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Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book. Start reading chapter 4.

Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes, tree outer bound

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17):

L15 (11/19):

L16 (11/24):

L17 (11/26):

L18 (12/1):

L19 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Power method lemma

Theorem 12.2.1 (Power method lemma)

Let A be a matrix with eigenvalues λ1, . . . , λn (sorted in decreasing
order) and corresponding eigenvectors x1, x2, . . . , xn. If |λ1| > |λ2|
(strict), then the update xt+1 = αAxt converges to a multiple of x1

starting from any initial vector x0 =
∑

i βixi provided that β1 6= 0. The
convergence rate factor is given by |λ2/λ1|.
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 12.2.1

1. µ`→1 converges to the principle eigenvector of M .
2. µ2→1 converges to the principle eigenvector of MT .
3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M .
4. The diagonal elements of M correspond to correct marginal p(x1)
5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = βp(x1) + (1− β)q(x1) where β is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M .

Proof.

See Weiss2000.
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exponential family models

φ = (φα, α ∈ I) is a collection of functions known as potential
functions, sufficient statistics, or features. I is an index set of size
d = |I|.
Each φα is a function of x, φα(x) but it usually does not use all of x
(only a subset of elements). Notation φα(xCα) assumed implicitly
understood, where Cα ⊆ V (G).

θ is a vector of canonical parameters (same length, |I|). θ ∈ Ω ⊆ Rd
where d = |I|.
We can define a family as

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (12.12)

where 〈θ, φ(x)〉 =
∑

α θαφα(x). Note that we’re using φ here in the
exponent, before we were using it out of the exponent.

Note that φ(x) = (φ1(x), φ2(x), . . . , φ|I|) where again each φi(x)

might use only some of the elements in vector x. φ : DX
m → Rd.
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Log partition (cumulant) function

Based on underlying set of parameters θ, we have family of models

pθ(x) =
1

Z(θ)
exp

{∑
α∈I

θαφα(x)

}
= exp(〈θ, φ(x)〉 −A(θ)) (12.12)

To ensure normalized, we use log partition (cumulant) function

A(θ) = log

∫
DX

exp (〈θ, φ(x)〉) ν(dx) (12.13)

with θ ∈ Ω
∆
=
{
θ ∈ Rd|A(θ) < +∞

}
A(θ) is convex function of θ, so Ω is convex.

Exponential family for which Ω is open is called regular
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Maximum entropy estimation

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (12.14)

where H(p) = −
∫
p(x) log p(x)ν(dx), and ∀α ∈ I

Ep[φα(X)] =

∫
DX

φα(x)p(x)ν(dx). (12.15)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) and then by
finding canonical parameters θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I. (12.16)
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Maximum entropy solution

Solution to maxent problem

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (12.14)

has the form of an exponential model:

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (12.15)

where A(θ) = log

∫
DX

exp (〈θ, φ(x)〉) ν(dx) (12.16)

Exercise: show that solution to Eqn (??) has this form.
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Minimal Representation of Exponential Family

Minimal representation - Does not exist a nonzero vector γ ∈ Rd for
which 〈γ, φ(x)〉 is constant ∀x (that are ν-measurable).

I.e., guarantee that, for all non-zero γ ∈ Rd, there exists x1 6= x2,
with ν(x1), ν(x2) > 0, such that 〈γ, φ(x1)〉 6= 〈γ, φ(x2)〉.
essential idea: that for a set of sufficient stats I, there is not a
lower-dimensional vector |I ′| < |I| that is also sufficient (a min suf
stat is a function of all other suf stats).

We can’t reduce the dimensionality d without changing the family.
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Overcomplete Representation

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (12.14)

where A(θ) = log

∫
DX

exp (〈θ, φ(x)〉) ν(dx) (12.15)

Overcomplete representation d = |I| higher than need be
I.e., ∃γ 6= 0 s.t. 〈γ, φ(x)〉 = c, ∀x where c = constant.
I.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given γ 6= 0 s.t.,
〈γ, φ(x)〉 = c and some other parameters θ, we have , we have

pθ+γ(x) = exp(〈(θ + γ), φ(x)〉 −A(θ + γ)) (12.16)

= exp(〈θ, φ(x)〉+ 〈γ, φ(x)〉 −A(θ + γ)) (12.17)

= exp(〈θ, φ(x)〉+ c−A(θ + γ)) (12.18)

= exp(〈θ, φ(x)〉 −A(θ)) = pθ(x) (12.19)

True for any λγ with λ ∈ R, so affine set of identical distributions!
We’ll see later, this useful in understanding BP algorithm.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F11/37 (pg.11/88)



exponential models µ Param./Marg. Polytope Refs

Exponential family models

Minimal representation of Bernoulli distribution is

p(x|γ) = exp(γx−A(γ)) (12.1)

So p(X = 1) = 1− p(X = 0) = exp(γ −A(γ)) and
p(X = 0) = exp(−A(γ)).

overcomplete rep of Bernoulli dist.

p(x|θ0, θ1) = exp(〈θ, φ(x)〉 −A(θ)) (12.2)

= exp(θ0(1− x) + θ1x−A(θ)) (12.3)

where θ = (θ0, θ1) and φ(x) = (1− x, x).

Is there a non-zero vector a s.t. 〈a, φ(x)〉 = c for all x, ν-a.e.?

If a = (1, 1) then 〈a, φ(x)〉 = (1− x) + x = 1

This is overcomplete since there is a linear combination of feature
functions that are constant.

Since θ0(1− x) + θ1x = θ0 + x(θ1 − θ0), any parameters θ1, θ2 such
that θ1 − θ0 = γ gives same distribution determined by γ.
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Famous Example - Ising Model

Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model
becomes

pθ(x) = exp

∑
v∈V

θvxv +
∑

(s,t)∈E

θstxsxt −A(θ)

 , (12.4)

with

A(θ) = log
∑

x∈{0,1}m
exp

∑
v∈V

θvxv +
∑

(s,t)∈E

θstxsxt

 (12.5)

Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

Note, in this case I is all singletons (unaries) and all pairs, so that

{Cα}α =
{
{xi}i, {xixj}(i,j)∈E

}
.

We can easily generalize this via a set system. I.e., consider (V,V),
where V =

{
V1, V2, . . . , V|V|

}
and where ∀i, Vi ⊆ V .

We can form sufficient statistic set via {Cα}α =
{
{xV }V ∈V

}
.

Could have, for example that φα =
∏
i∈Cα xi.

Hence, it is possible to generalize with higher order factors (which are
also called “interaction functions”, “potential functions”, or
“sufficient statistics”).
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Multivalued variables
Variables need not binary, instead DX = {0, 1, . . . , r − 1} for r > 2.

We can define a set of indicator functions constituting sufficient
statistics. That is

1s;j(xs) =

{
1 if xs = j

0 else
(12.6)

and

1st;jk(xs, xt) =

{
1 if xs = j and xt = k,

0 else
(12.7)

Model becomes

pθ(x) = exp

∑
v∈V

r−1∑
i=0

θv;j1s;j(xv) +
∑

(s,t)∈E

∑
j,k

θst;ij1st;jk(xs, xt)−A(θ)

 ,

(12.8)

Is this overcomplete?

Yes. Why?
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Multivariate Gaussian

Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. I.e.

pθ(x) = exp

{
〈θ, x〉+

1

2
〈〈Θ, xxᵀ〉〉 −A(θ,Θ)

}
(12.9)

〈〈Θ, xxᵀ〉〉 =
∑

ij Θijxixj is Frobenius inner product.

So sufficient statistics are (xi)
n
i=1 and (xixj)i,j

Θs,t = 0 means identical to missing edge in corresponding graph
(marginal independence). Θ is negative inverse covariance matrix.

Any other constraints on Θ?

negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pθs(ys, xs)).
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Multivariate Gaussian

Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. I.e.

pθ(x) = exp

{
〈θ, x〉+

1

2
〈〈Θ, xxᵀ〉〉 −A(θ,Θ)

}
(12.9)

〈〈Θ, xxᵀ〉〉 =
∑

ij Θijxixj is Frobenius inner product.

So sufficient statistics are (xi)
n
i=1 and (xixj)i,j

Θs,t = 0 means identical to missing edge in corresponding graph
(marginal independence). Θ is negative inverse covariance matrix.

Any other constraints on Θ?

negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pθs(ys, xs)).
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Other examples

A few other examples in the book

Mixture models

Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

Models with hard constraints, or having zero probabilities — key thing
is to place the hard constraints in the ν measure. Sufficient statistics
become easy if complexity is encoded in the measure. Alternative is to
allow features over extended reals (i.e., a feature can provide −∞ but
this leads to certain technical difficulties that they would rather not
deal with).
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Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F18/37 (pg.35/88)



exponential models µ Param./Marg. Polytope Refs

Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.

Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F18/37 (pg.36/88)



exponential models µ Param./Marg. Polytope Refs

Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F18/37 (pg.37/88)



exponential models µ Param./Marg. Polytope Refs

Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F18/37 (pg.38/88)



exponential models µ Param./Marg. Polytope Refs

Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F18/37 (pg.39/88)



exponential models µ Param./Marg. Polytope Refs

Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (12.10)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all possible such vectors, with d = |I|,

M(φ) =M ∆
=
{
µ ∈ Rd : ∃p s.t. ∀α ∈ I, µα = Ep[φα(X)]

}
(12.11)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F18/37 (pg.40/88)



exponential models µ Param./Marg. Polytope Refs

Mean Parameters and Gaussians

Here, we have E[XXᵀ] = C and µ = EX. Question is, how to define
M?

Given definition of C and µ, then C − µµᵀ must be valid covariance
matrix (since this is E[X − EX][X − EX]ᵀ = C − µµᵀ).

Thus, C − µµᵀ � 0, thus p.s.d. matrix.

On the other hand, if this is true, we can form a Gaussian using
C − µµᵀ as the covariance matrix.

Thus, for Gaussian MRFs, M has the form

M =
{

(µ,C) ∈ Rm × Sm+ |C − µµᵀ � 0
}

(12.12)

where Sm+ is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

“Illustration of the set M for a
scalar Gaussian: the model has
two mean parameters µ = E[X]
and Σ11 = E[X2], which must
satisfy the quadratic contraint
Σ11 − µ2 ≥ 0. Notice that M is
convex, which is a general
property.” but is not a polytope.

Also, don’t confuse the “mean
parameters” with the means of a
Gaussian. The typical means of
Gaussians are means in this new
sense, but those means are not
all of the means. ,
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Mean Parameters and Polytopes

When X is discrete, we get a polytope since

M =

{
µ ∈ Rb : µ =

∑
x

φ(x)p(x) for some p ∈ U
}

(12.13)

= conv {φ(x), x ∈ DX (that are ν-measurable),} (12.14)

where conv {·} is the convex hull of the items in argument set.

So we have a convex polytope
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Mean Parameters and Polytopes

Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J | × d matrix A and |J |-element column vector b with

M =
{
µ ∈ Rd : Aµ ≥ b

}
=
{
µ ∈ Rd : 〈aj , µ〉 ≥ bj ,∀j ∈ J

}
(12.15)

with A having rows aj .

M

j

〈a j,
〉 =

b

ψ(x)

〈a
j,

〉 ≥
b j

a j 〈aj , 〉 ≤ bjµ

µ

µ
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Mean Parameters and Polytopes

Example: Ising mean parameters. Given sufficient statistics

φ(x) = {xs, s ∈ V ;xsxt, (s, t) ∈ E(G)} ∈ R|V |+|E| (12.16)

we get

µv = Ep[Xv] = p(Xv = 1) ∀v ∈ V (12.17)

µs,t = Ep[XsXt] = p(Xs = 1, Xt = 1) ∀(s, t) ∈ E(G) (12.18)

Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1, 1 for each node and
edge in the graph = conv {φ(x), x ∈ {0, 1}m}.
Gives complete marginal since ps(1) = 1− ps(0),
ps,t(1, 0) = ps(1)− ps,t(1, 1), ps,t(0, 1) = pt(1)− ps,t(1, 1), etc.

Recall: marginals are often the goal of inference.

Coincidence?
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Example: 2-variable Ising

“Ising model with two variables (X1, X2) ∈ {0, 1}2. Three mean
parameters µ1 = E[X1], µ2 = E[X2], µ12 = E[X2X2], must satisfy
constraints 0 ≤ µ12 ≤ µi for i = 1, 2, and 1 + µ12 − µ1 − µ2 ≥ 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0, 1]3.”
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Mean Parameters and Overcomplete Representation

We can use overcomplete representation and get a “marginal
polytope”, a polytope that represents the marginal distributions at
each potential function.

Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

∀v ∈ V (G), j ∈ {0 . . . r − 1}, define φv,j(xv) , 1(xv = j) (12.19)

∀(s, t) ∈ E(G), j, k ∈ {0 . . . r − 1}, we define: (12.20)

φst,jk(xs, xt) , 1(xs = j, xt = k) = 1(xs = j)1(xt = k)
(12.21)

So we now have |V |r + 2|E|r2 functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

Mean parameters are now true (fully specified) marginals, i.e.,
µv(j) = p(xv = j) and µst(j, k) = p(xs = j, xt = k) since

µv,j = Ep[1(xv = j)] = p(xv = j) (12.22)

µst,jk = Ep[1(xs = j, xt = k)] = p(xs = j, xt = k) (12.23)

Such an M is called the marginal polytope for discrete graphical
models. Any µ must live in the polytope that corresponds to node
and edge true marginals.

We can also associate such a polytope with a graph G, where we take
only (s, t) ∈ E(G). Denote this as M(G).

This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we’ll see.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 12 - Nov 10th, 2014 F26/37 (pg.54/88)



exponential models µ Param./Marg. Polytope Refs

Marginal Polytopes and Facet complexity

Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.

“facet complexity” of M depends on the graph structure.

For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

For k-trees, complexity grows exponentially in k

Key idea: use polyhedral approximations to produce model and
inference approximations.
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Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.

“facet complexity” of M depends on the graph structure.

For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

For k-trees, complexity grows exponentially in k

Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

We can view the inference problem as moving from the canonical
parameters θ to the point in the marginal polytope, called forward
mapping, moving from θ ∈ Ω to µ ∈M.

We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.
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Maximum entropy estimation

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (12.14)

where H(p) = −
∫
p(x) log p(x)ν(dx), and ∀α ∈ I

Ep[φα(X)] =

∫
DX

φα(x)p(x)ν(dx). (12.15)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) and then by
finding canonical parameters θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I. (12.16)
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Learning is the dual of Inference

Ex: Estimate θ with θ̂ based on data D = {x̄(i)}Mi=1 of size M ,
likelihood function

`(θ,D) =
1

M

M∑
i=1

log pθ(x̄
(i)) =

1

M

M∑
i=1

(〈
θ, φ(x̄(i))

〉
−A(θ)

)
(12.24)

= 〈θ, µ̂〉 −A(θ) (12.25)

where empirical means
are given by:

µ̂ = Ê[φ(X)] =
1

M

M∑
i=1

φ(x̄(i)) (12.26)

By taking derivatives of the above, it is easy to see that solution is the
point θ̂ = θ(µ̂) such that empirical matches expected means, or what
are called the moment matching conditions:

Eθ̂[φ(X)] = µ̂ (12.27)

this is the the backward mapping problem, going from µ to θ.

Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy
Entropy definition again: H(p) = −

∫
p(x) log p(x)ν(dx)

Given data, D = {x̄(i)}Mi=1, defines an empirical distribution

p̂(x) =
1

M

M∑
i=1

1(x = x̄(i)) (12.28)

so that Ep̂[φ(X)] =
∫
p̂(x)φ(x)ν(dx) = 1

M

∑M
i=1 φ(x̄(i)) = µ̂

Starting from maximum likelihood solution θ(û), meaning we are at
moment matching conditions Epθ(û) [φ(X)] = µ̂ = Ep̂[φ(X)], we have

`(θ(û),D) = 〈θ(û), µ̂〉 −A(θ(û)) =
1

M

M∑
i=1

log pθ(û)(x̄
(i)) (12.29)

=

∫
p̂(x) log pθ(µ̂)(x)ν(dx) = Ep̂[log pθ(µ̂)(x)] (12.30)

= Epθ(µ̂) [log pθ(µ̂)(x)] = −Hpθ(µ̂) [pθ(µ̂)(x)] (12.31)

Thus, maximum likelihood value and negative entropy are identical, at
least for empirical µ̂ (which is ∈M).
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moment matching conditions Epθ(û) [φ(X)] = µ̂ = Ep̂[φ(X)], we have

`(θ(û),D) = 〈θ(û), µ̂〉 −A(θ(û)) =
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Learning is the dual of Inference

I.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

Thus, maximum entropy learning under a set of constraints (given by
Eθ[φ(X)] = µ̂) is the same as maximum likelihood learning of an
exponential model form.

If we do maximum entropy learning, where does the exp(·) function
come from?

From the entropy function. I.e., the exponential form is
the distribution that has maximum entropy having those constraints.
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Dual Mappings: Summary

Summarizing these relationships

Forward mapping: moving from θ ∈ Ω to µ ∈M, this is the inference
problem, getting the marginals.

Backwards mapping: moving from µ ∈M to θ ∈ Ω, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

Turns out log partition function A, and its dual A∗ can give us these
mappings, and the mappings have interesting forms . . .
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Log partition (or cumulant) function: derivative offerings

A(θ) = log

∫
DX

exp 〈θ, φ(x)〉 ν(dx) (12.32)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (12.33)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(12.34)

Proof given in book (Proposition 3.1, page 62).
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Log partition function: properties

So derivative of log partition function w.r.t. θ is equal to our mean
parameter µ in the discrete case.

Given A(θ), we can recover the marginals for each potential function
φα, α ∈ I (when mean parameters lie in the marginal polytope).

If we can approximate A(θ) with Ã(θ) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall soon see.

The Bethe approximation (as we’ll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

In some rarer cases, we can bound the approximation (current
research trend).
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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