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Announcements

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

@ Read chapters 1,2, and 3 in this book

Prof. Jeff Bilmes
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Class Road Map - EE512a

@ L1 (9/29): Introduction, Families, @ L11 (11/5): LBP, exponential models,
Semantics mean params and polytopes
@ L2 (10/1): MREFs, elimination, Inference L13 (11/10):

on Trees

@ L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

°
o L14 (11/12):
o L15 (11/17):
o L16 (11/19):
° Lé_l (10/8): Non-trees, perfect elimination, o | 17 (11/24):
triangulated gr.aphs o L18 (11/26):
@ L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics ® L19 (12/1).
@ L6 (10/15): multiple queries, o L20 (12/3):
decomposable models, junction trees @ Final Presentations: (12/10):
@ L7 (10/20): junction trees, begin
intersection graphs
@ L8 (10/22): intersection graphs, inference
on junction trees
@ L9 (10/27): inference on junction trees,
semirings,
@ L10 (11/3): conditioning, hardness, LBP

Finals Week: Dec 8th-12th, 2014.
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Approximation: Two general approaches

@ exact solution to approximate problem - approximate problem

@ learning with or using a model with a structural restriction, structure
learning, using a k-tree for a lower k than one knows is true. Make sure
k is small enough so that exact inference can be performed, and make
sure that, in that low tree-width model, one has best possible graph

@ Functional restrictions to the model (i.e., use factors or potential
functions that obey certain properties). Then certain fast algorithms
(e.g., graph-cut) can be performed.

@ approximate solution to exact problem - approximate inference

@ Message or other form of propagation, variational approaches, LP
relaxations, loopy belief propagation (LBP)

@ sampling (Monte Carlo, MCMC, importance sampling) and pruning
(e.g., search based A*, score based, number of hypothesis based)
procedures

@ Both methods only guaranteed approximate quality solutions.
@ No longer in the achievable region in time-space tradoff graph, new

set of time/space tradeoffs to achieve a particular accuracy.
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Belief Propagation: message definition

Generic message definition

fisj(25) Z¢m (i, 5) H Poi—s(a7) (11.5)
keo()\{s}

o If graph is a tree, and if we obey MPP order, then we will reach a
point where we've got marginals. l.e.,

plai) o< T mysil:) (11.6)
JES(1)

and

plai zy) o (i) [ mwoilzi) [ wesi(z)M  (11.7)
ked(i)\{s} ted(i)\{i}
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Choices for dealing with higher order factors in MRFs

So, to deal with MRFs with higher order factors, we can:

@ transform MRF to have only pairwise interactions, add more variables,
we can keep using BP on MRF edges (as done above), makes the
math a bit easier, does not change fundamental computational cost.
Possible since for any given p, we know the interaction terms.

@ Alternatively, we can define BP on factor graphs.

© Alternatively, could define BP directly on the maxcliques of the MRF
(but maxcliques are not easy to get in a MRF when not triangulated).

For the remainder of this term, we'll assume we've done the pair-wise
transformation (i.e., option 1 above).
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State representation

o Consider the set of messages {1 ;(z;)}, ; as a large state vector ut
with 2|E(G)|r scalar elements.

@ Each sent message moves the state vector from u! at time t to p!+!
at next time step.

@ A parallel message (sending multiple messages at the same time)
moves the state vector as well.

@ Convergence means that any set or subset of messages sent in parallel
is such that p!*! = put.
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Messages as matrix multiply

Hi—sj "rj ZQ/)ZJ $Z,CCJ)¢Z({E1) H ,Ufk—m(gﬂl) (119)
ked(i)\{s}

Zw’~ o ) s () (11.10)

(11.11)

@ Here, wz/»’j is a matrix-and fi—;j_; is a column vector.

e Going from state uf to p!*! is like matrix-vector multiply — group
messages from p! together into one vector representing ji—j_; for
each (i,7) € E, do the matrix-vector update, and store result in new

state vector p!t1.

o If G is tree, pu! will converged after D steps.
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Belief Propagation and Cycles

What if graph has cycles?
@ MPP causes deadlock since there is no way to start sending messages
@ Like before, we can assume that messages have an initial state, e.g.,
pi—j(z;) =1 for all (i,5) € E(G) - note this is bi-directional. This
breaks deadlock.
@ We can then start sending messages. Will we converge after D steps?
What does D even mean here?

@ No, in fact we could oscillate forever.
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Belief Propagation, Cycles, and Oscillation

e Consider odd length cycle (e.g., C3, Cs, etc.), Cs is sufficient
ki
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LBP
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Belief Propagation, Cycles, and Oscillation

o Consider odd length cycle (e.g., C3, Cs, etc.), Cs is sufficient
ki

@ Assume all messages start out at state j; »; = [1,0]".

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 11 - Nov 5th, 2014 F10/60 (pg.11/166)



LBP
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Belief Propagation, Cycles, and Oscillation

o Consider odd length cycle (e.g., C3, Cs, etc.), Cs is sufficient
ki
o Assume all messages start out at state p;,; = [1, 0)7.

e Consider (pairwise) edge functions, for each i, j

Vij (T, T5) = [(1) (1)} (11.1)
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Belief Propagation, Cycles, and Oscillation

o Consider odd length cycle (e.g., C3, Cs, etc.), Cs is sufficient
ki
o Assume all messages start out at state p;,; = [1, 0)7.

o Consider (pairwise) edge functions, for each i, j
01
¢ij(xi7xj) = [1 0:| (].1.].)

@ then we have

tj—k (k) Z%k Tj, T ) i (T;) (11.2)

Zj
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LBP
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Belief Propagation, Cycles, and Oscillation

o Consider odd length cycle (e.g., C3, Cs, etc.), Cs is sufficient
ki
o Assume all messages start out at state p;,; = [1, 0)7.

o Consider (pairwise) edge functions, for each i, j

0 1
¢ij(xi7xj) = [1 0:| (].1.].)
@ then we have
1k (k) Z%k (T, Tk ) isj () (11.2)
J
@ or in matrix form
ik = (W5)7 pics; (11.3)
S—
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Belief Propagation, Cycles, and Oscillation

o Let ,ugéj be the ¢t" formed message, with M?%j being the starting
state at [1,0]” .
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Belief Propagation, Cycles, and Oscillation

o Let “§—>j be the ¢t" formed message, with “?—m' being the starting
state at [1,0]”

@ Then ,u}_m- = [0,1]", Mz—)] [1,0]% ul_m [0, 1", and so on, never
converging. In fact,
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Belief Propagation, Cycles, and Oscillation

o Let “§—>j be the ¢t" formed message, with “?—m' being the starting
state at [1,0]”

@ Then ,u}_m- =[0,1]7, Mz—)] 1,07, Mz—m [0,1]7, and so on, never
converging. In fact,

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 11 - Nov 5th, 2014 F11/60 (pg.17/166)



LBP
[ERRRARRN]

Belief Propagation, Cycles, and Oscillation

o Let “§—>j be the ¢t" formed message, with “?—m' being the starting
state at [1,0]”

@ Then ,u}_m- =[0,1]7, Mz—)] 1,07, Mz—m [0,1]7, and so on, never
converging. In fact,

@Q—D
®)
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Belief Propagation, Cycles, and Oscillation

o Let ,u§_>j be the ¢t" formed message, with “?—m' being the starting
state at [1,0]”.

@ Then ,u}_m- =[0,1]7, Mz—)] 1,07, Mz—m [0,1]7, and so on, never
converging. In fact,

pits = Wig) T ks (11.4)

(
) ) = (i) Weor.) " 11 (11.5)
< wi,j)T %,z‘)T(%k) MH] (11.6)

0 A {‘f é]gufﬁ,,. (11.7)
1

jil (11.8)
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Belief Propagation, Cycles, and Oscillation

@ Thus, each time we go around the loop in the cycle, the message
configuration for each (i, j) will flip, thereby never converging.
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Belief Propagation, Cycles, and Oscillation

@ Thus, each time we go around the loop in the cycle, the message
configuration for each (i, j) will flip, thereby never converging.

@ Damping the messages? l.e., Let 0 <~ < 1 and treat messages as

Py Uiy + (1= ’Y)ngj (11.9)
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Belief Propagation, Cycles, and Oscillation

@ Thus, each time we go around the loop in the cycle, the message
configuration for each (i, j) will flip, thereby never converging.

@ Damping the messages? l.e., Let 0 < < 1 and treat messages as
byl (1 =)=t (11.9)
:u’l—)j 7:“7,%] 7 /jfz_>] .
@ Empirical Folklore - if we converge quickly without damping, the

quality of the resulting marginals might be good. If we don’t converge
quickly, w/o damping, might indicate some problem.
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Belief Propagation, Cycles, and Oscillation

@ Thus, each time we go around the loop in the cycle, the message
configuration for each (i, j) will flip, thereby never converging.

@ Damping the messages? l.e., Let 0 < < 1 and treat messages as
byl (1 =)=t (11.9)
,U,ZA)J 7:“7,*)] 7 :u’z_>] .

@ Empirical Folklore - if we converge quickly without damping, the
quality of the resulting marginals might be good. If we don’t converge
quickly, w/o damping, might indicate some problem.

@ Ways out of this problem: Other message schedules, other forms of
the interaction matrices, and other initializations.
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Belief Propagation, Cycles, and Oscillation

If we initialize messages differently, things will turn out better.
If M?—U = [0.5,0.5]" then pitl = 15 s

i—7

Damping the messages appropriately will also end up at this
configuration.

@ |s there a better way to characterize this?
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Belief Propagation, Single Cycle

Consider a graph with a single cycle Cy.

@ It could be a cycle with trees hanging off of ea
messages from the leaves of those dangling trees to the cycle (root)
nodes, leaving only a cycle remaining.

o Consider what happens to ! .. as t increases. w.l.o.g. consider ,uﬁ_ﬂ

@ Let the cycle be nodes™(1,2,3,...,¢,1)

(11.10)

(11.11)

@ Will this converge to anything?
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Belief Propagation, Single Cycle

Theorem 11.3.1 (Power method lemma)

Let A be a matrix with eigenvalues Ay, ..., A, (sorted in decreasing
order) and corresponding eigenvectors Ty, xa,. .., Tn. If|A1] > |A2]
(strict), then the update 't = a Az’ converges to a multiple of

starting from any initial vector @ . Bix; provided that 1 # 0. The
convergence rate factor is given by Do/ 1)
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 11.3.2

1. py_,1 converges to the principle eigenvector of M.
2. [19_s1 converges to the principle eigenvector of M7 .

3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M.

4. The diagonal elements of M correspond to correct marginal p(x1)

5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = Bp(x1) + (1 — B)q(x1) where (3 is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(z1) depends
on the eigenvectors of M.

See Weiss2000. ]
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What's going on with our oscillating example?

o We had M = [(1) (1)] which has row-eigenvector matrix

—1/V2 1/V2
e e
@ Note that any uniform vector will be “converged”, i.e., any vector of
the form [aa).
@ However, we don't have the guaranteed property of convergence since
we don’t have that [A;| > |[Aa].

with corresponding eigenvalues —1 and 1.
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Belief Propagation, arbitrary graph

@ This works for a graph with a single cycle, or a graph that contains a
single cycle

o |t still does not tell us that we end up with correct marginals, rather
we get “pseudo-marginals”, which are locally normalized, but might
not be the correct marginals.

@ Moreover, they might not be the correct marginals for any probability
distribution.

@ Also, we'd like a characterization of LBP's convergence (if it happens)
for more general graphs, with an arbitrary number of loops.
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Next phase of class
1

Graphical Models, Exponential Families, and Variational

Inference

@ We're going to start covering our book:
Wainwright and Jordan Graphical Models, Exponential Families, and

Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

@ We start with chapter 3 (we assume you will read chapters 1 and 2 on
your own).

o We'll follow the Wainwright and Jordan notation, will point out where
it conficts a bit with the current notation we've been using.
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exponential models
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exponential family models

@ ¢ = (¢, € ) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=|Z|.
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exponential models
RELrrrrerenend

exponential family models

@ ¢ = (pa, € I) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=1Z|.

e Each ¢, is a function of x, ¢ (x) but it usually does not use all of =
(only a subset of elements). Notation ¢, (zc,) assumed implicitly
understood, where C, C V(G).

M

=Dl e
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exponential models
RELrrrrerenend

exponential family models

@ ¢ = (pa, € I) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=1Z|.

e Each ¢, is a function of x, ¢, (x) but it usually does not use all of =
(only a subset of elements). Notation ¢, (zc,) assumed implicitly
understood, where C, C V(G).

e 0 is a vector of canonical parameters (same length, |Z|). § € Q C R?
where d = |Z|.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 11 - Nov 5th, 2014 F20/60 (pg.33/166)



exponential models
RELrrrrerenend

exponential family models

@ ¢ = (¢o, €T) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=1Z|.

e Each ¢, is a function of x, ¢, (x) but it usually does not use all of =
(only a subset of elements). Notation ¢, (zc,) assumed implicitly
understood, where C, C V(G).

e 0 is a vector of canonical parameters (same length, |Z|). 6 € Q C R?
where d = |Z]. =4 d-(r)

@ We can define a family as

po(x) = exp{ 0,¢(x /)] (11.12)

Note that we're using ¢ here in the exponent, before we were using it
out of the exponent.
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exponential models
RELrrrrerenend

exponential family models

@ ¢ = (pa, € I) is a collection of functions known as potential
functions, sufficient statistics, or features. Z is an index set of size
d=1Z|.

e Each ¢, is a function of x, ¢, (x) but it usually does not use all of =
(only a subset of elements). Notation ¢, (zc,) assumed implicitly
understood, where C, C V(G).

e 0 is a vector of canonical parameters (same length, |Z|). 6 € Q C R?
where d = |Z|.

@ We can define a family as

po(x) = exp((0, o(x)) — A(0)) (11.12)

Note that we're using ¢ here in the exponent, before we were using it
out of the exponent.

o Note that ¢(z) = (¢1(z), p2(7), . . ., ¢7)) where again each ¢;(x)
might use only some of the elements in vector &. ¢ : Dx™ — R%
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exponential family models and clique features

e Given a graph G = (V, E) we have a set of cliques C of the graph.
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exponential models
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exponential family models and clique features

@ Given a graph G = (V| E) we have a set of cliques C of the graph.

@ In order to respect the graph, we have to make sure that « € 7
respects the cliques.
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exponential models
(A ERRNARRR RN}

exponential family models and clique features

@ Given a graph G = (V| E) we have a set of cliques C of the graph.

@ In order to respect the graph, we have to make sure that « € 7
respects the cliques.

@ That is, for any a € Z, and feature function ¢q (¢, ) there must be a
clique C' € C such that C, C C.
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exponential models
(A ERRNARRR RN}

exponential family models and clique features

@ Given a graph G = (V| E) we have a set of cliques C of the graph.

@ In order to respect the graph, we have to make sure that « € 7
respects the cliques.

e That is, for any a € Z, and feature function ¢, (x¢,) there must be a
clique C € C such that C, C C.

@ On the other hand, by having a different index set Z we can have
more than one feature (sufficient statistic) for a given clique.
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exponential models
(A ERRNARRR RN}

exponential family models and clique features

@ Given a graph G = (V| E) we have a set of cliques C of the graph.

@ In order to respect the graph, we have to make sure that « € 7
respects the cliques.

e That is, for any a € Z, and feature function ¢, (x¢,) there must be a
clique C € C such that C, C C.

@ On the other hand, by having a different index set Z we can have
more than one feature (sufficient statistic) for a given clique.

e That is, for any given C.€ C we might have multiple a1, as € Z such
that Cy, = Cq, = C for some clique C' € C.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 11 - Nov 5th, 2014 F21/60 (pg.40/166)



exponential models
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exponential family models and clique features

e Example: single scalar discrete random variable X € {1,2,... &}

might have indicator feature for all possible values a;(x) £ 1(z = i)
— in this case |Cy| =1 for all a € 7.

C%:C;(/ V"(p/f,z
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exponential models
(REARRARRR RN}

exponential family models and clique features

e Example: single scalar discrete random variable X € {1,2,...,k}
might have indicator feature for all possible values a;(z) = 1(x = i)
— in this case |Cy| =1 for all @ € 7.

e Could even think of {Cy} 7 as cliques of some graph, but not
necessarily maxcliques.
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exponential models
(REARRARRR RN}

exponential family models and clique features

e Example: single scalar discrete random variable X € {1,2,...,k}
might have indicator feature for all possible values a;(z) = 1(x = i)
— in this case |Cy| =1 for all @ € 7.

o Could even think of {C4}, 7 as cliques of some graph, but not
necessarily maxcliques.

o Likely not dealing with triangulated models. Could be based on
cliques, or cliques and subsets of cliques (consider 4-cycle with edges
and vertices).
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exponential models
(REARRARRR RN}

exponential family models and clique features

e Example: single scalar discrete random variable X € {1,2,...,k}
might have indicator feature for all possible values a;(z) = 1(x = i)
— in this case |Cy| =1 for all @ € 7.

o Could even think of {C4}, 7 as cliques of some graph, but not
necessarily maxcliques.

o Likely not dealing with triangulated models. Could be based on
cliques, or cliques and subsets of cliques (consider 4-cycle with edges
and vertices).

e Key: p € F(G, M(f)) by Hammersley-Clifford theorem,
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exponential models
(REARRARRR RN}

exponential family models and clique features

e Example: single scalar discrete random variable X € {1,2,...,k}
might have indicator feature for all possible values a;(z) = 1(x = i)
— in this case |Cy| =1 for all @ € 7.

o Could even think of {C4}, 7 as cliques of some graph, but not
necessarily maxcliques.

o Likely not dealing with triangulated models. Could be based on
cliques, or cliques and subsets of cliques (consider 4-cycle with edges
and vertices).

o Key: p € .F(G,M(f)) by Hammersley-Clifford theorem,

e where G = (V, E) where V' is the nodes corresponding to vector z,
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exponential models
(RERRRARRR RN}

exponential family models and clique features

e Example: single scalar discrete random variable X € {1,2,...,k}
might have indicator feature for all possible values a;(z) = 1(x = i)
— in this case |Cy| =1 for all @ € 7.

o Could even think of {C4}, 7 as cliques of some graph, but not
necessarily maxcliques.

o Likely not dealing with triangulated models. Could be based on
cliques, or cliques and subsets of cliques (consider 4-cycle with edges
and vertices).

o Key: p € F(G,M(f)) by Hammersley-Clifford theorem,

o where G = (V, E) where V is the nodes corresponding to vector z,

e and E is formed by using {Cq },c7 as an edge clique cover: 3ana €T
such that u,v € C,, where u,v € V(G) < there is an edge
(u,v) € E(Q).

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 11 - Nov 5th, 2014 F22/60 (pg.46/166)



exponential models
(ARE ARARRARNRRAN]

exponential family models

@ exponential models are in our sense sufficient to deal with the
computational aspects graphical models.

e We can have p € F((V, E),M®) implies p € F(V, E + Ey), M)
but in some sense, for any GG, we want to deal with the models for
which G is tight (we don’t want to use overly complex graph to deal

with family that is simpler) (k)= Tﬁw(‘? (X)_—J W(A(")

@ Exponential models can represent factorlzat|on given any
factorization in ter potentials.

ot ———1
Z - <77 £ D C
oP<a We can do-ex] PO —t0 g€

@ We can often make thenttog- ith the right
potential functions which won't increase tree-width of the graph.
@ Moreover, exponential family models are incredibly flexible and have a

number of desirable properties (e.g., aspects of the log partition
function which we will see)
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absolutely continuous

@ Underlying base measure v, so that ff(a:)rresponds to

> f(x;) for a counting measure, of [ f(Z)dzif not.

— £

AEFIn —
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absolutely continuous

o Underlying base measure v, so that [ f(z)v(dz) corresponds to
>-; f(x;) for a counting measure, or [ f(z)dx if not.

@ Underlying base measure v, p is absolutely continuous w.r.t. v
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absolutely continuous

o Underlying base measure v, so that [ f(z)v(dz) corresponds to
>-; f(x;) for a counting measure, or [ f(z)dx if not.

@ Underlying base measure v, p is absolutely continuous w.r.t. v

@ A measure v is absolutely continuous with respect to p if for each
A e F, p(A) =0 implies v(A) = 0. In this case v is also said to be
dominated by p (if 12 goes to zero, so must v), and the relation is
indicated by v < p.

%
14
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absolutely continuous

o Underlying base measure v, so that [ f(z)v(dz) corresponds to
>-; f(x;) for a counting measure, or [ f(z)dx if not.

@ Underlying base measure v, p is absolutely continuous w.r.t. v

@ A measure v is absolutely continuous with respect to p if for each
Ae F, u(A) =0 implies v(A) = 0. In this case v is also said to be
dominated by p (if 11 goes to zero, so must v), and the relation is
indicated by v < p.

A e oL

o If v < pand p < v, the measures are equivalent, indicated by v = v.
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exponential family models

@ Based on underlying set of parameters #, we have family of models

po(x) eXp {(;:ead)a(x)} = exp((0, ¢(z)) — (11.13)
A /(9): /V/v%(ﬁ)
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exponential family models

o Based on underlying set of parameters 6, we have family of models
(1) = 75 D3 S badala) = exp((6,6(x)) — A(9)) (11.13)
po(x _Z(G)eXp aezaax = exp((0, ¢(x .

@ To ensure normalized, we use log partition (cumulant) function
A(0) = log / exp ({0, (x))) v(dx) (11.14)

with § € Q £ {6 € RYA(6) < o0}
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exponential family models

o Based on underlying set of parameters 6, we have family of models
(1) = 75 D3 S badala) = exp((6,6(x)) — A(9)) (11.13)
po(x _Z(G)eXp aezaaa: = exp((0, ¢(x .

o ensure normalized, we use log partition (cumulant) function

A(6) =tog [ exp ((8.6(2)) v(do) (11.14)
Dx
with § € Q 2 {6 € RYA(6) < +00}
o A(0) is convex function of #, so € is convex.

L
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exponential family models

o Based on underlying set of parameters 6, we have family of models
(1) = 75 D3 S badala) = exp((6,6(x)) — A(9)) (11.13)
po(x _Z(G)eXp aezaax = exp((0, ¢(x .

@ To ensure normalized, we use log partition (cumulant) function

A(6) =tog [ exp (8.6(2) v(do) (11.14)
Dx
with § € Q 2 {6 € RYA(6) < o0}
e A(0) is convex function of 6, so € is convex.

@ Exponential family for which € is open is called regular
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exponential family models

@ Based on underlying set of parameters #, we have family of models

po() = Zze) exp {Z ea¢a<x>} — exp((8, 6(x)) — A(9)) (11.15)

a€el

o family can arise for a number of reasons, e.g., distribution having
maximum entropy but that satisfies certain (moment) constraints.

e Given data D = i:?@#orm the expected statistics (requirements)
of a model, witih 2\ ~ p(z)

M
ﬂa — Mz(ﬁa(f(l)) (11'16)

Thus, limps_y00 fla = Ep[pa(X)]
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Exponential family models

o Goal (“estimation”, or “machine learning”) is to find

p* e arggljaxﬂ(p) st. Eploa(X)] = fla Yool (11.17)
where Voo € 7
Epl¢a(X)] = [ = dalz)p(z)v(dr) (11.18)

Dx

@ E,[¢n(X)] is mean value as measured by potential function, so above
is a form of moment matching.

@ Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of Eq. 11.15, by finding 0 that solves

Epp[0a(X)] = fiq foralla € T (11.19)
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Minimal Representation of Exponential Family

@ Solution as form:

po(z) = exp((0, ¢(x)) — A(6)) (11.20)
where A(0) = log !/D exp ((0, ¢(z))) v(dx) (11.21)

Exercise: show that solution to Eqn (11.17) has this form.
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Minimal Representation of Exponential Family

@ Solution as form:

po(z) = exp((0, ¢(x)) — A(0)) (11.20)
where A(8) = log /D exp (0, 6(x)) v(de)  (11.21)

Exercise: show that solution to Eqn (11.17) has this form.

@ Minimal representation - Does not exist a nonzero vector v € R¢ for
which (v, ¢(x)) is constant Vz (that are v-measurable).
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Minimal Representation of Exponential Family

@ Solution as form:

po(z) = exp((0, ¢(x)) — A(0)) (11.20)
where A(8) = log /D exp (0, 6(x)) v(de)  (11.21)

Exercise: show that solution to Eqn (11.17) has this form.
@ Minimal representation - Does not exist a nonzero vector v € R? for

which (v, ¢(z)) is consta Mﬁmab are v-measurable).

@ |.e., guarantee that, for al there exists x1 # x9, with

v(z1),v(z2) > 0, such that (v, ¢(x1)) # (v, p(x2)).
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Minimal Representation of Exponential Family

@ Solution as form:

po(z) = exp((0, ¢(x)) — A(0)) (11.20)
where A(8) = log /D exp (0, 6(x)) v(de)  (11.21)

Exercise: show that solution to Eqn (11.17) has this form.

@ Minimal representation - Does not exist a nonzero vector v € R? for
which (v, ¢(x)) is constant Vz (that are v-measurable).

o l.e., guarantee that, for all v € RP, there exists 1 =% xo, with
v(z1),v(x2) > 0, such that (v, ¢(z1)) # (v, d(22)).

@ essential idea: that for a set of sufficient stats Z, there is not a
lower-dimensional vector |Z'| < |Z| that is also sufficient (a min suf
stat is a function of all other suf stats).
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Minimal Representation of Exponential Family

@ Solution as form:

po(z) = exp((0, ¢(x)) — A(0)) (11.20)
where A(8) = log /D exp (0, 6(x)) v(de)  (11.21)

Exercise: show that solution to Eqn (11.17) has this form.

@ Minimal representation - Does not exist a nonzero vector v € R? for
which (v, ¢(x)) is constant Vz (that are v-measurable).

o l.e., guarantee that, for all v € RP, there exists 1 =% xo, with
v(z1),v(22) > 0, such that (v, ¢(z1)) # (v, d(x2)).

@ essential idea: that for a set of sufficient stats Z, there is not a
lower-dimensional vector |Z'| < |Z| that is also sufficient (a min suf
stat is a function of all other suf stats).

@ We can't reduce the dimensionality d without changing the family.
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Overcomplete Representation

po(x) = exp((0, ¢(x)) — A(0)) (11.22)
where A(0) = log/D exp ((0, ¢(x))) v(dz) (11.23)

e Overcomplete representation d = |Z| higher than need be
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Overcomplete Representation

po(x) = exp((0, ¢(x)) — A(0)) (11.22)
where A(0) = log/D exp ((0, ¢(x))) v(dz) (11.23)

@ Overcomplete representation d = |Z| higher than need be
e le, 3y #0s.t. (y,¢(x)) = ¢, Vx where ¢ = constant.
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Overcomplete Representation
po(x) = exp((6, p(x)) — A(0)) (11.22)
where A(0) = log/D exp ({0, o(x))) v(dx) (11.23)

e Overcomplete representation d = |Z| higher than need be
e le, 3y #0s.t. (y,¢(x)) = ¢, Vx where ¢ = constant.
o l.e., Exists affine hyperplane of different parameters that induce

0+7),6(x)) — A0 + 7)) (11.24)
0,8(x)) + (v, 6(x)) — A0 + 7)) (11.25)
0,6(z)) +e= A0 +7)) (11.26)
0,6(x)) = A(0)) = po() (11.27)
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Overcomplete Representation

po(x) = exp((0, ¢(x)) — A(0)) (11.22)
where A(0) = log/D exp ((0, ¢(x))) v(dz) (11.23)

e Overcomplete representation d = |Z| higher than need be

e le, 3y #0s.t. (y,¢(x)) = ¢, Vx where ¢ = constant.

o l.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given v # 0 s.t.,
(v, ¢(x)) = ¢ and some other parameters 6, we have , we have

Po14(x) = exp({(0 + ), ¢(x)) — A(0 +7)) (11.24)
= exp((0, 6(x)) + (7, p(x)) — A(0 + 7)) (11.25)
= exp((0,¢(x)) + ¢ — A(6 +7)) (11.26)
= exp((0, ¢(x)) — A(0)) = po() (11.27)

@ True for any Ay with A € R, so affine set of identical distributions!
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Overcomplete Representation

po(x) = exp((0, ¢(x)) — A(0)) (11.22)
where A(0) = log/D exp ((0, ¢(x))) v(dz) (11.23)

e Overcomplete representation d = |Z| higher than need be

e le, 3y #0s.t. (y,¢(x)) = ¢, Vx where ¢ = constant.

o l.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given v # 0 s.t.,
(v, ¢(x)) = ¢ and some other parameters 6, we have , we have

Po14(x) = exp({(0 + ), ¢(x)) — A(0 +7)) (11.24)
= exp((0, 6(x)) + (7, p(x)) — A(0 + 7)) (11.25)
= exp((0,¢(x)) + ¢ — A(6 +7)) (11.26)
= exp((0, ¢(x)) — A(0)) = po() (11.27)

@ True for any Ay with A € R, so affine set of identical distributions!
o We'll see later, this useful in understanding BP algorithm.
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(z|y) = exp(yz — A(v)) (11.28)
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(x|y) = exp(yz — A(7)) (11.28)
@ overcomplete rep of Bernoulli dist.

p(]0o, 01) = exp((0, (x))) (11.29)
=exp(Op(1 — x) + b1z — A(7)) (11.30)

where 6 = (6p,01) and ¢(z) = (1 — =, x).
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Exponential family models

@ Minimal representation of Bernoulli distribution is
p(z|y) = exp(yz — A(7))
@ overcomplete rep of Bernoulli dist.

p(z|09,01) = exp((0, ¢(z)))
= exp(fo(1 — z) + bhz — A(7))

(
where 6 = (6p,601) and ¢(z) = (1 — z,x).
@ Is there a vector a s.t. (a,¢(x)) = ¢ for all z, v-a.e.?
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(z]y) = exp(yz — A(y)) (11.28)

@ overcomplete rep of Bernoulli dist.

p(]0o, 01) = exp((0, (x))) (11.29)
=exp(Op(1 — z) + 61z — A(y)) (11.30)

where 6 = (6p,601) and ¢(z) = (1 — z,x).
@ Is there a vector a s.t. (a, ¢(z)
o If a=(1,1) then (a,¢(z)) = (

=c for all z, v-a.e.?

)
l—z)+z=1
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Exponential family models

@ Minimal representation of Bernoulli distribution is

p(z]y) = exp(yz — A(y)) (11.28)

@ overcomplete rep of Bernoulli dist.

p(xl0o, 01) = exp({0, ¢(x))) (11.29)
=exp(fo(1 — x) + 012 — A(y)) (11.30)
where 6 = (6p,601) and ¢(z) = (1 — z,x).

@ Is there a vector a s.t. (a,¢(x)) = ¢ for all z, v-a.e.?

o Ifa=(1,1) then (a,¢(x))=(1—z)+z=1

@ This is overcomplete since there is a linear combination of feature
functions that are constant.

Prof. Jeff Bilmes EE512a/Fall 2014 /Graphical Models - Lecture 11 - Nov 5th, 2014 F30/60 (pg.72/166)



exponential models
(ERRRNARERE ARRRN!

Exponential family models

@ Minimal representation of Bernoulli distribution is

p(z]y) = exp(yz — A(y)) (11.28)

@ overcomplete rep of Bernoulli dist.

p(xl0o, 01) = exp({0, ¢(x))) (11.29)
=exp(fo(1 — x) + 012 — A(y)) (11.30)
where 6 = (6p,601) and ¢(z) = (1 — z,x).

@ Is there a vector a s.t. (a,¢(x)) = ¢ for all z, v-a.e.?

o Ifa=(1,1) then (a,¢(x))=(1—z)+z=1

@ This is overcomplete since there is a linear combination of feature
functions that are constant.

@ Since Oy(1 — x) + 612 = by + 2(01 — Oy), any parameters of form
01 — 6y = v gives same distribution.
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Famous Example - Ising Model

@ Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model

becomes
po(z) = exp Z Oy, + Z Ostxszy — A(0) o, (11.31)
veEV (s,t)eE
with
A(0) = log Z exp ZG Ty + Z Ostzsre — A(D)
ze{0,1}"™ veV (s,t)eE

(11.32)

@ Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

@ Note, in this case Z is all singletons (unaries) and all pairs, so that
{Cato = {{xz}w {wixj}(i,j)eE}'

e We can easily generalize this via a set system. l.e., consider (V, V),
where V = {Vl,VQ, . .,V|V|} and where Vi, V; C V.

o We can form sufficient statistic set via {Ca}, = {{zv}y ey }-

@ Higher order factors/interaction functions/potential
functions/sufficient statistics.
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Multivalued variables

@ Variables need not binary, instead Dx = {0, 1,...,7 — 1} for r > 2.
@ We can define aset of indicator functions constituting minimal
sufficient statistics. That is

1 ifas=3
1gi(zs) = {O clse (11.33)

and

1 ifx,=janda =k,
1st;jk(:cs,xt):{ W& =J and Ty (11.34)

0 else
@ Model becomes
r—1
po(x) = exp Z Z ev;jls;j(mv) + Z Z est;ijlst;jk(l'& z) — A(0)

veV i=0 (s,t)EE j,k
(11.35)

@ Is this overcomplete?
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Multivalued variables

@ Variables need not binary, instead Dx = {0, 1,...,7 — 1} for r > 2.
@ We can define aset of indicator functions constituting minimal
sufficient statistics. That is

1 ifas=3
1gi(zs) = {O clse (11.33)

and

1 ifx,=janda =k,
1st;jk(:cs,xt):{ W& =J and Ty (11.34)

0 else
@ Model becomes
r—1
p@(x) = €Xp Z Z ev;jls;j(fﬁv) + Z Z est;ij]-st;jk(l'& xt) - A(G)

veV i=0 (s,t)EE j,k
(11.35)

@ Is this overcomplete? Yes. Why?
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. |l.e.

po(@) = exp {<9, )+ % (O, 22Ty — A6, @)} (11.36)
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and

correlation matrix. l.e.

po(x) = exp {<9, )+ % (O, 22Ty — A(D, @)} (11.36)

® (©,zaT)) = >, ©ijx;z; is Frobenius norm.
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and

correlation matrix. l.e.

po(x) = exp {<9, )+ % (O, 22Ty — A(D, @)} (11.36)

© (©,zaT)) = >, ©;jx;z; is Frobenius norm.

e So sufficient statistics are (z;);; and (z;x;); ;
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po(x) = exp {<9, )+ % (O, 22Ty — A(D, @)} (11.36)

© (©,zaT)) = >, ©;jx;z; is Frobenius norm.

e So sufficient statistics are (x;)!"; and (z;x;); ;

@ O, = 0 means identical to missing edge in corresponding graph
(marginal independence).
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po(x) = exp {<9, )+ % (O, 22Ty — A(D, @)} (11.36)

(©,zaT)) = >, ©;5z;x; is Frobenius norm.

So sufficient statistics are (z;)!"_; and (z;x;);

O, = 0 means identical to missing edge in corresponding graph
(marginal independence).

@ Any other constraints on ©7
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po(x) = exp {<9, )+ % (O, 22Ty — A(D, @)} (11.36)

(©,zaT)) = >, ©;5z;x; is Frobenius norm.

So sufficient statistics are (z;)!"_; and (z;x;);

O, = 0 means identical to missing edge in corresponding graph
(marginal independence).

Any other constraints on ©7 negative definite
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Multivariate Gaussian

@ Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. l.e.

po(x) = exp {<9, )+ % (O, 22Ty — A(D, @)} (11.36)

(©,zaT)) = >, ©;5z;x; is Frobenius norm.

So sufficient statistics are (z;)!"_; and (z;x;);

O, = 0 means identical to missing edge in corresponding graph
(marginal independence).

Any other constraints on ©7 negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution py, (ys, zs)).
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Other examples

A few other examples in the book

@ Mixture models
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Other examples

A few other examples in the book
@ Mixture models

o Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.
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Other examples

A few other examples in the book

@ Mixture models

o Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

@ Models with hard constraints - key thing is to place the hard
constraints in the v measure. Sufficient statistics become easy if
complexity is encoded in the measure. Alternative is to allow features
over extended reals (i.e., a feature can provide —oo but this leads to
certain technical difficulties that they would rather not deal with).
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Mean Parameters, Convex Cores

o Consider quantities p,, associated with statistic ¢, defined as:

E,[¢a(X / b ()p(2)(d2) (11.37)
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Mean Parameters, Convex Cores

o Consider quantities u, associated with statistic ¢, defined as:
Mo = E ¢a /¢cx ) (11'37)

@ this defines a vector of “mean parameters” (1, pi2, - - ., fig) with
= |Z].
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Mean Parameters, Convex Cores

o Consider quantities u, associated with statistic ¢, defined as:
Mo = E ¢a /¢cx ) (11'37)

o this defines a vector of “mean parameters” (p1, o, .. ., ftq) With
=|Z].
@ Define all the possible such vectors
M(@) = ME{pe R Fp st o =Ey[6a(X)], Va €T}
(11.38)
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Mean Parameters, Convex Cores

o Consider quantities u, associated with statistic ¢, defined as:
Mo = E ¢a /¢cx ) (11'37)

o this defines a vector of “mean parameters” (p1, o, .. ., ftq) With
= |7l.
@ Define all the possible such vectors
A
M(@) = ME{peR?: Fp st o = Eylpa(X)], Va € T}
(11.38)

@ We don't say p was necessarily exponential family
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Mean Parameters, Convex Cores

o Consider quantities u, associated with statistic ¢, defined as:
o = Eyloa(X)) = [ da(oplenlds)  (1137)

o this defines a vector of “mean parameters” (p1, o, .. ., ftq) With
= |7l.
@ Define all the possible such vectors

M(p) =M 2 {u R Ip st pa = Eylpa(X)], Ya € z}
(11.38)

o We don’t say p was necessarily exponential family

@ M is convex since expected value is a linear operator. So convex
combinations of p and p’ will lead to convex combinations of y and p/
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Mean Parameters, Convex Cores

o Consider quantities u, associated with statistic ¢, defined as:
Mo = E ¢a /¢cx ) (11'37)

o this defines a vector of “mean parameters” (p1, o, .. ., ftq) With
= |7l.
@ Define all the possible such vectors

M(p) =M 2 {u R Ip st pa = Eylpa(X)], Ya € z}
(11.38)

o We don’t say p was necessarily exponential family

@ M is convex since expected value is a linear operator. So convex

combinations of p and p’ will lead to convex combinations of y and p/

o M is like a “convex core” of all distributions expressed via ¢.
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Mean Parameters and Gaussians

@ Here, we have E[XXT] = C and p = EX. Question is, how to define
M?

@ Given definition of C' and u, then C' — pu™ must be valid covariance
matrix (since this is E[X — EX]|[X — EX|T = C — uuT).

@ Thus, C'— puT™ = 0, thus p.s.d. matrix.

@ On the other hand, if this is true, we can form a Gaussian using
C — upT as the covariance matrix.

@ Thus, for Gaussian MRFs, M has the form

M={(1,C) e R" x ST'|C — pu™ = 0} (11.39)

where S is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

| X1

12

“lllustration of the set M for a scalar Gaussian: the model has two mean
parameters 1 = E[X] and X1; = E[X?], which must satisfy the quadratic
contraint 11 — u? > 0. Notice that M is convex, which is a general
property.”
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Mean Parameters and Gaussians

12

“Illustration of the set M for a scalar Gaussian: the model has two mean
parameters 1 = E[X] and X1; = E[X?], which must satisfy the quadratic
contraint 11 — u? > 0. Notice that M is convex, which is a general
property.”

Also, don't confuse the “mean parameters” with the means of a Gaussian.
The typical means of Gaussians are means in this new sense, but those
means are not all of the means. ©
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Mean Parameters and Polytopes

@ When X is discrete, we get a polytope since

M = {u eRl:p= Z(b(:v)p(:v) for some p € Z/{} (11.40)
= conv {¢(z),z € Dx (that are v-measurable), } (11.41)

where conv {-} is the convex hull of the items in argument set.
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Mean Parameters and Polytopes
@ When X is discrete, we get a polytope since
M = {,u eRl:p= Zgb(x)p(:r) for some p € L[} (11.40)

= conv {¢(z),z € Dx (that are v-measurable), } (11.41)

where conv {-} is the convex hull of the items in argument set.
@ So we have a convex polytope
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Mean Parameters and Polytopes

@ Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J| X d matrix A and |J|-element column vector b with

M:{ueRd:Auzb} :{ueRd:<aj,u>zbj,weJ}

(11.42)
with A having rows a;.
< P(x)
Al
g
@ L7
”
”
’R ,;b: {aj,m) < bj
-7
A

I
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics
d(x) = {xs,5 € Vizgay, (s,t) € B(G)} € RIVIHIE (11.43)
we get

E,[X,] = —1) WwevV (11.44)
fise = Ep[X, X} (XS —1,X;=1) ¥(s,t) € B(G)  (11.45)
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vizszy, (5,1) € B(G)} € RVIFHIE (11.43)
we get
po =Ep[ Xy =p(Xy=1) YoeV (11.44)

fsg = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € E(G)  (11.45)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vizszy, (5,1) € B(G)} € RVIFHIE (11.43)
we get
po =Ep[ Xy =p(Xy=1) YoeV (11.44)

fsg = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € E(G)  (11.45)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.

@ Gives complete marginal since ps(1) = 1 — ps(0),

Pst(1,0) = ps(1) = pse(1,1), ps,e(0,1) = pe(1) — ps (1, 1), et
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vizszy, (5,1) € B(G)} € RVIFHIE (11.43)
we get
po =Ep[ Xy =p(Xy=1) YoeV (11.44)

fsg = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € E(G)  (11.45)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.

@ Gives complete marginal since ps(1) = 1 — ps(0),

Pst(1,0) = ps(1) — pse(1,1), pst(0,1) = pe(1) — pse(1, 1), ete.

@ Recall: marginals are often the goal of inference.
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Mean Parameters and Polytopes

@ Example: Ising mean parameters. Given sufficient statistics

o(x) = {xs,5 € Vizszy, (5,1) € B(G)} € RVIFHIE (11.43)
we get
po =Ep[ Xy =p(Xy=1) YoeV (11.44)

fsg = Bp[ X X)) = p(Xs = 1, X, = 1) V(s,t) € E(G)  (11.45)

@ Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1,1 for each node and
edge in the graph = conv {¢(z),z € {0,1}"}.

@ Gives complete marginal since ps(1) = 1 — ps(0),

Pst(1,0) = ps(1) — pse(1,1), pst(0,1) = pe(1) — pse(1, 1), ete.

@ Recall: marginals are often the goal of inference. Coincidence?
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Example: 2-variable Ising

H12

0,1,00 H2

“Ising model with two variables (X1, X5) € {0,1}%. Three mean
parameters j11 = E[X1], po = E[X3], p12 = E[X2X2], must satisfy
constraints 0 < p1o < u; fori =1,2, and 1 4+ 1o — 1 — pg > 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0, 1]°."”
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Mean Parameters and Overcomplete Representation

@ We can use overcomplete representation and get a “marginal

polytope”, a polytope that represents the marginal distributions at
each potential function.

e Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

Vo e V(G),j €{0...r — 1}, define ¢, j(z,) = 1(z, = 7) (11.46)

V(s,t) € E(G),j,k € {0...r — 1}, we define: (11.47)
Gst ks (Ts, T1) El(zs =jyxy = k) = 1(xs = j)1(zs = k)
(11.48)

@ So we now have |V|r + 2|E|r? functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

@ Mean parameters are now true (fully specified) marginals, i.e.,
o (j) = p(xy = j) and pst(j, k) = p(xs = j, 21 = k) since

poj = Ep[L(zy = j)] = p(z0 = j) (11.49)
pst ik = Ep[L(xs = j,xp = k)] = p(xs = j, 21 = k) (11.50)

@ Such an M is called the marginal polytope. Any p must live in the
polytope that corresponds to node and edge true marginals!!

@ We can also associate such a polytope with a graph G, where we take
only (s,t) € E(G). Denote this as M(G).

@ This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we'll see.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

@ For k-trees, complexity grows exponentially.
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Marginal Polytopes and Facet complexity

@ Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

@ Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.
o “facet complexity” of M depends on the graph structure.

@ For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

@ For k-trees, complexity grows exponentially.

@ Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters @ to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 0 to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.

@ We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping
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Learning is the dual of Inference

@ We can view the inference problem as moving from the canonical
parameters 0 to the point in the marginal polytope, called forward
mapping, moving from 6 € Q to u € M.

e We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

@ graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Learning is the dual of Inference

e Ex: Estimate 6 with 6 based on data D = {:E%) iki1 of size M,
likelihood function

0(0,D) = — > "logpp(2) = (0, fz) — A(0) (11.51)

a=Elp(X) = > ¢@") (11.52)
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Learning is the dual of Inference

o Ex: Estimate 6 with 6 based on data D = {:Y:%)}f‘il of size M,
likelihood function

M
(6.0) = - Y logm(@?) = (0.4) ~ A@)  (1151)
=1

where empirical means given by

fi = Bl0(X)] = 37 D ola) (11.52)

@ By taking derivatives of the above, it is easy to see that solution is the
point # such that (empirical matches expected means)

Eglo(X)] = j (11.53)

this is the the backward mapping problem, going from u to 6.
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Learning is the dual of Inference

o Ex: Estimate 6 with 0 based on data D = {:Y:%)}f‘il of size M,
likelihood function

M
(6.0) = - Y logm(@?) = (0.4) ~ A@)  (1151)
=1

where empirical means given by

fi = Bl0(X)] = 37 D ola) (11.52)

@ By taking derivatives of the above, it is easy to see that solution is the
point 6 such that (empirical matches expected means)

E,[6(X)] = j (11.53)

this is the the backward mapping problem, going from p to 6.
@ This is identical to the maximum entropy problem.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F47/60 (pg.119/166



1 Param./Marg. Polytope
[NRRRNRRRRRR AR NN

Learning is the dual of Inference

@ |.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[p(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[p(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.

@ If we do maximum entropy learning, where does the exp(-) function
come from?
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Learning is the dual of Inference

@ |l.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

@ The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

@ Thus, maximum entropy learning under a set of constraints (given by
Eg[p(X)] = 1) is the same as maximum likelihood learning of an
exponential model form.

@ If we do maximum entropy learning, where does the exp(-) function
come from? From the entropy function. l.e., the exponential form is
the distribution that has maximum entropy having those constraints.
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Dual Mappings: Summary

Summarizing these relationships

@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.
@ Backwards mapping: moving from pu € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.
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Dual Mappings: Summary

Summarizing these relationships
@ Forward mapping: moving from 6 € € to u € M, this is the inference
problem, getting the marginals.

@ Backwards mapping: moving from p € M to 6 € (), this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

@ In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

@ Turns out log partition function A, and its dual A* can give us these
mappings, and the mappings have interesting forms . ..
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Log partition (or cumulant) function

A(9) = log/ 0, p(x)) v(dz) (11.54)

Dx

@ If we know the log partition function, we know a lot for an exponential
family model. In particular, we know
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Log partition (or cumulant) function

A(9) = log/ 0, p(x)) v(dz) (11.54)

Dx

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know
@ A(0) is convex in @ (strictly so if minimal representation).
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Log partition (or cumulant) function

A(9) = Tog /D (0, 6(x)) v(dz) (11.54)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(0) is convex in @ (strictly so if minimal representation).

@ It yields cumulants of the random vector ¢(X)

0A
afgu(@) Ep[da (X /% )pe(z)v(dz) = pa (11.55)

in general, derivative of log part. function is expected value of feature
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Log partition (or cumulant) function

A(9) = log/D 0, p(x)) v(dz) (11.54)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(0) is convex in @ (strictly so if minimal representation).

o It yields cumulants of the random vector ¢(X)

0A
() = Eoloa(X / b (X)po(x)(dz) = po  (11.55)

in general, derivative of log part. function is expected value of feature
o Also, we get

)2
093549&2(9) = Eg[¢a; (X)Pas (X)] — Eg[¢, (X)]Ep [y (X)]
(11.56)
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Log partition (or cumulant) function

A(9) = log/D 0, p(x)) v(dz) (11.54)

o If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

e A(0) is convex in @ (strictly so if minimal representation).

o It yields cumulants of the random vector ¢(X)

0A
() = Eoloa(X /% Voo(2)o(dz) = po (11.55)

in general, derivative of log part. function is expected value of feature
@ Also, we get
%A

30, 70, ) = Bolbe (X0 (X)] = Eg [y (X)]o 6, (X))

(11.56)

@ Proof given in book.
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Log partition function

@ So derivative of log partition function w.r.t. 6 is equal to our mean
parameter p in the discrete case.

e Given A(#), we can recover the marginals for each potential function
¢o, € T (when mean parameters lie in the marginal polytope).

o If we can approximate A(f) with A() then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources.

@ The Bethe approximation (as we'll see) is such an approximation and
corresponds to fixed points of loopy belief propagation.

@ In some rarer cases, we can bound the approximation (current
research trend).
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Log partition function

@ SoVA:Q — M, where M’ C M, and where
M= {peRYTpst. Ep[p(X)] =p}.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F52/60 (pg.135/166
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[NRRRNRRRRRRNNRNR ARRNRNT]

Log partition function

@ SoVA:Q — M, where M’ C M, and where
M ={peRY3ps.t. Eyp(X)] = p}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between p and 6.
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Log partition function

@ SoVA:Q — M, where M’ C M, and where
M ={peRY3ps.t. Eyp(X)] = p}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between x and 6.

@ For non-minimal exponential families, more than one 6 for a given pu
(not surprising since multiple 6's can yield the same distribution).
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Log partition function

@ SoVA:Q — M, where M’ C M, and where
M ={peRY3ps.t. Eyp(X)] = p}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between x and 6.

@ For non-minimal exponential families, more than one 6 for a given
(not surprising since multiple 6's can yield the same distribution).

@ For non-exponential families, other distributions can vyield pu, but the
exponential family one is the one that has maximum entropy.
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Log partition function

@ So VA : Q — M, where M’ C M, and where
M= {peRFp st Ey[p(X)] = u}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between p and 6.

@ For non-minimal exponential families, more than one 6 for a given
(not surprising since multiple 6's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance.
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Log partition function

@ So VA : Q — M, where M’ C M, and where
M= {peRFp st Ey[p(X)] = u}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between x and 6.

@ For non-minimal exponential families, more than one 6 for a given
(not surprising since multiple 6's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.
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Log partition function

@ So VA : Q — M, where M’ C M, and where
M= {peRFp st Ey[p(X)] = u}.

@ For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between x and 6.

@ For non-minimal exponential families, more than one 6 for a given
(not surprising since multiple 6's can yield the same distribution).

@ For non-exponential families, other distributions can yield y, but the
exponential family one is the one that has maximum entropy. exl:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

@ Key point: all mean parameters are realizable by member of exp.
family.
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Mappings - one-to-one

In fact, we have

Theorem 11.6.1

The gradient map V A is one-to-one iff the exponential representation is
minimal.
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Mappings - one-to-one

In fact, we have

Theorem 11.6.1

The gradient map V A is one-to-one iff the exponential representation is
minimal.

@ Proof basically uses property that if representation is non-minimal,
and (a, ¢(x)) = c for all z, then we can form an affine set of
equivalent parameters 0 4 ~a.
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1 Param./Marg. Polytope

Mappings - one-to-one

In fact, we have

Theorem 11.6.1

The gradient map V A is one-to-one iff the exponential representation is
minimal.

@ Proof basically uses property that if representation is non-minimal,
and (a, ¢(x)) = ¢ for all x, then we can form an affine set of
equivalent parameters 6 + ~a.

@ Other direction, uses strict convexity.
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Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M?°). Consequently, for each ;1 € M°, there exists some
0 = 0(u) € Q such that Eg[¢p(X)] = p.
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Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M?°). Consequently, for each ;1 € M°, there exists some
0 = 0(u) € Q such that Eg[¢p(X)] = p.

@ Example: consider, for example, a Gaussian.
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Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M?°). Consequently, for each ;1 € M°, there exists some
0 = 0(u) € Q such that Eg[¢p(X)] = p.

@ Example: consider, for example, a Gaussian.

@ Any mean parameter (set of means E[X] and correlations E[X X 7])
can be realized by a Gaussian having those same mean parameters
(moments).
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Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M?°). Consequently, for each ;1 € M°, there exists some
0 = 0(u) € Q such that Eg[¢p(X)] = p.

@ Example: consider, for example, a Gaussian.

@ Any mean parameter (set of means E[X] and correlations E[X X 7])
can be realized by a Gaussian having those same mean parameters
(moments).

@ The Gaussian won't nec. be the “true” distribtuion (in such case, the
“true” distribution would not be an exponential family model with
those moments).
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Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map V A is onto the interior
of M (denoted M?°). Consequently, for each ;1 € M°, there exists some
0 = 0(u) € Q such that Eg[¢p(X)] = p.

@ Example: consider, for example, a Gaussian.

@ Any mean parameter (set of means E[X] and correlations E[X X 7])
can be realized by a Gaussian having those same mean parameters
(moments).

@ The Gaussian won't nec. be the “true” distribtuion (in such case, the
“true” distribution would not be an exponential family model with
those moments).

@ The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family

0" e argznax (0, 1) — A(9)) (11.57)
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family

0" € argmax ((0, 1) — A(0)) (11.57)
0
e Convex conjugate dual of A(#) is defined as:
e LA
A% (1) £ sup (0. 1) — A)) (11.58)
0e
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family

0* € argmax ({6, 1) — A(9)) (11.57)
0
e Convex conjugate dual of A(#) is defined as:
o LA
A(n) 2 sup (0. ) = A(0) (11.58)
€

@ So dual is optimal value of the ML problem, when pu € M
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family

0* € argmax ({6, 1) — A(9)) (11.57)
0
e Convex conjugate dual of A(#) is defined as:
o LA
A() 2 sup (0.1 = A(0) (11.58)
€

@ So dual is optimal value of the ML problem, when u € M

e Key: when p € M, dual is negative entropy of exp. model py(,) where
O(u) is the unique set of canonical parameters satisfying this matching
condition

Eo(u[¢(X)] = VAO(p)) = 1 (11.59)
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Conjugate Duality

@ Consider maximum likelihood problem for exp. family

0* € argmax ({6, 1) — A(9)) (11.57)
0
e Convex conjugate dual of A(#) is defined as:
o LA
A(n) 2 sup (0. ) = A(0) (11.58)
€

@ So dual is optimal value of the ML problem, when u € M

e Key: when p € M, dual is negative entropy of exp. model py(,) where
O(u) is the unique set of canonical parameters satisfying this matching
condition

Eg()[0(X)] = VA0 (1)) = p (11.59)

@ When p ¢ M, then A*(p) = +o0, optimization with dual need
consider points only in M.
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Conjugate Duality

Theorem 11.6.3 (Relationship between A and A*)

(a) For any u € M°, 6(u) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A% (p) = Sup ({0, 1) — A(9)) =

; (11.60)

—H(py(y) ifpeM®
+o0 ifpeM

(b) Partition function has variational representation (dual of dual)

A(0) = sup {(0, u) — A*(n)} (11.61)
HEM

(c) For 6 € Q, sup occurs at jn € M° at moment matching conditions

p= [ dpo()(dn) = Eofg(X)] = VA®) (11.62)
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Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to p via the matching mapping 6(u)
which achieves
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Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to p via the matching mapping 0(u)
which achieves

Eg([o(X)] = p (11.63)

@ A(f) in Equation 11.61 is the “inference” problem (dual of the dual)
for a given 6, since computing it involves computing the desired
node/edge marginals.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F57/60 (pg.157/166



1 Param./Marg. Polytope
[NRRRNRRRRRRNRRNNRRRN] ]

Conjugate Duality

@ Note that Ax isn't exactly entropy, only entropy sometimes, and
depends on matching parameters to p via the matching mapping 0(u)
which achieves

Eg([o(X)] = p (11.63)

e A(#) in Equation 11.61 is the “inference” problem (dual of the dual)
for a given 6, since computing it involves computing the desired
node/edge marginals.

@ Whenever u ¢ M, then A*(u) returns oo which can't be the resulting
sup, so Equation 11.61 need only consider M.
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Conjugate Duality

A(6) = sup {(0,1) — A*(n)} (11.61)
HEM

e computing A(#) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.
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Conjugate Duality

A(6) = sup {(0,1) — A" ()} (11.61)
HEM

e computing A(f) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©
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Conjugate Duality

A(6) = sup {(0,1) — A" ()} (11.61)
HEM

e computing A(f) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©®

@ Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. ®
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Conjugate Duality

A(0) = sup {(0, ) — A™(n)} (11.61)
HEM

e computing A(f) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.

@ Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. ©®

@ Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. ®

@ More bad news: A* not given explicitly in general and hard to
compute. ®
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Conjugate Duality

A(6) = sup {(6, 1) — A"()} (11.61)
neM

@ Some good news: The above form gives us new avenues to do
approximation. ®
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Conjugate Duality

A(6) = sup {(6, 1) — A"()} (11.61)
neM

@ Some good news: The above form gives us new avenues to do
approximation. ©

@ For example, we might either relax M (making it less complex), relax
A*(u) (making it easier to compute over), or both. ©®
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Conjugate Duality

A(6) = sup {(6, 1) — A"()} (11.61)
neM

@ Some good news: The above form gives us new avenues to do
approximation. ©

e For example, we might either relax M (making it less complex), relax
A*(u) (making it easier to compute over), or both. ©

@ Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). @®
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Sources for Today's Lecture

o Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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