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Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book. Start reading chapter 4.

Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L13 (11/10): exponential models, mean
params and polytopes, tree outer bound

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Power method lemma

Theorem 12.2.1 (Power method lemma)

Let A be a matrix with eigenvalues λ1, . . . ,λn (sorted in decreasing
order) and corresponding eigenvectors x1, x2, . . . , xn. If |λ1| > |λ2|
(strict), then the update xt+1 = αAxt converges to a multiple of x1
starting from any initial vector x0 =

∑
i βixi provided that β1 != 0. The

convergence rate factor is given by |λ2/λ1|.
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 12.2.1

1. µ!→1 converges to the principle eigenvector of M .
2. µ2→1 converges to the principle eigenvector of MT .
3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M .
4. The diagonal elements of M correspond to correct marginal p(x1)
5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = βp(x1) + (1− β)q(x1) where β is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M .

Proof.

See Weiss2000.
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exponential family models

φ = (φα,α ∈ I) is a collection of functions known as potential
functions, sufficient statistics, or features. I is an index set of size
d = |I|.
Each φα is a function of x, φα(x) but it usually does not use all of x
(only a subset of elements). Notation φα(xCα) assumed implicitly
understood, where Cα ⊆ V (G).

θ is a vector of canonical parameters (same length, |I|). θ ∈ Ω ⊆ Rd

where d = |I|.
We can define a family as

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (12.12)

where 〈θ,φ(x)〉 =
∑

α θαφα(x). Note that we’re using φ here in the
exponent, before we were using it out of the exponent.

Note that φ(x) = (φ1(x),φ2(x), . . . ,φ|I|) where again each φi(x)

might use only some of the elements in vector x. φ : DX
m → Rd.
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Log partition (cumulant) function

Based on underlying set of parameters θ, we have family of models

pθ(x) =
1

Z(θ)
exp

{
∑

α∈I
θαφα(x)

}
= exp(〈θ,φ(x)〉 −A(θ)) (12.12)

To ensure normalized, we use log partition (cumulant) function

A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (12.13)

with θ ∈ Ω
∆
=

{
θ ∈ Rd|A(θ) < +∞

}

A(θ) is convex function of θ, so Ω is convex.

Exponential family for which Ω is open is called regular
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Maximum entropy estimation

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (12.14)

where H(p) = −
∫
p(x) log p(x)ν(dx), and ∀α ∈ I

Ep[φα(X)] =

∫

DX

φα(x)p(x)ν(dx). (12.15)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) and then by
finding canonical parameters θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I. (12.16)
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Maximum entropy solution

Solution to maxent problem

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (12.14)

has the form of an exponential model:

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (12.15)

where A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (12.16)

Exercise: show that solution to Eqn (??) has this form.
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Minimal Representation of Exponential Family

Minimal representation - Does not exist a nonzero vector γ ∈ Rd for
which 〈γ,φ(x)〉 is constant ∀x (that are ν-measurable).

I.e., guarantee that, for all non-zero γ ∈ Rd, there exists x1 != x2,
with ν(x1), ν(x2) > 0, such that 〈γ,φ(x1)〉 != 〈γ,φ(x2)〉.
essential idea: that for a set of sufficient stats I, there is not a
lower-dimensional vector |I ′| < |I| that is also sufficient (a min suf
stat is a function of all other suf stats).

We can’t reduce the dimensionality d without changing the family.
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Overcomplete Representation

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (12.14)

where A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (12.15)

Overcomplete representation d = |I| higher than need be
I.e., ∃γ != 0 s.t. 〈γ,φ(x)〉 = c, ∀x where c = constant.
I.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given γ != 0 s.t.,
〈γ,φ(x)〉 = c and some other parameters θ, we have , we have

pθ+γ(x) = exp(〈(θ + γ),φ(x)〉 −A(θ + γ)) (12.16)

= exp(〈θ,φ(x)〉+ 〈γ,φ(x)〉 −A(θ + γ)) (12.17)

= exp(〈θ,φ(x)〉+ c−A(θ + γ)) (12.18)

= exp(〈θ,φ(x)〉 −A(θ)) = pθ(x) (12.19)

True for any λγ with λ ∈ R, so affine set of identical distributions!
We’ll see later, this useful in understanding BP algorithm.
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Exponential family models

Minimal representation of Bernoulli distribution is

p(x|γ) = exp(γx−A(γ)) (12.1)

So p(X = 1) = 1− p(X = 0) = exp(γ −A(γ)) and
p(X = 0) = exp(−A(γ)).

overcomplete rep of Bernoulli dist.

p(x|θ0, θ1) = exp(〈θ,φ(x)〉) (12.2)

= exp(θ0(1− x) + θ1x−A(γ)) (12.3)

where θ = (θ0, θ1) and φ(x) = (1− x, x).

Is there a non-zero vector a s.t. 〈a,φ(x)〉 = c for all x, ν-a.e.?

If a = (1, 1) then 〈a,φ(x)〉 = (1− x) + x = 1

This is overcomplete since there is a linear combination of feature
functions that are constant.

Since θ0(1− x) + θ1x = θ0 + x(θ1 − θ0), any parameters θ1, θ2 such
that θ1 − θ0 = γ gives same distribution determined by γ.
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Famous Example - Ising Model

Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model
becomes

pθ(x) = exp





∑

v∈V
θvxv +

∑

(s,t)∈E

θstxsxt −A(θ)




 , (12.4)

with

A(θ) = log
∑

x∈{0,1}m
exp





∑

v∈V
θvxv +

∑

(s,t)∈E

θstxsxt −A(θ)




 (12.5)

Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

Note, in this case I is all singletons (unaries) and all pairs, so that

{Cα}α =
{
{xi}i, {xixj}(i,j)∈E

}
.

We can easily generalize this via a set system. I.e., consider (V,V),
where V =

{
V1, V2, . . . , V|V|

}
and where ∀i, Vi ⊆ V .

We can form sufficient statistic set via {Cα}α =
{
{xV }V ∈V

}
.

Could have, for example that φα =
∏

i∈Cα
xi.

Hence, it is possible to generalize with higher order factors (which are
also called “interaction functions”, “potential functions”, or
“sufficient statistics”).
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Multivalued variables
Variables need not binary, instead DX = {0, 1, . . . , r − 1} for r > 2.

We can define a set of indicator functions constituting sufficient
statistics. That is

1s;j(xs) =

{
1 if xs = j

0 else
(12.6)

and

1st;jk(xs, xt) =

{
1 if xs = j and xt = k,

0 else
(12.7)

Model becomes

pθ(x) = exp





∑

v∈V

r−1∑

i=0

θv;j1s;j(xv) +
∑

(s,t)∈E

∑

j,k

θst;ij1st;jk(xs, xt)−A(θ)




 ,

(12.8)

Is this overcomplete?

Yes. Why?
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Multivariate Gaussian

Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. I.e.

pθ(x) = exp

{
〈θ, x〉+ 1

2
〈〈Θ, xxᵀ〉〉 −A(θ,Θ)

}
(12.9)

〈〈Θ, xxᵀ〉〉 =
∑

ij Θijxixj is Frobenius inner product.

So sufficient statistics are (xi)
n
i=1 and (xixj)i,j

Θs,t = 0 means identical to missing edge in corresponding graph
(marginal independence). Θ is negative inverse covariance matrix.

Any other constraints on Θ?

negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pθs(ys, xs)).
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covariance matrix. For canonical exponential form, we use mean and
correlation matrix. I.e.

pθ(x) = exp

{
〈θ, x〉+ 1

2
〈〈Θ, xxᵀ〉〉 −A(θ,Θ)

}
(12.9)

〈〈Θ, xxᵀ〉〉 =
∑

ij Θijxixj is Frobenius inner product.

So sufficient statistics are (xi)
n
i=1 and (xixj)i,j

Θs,t = 0 means identical to missing edge in corresponding graph
(marginal independence). Θ is negative inverse covariance matrix.

Any other constraints on Θ?

negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pθs(ys, xs)).
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Other examples

A few other examples in the book

Mixture models

Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

Models with hard constraints, or having zero probabilities — key thing
is to place the hard constraints in the ν measure. Sufficient statistics
become easy if complexity is encoded in the measure. Alternative is to
allow features over extended reals (i.e., a feature can provide −∞ but
this leads to certain technical difficulties that they would rather not
deal with).
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Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all the possible such vectors

M(φ) = M ∆
=

{
µ ∈ Rd : ∃p s.t. µα = Ep[φα(X)], ∀α ∈ I

}

(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.
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Mean Parameters and Gaussians

Here, we have E[XXᵀ] = C and µ = EX. Question is, how to define
M?

Given definition of C and µ, then C − µµᵀ must be valid covariance
matrix (since this is E[X − EX][X − EX]ᵀ = C − µµᵀ).

Thus, C − µµᵀ + 0, thus p.s.d. matrix.

On the other hand, if this is true, we can form a Gaussian using
C − µµᵀ as the covariance matrix.

Thus, for Gaussian MRFs, M has the form

M =
{
(µ,C) ∈ Rm × Sm

+ |C − µµᵀ + 0
}

(12.12)

where Sm
+ is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

“Illustration of the set M for a
scalar Gaussian: the model has
two mean parameters µ = E[X]
and Σ11 = E[X2], which must
satisfy the quadratic contraint
Σ11 − µ2 ≥ 0. Notice that M is
convex, which is a general
property.” but is not a polytope.

Also, don’t confuse the “mean
parameters” with the means of a
Gaussian. The typical means of
Gaussians are means in this new
sense, but those means are not
all of the means. !
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Mean Parameters and Polytopes

When X is discrete, we get a polytope since

M =

{
µ ∈ Rb : µ =

∑

x

φ(x)p(x) for some p ∈ U
}

(12.13)

= conv {φ(x), x ∈ DX (that are ν-measurable),} (12.14)

where conv {·} is the convex hull of the items in argument set.

So we have a convex polytope
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Mean Parameters and Polytopes

Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J |× d matrix A and |J |-element column vector b with

M =
{
µ ∈ Rd : Aµ ≥ b

}
=

{
µ ∈ Rd : 〈aj , µ〉 ≥ bj , ∀j ∈ J

}

(12.15)

with A having rows aj .

M

j

〈a j,
m〉

=
b

ψ(x)

〈a
j,
m
〉 ≥

b j

a j 〈aj ,m〉 ≤ bj
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Mean Parameters and Polytopes

Example: Ising mean parameters. Given sufficient statistics

φ(x) = {xs, s ∈ V ;xsxt, (s, t) ∈ E(G)} ∈ R|V |+|E| (12.16)

we get

µv = Ep[Xv] = p(Xv = 1) ∀v ∈ V (12.17)

µs,t = Ep[XsXt] = p(Xs = 1, Xt = 1) ∀(s, t) ∈ E(G) (12.18)

Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1, 1 for each node and
edge in the graph = conv {φ(x), x ∈ {0, 1}m}.
Gives complete marginal since ps(1) = 1− ps(0),
ps,t(1, 0) = ps(1)− ps,t(1, 1), ps,t(0, 1) = pt(1)− ps,t(1, 1), etc.

Recall: marginals are often the goal of inference.

Coincidence?
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Example: 2-variable Ising

“Ising model with two variables (X1, X2) ∈ {0, 1}2. Three mean
parameters µ1 = E[X1], µ2 = E[X2], µ12 = E[X2X2], must satisfy
constraints 0 ≤ µ12 ≤ µi for i = 1, 2, and 1 + µ12 − µ1 − µ2 ≥ 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0, 1]3.”
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Mean Parameters and Overcomplete Representation

We can use overcomplete representation and get a “marginal
polytope”, a polytope that represents the marginal distributions at
each potential function.

Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

∀v ∈ V (G), j ∈ {0 . . . r − 1}, define φv,j(xv) " 1(xv = j) (12.19)

∀(s, t) ∈ E(G), j, k ∈ {0 . . . r − 1}, we define: (12.20)

φst,jk(xs, xt) " 1(xs = j, xt = k) = 1(xs = j)1(xt = k)
(12.21)

So we now have |V |r + 2|E|r2 functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

Mean parameters are now true (fully specified) marginals, i.e.,
µv(j) = p(xv = j) and µst(j, k) = p(xs = j, xt = k) since

µv,j = Ep[1(xv = j)] = p(xv = j) (12.22)

µst,jk = Ep[1(xs = j, xt = k)] = p(xs = j, xt = k) (12.23)

Such an M is called the marginal polytope for discrete graphical
models. Any µ must live in the polytope that corresponds to node
and edge true marginals.

We can also associate such a polytope with a graph G, where we take
only (s, t) ∈ E(G). Denote this as M(G).

This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we’ll see.
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Marginal Polytopes and Facet complexity

Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.

“facet complexity” of M depends on the graph structure.

For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

For k-trees, complexity grows exponentially in k

Key idea: use polyhedral approximations to produce model and
inference approximations.
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For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

For k-trees, complexity grows exponentially in k

Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

We can view the inference problem as moving from the canonical
parameters θ to the point in the marginal polytope, called forward
mapping, moving from θ ∈ Ω to µ ∈ M.

We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.
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Maximum entropy estimation

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (12.14)

where H(p) = −
∫
p(x) log p(x)ν(dx), and ∀α ∈ I

Ep[φα(X)] =

∫

DX

φα(x)p(x)ν(dx). (12.15)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) and then by
finding canonical parameters θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I. (12.16)
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Learning is the dual of Inference

Ex: Estimate θ with θ̂ based on data D = {x̄(i)}Mi=1 of size M ,
likelihood function

((θ,D) =
1

M

M∑

i=1

log pθ(x̄
(i)) = 〈θ, µ̂〉 −A(θ) (12.24)

where empirical means given by

µ̂ = Ê[φ(X)] =
1

M

M∑

i=1

φ(x̄(i)) (12.25)

By taking derivatives of the above, it is easy to see that solution is the
point θ̂ = θ(µ̂) such that empirical matches expected means, or what
are called the moment matching conditions:

Eθ̂[φ(X)] = µ̂ (12.26)

this is the the backward mapping problem, going from µ to θ.
Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy
Entropy definition again: H(p) = −

∫
p(x) log p(x)ν(dx)

Given data, D = {x̄(i)}Mi=1, defines an empirical distribution

p̂(x) =
1

M

M∑

i=1

1(x = x̄(i)) (12.27)

so that Ep̂[φ(X)] =
∫
p̂(x)φ(x)ν(dx) = 1

M

∑M
i=1 φ(x̄

(i)) = µ̂
Starting from maximum likelihood solution θ(û), meaning we are at
moment matching conditions Epθ(û) [φ(X)] = µ̂ = Ep̂[φ(X)], we have

((θ(û),D) = 〈θ(û), µ̂〉 −A(θ(û)) =
1

M

M∑

i=1

log pθ(û)(x̄
(i)) (12.28)

=

∫
p̂(x) log pθ(µ̂)(x)ν(dx) = Ep̂[log pθ(µ̂)(x)] (12.29)

= −Hp̂[pθ(µ̂)(x)] = −Hpθ(µ̂) [pθ(µ̂)(x)] (12.30)

Thus, maximum likelihood value and negative entropy are identical, at
least for empirical µ̂ (which is ∈ M).
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Learning is the dual of Inference

I.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

Thus, maximum entropy learning under a set of constraints (given by
Eθ[φ(X)] = µ̂) is the same as maximum likelihood learning of an
exponential model form.

If we do maximum entropy learning, where does the exp(·) function
come from?

From the entropy function. I.e., the exponential form is
the distribution that has maximum entropy having those constraints.
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Dual Mappings: Summary

Summarizing these relationships

Forward mapping: moving from θ ∈ Ω to µ ∈ M, this is the inference
problem, getting the marginals.

Backwards mapping: moving from µ ∈ M to θ ∈ Ω, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

Turns out log partition function A, and its dual A∗ can give us these
mappings, and the mappings have interesting forms . . .
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Log partition (or cumulant) function

A(θ) = log

∫

DX

exp 〈θ,φ(x)〉 ν(dx) (12.31)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (12.32)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(12.33)

Proof given in book (Proposition 3.1, page 62).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F35/64 (pg.82/185)



exponential models µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Log partition (or cumulant) function

A(θ) = log

∫

DX

exp 〈θ,φ(x)〉 ν(dx) (12.31)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (12.32)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(12.33)

Proof given in book (Proposition 3.1, page 62).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F35/64 (pg.83/185)



exponential models µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Log partition (or cumulant) function

A(θ) = log

∫

DX

exp 〈θ,φ(x)〉 ν(dx) (12.31)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (12.32)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(12.33)

Proof given in book (Proposition 3.1, page 62).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F35/64 (pg.84/185)



exponential models µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Log partition (or cumulant) function

A(θ) = log

∫

DX

exp 〈θ,φ(x)〉 ν(dx) (12.31)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (12.32)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(12.33)

Proof given in book (Proposition 3.1, page 62).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F35/64 (pg.85/185)



exponential models µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Log partition (or cumulant) function

A(θ) = log

∫

DX

exp 〈θ,φ(x)〉 ν(dx) (12.31)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (12.32)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(12.33)

Proof given in book (Proposition 3.1, page 62).
Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F35/64 (pg.86/185)



exponential models µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Log partition function

So derivative of log partition function w.r.t. θ is equal to our mean
parameter µ in the discrete case.

Given A(θ), we can recover the marginals for each potential function
φα,α ∈ I (when mean parameters lie in the marginal polytope).

If we can approximate A(θ) with Ã(θ) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall see in future lectures.
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Log partition function

So ∇A : Ω → M′, where M′ ⊆ M, and where
M =

{
µ ∈ Rd|∃p s.t. Ep[φ(X)] = µ

}
.

For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between µ and θ.

For non-minimal exponential families, more than one θ for a given µ
(not surprising since multiple θ’s can yield the same distribution).

For non-exponential families, other distributions can yield µ, but the
exponential family one is the one that has maximum entropy.

ex1:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

Key point: all mean parameters that are realizable are also realizable
by member of exp. family.
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Mappings - one-to-one

In fact, we have

Theorem 12.4.1

The gradient map ∇A is one-to-one iff the exponential representation is
minimal.

Proof basically uses property that if representation is non-minimal,
and 〈a,φ(x)〉 = c for all x, then we can form an affine set of
equivalent parameters θ + γa.

Other direction, uses strict convexity of A(θ)
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Mappings - onto

Theorem 12.4.2

In a minimal exponential family, the gradient map ∇A is onto the interior
of M (denoted M◦). Consequently, for each µ ∈ M◦, there exists some
θ = θ(µ) ∈ Ω such that Eθ[φ(X)] = µ.

Ex: Gaussian. Any mean parameter (set of means E[X] and
correlations E[XXT ]) can be realized by a Gaussian having those
same mean parameters (moments).

The Gaussian won’t nec. be the “true” distribtuion (in such case, the
“true” distribution would not be a Gaussian, and might be an
exponential family distribution with additional moments (e.g., 1D
Gaussians have zero skew and kurtosis) or might not be exponential
family at all).

The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

Consider maximum likelihood problem for exp. family

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (12.34)

Convex conjugate dual (also sometimes Fenchel-Legendre dual or
transform) of A(θ) is defined as:

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (12.35)

So dual is optimal value of the ML problem, when µ ∈ M, and we
saw the relationship between ML and negative entropy before.
Key: when µ ∈ M, dual is negative entropy of exponential model
pθ(µ) where θ(µ) is the unique set of canonical parameters satisfying
this matching condition

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ (12.36)

When µ /∈ M, then A∗(µ) = +∞, optimization with dual need
consider points only in M.
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Conjugate Duality, Maximum Likelihood, Negative Entropy

Theorem 12.4.3 (Relationship between A and A∗)

(a) For any µ ∈ M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ ∈ M̄
(12.37)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (12.38)

(c) For θ ∈ Ω, sup occurs at µ ∈ M◦ of moment matching conditions

µ =

∫

DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (12.39)
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Conjugate Duality

Note that A∗ isn’t exactly entropy, only entropy sometimes, and
depends on matching parameters to µ via the matching mapping θ(µ)
which achieves

Eθ(µ)[φ(X)] = µ (12.40)

A(θ) in Equation 12.38 is the “inference” problem (dual of the dual)
for a given θ, since computing it involves computing the desired
node/edge marginals.

Whenever µ /∈ M, then A∗(µ) returns ∞ which can’t be the resulting
sup in Equation 12.38, so Equation 12.38 need only consider M.
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Conjugate Duality

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (12.38)

computing A(θ) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.

Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. !
Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. "
More bad news: A∗ not given explicitly in general and hard to
compute. "
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Conjugate Duality

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (12.38)

Some good news: The above form gives us new avenues to do
approximation. !

For example, we might either relax M (making it less complex), relax
A∗(µ) (making it easier to compute over), or both. !
Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). !!
Much of the rest of the class will be above approaches to the above
correspond not only to junction tree algorithm (that we’ve seen) but
also to well-known approximation methods (LBP, mean-field, Bethe,
expectation-propagation (EP), Kikuchi methods, linear programming
relaxations, and semidefnite relaxations, some of which we will cover).
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relaxations, and semidefnite relaxations, some of which we will cover).
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sum-product commutative semiring). !!
Much of the rest of the class will be above approaches to the above
correspond not only to junction tree algorithm (that we’ve seen) but
also to well-known approximation methods (LBP, mean-field, Bethe,
expectation-propagation (EP), Kikuchi methods, linear programming
relaxations, and semidefnite relaxations, some of which we will cover).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F44/64 (pg.118/185)



exponential models µ Param./Marg. Polytope LBP and Tree Outer Bound Bethe Entropy Approx Refs

Overcomplete, simple notation

We’ll see: LBP (sum-product alg.) has much to do with an
approximation to the aforementioned variational problems.

Recall: dealing only with pairwise interactions (natural for image
processing) – If not pairwise, we can convert from factor graph to
factor graph with factor-width 2 factors.

Exponential overcomplete family model of form

pθ(x) =
1

Z(θ)
exp





∑

v∈V (G)

θv(xv) +
∑

(s,t)∈E(G)

θst(xs, xt)






with simple new shorthand notation functions θv and θst.

θv(xv)
∆
=

∑

i

θv,i1(xv = i) and (12.41)

θs,t(xs, xt)
∆
=

∑

i,j

θst,ij1(xs = i, xt = j) (12.42)
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Marginal notation, and graph
Marginal polytope

We also have mean parameters that constitute the marginal polytope.

µv(xv)
∆
=

∑

i∈DXv

µv,i1(xv = i), for u ∈ V (G) (12.43)

µst(xs, xt)
∆
=

∑

(j,k)∈DX{s,t}

µst,jk1(xs = j, xt = k), for (s, t) ∈ E(G)

(12.44)

And M(G) corresponds to the set of all singleton and pairwise
marginals that can be jointly realized by some underlying probability
distribution p ∈ F(G,M(f)) that contains only pairwise interactions.

Note, M(G) is respect to a graph G.

M can be represented as a convex hull of a set of points, or by a set
of linear inequality constraints.
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Local consistency polytope

An “outer bound” of M consists of a set that contains M, and if it is
formed from a subset of the linear inequalities (subset of the rows of
matrix module (A, b)), then it is a polyhedral outer bound. Lets call
this L.

Another way to form outer bound: require only consistency, i.e.,
consider set {τv, v ∈ V (G)} ∪ {τs,t, (s, t) ∈ E(G)} that is
non-negative and satisfies normalization

∑

xv

τv(xv) = 1 (12.45)

and pair-node marginal consistency constraints
∑

x′
t

τs,t(xs, x
′
t) = τs(xs) (12.46a)

∑

x′
s

τs,t(x
′
s, xt) = τt(xt) (12.46b)
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Local consistency polytope

Define L(G) to be the (locally consistent) polytope that obeys the
constraints in Equations 12.45 and 12.46.

Recall: local consistency was the necessary conditions for potentials
being marginals that, it turned out, for junction tree that also
guaranteed global consistency.

Clearly M ⊆ L(G) since any member of M (true marginals) will be
locally consistent.

When G is a tree, we say that local consistency implies global
consistency, so for any tree T , we have M(T ) = L(T )
When G has cycles, however, M(G) ⊂ L(G) strictly. We refer to
members of L(G) as pseudo-marginals

Key problem is that members of L might not be true possible
marginals for any distribution.
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Pseudo-marginals

τv(xv) = [0.5, 0.5], and τs,t(xs, xt) =

[
βst .5− βst

.5− βst βst

]
(12.47)

Consider on 3-cycle C3, satisfies local consistency.

But for this won’t give us a marginal. Below shows M(C3) for
µ1 = µ2 = µ3 = 1/2 and the L(C3) outer bound (dotted).
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Exponential Family: Recap

Exponential Family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (12.48)

with

A(θ) = log

∫

DX

〈θ,φ(x)〉 ν(dx) (12.49)

A(θ) is key.

Forward mapping, inference: from θ ∈ Ω to µ ∈ M, get marginals.

Backwards mapping, learning: from µ ∈ M to θ ∈ Ω, getting best
parameters associated with empirical facts (means).

So learning is dual of inference.
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Bethe Entropy Approximation

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (12.38)

So inference corresponds to Equation 12.38, and we have two
difficulties M and A∗(µ).

Maybe it is hard to compute A∗(µ) but perhaps we can reasonably
approximate it.

In case when −A∗(µ) is the entropy, lets use an approximate entropy
based on L being those distributions that factor w.r.t. a tree.

When p ∈ F(G,M(f)) and G is a tree T , then we can write p as:

p(x1, . . . , xN ) =
∏

v∈V (T )

pv(xv)
∏

(i,j)∈E(T )

pij(xi, xj)

pi(xi)pj(xj)
(12.50)
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Bethe Entropy Approximation

In terms of current notation, we can let µ ∈ L(T ), the pseudo
marginals associated with T . Since local consistency requires global
consistency, for a tree, any µ ∈ L(T ) is such that µ ∈ M(T ), thus

pµ(x) =
∏

s∈V (T )

µs(xs)
∏

(s,t)∈E(T )

µst(xs, xt)

µs(xs)µt(xt)
(12.51)

When G = T is a tree, and µ ∈ L(T ) = M(T ) we have

−A∗(µ) = H(pµ) =
∑

v∈V (T )

H(Xv)−
∑

(s,t)∈E(T )

I(Xs;Xt) (12.52)

=
∑

v∈V (T )

Hv(µv)−
∑

(s,t)∈E(T )

Ist(µst) (12.53)

That is, for G = T , −A∗(µ) is very easy to compute (only need to
compute entropy and mutual information over at most pairs).
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Bethe Entropy Approximation
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Bethe Entropy Approximation

We can perhaps just use this as an approximation, i.e., say that for
any graph G = (V,E) not nec. a tree.

That is, assuming that the distribution is structured over pairwise
potential functions w.r.t. a graph G, we can make an approximation
to −A∗(τ) based on equation that has same form, i.e.,

−A∗(τ) ≈ HBethe(τ)
∆
=

∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst) (12.54)

Key: HBethe(τ) is not necessarily concave as it is not a real entropy.

MI equation is not hard to compute O(r2).

Ist(τst) = Ist(τst(xs, xt)) (12.55)

=
∑

xs,xt

τst(xs, xt) log
τst(xs, xt)

τs(xs)τt(xt)
(12.56)
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Bethe Variational Problem and LBP

Original variational representation of log partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (12.57)

Approximate variational representation of log partition function

ABethe(θ) = sup
τ∈L

{〈θ, τ〉+HBethe(τ)} (12.58)

= sup
τ∈L




〈θ, τ〉+
∑

v∈V (G)

Hv(τv)−
∑

(s,t)∈E(G)

Ist(τst)




 (12.59)

Exact when G = T but we do this for any G, still commutable

we get an approximate log partition function, and approximate
(pseudo) marginals (in L), but this is perhaps much easier to compute.

We can optimize this directly using a Lagrangian formulation.
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We can optimize this directly using a Lagrangian formulation.
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Bethe Variational Problem and LBP

Lagrangian constraints for summing to unity at nodes

Cvv(τ) = 1−
∑

xv

τv(xv) (12.60)

Lagrangian constraints for local consistency

Cts(xs; τ) = τs(xs)−
∑

xt

τst(xs, xt) (12.61)

Yields following Lagrangian

L(τ,λ; θ) = 〈θ, τ〉+HBethe(τ) +
∑

v∈V
λvvCvv(τ) (12.62)

+
∑

(s,t)∈E(G)

[
∑

xs

λts(xs)Cts(xs; τ) +
∑

xt

λst(xt)Cst(xt; τ)

]

(12.63)
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Fixed points: Variational Problem and LBP

Theorem 12.6.1

LBP updates are Lagrangian method for attempting to solve Bethe
variational problem:
(a) For any G, any LBP fixed point specifies a pair (τ∗,λ∗) s.t.

∇τL(τ∗,λ∗; θ) = 0 and ∇λL(τ∗,λ∗; θ) = 0 (12.64)

(b) For tree MRFs, Lagrangian equations have unique solution (τ∗,λ∗)
where τ∗ are exact node and edge marginals for the tree and the optimal
value obtained is the true log partition function.

Not guaranteed convex optimization, but is if graph is tree.

Remarkably, this means if we run loopy belief propagation, and we
reach a point where we have converged, then we will have achieved a
fixed-point of the above Lagrangian, and thus a (perhaps reasonable)
local optimum of the underlying variational problem.
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Fixed points: Variational Problem and LBP

The resulting Lagrange multipliers λst end up being exactly the
messages that we have defined. I.e., we get

λst(xt) = µs→t(xt) =
∑

xs

ψs,t(xs, xt)
∏

k∈δ(s)\{t}

µk→s(xs) (12.65)

Proof: take derivatives of Lagrangian, set equal to zero, use
Lagrangian constraints, do a bit of algebra, and amazingly, the BP
messages suddenly pop out!!! (see page 86 in book).

So we can now (at least) characterize any stable point of LBP.

This does not mean that it will converge.

For trees, we’ll get ABethe(θ) = A(θ), results of previous lectures
(parallel or MPP-based message passing).
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Bounds on A
Moreover, this does not mean ABethe(θ) will be a bound on A(θ)
rather an approximation to it. Why bounds?

Recall Max. Likelihood

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (??)

and convex conjugate dual of A(θ)

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (??)

Recall again the expression for the partition function

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (12.38)

and some approximation to A(θ), say Aapprox(θ).

Due to sup, we might want, an upper bound Aapprox(θ) ≥ A(θ),
mean-field methods (ch 5 in book) provides lower bound on A(θ).
For certain “attractive” potential functions, we get ABethe(θ) ≤ A(θ),
these are common in computer vision and are related to graph cuts.
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Bounds on A

In general, ideally we would like methods that give us (as tight as
possible) bounds, and we can use both upper and lower bounds.

Recall definition of the family

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (12.66)

So bounds on A can give us bounds on p. E.g., lower bounds on A
will give us upper bounds on p.
To compute conditionals

p(xA|xB) =
p(xA∪B)

p(xB)
=

∑
xV \(A∪B)

p(x)
∑

xV \B
p(x)

(12.67)

we would like both upper and lower bounds on A depending on if we
want to upper or lower bound probability estimates.
Perhaps more importantly, exp(A(θ)) is a marginal in and of itself
(recall it is marginalization over everything). If we can bound A(θ),
we can come up with other forms of bounds over other marginals.
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Lack of bounds for Bethe

Two reasons A might be inaccurate:

1) We have replaced M with
outer bound L; and 2) we’ve used HBethe in place of the true dual A∗.

Example of inaccuracy (example 4.2 from book), consider a 4-clique

µs(xs) = [0.5 0.5] for s = 1, 2, 3, 4 (12.68a)

µst(xs, xt) =

[
0.5 0
0 0.5

]
∀(s, t) ∈ E(G) (12.68b)

Valid marginals, equal 0.5 probability for (0, 0, 0, 0) and (1, 1, 1, 1).

Each Hs(µs) = log 2, and each Ist(µst) = log 2 giving

HBethe(µ) = 4 log 2− 6 log 2 = −2 log 2 < 0 (12.69)

which obviously can’t be a true entropy since we must have H > 0 for
discrete distributions.

True −A∗(µ) = log 2 > 0.
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Each Hs(µs) = log 2, and each Ist(µst) = log 2 giving

HBethe(µ) = 4 log 2− 6 log 2 = −2 log 2 < 0 (12.69)

which obviously can’t be a true entropy since we must have H > 0 for
discrete distributions.

True −A∗(µ) = log 2 > 0.
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What about L \M?

Do solutions to Bethe variational problem (equivalently fixed points of
LBP) ever fall into L(G) \M(G) (which we know to be non-empty for
non-tree graphs)?

Unfortunately, for all τ ∈ L(G), then it can be a fixed point for LBP
for some pθ.

true for Lagrangian optimization as well. "

Recall notion of reparameterization: for tree graph, such that we can
reparameterize so that the edges and nodes are true marginals. e.g.,
φi(xi) =

∑
xV \{i}

p(x).

A goal of inference is to change factors to

become true marginals, can’t be done for graphs with cycles in
general.

Fixed points of LBP do not get marginal reparameterization but it
does get something identical when global renormalized.

That is, we have
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Reparameterization Properties of Bethe Approximation

Proposition 12.6.2

Let τ∗ = (τ∗s , s ∈ V ; τ∗st, (s, t) ∈ E(G)) denote any optimum of the Bethe
variational principle defined by the distribution pθ. Then the distribution
defined by the fixed point as

pτ∗(x) "
1

Z(τ∗)

∏

s∈V
τ∗s (xs)

∏

(s,t)∈E(G)

τ∗st(xs, xt)

τ∗s (xs)τ
∗
t (xt)

(12.70)

is a reparameterization of the original. That is, we have pθ(x) = pτ∗(x)
for all x.

For trees, we have Z(τ∗) = 1.

Form gives strategies for seeing how bad we are doing for any given
instance (by, say, comparing marginals) - approximation error (possibly
a bound)
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What about L \M?

Consider

θs(xs) = log τs(xs) = log 0.5 0.5] for s = 1, 2, 3, 4

(12.71a)

θst(xs, xt) = log
τst(xs, xt)

τs(xs)τt(xt)

= log 4

[
βst 0.5− βst

0.5− βst βst

]
∀(s, t) ∈ E(G) (12.71b)

We saw in the pseudo marginals slide that, for a 3-cycle, a choice of
parameters that gave us τ ∈ L \M. Is this achievable as fixed point of
LBP?

For this choice of parameters, if we start sending messages, starting
from the uniform messages, then this will be a fixed point. "
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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