EE512A — Advanced Inference in Graphical Models

— Fall Quarter, Lecture 12 —
http://j.ee.washington.edu/~bilmes/classes/eeb512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Nov 10th, 2014

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 12 - Nov 10th, 2014 F1/37 (pg.1/88)


http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/
http://melodi.ee.washington.edu/~bilmes

Logistics
L}

Announcements

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

@ Read chapters 1,2, and 3 in this book. Start reading chapter 4.

@ Assignment due Wednesday (Nov 12th) night, 11:45pm. Non-binding
final project proposals (one page max).
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Logistics

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)
L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

®© ©6 6 6 6 0 ¢

L11 (11/5): LBP, exponential models,

L12 (11/10): exponential models, mean
params and polytopes, tree outer bound

L13 (11/12): polytopes, tree outer bound,
Bethe entropy approx.

L14 (11/17):
L15 (11/19):
L16 (11/24):
L17 (11/26):
L18 (12/1):
L19 (12/3):
Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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[ERRNARN

Power method lemma

Theorem 12.2.1 (Power method lemma)

Let A be a matrix with eigenvalues A1, ..., )\, (sorted in decreasing
order) and corresponding eigenvectors x1, T2, ..., Tn. If|A1] > |A2]
(strict), then the update 2'*1 = aAx! converges to a multiple of 1
starting from any initial vector 20 = >, Bix; provided that 31 # 0. The
convergence rate factor is given by |Aa2/\1].
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 12.2.1

1. puy_,1 converges to the principle eigenvector of M.

2. [19_s1 converges to the principle eigenvector of M7 .

3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M.

4. The diagonal elements of M correspond to correct marginal p(x1)

5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = Bp(x1) + (1 — 8)q(x1) where ( is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M.

See Weiss2000.
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exponential family models

@ ¢ = (pa, € I) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=1Z|.

e Each ¢, is a function of x, ¢, (x) but it usually does not use all of =
(only a subset of elements). Notation ¢, (zc,) assumed implicitly
understood, where C, C V(G).

e 0 is a vector of canonical parameters (same length, |Z|). € Q C R?
where d = |Z|.
@ We can define a family as

po(x) = exp((0, o(x)) — A(0)) (12.12)

where (0, ¢(z)) = >_,, 0ada(z). Note that we're using ¢ here in the
exponent, before we were using it out of the exponent.

o Note that ¢(z) = (¢1(z), p2(7), ..., ¢7)) where again each ¢;(x)
might use only some of the elements in vector z. ¢ : Dx™ — R%.
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Log partition (cumulant) function

o Based on underlying set of parameters 6, we have family of models
(1) = 75 D3 S badala) = exp((6,6(2)) — AB)) (12.12)
po(x _Z(G)eXp aezaaa: = exp((0, ¢(x .

@ To ensure normalized, we use log partition (cumulant) function

A(0) = log/ exp ((0, ¢(x))) v(dx) (12.13)

Dx

with § € Q 2 {6 € RYA(6) < o0}
e A(0) is convex function of 6, so € is convex.

@ Exponential family for which Q is open is called regular
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Maximum entropy estimation

e Goal (“estimation”, or “machine learning”) is to find

p* € argmax H(p) s.t. Ey[¢(X)] = fia Yo €T (12.14)
peU
where H(p) = — [ p(z)logp(z)v(dz), and Va € T
Ep[¢a(X)] = . ¢a(z)p(z)v(dr). (12.15)

o E,[¢q(X)] is mean value as measured by potential function, so above
is a form of moment matching.

e Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of py(z) = exp({0, ¢(x)) — A(#)) and then by
finding canonical parameters # that solves

Ep,[¢a(X)] = fiq forall a € Z. (12.16)
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Maximum entropy solution

@ Solution to maxent problem

p* € argmax H(p) s.t. Ep[¢pa(X)] = fia Ya el (12.14)
peU

has the form of an exponential model:

po(x) = exp((0, o(x)) — A(0)) (12.15)
where A(0) = log/D exp ({0, ¢(x))) v(dz) (12.16)

@ Exercise: show that solution to Eqn (??) has this form.
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Minimal Representation of Exponential Family

@ Minimal representation - Does not exist a nonzero vector v € R% for
which (v, ¢(x)) is constant Vz (that are v-measurable).

@ l.e., guarantee that, for all non-zero v € R<, there exists x1 = To,
with v(x1),v(x2) > 0, such that (v, ¢(x1)) # (v, p(x2)).

@ essential idea: that for a set of sufficient stats Z, there is not a
lower-dimensional vector |Z'| < |Z| that is also sufficient (a min suf
stat is a function of all other suf stats).

@ We can’t reduce the dimensionality d without changing the family.
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Overcomplete Representation

po(x) = exp((0, (x)) — A(0)) (12.14)
where A(0) = log/D exp ({0, ¢(x))) v(dx) (12.15)

e Overcomplete representation d = |Z| higher than need be

e le, 3y #0s.t. (y,¢(x)) = ¢, Vx where ¢ = constant.

o l.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given v # 0 s.t.,
(v, ¢(x)) = ¢ and some other parameters 6, we have , we have

Po+4(x) = exp({(0 +7), ¢(x)) — A(0 +7)) (12.16)
= exp((0, ¢(x)) + (7, p(x)) — A(0 + 7)) (12.17)
= exp((0, ¢(x)) + ¢ — A(0 +7)) (12.18)
= exp((0, ¢(x)) — A(0)) = po() (12.19)

@ True for any Ay with A € R, so affine set of identical distributions!
o We'll see later, this useful in understanding BP algorithm.
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(zly) = exp(yz — A(7)) (12.1)
Sop(X =1)=1—-p(X =0) =exp(y — A(y)) and
p(X = 0) = exp(—A(7)).
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(zly) = exp(yz — A(v)) (12.1)
Sop(X =1)=1—p(X =0) =exp(y — A(y)) and

p(X =0) = exp(—A(7)).
@ overcomplete rep of Bernoulli dist.

p(zl0o, 01) = exp((0, ¢(x)) — A(0)) (12.2)
=exp(Oo(1 — ) + b1 — A(9)) (12.3)
where 6 = (6p,01) and ¢(x) = (1 — z,x).
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(zly) = exp(yz — A(v)) (12.1)
Sop(X =1)=1-p(X =0) =exp(y — A(7)) and
p(X =0) = exp(—A(7)).
@ overcomplete rep of Bernoulli dist.
p(x]6o, 61) = exp((0, ¢(x)) — A(6)) (12.2)
=exp(o(1 — x) + 12 — A(0)) (12.3)

where 6 = (6p,01) and ¢(x) = (1 — z,x).
@ Is there a non-zero vector a s.t. (a, ¢p(x)) = c for all x, v-a.e.?

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 12 - Nov 10th, 2014 F12/37 (pg.14/88)



exponential models
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(z]y) = exp(yz — A(7)) (12.1)
Sop(X =1)=1-p(X =0) =exp(y — A(7)) and
p(X = 0) = exp(—A(7)).
@ overcomplete rep of Bernoulli dist.
p([bo, 01) = exp((0, p(x)) — A(0)) (12.2)
=exp(o(1 — x) + 12 — A(0)) (12.3)
where 6 = (6p,01) and ¢(x) = (1 — z,x).
@ Is there a non-zero vector a s.t. (a,¢(x)) = c for all z, v-a.e.?
o If a=(1,1) then (a,¢(z)) =(1—x)+z =1
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(zly) = exp(yz — A(y)) (12.1)
Sop(X =1)=1-p(X =0) =exp(y — A(7)) and
p(X =0) = exp(—A(7)).
@ overcomplete rep of Bernoulli dist.
p(x(0o,01) = exp((0, ¢(x)) — A(F)) (12.2)
=exp(o(1 — x) + 12 — A(0)) (12.3)
where 6 = (6p,01) and ¢(x) = (1 — z,x).
@ Is there a non-zero vector a s.t. (a,¢(x)) = c for all z, v-a.e.?
o Ifa=(1,1) then (a,¢(x)) = (1 —z)+z =1
@ This is overcomplete since there is a linear combination of feature
functions that are constant.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 12 - Nov 10th, 2014 F12/37 (pg.16/88)



exponential models
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(zly) = exp(yz — A(y)) (12.1)
Sop(X =1)=1-p(X =0) =exp(y — A(7)) and
p(X = 0) = exp(—A(7)).
@ overcomplete rep of Bernoulli dist.
p(z|0o, 01) = exp((0, ¢(x)) — A(0)) (12.2)
=exp(o(1 — x) + 12 — A(0)) (12.3)
where 6 = (6p,01) and ¢(x) = (1 — z,x).
@ Is there a non-zero vector a s.t. (a,¢(x)) = c for all z, v-a.e.?
o Ifa=(1,1) then (a,¢(x)) = (1 —z)+z =1
@ This is overcomplete since there is a linear combination of feature
functions that are constant.
@ Since Oy(1 — z) + 012 = Oy + (01 — 6p), any parameters 01, 02 such
that 0, — 0y = v gives same distribution determined by ~.
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Famous Example - Ising Model

@ Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model
becomes

po(x) = exp Z Opy + Z Ostxszy — A(0) ¢, (12.4)
veV (s,t)eE
with
= log Z exp ZHU:{:U + Z Os 5Ty (12.5)
ze€{0,1}"™ veV (s,;t)eE

@ Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

@ Note, in this case Z is all singletons (unaries) and all pairs, so that
{Cabe = {{wi}s mii} e |

@ We can easily generalize this via a set system. l.e., consider (V,V),
where V = {Vl,VQ, .. .,VM} and where Vi, V; C V.

e We can form sufficient statistic set via {Ca}, = {{zv}y ey }-

@ Could have, for example that ¢, = Hz’ECa ;.

@ Hence, it is possible to generalize with higher order factors (which are
also called “interaction functions”, “potential functions”, or
“sufficient statistics”).
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Multivalued variables
@ Variables need not binary, instead Dx = {0, 1,...,7 — 1} for r > 2.
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Multivalued variables

@ Variables need not binary, instead Dx = {0,1,...,7 — 1} for r > 2.

@ We can define a set of indicator functions constituting sufficient
statistics. That is

1 ifaxs=3j

12.6
0 else ( )

and
1 ifzs=jand x; =k,

1st;‘jk(ws;mt> = 0 else (127)
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Multivalued variables

@ Variables need not binary, instead Dx = {0,1,...,7 — 1} for r > 2.
@ We can define a set of indicator functions constituting sufficient
statistics. That is

1 ifzs=1j
1g(xs) = {O lse (12.6)
and
1 ifzxs=jand x; =k,
1St;jk((£5,xt) = {0 else (127)

@ Model becomes

pe(l) = €exXp ZZQ ,J]-sj x’b Z Zestzg st;jk m3711‘> A(Q)

veV =0 (s,t)eE j,k
(12.8)

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 12 - Nov 10th, 2014 F15/37 (pg.22/88)



exponential models
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Multivalued variables

@ Variables need not binary, instead Dx = {0,1,...,7 — 1} for r > 2.
@ We can define a set of indicator functions constituting sufficient
statistics. That is

1 ifzs=1j
1g(xs) = {O olse (12.6)

and

1 ifzxs=jand x; =k, (12.7)
0 else

1st;jk(x57 xt) = {

@ Model becomes

r—1
po(x) =expd > Y Ouilaj(@) + D> Y Ostij Lok (s, 1) — A(6)

veV i=0 (s,t)EE j.k
(12.8)
@ Is this overcomplete?
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Multivalued variables

@ Variables need not binary, instead Dx = {0,1,...,7 — 1} for r > 2.
@ We can define a set of indicator functions constituting sufficient
statistics. That is

1 ifzs=1j
1g(xs) = {O olse (12.6)

and

1 ifzxs=jand x; =k, (12.7)
0 else

1st;jk(x57 xt) = {

@ Model becomes

r—1
po(x) =expd > Y Ouilaj(@) + D> Y Ostij Lok (s, 1) — A(6)

veV i=0 (s,t)EE j,k
(12.8)
@ Is this overcomplete? Yes. Why?
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. |l.e.

po(@) = exp {<9, )+ % (0, z2TY) — A6, @)} (12.9)
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and

correlation matrix. l.e.

po() = exp {<9, )+ % (O, 2Ty — A(6), @)} (12.9)

® (©,zaT)) = >, ©;jz;z; is Frobenius inner product.
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and

correlation matrix. l.e.

po() = exp {<9, )+ % (O, 2Ty — A(6), @)} (12.9)

® (©,zaT) = >, ©;jz;z; is Frobenius inner product.

e So sufficient statistics are (z;);; and (z;2;); ;
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po() = exp {<9, )+ % (O, 2Ty — A(6), @)} (12.9)

® (©,zaT) = >, ©;jz;z; is Frobenius inner product.

e So sufficient statistics are (x;)!"; and (x;x;); ;

@ O, = 0 means identical to missing edge in corresponding graph
(marginal independence). © is negative inverse covariance matrix.
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po() = exp {<9, )+ % (O, 2Ty — A(6), @)} (12.9)

O,zxT) =) ..0;;x;x, is Frobenius inner product.
1] J J

So sufficient statistics are (z;)!_; and (z;x;); ;

O, = 0 means identical to missing edge in corresponding graph
(marginal independence). © is negative inverse covariance matrix.

@ Any other constraints on ©7
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po() = exp {<9, )+ % (O, 2Ty — A(6), @)} (12.9)

O,zxT) =) ..0;;x;x, is Frobenius inner product.
1] J J

So sufficient statistics are (z;)!_; and (z;x;); ;

O, = 0 means identical to missing edge in corresponding graph
(marginal independence). © is negative inverse covariance matrix.

Any other constraints on ©7 negative definite
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Multivariate Gaussian

@ Usually, multivariate Gaussian is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po() = exp {<9, )+ % (O, 2Ty — A(6), @)} (12.9)

O,zxT) =) ..0;;x;x, is Frobenius inner product.
1] J J

So sufficient statistics are (z;)!_; and (z;x;); ;

O, = 0 means identical to missing edge in corresponding graph
(marginal independence). © is negative inverse covariance matrix.

Any other constraints on ©7 negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution py, (ys, zs)).
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Other examples

A few other examples in the book

@ Mixture models
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Other examples

A few other examples in the book
@ Mixture models

@ Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.
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Other examples

A few other examples in the book
@ Mixture models

o Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

@ Models with hard constraints, or having zero probabilities — key thing
is to place the hard constraints in the ¥ measure. Sufficient statistics
become easy if complexity is encoded in the measure. Alternative is to
allow features over extended reals (i.e., a feature can provide —oo but
this leads to certain technical difficulties that they would rather not
deal with).
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1 Param./Marg. Polytope
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Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:

o = Epla(X)] = / bo(2)p(2)(d) (12.10)
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1 Param./Marg. Polytope
[ERRRERRRNARNRRNANN

Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:
o = Epda(X)] = / bo(2)p(@)v(dz) (12.10)

@ this defines a vector of “mean parameters” (1, o, ..., jg) with
d=|Z|.
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1 Param./Marg. Polytope
[ERRRERRRNARNRRNANN

Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:
o = Epda(X)] = / bo(2)p(@)v(dz) (12.10)

o this defines a vector of “mean parameters” (p1, o, .. ., ftqg) With
d=1Z|.
@ Define all possible such vectors, with d = |Z|,

M(p)=M2 {M €RY:3pst. VaeT, g =Epda(X) }
(12.11)
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1 Param./Marg. Polytope
[ERRRERRRNARNRRNANN

Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:
o = Epda(X)] = / bo(2)p(@)v(dz) (12.10)

o this defines a vector of “mean parameters” (p1, o, .. ., ftqg) With
d=1Z|.
@ Define all possible such vectors, with d = |Z|,

M(@) = M2 {peR!: st Va e T, pa =Eylsa(X)] }
(12.11)

@ We don't say p was necessarily exponential family
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1 Param./Marg. Polytope
[ERRRERRRNARNRRNANN

Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:
o = Epda(X)] = / bo(2)p(@)v(dz) (12.10)

o this defines a vector of “mean parameters” (p1, o, .. ., ftqg) With
d=1Z|.
@ Define all possible such vectors, with d = |Z|,

M(@) = M2 {peR!: st Va e T, pa =Eylsa(X)] }
(12.11)

@ We don't say p was necessarily exponential family

@ M is convex since expected value is a linear operator. So convex
combinations of p and p’ will lead to convex combinations of y and p/
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1 Param./Marg. Polytope
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Mean Parameters, Convex Cores

o Consider quantities u,, associated with statistic ¢, defined as:
o = Epda(X)] = / bo(2)p(@)v(dz) (12.10)

o this defines a vector of “mean parameters” (p1, o, .. ., ftqg) With
d=1Z|.
@ Define all possible such vectors, with d = |Z|,

M(@) = M2 {peR!: st Va e T, pa =Eylsa(X)] }
(12.11)

@ We don't say p was necessarily exponential family

@ M is convex since expected value is a linear operator. So convex

combinations of p and p’ will lead to convex combinations of y and p/

@ M is like a “convex core” of all distributions expressed via ¢.
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Mean Parameters and Gaussians

@ Here, we have E[XXT] = C and p = EX. Question is, how to define
M?

@ Given definition of C' and u, then C' — pu™ must be valid covariance
matrix (since this is E[X — EX]|[X — EX|T = C — uuT).

@ Thus, C'— puT™ = 0, thus p.s.d. matrix.

@ On the other hand, if this is true, we can form a Gaussian using
C — upT as the covariance matrix.

@ Thus, for Gaussian MRFs, M has the form

M= {(1,C) €R™ x ST|C — T = 0} (12.12)

where S is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

@ “lllustration of the set M for a Y11
scalar Gaussian: the model has
two mean parameters p = E[X]
and ¥1; = E[X?], which must M
satisfy the quadratic contraint
Y11 — p? > 0. Notice that M is
convex, which is a general
property.” but is not a polytope.
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Mean Parameters and Gaussians

@ “lllustration of the set M for a Y11
scalar Gaussian: the model has
two mean parameters ;1 = E[X]
and ¥1; = E[X?], which must M
satisfy the quadratic contraint
Y11 — p? > 0. Notice that M is
convex, which is a general
property.” but is not a polytope.
@ Also, don't confuse the “mean
parameters” with the means of a
Gaussian. The typical means of K
Gaussians are means in this new
sense, but those means are not
all of the means. ©®
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Mean Parameters and Polytopes

@ When X is discrete, we get a polytope since

M = {ueRb:u:Zqﬁ(x)p(w) for somepel/{} (12.13)
= conv {¢(x),z € Dx (that are v-measurable), } (12.14)

where conv {-} is the convex hull of the items in argument set.
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Mean Parameters and Polytopes
@ When X is discrete, we get a polytope since
M = {,u eRl:p= Zgb(x)p(:r) for some p € L[} (12.13)

= conv {¢(x),z € Dx (that are v-measurable), } (12.14)

where conv {-} is the convex hull of the items in argument set.
@ So we have a convex polytope
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Mean Parameters and Polytopes

@ Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J| X d matrix A and |J|-element column vector b with

M:{ueRd:Auzb} :{ueRd:<aj,u>zbj,weJ}

(12.15)
with A having rows a;.
< P(x)
Al
Sy
@ L7
”
”
a& NSO DR
PN
PR

I
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics
d(x) = {xs,5 € Vizgay, (s,t) € B(G)} e RIVIHIE (12.16)
we get

E,[X,] = =1) eV (12.17)
fss = Ep[X, X} (XS =1,X,=1) ¥(s,t) € B(G) (12.18)
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

d(x) = {xs,5 € Vizgay, (s,t) € B(G)} e RIVIHIE (12.16)
we get
po =Ep[ Xy =p(Xy=1) YoeV (12.17)

fss = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € B(G)  (12.18)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vixszy, (s,1) € B(G)} € RVIFHIE (12.16)
we get
po =Ep[ Xy =p(Xy=1) YoeV (12.17)

fss = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € B(G)  (12.18)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.

@ Gives complete marginal since ps(1) = 1 — ps(0),

Ps,t(1,0) = ps(1) — pst(1, 1), pst(0,1) = pe(1) — pse(1,1), ete.
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vixszy, (s,1) € B(G)} € RVIFHIE (12.16)
we get
po =Ep[ Xy =p(Xy=1) YoeV (12.17)

fss = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € B(G)  (12.18)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.

o Gives complete marginal since ps(1) = 1 — ps(0),

Pst(1,0) = ps(1) — pse(1,1), pst(0,1) = pe(1) — pse(1, 1), ete.

@ Recall: marginals are often the goal of inference.
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vixszy, (s,1) € B(G)} € RVIFHIE (12.16)
we get
po =Ep[ Xy =p(Xy=1) YoeV (12.17)

fss = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € B(G)  (12.18)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.

o Gives complete marginal since ps(1) = 1 — ps(0),

Pst(1,0) = ps(1) — pse(1,1), pst(0,1) = pe(1) — pse(1, 1), ete.

@ Recall: marginals are often the goal of inference. Coincidence?
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Example: 2-variable Ising

H12

0,1,00 H2

“Ising model with two variables (X1, X5) € {0,1}%. Three mean
parameters j11 = E[X1], po = E[X3], p12 = E[X2X2], must satisfy
constraints 0 < p1o < u; fori=1,2, and 1 4+ 1o — 1 — pg > 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0, 1]°.”
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Mean Parameters and Overcomplete Representation

@ We can use overcomplete representation and get a “marginal

polytope”, a polytope that represents the marginal distributions at
each potential function.

e Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

Vo e V(G),j €{0...r — 1}, define ¢, j(z,) = L(z, = 7) (12.19)

V(s,t) € E(G),j,k € {0...r — 1}, we define: (12.20)
Gst ki (Ts, T1) El(zs =jyxy = k) = 1(xs = j)1(zs = k)
(12.21)

@ So we now have |V|r + 2|E|r? functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

@ Mean parameters are now true (fully specified) marginals, i.e.,
o (j) = p(xy = j) and pst(j, k) = p(xs = j, 21 = k) since

foj = Ep[L(zy = j)] = p(z = j) (12.22)
tist,jr = Ep[L(zs = j, o0 = k)] = p(xs = j, 2 = k) (12.23)

@ Such an M is called the marginal polytope for discrete graphical
models. Any g must live in the polytope that corresponds to node
and edge true marginals.

@ We can also associate such a polytope with a graph G, where we take
only (s,t) € E(G). Denote this as M(G).

@ This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we'll see.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

@ For k-trees, complexity grows exponentially in &
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

@ For k-trees, complexity grows exponentially in &

@ Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters @ to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 6 to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.

@ We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 6 to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.

e We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

@ graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Review: Maximum Entropy Estimation

The next slide is (again) a repeat from lecture 11.
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Maximum entropy estimation

e Goal (“estimation”, or “machine learning”) is to find

p* € argmax H(p) s.t. Ey[¢(X)] = fia Yo €T (12.14)
peU
where H(p) = — [ p(z)logp(z)v(dz), and Va € T
Ep[¢a(X)] = . ¢a(z)p(z)v(dr). (12.15)

o E,[¢q(X)] is mean value as measured by potential function, so above
is a form of moment matching.

e Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of py(z) = exp({0, ¢(x)) — A(#)) and then by
finding canonical parameters # that solves

Ep,[¢a(X)] = fiq forall a € Z. (12.16)
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Learning is the dual of Inference

o Ex: Estimate # with § based on data D = {Z()}M  of size M,
likelihood function

| M , | M _
€0,D) = = > togpp(a™) = — 3" ((6,0)) — 4(9))  (12.24)
i=1 i=1
— (0,) — A(6) (12.25)
where empirical means [ = E[¢(X)] - % Z (b(:i;(i)) (12.26)
are given by: T =1
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Learning is the dual of Inference

o Ex: Estimate # with § based on data D = {Z(V}M of size M,
likelihood function

are given by:
@ By taking derivatives of the above, it is easy to see that solution is the

point 6 = 0(j1) such that empirical matches expected means, or what
are called the moment matching conditions:

E,[6(X)] = (12.27)

this is the the backward mapping problem, going from u to 6.

M M
(6,0) = 2> loapo(e®) = - 3" ((0,660)) — 4(9))  (1229)
i=1 i=1
=(0,0) — A(0) y (12.25)
where empirical means [ = IE[qZ)(X)] — % Z ¢(j(i)) (12.26)
i=1
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Learning is the dual of Inference

o Ex: Estimate # with § based on data D = {Z(V}M of size M,
likelihood function

M M

(6,0) = 2> loapo(e®) = - 3" ((0,660)) — 4(9))  (1229)
=1 i=1

— (0, /i) — A(6) (12.25)

=»

M
where empirical means [p(X)] = 1 Z(b(j(i)) (12.26)
are given by: M i=1

o By taking derivatives of the above, it is easy to see that solution is the
point # = (/1) such that empirical matches expected means, or what
are called the moment matching conditions:

Eglo(X)] = i (12.27)

this is the the backward mapping problem, going from u to 6.

=

@ Here, maximum likelihood is identical to maximum entropy problem.
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Likelihood and negative entropy
e Entropy definition again: H(p) = — [ p(z) log p(z)v(dx)

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 12 - Nov 10th, 2014 F32/37 (pg.69/88)



1 Param./Marg. Polytope
(NERRERRNRANNRY NRRN

Likelihood and negative entropy

o Entropy definition agaln H(p) = — [ p(x)log p(z)v(dz)
e Given data, D = {z(® }f\i defmes an empirical distribution

| M _
plz) = 1(z = z%) (12.28)
=1
so that Ej[¢(X)] = [ p(x)d(x)v(dz) = 57 Xk, o(@D) = f
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Likelihood and negative entropy

o Entropy definition agaln H(p) = — [ p(x)log p(z)v(dz)
o Given data, D = {z(W}M | deflnes an empirical distribution

1 v (@)
:M;I(x:x ) (12.28)
so that E[p(X)] = [ p(z)p(z)v(dz) = & M, ¢(zD) =

@ Starting from maximum likelihood solution (%), meaning we are at
moment matching conditions E,, , [(;S(X)} = u E,,[gb(X)], we have

((6(@), D) = (B(). 1) - - Zlogpe 7)) (12.29)

—/ (2 ) log pa(p) (@ x)v(de) = [logpg(ﬁ)(x)} (12.30)

= EPO([L) [10gp0(ﬁ)(xﬂ = _HP()(;L) [Pe(m(l')] (12.31)
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Likelihood and negative entropy

o Entropy definition agaln H(p) = — [ p(x)log p(z)v(dz)
o Given data, D = {z(W}M | deflnes an empirical distribution

1 & ‘
plz) = 7= > 1 =2z) (12.28)
=1

so that Ex[¢(X)] = [ p(z)d(x)v(de) = 57 3207, (2 = f
e Starting from maximum likelihood solution 6(%), meaning we are at

moment matching conditions Ey, . [#(X)] = i = Ep[¢(X)], we have
M

0(6(i), D) = (6(3), ) ~ AB(@)) = 17 > logpp(e) () (12.29)
=1

= /13(:):) log pg(p) (x)v(dz) = Es[log py(p)(x)]  (12.30)

= Epp( 108 Po(a) ()] = —Hpy, [P (7)] (12.31)
@ Thus, maximum likelihood value and negative entropy are identical, at

least for empirical /i (which is € M).
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Learning is the dual of Inference

@ |.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[p(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[p(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.

@ If we do maximum entropy learning, where does the exp(-) function
come from?
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[p(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.

@ If we do maximum entropy learning, where does the exp(-) function
come from? From the entropy function. l.e., the exponential form is
the distribution that has maximum entropy having those constraints.
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Dual Mappings: Summary

Summarizing these relationships

@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.
@ Backwards mapping: moving from € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

@ Turns out log partition function A, and its dual A* can give us these
mappings, and the mappings have interesting forms . ..
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Log partition (or cumulant) function: derivative offerings

A(f) = log/ exp (0, ¢(x)) v(dz) (12.32)

Dx

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know
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Log partition (or cumulant) function: derivative offerings

A(f) = log/ exp (0, ¢(x)) v(dz) (12.32)

Dx

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know
e A(0) is convex in 6 (strictly so if minimal representation).
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Log partition (or cumulant) function: derivative offerings

A(f) = log/D exp (0, ¢(x)) v(dz) (12.32)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(f) is convex in @ (strictly so if minimal representation).

@ It yields cumulants of the random vector ¢(X)

0A
870@(0) EH (/)n /¢a pe ( ) = Uq (1233)

in general, derivative of log part. function is expected value of feature
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Log partition (or cumulant) function: derivative offerings

A(f) = log/D exp (0, ¢(x)) v(dz) (12.32)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(f) is convex in @ (strictly so if minimal representation).

@ It yields cumulants of the random vector ¢(X)

g{;i(e) EG ¢a /¢o¢ p@ ) Mo (12'33)

in general, derivative of log part. function is expected value of feature
o Also, we get

8931({;49042(9) =Ky [¢a1 (X)@az (X>] —Ey [Qboq (XH]E@ [gbaQ (X)]
(12.34)
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Log partition (or cumulant) function: derivative offerings

A(f) = log/D exp (0, ¢(x)) v(dz) (12.32)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(f) is convex in @ (strictly so if minimal representation).

@ It yields cumulants of the random vector ¢(X)

g{;i(e) EG ¢a /¢o¢ p@ ) Mo (12'33)

in general, derivative of log part. function is expected value of feature
@ Also, we get

2
(9951(;19042(9) =[Ey [Qbal (X)¢a2 (X)] —[Eg [¢a1 (X)]Eg [¢a2 (X)]
(12.34)

@ Proof given in book (Proposition 3.1, page 62).
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Log partition function: properties

@ So derivative of log partition function w.r.t. 6 is equal to our mean
parameter p in the discrete case.

e Given A(#), we can recover the marginals for each potential function
¢o, € T (when mean parameters lie in the marginal polytope).

o If we can approximate A(f) with A(6) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources. Why do we want bounds? We shall soon see.

@ The Bethe approximation (as we'll also see) is such an approximation
and corresponds to fixed points of loopy belief propagation.

@ In some rarer cases, we can bound the approximation (current
research trend).
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Sources for Today's Lecture

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&d0oi=2200000001
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