EE512A — Advanced Inference in Graphical Models

— Fall Quarter, Lecture 11 —
http://j.ee.washington.edu/~bilmes/classes/eeb12a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

Nov 5th, 2014

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F1/60 (pg.1/60)

Logistics
1l

Announcements

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&do0i=2200000001

@ Read chapters 1,2, and 3 in this book
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Class Road Map - EE512a

@ L1 (9/29): Introduction, Families, @ L11 (11/5): LBP, exponential models,
Semantics mean params and polytopes
@ L2 (10/1): MRFs, elimination, Inference L13 (11/10):

on Trees L14 (11/12):
L15 (11/17):
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(*]

(]

o L16 (11/19):
L4 (10/8): Non-trees, perfect elimination, o |17 (11/24):

(]

(*]

(*]
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L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

i I h
triangulated gr‘ap s L18 (11/26):
L5 (10/13): triangulated graphs, k-trees,

: ) o L19 (12/1):

the triangulation process/heuristics
L6 (10/15): multiple queries, L_20 29 _
decomposable models, junction trees Final Presentations: (12/10):
L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,
L10 (11/3): conditioning, hardness, LBP

()

Finals Week: Dec 8th-12th, 2014.
Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F3/60 (pg.3/60)

Review
[ARREN

Approximation: Two general approaches

@ exact solution to approximate problem - approximate problem

© learning with or using a model with a structural restriction, structure
learning, using a k-tree for a lower k£ than one knows is true. Make sure
k is small enough so that exact inference can be performed, and make
sure that, in that low tree-width model, one has best possible graph

@ Functional restrictions to the model (i.e., use factors or potential
functions that obey certain properties). Then certain fast algorithms
(e.g., graph-cut) can be performed.

@ approximate solution to exact problem - approximate inference

© Message or other form of propagation, variational approaches, LP
relaxations, loopy belief propagation (LBP)

@ sampling (Monte Carlo, MCMC, importance sampling) and pruning
(e.g., search based A*, score based, number of hypothesis based)
procedures

@ Both methods only guaranteed approximate quality solutions.
@ No longer in the achievable region in time-space tradoff graph, new

set of time/space tradeoffs to achieve a particular accuracy.
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Belief Propagation: message definition

Generic message definition

pini(i) =Y Yig(mizs) || el (11.5)
i ked(i)\{s}

@ If graph is a tree, and if we obey MPP order, then we will reach a
point where we've got marginals. l.e.,

plai) o< [] mimilz) (11.6)
JE8(%)
and
plas x) < i zs) [ meoiC@) [ wesila)M  (117)
ked(i)\{7} ees(5)\{i}

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F5/60 (pg.5/60)

Review
(NN RN

Choices for dealing with higher order factors in MRFs

So, to deal with MRFs with higher order factors, we can:

@ transform MRF to have only pairwise interactions, add more variables,
we can keep using BP on MRF edges (as done above), makes the
math a bit easier, does not change fundamental computational cost.
Possible since for any given p, we know the interaction terms.

@ Alternatively, we can define BP on factor graphs.

© Alternatively, could define BP directly on the maxcliques of the MRF
(but maxcliques are not easy to get in a MRF when not triangulated).

For the remainder of this term, we'll assume we've done the pair-wise
transformation (i.e., option 1 above).
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State representation

o Consider the set of messages {/ii—;(x;)}, ; as a large state vector ut
with 2| E(G)|r scalar elements.

e Each sent message moves the state vector from u! at time ¢ to p!*!
at next time step.

@ A parallel message (sending multiple messages at the same time)
moves the state vector as well.

@ Convergence means that any set or subset of messages sent in parallel
is such that pit! = it
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Messages as matrix multiply

pimg(2) o ) Wig(ena)i(e) ] meoiles) (11.9)

ked(i)\{7}
= > i (@, 35) i () (11.10)
p— 7// T . .
= (¥;.;)" Hajoi (11.11)

@ Here, 1%]- is a matrix and p—;_; is a column vector.
2

e Going from state u! to p!*1 is like matrix-vector multiply — group
messages from p! together into one vector representing p—;—,; for
each (i,7) € E, do the matrix-vector update, and store result in new
state vector pu!t1.

e If G is tree, u! will converged after D steps.
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Belief Propagation and Cycles

What if graph has cycles?

@ MPP causes deadlock since there is no way to start sending messages

o Like before, we can assume that messages have an initial state, e.g.,
pi—j(x;) =1 for all (i, j) € E(G) - note this is bi-directional. This
breaks deadlock.

@ We can then start sending messages. Will we converge after D steps?
What does D even mean here?

@ No, in fact we could oscillate forever.
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Belief Propagation, Cycles, and Oscillation

e Consider odd length cycle (e.g., C3, Cs, etc.), Cs is sufficient
il
o Assume all messages start out at state y;_; = [1,0]".

e Consider (pairwise) edge functions, for each i, j
0 1

¢ij(93i7$j) = [1 0] (11.1)

@ then we have
k(@) = Y i k(@s, )i (z5) (11.2)
j

@ or in matrix form

pjosk = (5)" fimsj (11.3)
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Belief Propagation, Cycles, and Oscillation

o Let uf_m- be the t™ formed message, with ,u?_m- being the starting
state at [1,0]” .
1 _ T 2 _ T 3 _ T
® Then ;.. =1[0,1]", pi,; =[1,0]", p;_,; =[0,1]", and so on, never
converging. In fact,

piL = (i) T phoss (11.4)

@) () = (Wig)" (Yra) g (11.5)
= (i) (W) ()" piss; (11.6)

(k) = (1) éruﬁﬁj (11.7)

= {(1) (1)] Hisj (11.8)
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Belief Propagation, Cycles, and Oscillation

@ Thus, each time we go around the loop in the cycle, the message
configuration for each (i, 7) will flip, thereby never converging.

@ Damping the messages? l.e., Let 0 < v < 1 and treat messages as

Hioyj 4 Yinyy + (L= P s (11.9)

@ Empirical Folklore - if we converge quickly without damping, the
quality of the resulting marginals might be good. If we don’t converge
quickly, w/o damping, might indicate some problem.

@ Ways out of this problem: Other message schedules, other forms of
the interaction matrices, and other initializations.
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Belief Propagation, Cycles, and Oscillation

o If we initialize messages differently, things will turn out better.
T

o If u?,; =[0.5,0.5]" then p) = pl ..

@ Damping the messages appropriately will also end up at this

configuration.

@ Is there a better way to characterize this?
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Belief Propagation, Single Cycle

@ Consider a graph with a single cycle Cy.

@ It could be a cycle with trees hanging off of each node. We send
messages from the leaves of those dangling trees to the cycle (root)
nodes, leaving only a cycle remaining.

@ Consider what happens to /“L]z?—m' as t increases. w.l.o.g. consider ,uz_ﬂ
@ Let the cycle be nodes (1,2,3,...,4,1)

-1

“2:11 = (H(@Z’i,iJrl)T) TR (11.10)
=1

= My, (11.11)

@ Will this converge to anything?
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Belief Propagation, Single Cycle

Theorem 11.3.1 (Power method lemma)

Let A be a matrix with eigenvalues A1, ..., \, (sorted in decreasing
order) and corresponding eigenvectors x1,xa, ..., Tn. If [A\1]| > |Ag
(strict), then the update x'™1 = aAx? converges to a multiple of 1
starting from any initial vector z° = >; Bizi provided that 51 # 0. The
convergence rate factor is given by |Aa/\1|.
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 11.3.2

1. uy_1 converges to the principle eigenvector of M.

2. 19,1 converges to the principle eigenvector of M r

3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M.

4. The diagonal elements of M correspond to correct marginal p(x1)

5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = fp(z1) + (1 — B)q(x1) where 3 is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M.

See Weiss2000.

_
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What's going on with our oscillating example?

0

o We had M = [1 =
{—1/\/5 1/

2 with corresponding eigenvalues —1 and 1

@ Note that any uniform vector will be “converged”, i.e., any vector of
the form [aa].

] which has row-eigenvector matrix

@ However, we don’t have the guaranteed property of convergence since
we don't have that |A1| > |2l
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Belief Propagation, arbitrary graph

@ This works for a graph with a single cycle, or a graph that contains a
single cycle
@ It still does not tell us that we end up with correct marginals, rather

we get “pseudo-marginals”, which are locally normalized, but might
not be the correct marginals.

@ Moreover, they might not be the correct marginals for any probability
distribution.

@ Also, we'd like a characterization of LBP's convergence (if it happens)
for more general graphs, with an arbitrary number of loops.
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Next phase of class
1

Graphical Models, Exponential Families, and Variational

Inference

@ We're going to start covering our book:
Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi1=2200000001

@ We start with chapter 3 (we assume you will read chapters 1 and 2 on
your own).

@ We'll follow the Wainwright and Jordan notation, will point out where
it conficts a bit with the current notation we've been using.
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exponential family models

@ ¢ = (o, €T) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=|Z|.

e Each ¢, is a function of x, ¢,(x) but it usually does not use all of x
(only a subset of elements). Notation ¢, (z¢, ) assumed implicitly
understood, where C,, C V(G).

o 0 is a vector of canonical parameters (same length, |Z|). § € Q C R?
where d = |Z|.

@ We can define a family as

po(x) = exp((6, o(x)) — A(0)) (11.12)

Note that we're using ¢ here in the exponent, before we were using it
out of the exponent.

o Note that ¢(x) = (¢1(x), ¢2(x), - . ., @) where again each ¢;(z)
might use only some of the elements in vector z. ¢ : Dx™ — R%.
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exponential family models and clique features

@ Given a graph G = (V, F) we have a set of cliques C of the graph.

@ In order to respect the graph, we have to make sure that « € Z
respects the cliques.

@ That is, for any o € Z, and feature function ¢, (xc,) there must be a
clique C' € C such that C, C C.

@ On the other hand, by having a different index set Z we can have
more than one feature (sufficient statistic) for a given clique.

@ That is, for any given C' € C we might have multiple a1, as € Z such
that C, = Cy, = C for some clique C € C.
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exponential family models and clique features

@ Example: single scalar discrete random variable X € {1,2,...,k}
might have indicator feature for all possible values o;(z) £ 1(z = 1)
— in this case |C,| =1 for all a € T.

@ Could even think of {C4} o7 as cliques of some graph, but not
necessarily maxcliques.

@ Likely not dealing with triangulated models. Could be based on
cliques, or cliques and subsets of cliques (consider 4-cycle with edges
and vertices).

o Key: p e F(G, M) by Hammersley-Clifford theorem,

o where G = (V, E) where V is the nodes corresponding to vector z,

e and E is formed by using {C}, .7 as an edge clique cover: Jan a €7
such that u,v € C,, where u,v € V(G) < there is an edge
(u,v) € E(G).
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exponential family models

@ exponential models are in our sense sufficient to deal with the
computational aspects graphical models.

o We can have p € F((V, E), M®)) implies p € F((V, E + E1), M)
but in some sense, for any G, we want to deal with the models for
which G is tight (we don't want to use overly complex graph to deal
with family that is simpler)

@ Exponential models can represent any factorization, given any
factorization in terms of ¢, we can do exp(log ¢) to get potentials.

@ We can often make them log-linear models as well with the right
potential functions which won't increase tree-width of the graph.

@ Moreover, exponential family models are incredibly flexible and have a
number of desirable properties (e.g., aspects of the log partition
function which we will see)
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absolutely continuous

o Underlying base measure v, so that [ f(z)v(dz) corresponds to
>, f(z;) for a counting measure, or [ f(x)dz if not.
@ Underlying base measure v, p is absolutely continuous w.r.t. v

@ A measure v is absolutely continuous with respect to u if for each
A€ F, u(A) =0 implies (A) = 0. In this case v is also said to be
dominated by u (if 1 goes to zero, so must v), and the relation is
indicated by v < p.

A oL

o If v < pand p <K v, the measures are equivalent, indicated by v = v.
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exponential family models

@ Based on underlying set of parameters 6, we have family of models

po(z) =

1
70 {Z Haaﬁa(:r)} = exp((6, ¢(z)) — A(0)) (11.13)
acl
@ To ensure normalized, we use log partition (cumulant) function

A(6) =log | exp ((6,0())) v(do) (11.14)
Dx
with § € Q 2 {§ € RYA(6) < 400}
@ A(0) is convex function of 6, so 2 is convex.

@ Exponential family for which €2 is open is called regular
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exponential family models

@ Based on underlying set of parameters 6, we have family of models

po(x) =

Zze) Xp {Z Ha%(fv)} = exp((0, ¢(z)) — A(0)) (11.15)
a€cl

e family can arise for a number of reasons, e.g., distribution having
maximum entropy but that satisfies certain (moment) constraints.

e Given data D = {a_c%)}f\il form the expected statistics (requirements)
of a model, witih (V) ~ p(z)

1 & .
/:La = M ;¢a(£(z)) (11'16)

Thus, limp/—ye0 fla = Ep[da(X)] = pa
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Exponential family models

@ Goal (“estimation”, or “machine learning”) is to find

p* € argmax H(p) s.t. Ej[pa(X)] = fia Ya €T (11.17)
peEU
where Voo € 7
Ep[¢a(X)] = . $a(z)p(z)v(dr) (11.18)

o E,[¢o(X)] is mean value as measured by potential function, so above
is a form of moment matching.

@ Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of Eq. 11.15, by finding 6 that solves

Epy[¢a(X)] = fiq foralla € T (11.19)
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Minimal Representation of Exponential Family

@ Solution as form:

po(x) = exp({0, p(x)) — A(9)) (11.20)
where A(0) = log/D exp ((0, ¢(x))) v(dz) (11.21)

Exercise: show that solution to Eqn (11.17) has this form.

@ Minimal representation - Does not exist a nonzero vector v € R? for
which (v, ¢(z)) is constant Vx (that are v-measurable).

@ l.e., guarantee that, for all v € RP, there exists x4 £ 1y, wWith
v(xy),v(xe) > 0, such that (v, ¢(x1)) # (7, d(x2)).

@ essential idea: that for a set of sufficient stats Z, there is not a
lower-dimensional vector |Z'| < |Z| that is also sufficient (a min suf
stat is a function of all other suf stats).

@ We can't reduce the dimensionality d without changing the family.
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Overcomplete Representation

po(x) = exp((0, ¢(x)) — A(0)) (11.22)
where A(0) = log/D exp ((0, o(x))) v(dx) (11.23)

@ Overcomplete representation d = |Z| higher than need be

@ le, 3y #0s.t. (7,¢(x)) = ¢, Vx where ¢ = constant.

@ |l.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given v # 0 s.t.,
(v, ¢(x)) = ¢ and some other parameters 6, we have , we have

Po+~(z) = exp(((0 + ), ¢(x)) — A0 + 7)) (11.24)
= exp((0, #(z)) + (v, ¢(z)) — A(6 + 7)) (11.25)
=exp((0, o(x)) +c— A0+ 7)) (11.26)
= exp((0, #(z)) — A(9)) = po(x) (11.27)

@ True for any Ay with A € R, so affine set of identical distributions!
o We'll see later, this useful in understanding BP algorithm.
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(zly) = exp(yz — A(7)) (11.28)

@ overcomplete rep of Bernoulli dist.
p(al6o,01) = exp((6, $())) (11.29)
= exp(6o(1 — z) + bz — A(7)) (11.30)

where 6 = (6p,01) and ¢(z) = (1 — z,x).

Is there a vector a s.t. (a,¢(x)) = ¢ for all x, v-a.e.?

If a =(1,1) then (a,¢(z)) =(1—2z)+z=1

@ This is overcomplete since there is a linear combination of feature
functions that are constant.

Since 0y(1 — x) 4+ 61z = 6y + (01 — Oy), any parameters of form
01 — 6y = v gives same distribution.
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Famous Example - Ising Model

@ Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model
becomes

po(T) = exp Z 0y Ty + Z Ostxsxy — A(9) o, (11.31)
veV (s;t)eE

with

A(f) = log Z exp Z Oy, + Z Osixsxy — A(0)

z€{0,1}™ veV (s,t)EE
(11.32)

@ Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

@ Note, in this case Z is all singletons (unaries) and all pairs, so that
{Cato = {{xz}w {xia:j}(i,j)EE}'

@ We can easily generalize this via a set system. l.e., consider (V, V),
where V = {Vl, Vo, ..., VIVI} and where Vi, V; C V.

@ We can form sufficient statistic set via {Cu}, = {{zv}y ey }-

@ Higher order factors/interaction functions/potential
functions/sufficient statistics.
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Multivalued variables

@ Variables need not binary, instead Dx = {0,1,...,r — 1} for r > 2.
@ We can define aset of indicator functions constituting minimal
sufficient statistics. That is

1 ifxs=3y
elamg) = {0 . (11.33)

and
1 ifxs=jand x; =k,

11.34
0 else ( )

1st;jk (x57 xt) - {

@ Model becomes

r—1
pg(I) = exp Z Z Gv;jls;j(%) + Z Z est;ijlst;jk(x& xt) - A(e) ’
veV =0 (s,t)EE j.k
(11.35)

@ Is this overcomplete? Yes. Why?
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po(r) = exp {(0,33) + % (©,xxT) — A(6, @)} (11.36)

(©,zaT)) = >, ©;5z;z; is Frobenius norm.

So sufficient statistics are (z;)7; and (x;x});

O;+ = 0 means identical to missing edge in corresponding graph
(marginal independence).

Any other constraints on ©7 negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pg_(ys, xs)).
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Other examples

A few other examples in the book
@ Mixture models

@ Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

@ Models with hard constraints - key thing is to place the hard
constraints in the v measure. Sufficient statistics become easy if
complexity is encoded in the measure. Alternative is to allow features
over extended reals (i.e., a feature can provide —oo but this leads to
certain technical difficulties that they would rather not deal with).
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Mean Parameters, Convex Cores

@ Consider quantities u, associated with statistic ¢, defined as:

o = Ep[pa(X)] = / ba(@)p(@)v(dx) (11.37)

@ this defines a vector of “mean parameters” (u1, p2, - ., ftq) With
d=|Z|.
@ Define all the possible such vectors

M(@) = ME{peR?: Fp st o = Eylpa(X)], Ya e T}
(11.38)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p’ will lead to convex combinations of 1 and u

/

@ M is like a “convex core” of all distributions expressed via ¢.
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Mean Parameters and Gaussians

@ Here, we have E[X XT] = C and = EX. Question is, how to define
M?

@ Given definition of C' and p, then C' — puT must be valid covariance
matrix (since this is E[X — EX|[X —EX|T = C — puT).

@ Thus, C'— uuT™ = 0, thus p.s.d. matrix.

@ On the other hand, if this is true, we can form a Gaussian using
C — pupT as the covariance matrix.

@ Thus, for Gaussian MRFs, M has the form

M={(p,C) eR™ x ST|C — pu™ = 0} (11.39)

where 8™ is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

“lllustration of the set M for a scalar Gaussian: the model has two mean
parameters p = E[X] and ¥1; = E[X?], which must satisfy the quadratic
contraint 11 — #? > 0. Notice that M is convex, which is a general
property.”

Also, don’t confuse the “mean parameters” with the means of a Gaussian.
The typical means of Gaussians are means in this new sense, but those
means are not all of the means. ©
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Mean Parameters and Polytopes
@ When X is discrete, we get a polytope since
M = {,u eRY:p= Z ¢(x)p(x) for some p € I/{} (11.40)

= conv {¢(x),x € Dx (that are v-measurable),} (11.41)

where conv {-} is the convex hull of the items in argument set.

@ So we have a convex polytope
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Mean Parameters and Polytopes

@ Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J| x d matrix A and |J|-element column vector b with

M:{,LLE]Rd :A,qu} ={,u€]Rd :{aj, @) ij,VjeJ}
(11.42)
with A having rows a;.
< P(x)
A/
g
& <l
’/
3\\ z;“’? (aj,m) < by
N
PR\

4
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € V;z514, (5,2) € E(Q)} € RIVIHIEI (11.43)
we get
po =Ep[ X, =p(Xy, =1) YoeV (11.44)

pst = Ep[Xo Xy = p(Xs = 1, X, = 1) ¥(s,t) € B(G)  (11.45)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(x),z € {0,1}"}.

@ Gives complete marginal since ps(1) = 1 — ps(0),
ps,t(17 0) = ps(l) - ps,t(17 1)1 ps,t(oa 1) = pt(l) - ps,t(la 1)' etc.

@ Recall: marginals are often the goal of inference. Coincidence?
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Example: 2-variable Ising

H12

“Ising model with two variables (X1, X3) € {0,1}*. Three mean
parameters py = E[X1], po = E[Xs], p12 = E[X2X5s], must satisfy
constraints 0 < p1o0 < p; fort =1,2, and 1 + p12 — 1 — pz > 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0,1]3.”
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Mean Parameters and Overcomplete Representation

@ We can use overcomplete representation and get a “marginal
polytope”, a polytope that represents the marginal distributions at
each potential function.

@ Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

Vo € V(G),j € {0...r — 1}, define ¢, j(z,) = L(z, = j) (11.46)

V(s,t) € E(G),j,k € {0...r —1}, we define: (11.47)
Dst,jk(Ts, Tt) = 1(zs =j,2e = k) = L(zs = j)1(z = k)
(11.48)

@ So we now have |V|r + 2| E|r? functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

@ Mean parameters are now true (fully specified) marginals, i.e.,
po(j) = p(zy = j) and psi(j, k) = p(xs = j, 2 = k) since

Ho,j = Ep[]-(xv = j)] = p(zy = J) (11.49)
st jk = Ep[l(xs =J, Lt = k)] - p(acs =1,%t = k) (1150)

@ Such an M is called the marginal polytope. Any i must live in the
polytope that corresponds to node and edge true marginals!!

@ We can also associate such a polytope with a graph G, where we take
only (s,t) € E(G). Denote this as M(G).

@ This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we'll see.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.

e “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

@ For k-trees, complexity grows exponentially.

@ Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 6 to the point in the marginal polytope, called forward
mapping, moving from 6 € 2 to yu € M.

@ We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

@ graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Learning is the dual of Inference

o Ex: Estimate 0 with @ based on data D = {a‘:%) f\il of size M,
likelihood function

M
(0.D) = -3 logpp(a?) = (0. 3) — A(9) (11.51)
1=1

where empirical means given by

. 1 X .
i =E[p(X)] = i Z o(z%) (11.52)

@ By taking derivatives of the above, it is easy to see that solution is the
point 6 such that (empirical matches expected means)

E,[6(X)] = j (11.53)

this is the the backward mapping problem, going from u to 6.
@ This is identical to the maximum entropy problem.
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Learning is the dual of Inference

@ l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[¢(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.

@ If we do maximum entropy learning, where does the exp(-) function

come from? From the entropy function. l.e., the exponential form is
the distribution that has maximum entropy having those constraints.
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Dual Mappings: Summary

Summarizing these relationships

@ Forward mapping: moving from 6 € ) to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € 2, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

@ Turns out log partition function A, and its dual A* can give us these
mappings, and the mappings have interesting forms . ..
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Log partition (or cumulant) function

A(0) = log/D 0, 6(x)) v(dz) (11.54)

@ If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

@ A(0) is convex in 6 (strictly so if minimal representation).

@ It yields cumulants of the random vector ¢(X)

0A
o (0) =Eal6a(X)] = [ 0a(Om@v(de) = o (1155)
in general, derivative of log part. function is expected value of feature
o Also, we get
0%A

m(9) = Eg[pa, (X)Pas (X)] — Eg[pa, (X)]Ep[Bay (X)]

(11.56)

@ Proof given in book.
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Log partition function

@ So derivative of log partition function w.r.t. 8 is equal to our mean
parameter p in the discrete case.

@ Given A(0), we can recover the marginals for each potential function
Ga, @ € T (when mean parameters lie in the marginal polytope).

o If we can approximate A(6) with A(6) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources.

@ The Bethe approximation (as we'll see) is such an approximation and
corresponds to fixed points of loopy belief propagation.

@ In some rarer cases, we can bound the approximation (current
research trend).
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Log partition function

@ SoVA:Q — M’ where M" C M, and where
M= {p e RYIp st. E)[p(X)] = p}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between p and 6.

@ For non-minimal exponential families, more than one 6 for a given u
(not surprising since multiple 6's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

@ Key point: all mean parameters are realizable by member of exp.
family.
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Mappings - one-to-one

In fact, we have

Theorem 11.6.1
The gradient map V A is one-to-one iff the exponential representation is
minimal.

@ Proof basically uses property that if representation is non-minimal,
and (a, ¢(x)) = c for all z, then we can form an affine set of
equivalent parameters 6 + va.

@ Other direction, uses strict convexity.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F53/60 (pg.53/60)

v Param./Marg. Polytope
Lrrrrrrrrrrrrrrrrrerrnn

Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M°). Consequently, for each jn € M°, there exists some
0 = 0(n) € Q such that Eg[¢p(X)] = u.

@ Example: consider, for example, a Gaussian.

@ Any mean parameter (set of means E[X] and correlations E[X X T])
can be realized by a Gaussian having those same mean parameters
(moments).

@ The Gaussian won't nec. be the “true” distribtuion (in such case, the
“true” distribution would not be an exponential family model with
those moments).

@ The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family

6" argznax ((0, 1) — A(9)) (11.57)

@ Convex conjugate dual of A(f) is defined as:

A*(u) 2 sup (6, 1) = A(6) (11.58)

So dual is optimal value of the ML problem, when p € M

Key: when p € M, dual is negative entropy of exp. model py(,) where
O(w) is the unique set of canonical parameters satisfying this matching
condition

Egulo(X)] = VAO (1) = p (11.59)

@ When p ¢ M, then A*(u) = 400, optimization with dual need
consider points only in M.
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Conjugate Duality

Theorem 11.6.3 (Relationship between A and A*)

(a) For any p € M°, 6(u) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A% (p) = sup ({0, ) — A(0)) =

g (11.60)

—H(pg()) ifpeM°
+o00 if ue M

(b) Partition function has variational representation (dual of dual)

A(B) = sup ({0, 1) ~ A1)} (11.61)

(c) For 8 € Q, sup occurs at ;1 € M° at moment matching conditions

n= d(x)pg(z)v(dr) = Eg[p(X)] = VA(O) (11.62)
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Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to u via the matching mapping 6(u)
which achieves

Eg(u[0(X)] = (11.63)

e A(0) in Equation 11.61 is the “inference” problem (dual of the dual)
for a given 6, since computing it involves computing the desired
node/edge marginals.

@ Whenever u ¢ M, then A*(u) returns oo which can't be the resulting
sup, so Equation 11.61 need only consider M.
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Conjugate Duality

A(B) = sup ({6, 1) ~ A1)} (11.61)

@ computing A(6) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©

@ Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. ®

@ More bad news: A* not given explicitly in general and hard to
compute. ®
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Conjugate Duality

A(B) = sup ({6, 1) ~ A1)} (11.61)

@ Some good news: The above form gives us new avenues to do
approximation. ©

@ For example, we might either relax M (making it less complex), relax
A*(u) (making it easier to compute over), or both. ©

@ Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). ©®®
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Sources for Today's Lecture

@ Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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