\hat{\mu})$ such that empirical matches expected means, or what are called the moment matching conditions.

$$
\begin{equation*}
\mathbb{E}_{\hat{\theta}}[\phi(X)]=\widehat{\mu} \tag{12.26}
\end{equation*}
$$

this is the the backward mapping problem, going from $\mu$ to $\theta$.

## Learning is the dual of Inference

- Ex: Estimate $\theta$ with $\hat{\theta}$ based on data $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$ of size $M$, likelihood function

$$
\begin{equation*}
\ell(\theta, \mathbf{D})=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta}\left(\bar{x}^{(i)}\right)=\langle\theta, \hat{\mu}\rangle-A(\theta) \tag{12.24}
\end{equation*}
$$

where empirical means given by

$$
\begin{equation*}
\hat{\mu}=\hat{\mathbb{E}}[\phi(X)]=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right) \tag{12.25}
\end{equation*}
$$

- By taking derivatives of the above, it is easy to see that solution is the point $\hat{\theta}=\theta(\hat{\mu})$ such that empirical matches expected means, or what are called the moment matching conditions:

$$
\begin{equation*}
\mathbb{E}_{\hat{\theta}}[\phi(X)]=\hat{\mu} \tag{12.26}
\end{equation*}
$$

this is the the backward mapping problem, going from $\mu$ to $\theta$.

- Here, maximum likelihood is identical to maximum entropy problem.


## Likelihood and negative entropy

- Entropy definition again: $H(p)=-\int p(x) \log p(x) \nu(d x)$


## Likelihood and negative entropy

- Entropy definition again: $H(p)=-\int p(x) \log p(x) \nu(d x)$
- Given data, $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$, defines an empirical distribution

$$
\begin{equation*}
\hat{p}(x)=\frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\left(x=\bar{x}^{(i)}\right) \tag{12.27}
\end{equation*}
$$

so that $\mathbb{E}_{\hat{p}}[\phi(X)]=\int \hat{p}(x) \phi(x) \nu(d x)=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right)=\hat{\mu}$

## Likelihood and negative entropy

- Entropy definition again: $H(p)=-\int p(x) \log p(x) \nu(d x)$
- Given data, $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$, defines an empirical distribution

$$
\begin{equation*}
\hat{p}(x)=\frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\left(x=\bar{x}^{(i)}\right) \tag{12.27}
\end{equation*}
$$

so that $\mathbb{E}_{\hat{p}}[\phi(X)]=\int \hat{p}(x) \phi(x) \nu(d x)=\frac{1}{M} \sum_{i}^{M} \phi\left(\bar{x}^{(i)}\right)=\hat{\mu}$

- Starting from maximum likelitoodsotution $\theta(\hat{u})$, meaning we are a moment matching conditons $\mathbb{E}_{p_{\theta(\hat{u})}}[\phi(X)]=\hat{\mu}=\mathbb{E}_{\hat{p}}[\phi(X)]$, we have

$$
\begin{align*}
\ell(\theta(\hat{u}), \mathbf{D}) & =\langle\theta(\hat{u}), \hat{\mu}\rangle-A(\theta(\hat{u}))=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta(\hat{u})}\left(\bar{x}^{(i)}\right)  \tag{12.28}\\
& =\int \hat{p}(x) \log p_{\theta(\hat{\mu})}(x) \nu(d x)=\mathbb{E}_{\hat{p}}\left[\log p_{\theta(\hat{\mu})}(x)\right]  \tag{12.29}\\
& =-H_{\hat{p}}\left[p_{\theta(\hat{\mu})}(x)\right]=-H_{p_{\theta(\hat{\mu})}\left[p_{\theta(\hat{\mu})}(x)\right]} \tag{12.30}
\end{align*}
$$

## Likelihood and negative entropy

- Entropy definition again: $H(p)=-\int p(x) \log p(x) \nu(d x)$
- Given data, $\mathbf{D}=\left\{\bar{x}^{(i)}\right\}_{i=1}^{M}$, defines an empirical distribution

$$
\begin{equation*}
\hat{p}(x)=\frac{1}{M} \sum_{i=1}^{M} \mathbf{1}\left(x=\bar{x}^{(i)}\right) \tag{12.27}
\end{equation*}
$$

so that $\mathbb{E}_{\hat{p}}[\phi(X)]=\int \hat{p}(x) \phi(x) \nu(d x)=\frac{1}{M} \sum_{i=1}^{M} \phi\left(\bar{x}^{(i)}\right)=\hat{\mu}$

- Starting from maximum likelihood solution $\theta(\hat{u})$, meaning we are at moment matching conditions $\mathbb{E}_{p_{\theta(\hat{u})}}[\phi(X)]=\hat{\mu}=\mathbb{E}_{\hat{p}}[\phi(X)]$, we have

$$
\begin{align*}
\ell(\theta(\hat{u}), \mathbf{D}) & =\langle\theta(\hat{u}), \hat{\mu}\rangle-A(\theta(\hat{u}))=\frac{1}{M} \sum_{i=1}^{M} \log p_{\theta(\hat{u})}\left(\bar{x}^{(i)}\right)  \tag{12.28}\\
& =\int \hat{p}(x) \log p_{\theta(\hat{\mu})}(x) \nu(d x)=\mathbb{E}_{\hat{p}}\left[\log p_{\theta(\hat{\mu})}(x)\right]  \tag{12.29}\\
& =-H_{\hat{p}}\left[p_{\theta(\hat{\mu})}(x)\right]=-H_{p_{\theta(\hat{\mu})}}\left[p_{\theta(\hat{\mu})}(x)\right] \tag{12.30}
\end{align*}
$$

- Thus, maximum likelihood value and negative entropy are identical, at least for empirical $\hat{\mu}$ (which is $\in \mathcal{M}$ ).


## Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.


## Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.


## Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by $\left.\mathbb{E}_{\theta}[\phi(X)]=\hat{\mu}\right)$ is the same as maximum likelihood learning of an exponential model form.


## Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by $\left.\mathbb{E}_{\theta}[\phi(X)]=\hat{\mu}\right)$ is the same as maximum likelihood learning of an exponential model form.
- If we do maximum entropy learning, where does the $\exp (\cdot)$ function come from?


## Learning is the dual of Inference

- I.e., solution to the maximum likelihood problem is one that satisfies the moment constraints and has the exponential model form.
- The exponential model form arises when we find the maximum entropy distribution over distributions satisfying the moment constraints.
- Thus, maximum entropy learning under a set of constraints (given by $\left.\mathbb{E}_{\theta}[\phi(X)]=\hat{\mu}\right)$ is the same as maximum likelihood learning of an exponential model form.
- If we do maximum entropy learning, where does the $\exp (\cdot)$ function come from? From the entropy function. I.e., the exponential form is the distribution that has maximum entropy having those constraints.


## Dual Mappings: Summary

## Summarizing these relationships

- Forward mapping: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.


## Dual Mappings: Summary

Summarizing these relationships

- Forward mapping: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.
- Backwards mapping: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).


## Dual Mappings: Summary

Summarizing these relationships

- Forward mapping: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.
- Backwards mapping: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).
- In exponential family case, this is maximum entropy and is equivalent to maximum likelihood learning on an exponential family model.


## Dual Mappings: Summary

Summarizing these relationships

- Forward mapping: moving from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, this is the inference problem, getting the marginals.
- Backwards mapping: moving from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, this is the learning problem, getting the parameters for a given set of empirical facts (means).
- In exponential family case, this is maximum entropy and is equivalent to maximum likelihood learning on an exponential family model.
- Turns out $\log$ partition function $A$, and its dual $A^{*}$ can give us these mappings, and the mappings have interesting forms ...


## Log partition (or cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{12.31}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know


## Log partition (or cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{12.31}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- $A(\theta)$ is convex in $\theta$ (strictly so if minimal representation).


## Log partition (or cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{12.31}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- $A(\theta)$ is convex in $\theta$ (strictly so if minimal representation).
- It yields cumulants of the random vector $\phi(X)$

$$
\begin{equation*}
\frac{\partial A}{\partial \theta_{\alpha}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(X) p_{\theta}(x) \nu(d x)=\mu_{\alpha} \tag{12.32}
\end{equation*}
$$

in general, derivative of log part. function is expected value of feature


## Log partition (or cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{12.31}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- $A(\theta)$ is convex in $\theta$ (strictly so if minimal representation).
- It yields cumulants of the random vector $\phi(X)$

$$
\begin{equation*}
\frac{\partial A}{\partial \theta_{\alpha}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(X) p_{\theta}(x) \nu(d x)=\mu_{\alpha} \tag{12.32}
\end{equation*}
$$

in general, derivative of log part. function is expected value of feature

- Also, we get

$$
\begin{equation*}
\frac{\partial^{2} A}{\partial \theta_{\alpha_{1}} \partial \theta_{\alpha_{2}}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X) \phi_{\alpha_{2}}(X)\right]-\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X)\right] \mathbb{E}_{\theta}\left[\phi_{\alpha_{2}}(X)\right] \tag{12.33}
\end{equation*}
$$

## Log partition (or cumulant) function

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}} \exp \langle\theta, \phi(x)\rangle \nu(d x) \tag{12.31}
\end{equation*}
$$

- If we know the log partition function, we know a lot for an exponential family model. In particular, we know
- $A(\theta)$ is convex in $\theta$ (strictly so if minimal representation).
- It yields cumulants of the random vector $\phi(X)$

$$
\begin{equation*}
\frac{\partial A}{\partial \theta_{\alpha}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha}(X)\right]=\int \phi_{\alpha}(X) p_{\theta}(x) \nu(d x)=\mu_{\alpha} \tag{12.32}
\end{equation*}
$$

in general, derivative of log part. function is expected value of feature

- Also, we get

$$
\begin{equation*}
\frac{\partial^{2} A}{\partial \theta_{\alpha_{1}} \partial \theta_{\alpha_{2}}}(\theta)=\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X) \phi_{\alpha_{2}}(X)\right]-\mathbb{E}_{\theta}\left[\phi_{\alpha_{1}}(X)\right] \mathbb{E}_{\theta}\left[\phi_{\alpha_{2}}(X)\right] \tag{12.33}
\end{equation*}
$$

- Proof given in book (Proposition 3.1, page 62).


## Log partition function

- So derivative of $\log$ partition function w.r.t. $\theta$ is equal to our mean parameter $\mu$ in the discrete case.
- Given $A(\theta)$, we can recover the marginals for each potential function $\phi_{\alpha}, \alpha \in \mathcal{I}$ (when mean parameters lie in the marginal polytope).
- If we can approximate $A(\theta)$ with $\tilde{A}(\theta)$ then we can get approximate marginals. Perhaps we can bound it without inordinate compute resources. Why do we want bounds? We shall see in future lectures.
- The Bethe approximation (as we'll also see) is such an approximation and corresponds to fixed points of loopy belief propagation.
- In some rarer cases, we can bound the approximation (current research trend).


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between $\mu$ and $\theta$.


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between $\mu$ and $\theta$.
- For non-minimal exponential families, more than one $\theta$ for a given $\mu$ (not surprising since multiple $\theta$ 's can yield the same distribution).


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between $\mu$ and $\theta$.
- For non-minimal exponential families, more than one $\theta$ for a given $\mu$ (not surprising since multiple $\theta$ 's can yield the same distribution).
- For non-exponential families, other distributions can yield $\mu$, but the exponential family one is the one that has maximum entropy.


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between $\mu$ and $\theta$.
- For non-minimal exponential families, more than one $\theta$ for a given $\mu$ (not surprising since multiple $\theta$ 's can yield the same distribution).
- For non-exponential families, other distributions can yield $\mu$, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance.


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between $\mu$ and $\theta$.
- For non-minimal exponential families, more than one $\theta$ for a given $\mu$ (not surprising since multiple $\theta$ 's can yield the same distribution).
- For non-exponential families, other distributions can yield $\mu$, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance. ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.


## Log partition function

- So $\nabla A: \Omega \rightarrow \mathcal{M}^{\prime}$, where $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, and where $\mathcal{M}=\left\{\mu \in \mathbb{R}^{d} \mid \exists p\right.$ s.t. $\left.\mathbb{E}_{p}[\phi(X)]=\mu\right\}$.
- For minimal exponential family models, this mapping is one-to-one, that is there is a unique pairing between $\mu$ and $\theta$.
- For non-minimal exponential families, more than one $\theta$ for a given $\mu$ (not surprising since multiple $\theta$ 's can yield the same distribution).
- For non-exponential families, other distributions can yield $\mu$, but the exponential family one is the one that has maximum entropy. ex1: Gaussian, a distribution with maximum entropy amongst all other distributions with same mean and covariance. ex2: Consider the maximum entropy optimization problem, yields a distribution with exactly this property.
- Key point: all mean parameters that are realizable are also realizable by member of exp. family.


## Mappings - one-to-one

In fact, we have

## Theorem 12.4.1

The gradient map $\nabla A$ is one-to-one iff the exponential representation is minimal.

## Mappings - one-to-one

In fact, we have

## Theorem 12.4.1

The gradient map $\nabla A$ is one-to-one iff the exponential representation is minimal.

- Proof basically uses property that if representation is non-minimal, and $\langle a, \phi(x)\rangle=c$ for all $x$, then we can form an affine set of equivalent parameters $\theta+\gamma a$.


## Mappings - one-to-one

In fact, we have

## Theorem 12.4.1

The gradient map $\nabla A$ is one-to-one iff the exponential representation is minimal.

- Proof basically uses property that if representation is non-minimal, and $\langle a, \phi(x)\rangle=c$ for all $x$, then we can form an affine set of equivalent parameters $\theta+\gamma a$.
- Other direction, uses strict convexity of $A(\theta)$


## Mappings - onto

## Theorem 12.4.2

In a minimal exponential family, the gradient map $\nabla A$ is onto the interior of $\mathcal{M}$ (denoted $\mathcal{M}^{\circ}$ ). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

## Mappings - onto

## Theorem 12.4.2

In a minimal exponential family, the gradient map $\nabla A$ is onto the interior of $\mathcal{M}$ (denoted $\left.\mathcal{M}^{\circ}\right)$. Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}\left[X X^{T}\right]$ ) can be realized by a Gaussian having those same mean parameters (moments).


## Mappings - onto

## Theorem 12.4.2

In a minimal exponential family, the gradient map $\nabla A$ is onto the interior of $\mathcal{M}$ (denoted $\mathcal{M}^{\circ}$ ). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}\left[X X^{T}\right]$ ) can be realized by a Gaussian having those same mean parameters (moments).
- The Gaussian won't nec. be the "true" distribtuion (in such case, the "true" distribution would not be a Gaussian, and might be an exponential family distribution with additional moments (e.g., 1D Gaussians have zero skew and kurtosis) or might not be exponential family at all).


## Mappings - onto

## Theorem 12.4.2

In a minimal exponential family, the gradient map $\nabla A$ is onto the interior of $\mathcal{M}$ (denoted $\mathcal{M}^{\circ}$ ). Consequently, for each $\mu \in \mathcal{M}^{\circ}$, there exists some $\theta=\theta(\mu) \in \Omega$ such that $\mathbb{E}_{\theta}[\phi(X)]=\mu$.

- Ex: Gaussian. Any mean parameter (set of means $\mathbb{E}[X]$ and correlations $\mathbb{E}\left[X X^{T}\right]$ ) can be realized by a Gaussian having those same mean parameters (moments).
- The Gaussian won't nec. be the "true" distribtuion (in such case, the "true" distribution would not be a Gaussian, and might be an exponential family distribution with additional moments (e.g., 1D Gaussians have zero skew and kurtosis) or might not be exponential family at all).
- The theorem here is more general and applies for any set of sufficient statistics.


## Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\theta^{*} \in \underset{o}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta))
$$

## Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{12.34}
\end{equation*}
$$

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{12.35}
\end{equation*}
$$

## Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{12.34}
\end{equation*}
$$

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{12.35}
\end{equation*}
$$

- So dual is optimal value of the ML problem, when $\mu \in \mathcal{M}$, and we saw the relationship between ML and negative entropy before.


## Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{12.34}
\end{equation*}
$$

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{12.35}
\end{equation*}
$$

- So dual is optimal value of the ML problem, when $\mu \in \mathcal{M}$, and we saw the relationship between ML and negative entropy before.
- Key: when $\mu \in \mathcal{M}$, dual is negative entropy of exponential model $p_{\theta(\mu)}$ where $\theta(\mu)$ is the unique set of canonical parameters satisfying this matching condition

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\nabla A(\theta(\mu))=\mu \tag{12.36}
\end{equation*}
$$

## Conjugate Duality

- Consider maximum likelihood problem for exp. family

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{12.34}
\end{equation*}
$$

- Convex conjugate dual (also sometimes Fenchel-Legendre dual or transform) of $A(\theta)$ is defined as:

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{12.35}
\end{equation*}
$$

- So dual is optimal value of the ML problem, when $\mu \in \mathcal{M}$, and we saw the relationship between ML and negative entropy before.
- Key: when $\mu \in \mathcal{M}$, dual is negative entropy of exponential model $p_{\theta(\mu)}$ where $\theta(\mu)$ is the unique set of canonical parameters satisfying this matching condition

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\nabla A(\theta(\mu))=\mu \tag{12.36}
\end{equation*}
$$

- When $\mu \notin \mathcal{M}$, then $A^{*}(\mu)=+\infty$, optimization with dual need consider points only in $\mathcal{M}$.


## Conjugate Duality, Maximum Likelihood, Negative Entropy

## Theorem 12.4.3 (Relationship between $A$ and $A^{*}$ )

(a) For any $\mu \in \mathcal{M}^{\circ}, \theta(\mu)$ unique canonical parameter sat. matching condition, then conj. dual takes form:

$$
A^{*}(\mu)=\sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta))= \begin{cases}-H\left(p_{\theta(\mu)}\right) & \text { if } \mu \in \mathcal{M}^{\circ}  \tag{12.37}\\ +\infty & \text { if } \mu \in \overline{\mathcal{M}}\end{cases}
$$

(b) Partition function has variational representation (dual of dual)

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

(c) For $\theta \in \Omega$, sup occurs at $\mu \in \mathcal{M}^{\circ}$ of moment matching conditions

$$
\begin{equation*}
\mu=\int_{\mathrm{D}_{X}} \phi(x) p_{\theta}(x) \nu(d x)=\mathbb{E}_{\theta}[\phi(X)]=\nabla A(\theta) \tag{12.39}
\end{equation*}
$$

## Conjugate Duality

- Note that $A *$ isn't exactly entropy, only entropy sometimes, and depends on matching parameters to $\mu$ via the matching mapping $\theta(\mu)$ which achieves

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\mu \tag{12.40}
\end{equation*}
$$

## Conjugate Duality

- Note that $A *$ isn't exactly entropy, only entropy sometimes, and depends on matching parameters to $\mu$ via the matching mapping $\theta(\mu)$ which achieves

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\mu \tag{12.40}
\end{equation*}
$$

- $A(\theta)$ in Equation 12.38 is the "inference" problem (dual of the dual) for a given $\theta$, since computing it involves computing the desired node/edge marginals.


## Conjugate Duality

- Note that $A *$ isn't exactly entropy, only entropy sometimes, and depends on matching parameters to $\mu$ via the matching mapping $\theta(\mu)$ which achieves

$$
\begin{equation*}
\mathbb{E}_{\theta(\mu)}[\phi(X)]=\mu \tag{12.40}
\end{equation*}
$$

- $A(\theta)$ in Equation 12.38 is the "inference" problem (dual of the dual) for a given $\theta$, since computing it involves computing the desired node/edge marginals.
- Whenever $\mu \notin \mathcal{M}$, then $A^{*}(\mu)$ returns $\infty$ which can't be the resulting sup in Equation 12.38, so Equation 12.38 need only consider $\mathcal{M}$.


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). Key: we compute the log partition function simultaneously with solving inference, given the dual.


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). Key: we compute the log partition function simultaneously with solving inference, given the dual.
- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. ©)


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). Key: we compute the log partition function simultaneously with solving inference, given the dual.
- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. ©
- Bad news: $\mathcal{M}$ is quite complicated to characterize, depends on the complexity of the graphical model. ©


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- computing $A(\theta)$ in this way corresponds to the inference problem (finding mean parameters, or node and edge marginals). Key: we compute the log partition function simultaneously with solving inference, given the dual.
- Good news: problem is concave objective over a convex set. Should be easy. In simple examples, indeed, it is easy. ©
- Bad news: $\mathcal{M}$ is quite complicated to characterize, depends on the complexity of the graphical model. ©
- More bad news: $A^{*}$ not given explicitly in general and hard to compute. ©


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. ©


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. ©
- For example, we might either relax $\mathcal{M}$ (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©)


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. ©
- For example, we might either relax $\mathcal{M}$ (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©
- Surprisingly, this is strongly related to belief propagation (i.e., the sum-product commutative semiring). © ;)


## Conjugate Duality

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- Some good news: The above form gives us new avenues to do approximation. ©
- For example, we might either relax $\mathcal{M}$ (making it less complex), relax $A^{*}(\mu)$ (making it easier to compute over), or both. ©)
- Surprisingly, this is strongly related to belief propagation (i.e., the sum-product commutative semiring). © ;)
- Much of the rest of the class will be above approaches to the above correspond not only to junction tree algorithm (that we've seen) but also to well-known approximation methods (LBP, mean-field, Bethe, expectation-propagation (EP), Kikuchi methods, linear programming relaxations, and semidefnite relaxations, some of which we will cover).


## Overcomplete, simple notation

- We'll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.


## Overcomplete, simple notation

- We'll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.
- Recall: dealing only with pairwise interactions (natural for image processing) - If not pairwise, we can convert from factor graph to factor graph with factor-width 2 factors.


## Overcomplete, simple notation

- We'll see: LBP (sum-product alg.) has much to do with an approximation to the aforementioned variational problems.
- Recall: dealing only with pairwise interactions (natural for image processing) - If not pairwise, we can convert from factor graph to factor graph with factor-width 2 factors.
- Exponential overcomplete family model of form

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{v \in V(G)} \theta_{v}\left(x_{v}\right)+\sum_{(s, t) \in E(G)} \theta_{s t}\left(x_{s}, x_{t}\right)\right\}
$$

with simple new shorthand notation functions $\theta_{v}$ and $\theta_{s t}$.

$$
\begin{array}{r}
\theta_{v}\left(x_{v}\right) \triangleq \sum_{i} \theta_{v, i} \mathbf{1}\left(x_{v}=i\right) \text { and } \\
\theta_{s, t}\left(x_{s}, x_{t}\right) \triangleq \sum_{i, j} \theta_{s t, i j} \mathbf{1}\left(x_{s}=i, x_{t}=j\right) \tag{12.42}
\end{array}
$$

## Marginal notation, and graph

Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G)  \tag{12.43}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G)
\end{align*}
$$

## Marginal notation, and graph

Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G)  \tag{12.43}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G)
\end{align*}
$$

- And $\mathbb{M}(G)$ corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ that contains only pairwise interactions.


## Marginal notation, and graph

## Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G)  \tag{12.43}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G)
\end{align*}
$$

- And $\mathbb{M}(G)$ corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ that contains only pairwise interactions.
- Note, $\mathbb{M}(G)$ is respect to a graph $G$.


## Marginal notation, and graph

## Marginal polytope

- We also have mean parameters that constitute the marginal polytope.

$$
\begin{align*}
\mu_{v}\left(x_{v}\right) & \triangleq \sum_{i \in \mathrm{D}_{X_{v}}} \mu_{v, i} \mathbf{1}\left(x_{v}=i\right), \text { for } u \in V(G)  \tag{12.43}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & \triangleq \sum_{(j, k) \in \mathrm{D}_{X_{\{s, t\}}}} \mu_{s t, j k} \mathbf{1}\left(x_{s}=j, x_{t}=k\right), \text { for }(s, t) \in E(G)
\end{align*}
$$

- And $\mathbb{M}(G)$ corresponds to the set of all singleton and pairwise marginals that can be jointly realized by some underlying probability distribution $p \in \mathcal{F}\left(G, \mathcal{M}^{(\mathrm{f})}\right)$ that contains only pairwise interactions.
- Note, $\mathbb{M}(G)$ is respect to a graph $G$.
- $\mathbb{M}$ can be represented as a convex hull of a set of points, or by a set of linear inequality constraints.


## Local consistency polytope

- An "outer bound" of $\mathbb{M}$ consists of a set that contains $\mathbb{M}$, and if it is formed from a subset of the linear inequalities (subset of the rows of matrix module $(A, b)$ ), then it is a polyhedral outer bound. Lets call this $\mathbb{L}$.


## Local consistency polytope

- An "outer bound" of $\mathbb{M}$ consists of a set that contains $\mathbb{M}$, and if it is formed from a subset of the linear inequalities (subset of the rows of matrix module $(A, b)$ ), then it is a polyhedral outer bound. Lets call this $\mathbb{L}$.
- Another way to form outer bound: require only consistency, i.e., consider set $\left\{\tau_{v}, v \in V(G)\right\} \cup\left\{\tau_{s, t},(s, t) \in E(G)\right\}$ that is non-negative and satisfies normalization

$$
\begin{equation*}
\sum_{x_{v}} \tau_{v}\left(x_{v}\right)=1 \tag{12.45}
\end{equation*}
$$

and pair-node marginal consistency constraints

$$
\begin{align*}
& \sum_{x_{t}^{\prime}} \tau_{s, t}\left(x_{s}, x_{t}^{\prime}\right)=\tau_{s}\left(x_{s}\right)  \tag{12.46a}\\
& \sum_{x_{s}^{\prime}} \tau_{s, t}\left(x_{s}^{\prime}, x_{t}\right)=\tau_{t}\left(x_{t}\right) \tag{12.46b}
\end{align*}
$$

## Local consistency polytope

- Define $\mathbb{L}(G)$ to be the (locally consistent) polytope that obeys the constraints in Equations 12.45 and 12.46.
- Recall: local consistency was the necessary conditions for potentials being marginals that, it turned out, for junction tree that also guaranteed global consistency.
- Clearly $\mathbb{M} \subseteq \mathbb{L}(G)$ since any member of $\mathbb{M}$ (true marginals) will be locally consistent.
- When $G$ is a tree, we say that local consistency implies global consistency, so for any tree $T$, we have $\mathbb{M}(T)=\mathbb{L}(T)$
- When $G$ has cycles, however, $\mathbb{M}(G) \subset \mathbb{L}(G)$ strictly. We refer to members of $\mathbb{L}(G)$ as pseudo-marginals
- Key problem is that members of $\mathbb{L}$ might not be true possible marginals for any distribution.


## Pseudo-marginals

$$
\tau_{v}\left(x_{v}\right)=[0.5,0.5], \text { and } \tau_{s, t}\left(x_{s}, x_{t}\right)=\left[\begin{array}{cc}
\beta_{s t} & .5-\beta_{s t}  \tag{12.47}\\
.5-\beta_{s t} & \beta_{s t}
\end{array}\right]
$$

- Consider on 3-cycle $C_{3}$, satisfies local consistency.
- But for this won't give us a marginal. Below shows $\mathbb{M}\left(C_{3}\right)$ for $\mu_{1}=\mu_{2}=\mu_{3}=1 / 2$ and the $\mathbb{L}\left(C_{3}\right)$ outer bound (dotted).

(a)

(b)


## Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.48}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{12.49}
\end{equation*}
$$

## Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.48}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{12.49}
\end{equation*}
$$

- $A(\theta)$ is key.


## Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.48}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{12.49}
\end{equation*}
$$

- $A(\theta)$ is key.
- Forward mapping, inference: from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, get marginals.


## Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.48}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{12.49}
\end{equation*}
$$

- $A(\theta)$ is key.
- Forward mapping, inference: from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, get marginals.
- Backwards mapping, learning: from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, getting best parameters associated with empirical facts (means).


## Exponential Family: Recap

- Exponential Family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.48}
\end{equation*}
$$

with

$$
\begin{equation*}
A(\theta)=\log \int_{\mathrm{D}_{X}}\langle\theta, \phi(x)\rangle \nu(d x) \tag{12.49}
\end{equation*}
$$

- $A(\theta)$ is key.
- Forward mapping, inference: from $\theta \in \Omega$ to $\mu \in \mathcal{M}$, get marginals.
- Backwards mapping, learning: from $\mu \in \mathcal{M}$ to $\theta \in \Omega$, getting best parameters associated with empirical facts (means).
- So learning is dual of inference.


## Bethe Entropy Approximation

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

- So inference corresponds to Equation 12.38, and we have two difficulties $\mathcal{M}$ and $A^{*}(\mu)$.
- Maybe it is hard to compute $A^{*}(\mu)$ but perhaps we can reasonably approximate it.
- In case when $-A^{*}(\mu)$ is the entropy, lets use an approximate entropy based on $\mathbb{L}$ being those distributions that factor w.r.t. a tree.
- When $p \in \mathcal{F}\left(G, \mathcal{M}^{(f)}\right)$ and $G$ is a tree $T$, then we can write $p$ as:

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{N}\right)=\prod_{v \in V(T)} p_{v}\left(x_{v}\right) \prod_{(i, j) \in E(T)} \frac{p_{i j}\left(x_{i}, x_{j}\right)}{p_{i}\left(x_{i}\right) p_{j}\left(x_{j}\right)} \tag{12.50}
\end{equation*}
$$

## Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with $T$. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$
\begin{equation*}
p_{\mu}(x)=\prod_{s \in V(T)} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E(T)} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \tag{12.51}
\end{equation*}
$$

## Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with $T$. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$
\begin{equation*}
p_{\mu}(x)=\prod_{s \in V(T)} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E(T)} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \tag{12.51}
\end{equation*}
$$

- When $G=T$ is a tree, and $\mu \in \mathbb{L}(T)=\mathbb{M}(T)$ we have

$$
\begin{align*}
-A^{*}(\mu) & =H\left(p_{\mu}\right)=\sum_{v \in V(T)} H\left(X_{v}\right)-\sum_{(s, t) \in E(T)} I\left(X_{s} ; X_{t}\right)  \tag{12.52}\\
& =\sum_{v \in V(T)} H_{v}\left(\mu_{v}\right)-\sum_{(s, t) \in E(T)} I_{s t}\left(\mu_{s t}\right) \tag{12.53}
\end{align*}
$$

## Bethe Entropy Approximation

- In terms of current notation, we can let $\mu \in \mathbb{L}(T)$, the pseudo marginals associated with $T$. Since local consistency requires global consistency, for a tree, any $\mu \in \mathbb{L}(T)$ is such that $\mu \in \mathbb{M}(T)$, thus

$$
\begin{equation*}
p_{\mu}(x)=\prod_{s \in V(T)} \mu_{s}\left(x_{s}\right) \prod_{(s, t) \in E(T)} \frac{\mu_{s t}\left(x_{s}, x_{t}\right)}{\mu_{s}\left(x_{s}\right) \mu_{t}\left(x_{t}\right)} \tag{12.51}
\end{equation*}
$$

- When $G=T$ is a tree, and $\mu \in \mathbb{L}(T)=\mathbb{M}(T)$ we have

$$
\begin{align*}
-A^{*}(\mu) & =H\left(p_{\mu}\right)=\sum_{v \in V(T)} H\left(X_{v}\right)-\sum_{(s, t) \in E(T)} I\left(X_{s} ; X_{t}\right)  \tag{12.52}\\
& =\sum_{v \in V(T)} H_{v}\left(\mu_{v}\right)-\sum_{(s, t) \in E(T)} I_{s t}\left(\mu_{s t}\right) \tag{12.53}
\end{align*}
$$

- That is, for $G=T,-A^{*}(\mu)$ is very easy to compute (only need to compute entropy and mutual information over at most pairs).


## Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.


## Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph $G$, we can make an approximation to $-A^{*}(\tau)$ based on equation that has same form, i.e.,

$$
\begin{equation*}
-A^{*}(\tau) \approx H_{\text {Bethe }}(\tau) \triangleq \sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right) \tag{12.54}
\end{equation*}
$$

## Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph $G$, we can make an approximation to $-A^{*}(\tau)$ based on equation that has same form, i.e.,

$$
\begin{equation*}
-A^{*}(\tau) \approx H_{\text {Bethe }}(\tau) \triangleq \sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right) \tag{12.54}
\end{equation*}
$$

- Key: $H_{\text {Bethe }}(\tau)$ is not necessarily concave as it is not a real entropy.


## Bethe Entropy Approximation

- We can perhaps just use this as an approximation, i.e., say that for any graph $G=(V, E)$ not nec. a tree.
- That is, assuming that the distribution is structured over pairwise potential functions w.r.t. a graph $G$, we can make an approximation to $-A^{*}(\tau)$ based on equation that has same form, i.e.,

$$
\begin{equation*}
-A^{*}(\tau) \approx H_{\text {Bethe }}(\tau) \triangleq \sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right) \tag{12.54}
\end{equation*}
$$

- Key: $H_{\text {Bethe }}(\tau)$ is not necessarily concave as it is not a real entropy.
- MI equation is not hard to compute $O\left(r^{2}\right)$.

$$
\begin{align*}
I_{s t}\left(\tau_{s t}\right) & =I_{s t}\left(\tau_{s t}\left(x_{s}, x_{t}\right)\right)  \tag{12.55}\\
& =\sum_{x_{s}, x_{t}} \tau_{s t}\left(x_{s}, x_{t}\right) \log \frac{\tau_{s t}\left(x_{s}, x_{t}\right)}{\tau_{s}\left(x_{s}\right) \tau_{t}\left(x_{t}\right)} \tag{12.56}
\end{align*}
$$

## Bethe Variational Problem and LBP

Original variational representation of $\log$ partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.57}
\end{equation*}
$$

## Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.57}
\end{equation*}
$$

Approximate variational representation of log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\}  \tag{12.58}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{12.59}
\end{align*}
$$

## Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.57}
\end{equation*}
$$

Approximate variational representation of log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\}  \tag{12.58}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{12.59}
\end{align*}
$$

- Exact when $G=T$ but we do this for any $G$, still commutable


## Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.57}
\end{equation*}
$$

Approximate variational representation of log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\}  \tag{12.58}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{12.59}
\end{align*}
$$

- Exact when $G=T$ but we do this for any $G$, still commutable
- we get an approximate log partition function, and approximate (pseudo) marginals (in $\mathbb{L}$ ), but this is perhaps much easier to compute.


## Bethe Variational Problem and LBP

Original variational representation of log partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.57}
\end{equation*}
$$

Approximate variational representation of log partition function

$$
\begin{align*}
A_{\text {Bethe }}(\theta) & =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)\right\}  \tag{12.58}\\
& =\sup _{\tau \in \mathbb{L}}\left\{\langle\theta, \tau\rangle+\sum_{v \in V(G)} H_{v}\left(\tau_{v}\right)-\sum_{(s, t) \in E(G)} I_{s t}\left(\tau_{s t}\right)\right\} \tag{12.59}
\end{align*}
$$

- Exact when $G=T$ but we do this for any $G$, still commutable
- we get an approximate log partition function, and approximate (pseudo) marginals (in $\mathbb{L}$ ), but this is perhaps much easier to compute.
- We can optimize this directly using a Lagrangian formulation.


## Bethe Variational Problem and LBP

- Lagrangian constraints for summing to unity at nodes

$$
\begin{equation*}
C_{v v}(\tau)=1-\sum_{x_{v}} \tau_{v}\left(x_{v}\right) \tag{12.60}
\end{equation*}
$$

- Lagrangian constraints for local consistency

$$
\begin{equation*}
C_{t s}\left(x_{s} ; \tau\right)=\tau_{s}\left(x_{s}\right)-\sum_{x_{t}} \tau_{s t}\left(x_{s}, x_{t}\right) \tag{12.61}
\end{equation*}
$$

- Yields following Lagrangian

$$
\begin{align*}
\mathcal{L}(\tau, \lambda ; \theta) & =\langle\theta, \tau\rangle+H_{\text {Bethe }}(\tau)+\sum_{v \in V} \lambda_{v v} C_{v v}(\tau)  \tag{12.62}\\
& +\sum_{(s, t) \in E(G)}\left[\sum_{x_{s}} \lambda_{t s}\left(x_{s}\right) C_{t s}\left(x_{s} ; \tau\right)+\sum_{x_{t}} \lambda_{s t}\left(x_{t}\right) C_{s t}\left(x_{t} ; \tau\right)\right] \tag{12.63}
\end{align*}
$$

## Fixed points: Variational Problem and LBP

## Theorem 12.6.1

LBP updates are Lagrangian method for attempting to solve Bethe variational problem:
(a) For any $G$, any LBP fixed point specifies a pair $\left(\tau^{*}, \lambda^{*}\right)$ s.t.

$$
\begin{equation*}
\nabla_{\tau} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)=0 \text { and } \nabla_{\lambda} \mathcal{L}\left(\tau^{*}, \lambda^{*} ; \theta\right)=0 \tag{12.64}
\end{equation*}
$$

(b) For tree MRFs, Lagrangian equations have unique solution $\left(\tau^{*}, \lambda^{*}\right)$ where $\tau^{*}$ are exact node and edge marginals for the tree and the optimal value obtained is the true log partition function.

- Not guaranteed convex optimization, but is if graph is tree.
- Remarkably, this means if we run loopy belief propagation, and we reach a point where we have converged, then we will have achieved a fixed-point of the above Lagrangian, and thus a (perhaps reasonable) local optimum of the underlying variational problem.


## Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{12.65}
\end{equation*}
$$

## Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{12.65}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).


## Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{12.65}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
- So we can now (at least) characterize any stable point of LBP.


## Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{12.65}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
- So we can now (at least) characterize any stable point of LBP.
- This does not mean that it will converge.


## Fixed points: Variational Problem and LBP

- The resulting Lagrange multipliers $\lambda_{s t}$ end up being exactly the messages that we have defined. I.e., we get

$$
\begin{equation*}
\lambda_{s t}\left(x_{t}\right)=\mu_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{k \in \delta(s) \backslash\{t\}} \mu_{k \rightarrow s}\left(x_{s}\right) \tag{12.65}
\end{equation*}
$$

- Proof: take derivatives of Lagrangian, set equal to zero, use Lagrangian constraints, do a bit of algebra, and amazingly, the BP messages suddenly pop out!!! (see page 86 in book).
- So we can now (at least) characterize any stable point of LBP.
- This does not mean that it will converge.
- For trees, we'll get $A_{\text {Bethe }}(\theta)=A(\theta)$, results of previous lectures (parallel or MPP-based message passing).


## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds?


## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

- Due to sup, we might want, an upper bound $A_{\text {approx }}(\theta) \geq A(\theta)$,


## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

- Due to sup, we might want, an upper bound $A_{\text {approx }}(\theta) \geq A(\theta)$,
- mean-field methods (ch 5 in book) provides lower bound on $A(\theta)$.


## Bounds on $A$

- Moreover, this does not mean $A_{\text {Bethe }}(\theta)$ will be a bound on $A(\theta)$ rather an approximation to it. Why bounds? Recall Max. Likelihood

$$
\begin{equation*}
\theta^{*} \in \underset{\theta}{\operatorname{argmax}}(\langle\theta, \hat{\mu}\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

and convex conjugate dual of $A(\theta)$

$$
\begin{equation*}
A^{*}(\mu) \triangleq \sup _{\theta \in \Omega}(\langle\theta, \mu\rangle-A(\theta)) \tag{??}
\end{equation*}
$$

- Recall again the expression for the partition function

$$
\begin{equation*}
A(\theta)=\sup _{\mu \in \mathcal{M}}\left\{\langle\theta, \mu\rangle-A^{*}(\mu)\right\} \tag{12.38}
\end{equation*}
$$

and some approximation to $A(\theta)$, say $A_{\text {approx }}(\theta)$.

- Due to sup, we might want, an upper bound $A_{\text {approx }}(\theta) \geq A(\theta)$,
- mean-field methods (ch 5 in book) provides lower bound on $A(\theta)$.
- For certain "attractive" potential functions, we get $A_{\text {Bethe }}(\theta) \leq A(\theta)$, these are common in computer vision and are related to graph cuts.


## Bounds on $A$

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.


## Bounds on $A$

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.66}
\end{equation*}
$$

## Bounds on $A$

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.66}
\end{equation*}
$$

- So bounds on $A$ can give us bounds on $p$. E.g., lower bounds on $A$ will give us upper bounds on $p$.


## Bounds on $A$

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.66}
\end{equation*}
$$

- So bounds on $A$ can give us bounds on $p$. E.g., lower bounds on $A$ will give us upper bounds on $p$.
- To compute conditionals

$$
\begin{equation*}
p\left(x_{A} \mid x_{B}\right)=\frac{p\left(x_{A \cup B}\right)}{p\left(x_{B}\right)}=\frac{\sum_{x_{V \backslash(A \cup B)}} p(x)}{\sum_{x_{V \backslash B}} p(x)} \tag{12.67}
\end{equation*}
$$

we would like both upper and lower bounds on $A$ depending on if we want to upper or lower bound probability estimates.

## Bounds on $A$

- In general, ideally we would like methods that give us (as tight as possible) bounds, and we can use both upper and lower bounds.
- Recall definition of the family

$$
\begin{equation*}
p_{\theta}(x)=\exp (\langle\theta, \phi(x)\rangle-A(\theta)) \tag{12.66}
\end{equation*}
$$

- So bounds on $A$ can give us bounds on $p$. E.g., lower bounds on $A$ will give us upper bounds on $p$.
- To compute conditionals

$$
\begin{equation*}
p\left(x_{A} \mid x_{B}\right)=\frac{p\left(x_{A \cup B}\right)}{p\left(x_{B}\right)}=\frac{\sum_{x_{V \backslash(A \cup B)}} p(x)}{\sum_{x_{V \backslash B}} p(x)} \tag{12.67}
\end{equation*}
$$

we would like both upper and lower bounds on $A$ depending on if we want to upper or lower bound probability estimates.

- Perhaps more importantly, $\exp (A(\theta))$ is a marginal in and of itself (recall it is marginalization over everything). If we can bound $A(\theta)$, we can come up with other forms of bounds over other marginals.


## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate:


## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$;


## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual $A^{*}$.


## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual $A^{*}$.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{align*}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4  \tag{12.68a}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G)
\end{align*}
$$

(12.68b)

## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual $A^{*}$.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{array}{rlr}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{12.68b}
\end{array}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.


## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual $A^{*}$.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{align*}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4  \tag{12.68a}\\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{12.68b}
\end{align*}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.
- Each $H_{s}\left(\mu_{s}\right)=\log 2$, and each $I_{s t}\left(\mu_{s t}\right)=\log 2$ giving

$$
\begin{equation*}
H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0 \tag{12.69}
\end{equation*}
$$

## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual $A^{*}$.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{array}{rlr}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{12.68b}
\end{array}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.
- Each $H_{s}\left(\mu_{s}\right)=\log 2$, and each $I_{s t}\left(\mu_{s t}\right)=\log 2$ giving

$$
\begin{equation*}
H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0 \tag{12.69}
\end{equation*}
$$

which obviously can't be a true entropy since we must have $H>0$ for discrete distributions.

## Lack of bounds for Bethe

- Two reasons $A$ might be inaccurate: 1 ) We have replaced $\mathbb{M}$ with outer bound $\mathbb{L}$; and 2) we've used $H_{\text {Bethe }}$ in place of the true dual $A^{*}$.
- Example of inaccuracy (example 4.2 from book), consider a 4-clique

$$
\begin{array}{rlr}
\mu_{s}\left(x_{s}\right) & =\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] & \text { for } s=1,2,3,4 \\
\mu_{s t}\left(x_{s}, x_{t}\right) & =\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] & \forall(s, t) \in E(G) \tag{12.68b}
\end{array}
$$

- Valid marginals, equal 0.5 probability for $(0,0,0,0)$ and $(1,1,1,1)$.
- Each $H_{s}\left(\mu_{s}\right)=\log 2$, and each $I_{s t}\left(\mu_{s t}\right)=\log 2$ giving

$$
\begin{equation*}
H_{\text {Bethe }}(\mu)=4 \log 2-6 \log 2=-2 \log 2<0 \tag{12.69}
\end{equation*}
$$

which obviously can't be a true entropy since we must have $H>0$ for discrete distributions.

- True $-A^{*}(\mu)=\log 2>0$.


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some $p_{\theta}$.


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some $p_{\theta}$. true for Lagrangian optimization as well. : )


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some $p_{\theta}$. true for Lagrangian optimization as well. :)
- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_{i}\left(x_{i}\right)=\sum_{x_{V \backslash\{i\}}} p(x)$.


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some $p_{\theta}$. true for Lagrangian optimization as well. :)
- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_{i}\left(x_{i}\right)=\sum_{x_{V \backslash\{i\}}} p(x)$. A goal of inference is to change factors to become true marginals, can't be done for graphs with cycles in general.


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some $p_{\theta}$. true for Lagrangian optimization as well. ©
- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_{i}\left(x_{i}\right)=\sum_{x_{V \backslash\{i\}}} p(x)$. A goal of inference is to change factors to become true marginals, can't be done for graphs with cycles in general.
- Fixed points of LBP do not get marginal reparameterization but it does get something identical when global renormalized.


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Do solutions to Bethe variational problem (equivalently fixed points of LBP) ever fall into $\mathbb{L}(G) \backslash \mathbb{M}(G)$ (which we know to be non-empty for non-tree graphs)?
- Unfortunately, for all $\tau \in \mathbb{L}(G)$, then it can be a fixed point for LBP for some $p_{\theta}$. true for Lagrangian optimization as well. ©
- Recall notion of reparameterization: for tree graph, such that we can reparameterize so that the edges and nodes are true marginals. e.g., $\phi_{i}\left(x_{i}\right)=\sum_{x_{V \backslash\{i\}}} p(x)$. A goal of inference is to change factors to become true marginals, can't be done for graphs with cycles in general.
- Fixed points of LBP do not get marginal reparameterization but it does get something identical when global renormalized.
- That is, we have


## Reparameterization Properties of Bethe Approximation

## Proposition 12.6.2

Let $\tau^{*}=\left(\tau_{s}^{*}, s \in V ; \tau_{s t}^{*},(s, t) \in E(G)\right)$ denote any optimum of the Bethe variational principle defined by the distribution $p_{\theta}$. Then the distribution defined by the fixed point as

$$
\begin{equation*}
p_{\tau^{*}}(x) \triangleq \frac{1}{Z\left(\tau^{*}\right)} \prod_{s \in V} \tau_{s}^{*}\left(x_{s}\right) \prod_{(s, t) \in E(G)} \frac{\tau_{s t}^{*}\left(x_{s}, x_{t}\right)}{\tau_{s}^{*}\left(x_{s}\right) \tau_{t}^{*}\left(x_{t}\right)} \tag{12.70}
\end{equation*}
$$

is a reparameterization of the original. That is, we have $p_{\theta}(x)=p_{\tau^{*}}(x)$ for all $x$.

- For trees, we have $Z\left(\tau^{*}\right)=1$.
- Form gives strategies for seeing how bad we are doing for any given instance (by, say, comparing marginals) - approximation error (possibly a bound)


## What about $\mathbb{L} \backslash \mathbb{M}$ ?

- Consider

$$
\begin{align*}
\theta_{s}\left(x_{s}\right) & =\log \tau_{s}\left(x_{s}\right)=\log 0.5 \\
\theta_{s t}\left(x_{s}, x_{t}\right) & =\log \frac{\tau_{s t}\left(x_{s}, x_{t}\right)}{\tau_{s}\left(x_{s}\right) \tau_{t}\left(x_{t}\right)}  \tag{12.71a}\\
& =\log 4\left[\begin{array}{cc}
\beta_{s t} & 0.5-\beta_{s t} \\
0.5-\beta_{s t} & \beta_{s t}
\end{array}\right] \forall(s, t) \in E(G) \tag{12.71b}
\end{align*}
$$

- We saw in the pseudo marginals slide that, for a 3-cycle, a choice of parameters that gave us $\tau \in \mathbb{L} \backslash \mathbb{M}$. Is this achievable as fixed point of LBP?
- For this choice of parameters, if we start sending messages, starting from the uniform messages, then this will be a fixed point. ©)


## Sources for Today's Lecture

- Wainwright and Jordan Graphical Models, Exponential Families, and Variational Inference http://www.nowpublishers.com/product. aspx?product=MAL\&doi=2200000001

