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Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book
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Logistics Review

Class Road Map - EE512a
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Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (11/3): conditioning, hardness, LBP

L11 (11/5): LBP, exponential models,
mean params and polytopes

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):
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L19 (12/1):
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Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Logistics Review

Approximation: Two general approaches

exact solution to approximate problem - approximate problem
1 learning with or using a model with a structural restriction, structure

learning, using a k-tree for a lower k than one knows is true. Make sure
k is small enough so that exact inference can be performed, and make
sure that, in that low tree-width model, one has best possible graph

2 Functional restrictions to the model (i.e., use factors or potential
functions that obey certain properties). Then certain fast algorithms
(e.g., graph-cut) can be performed.

approximate solution to exact problem - approximate inference
1 Message or other form of propagation, variational approaches, LP

relaxations, loopy belief propagation (LBP)
2 sampling (Monte Carlo, MCMC, importance sampling) and pruning

(e.g., search based A*, score based, number of hypothesis based)
procedures

Both methods only guaranteed approximate quality solutions.
No longer in the achievable region in time-space tradoff graph, new
set of time/space tradeoffs to achieve a particular accuracy.
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Logistics Review

Belief Propagation: message definition

Generic message definition

µi→j(xj) =
∑

xi

ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi) (11.5)

If graph is a tree, and if we obey MPP order, then we will reach a
point where we’ve got marginals. I.e.,

p(xi) ∝
∏

j∈δ(i)

µj→i(xi) (11.6)

and

p(xi, xj) ∝ ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi)
∏

"∈δ(j)\{i}

µ"→j(xj)M (11.7)
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Logistics Review

Choices for dealing with higher order factors in MRFs

So, to deal with MRFs with higher order factors, we can:

1 transform MRF to have only pairwise interactions, add more variables,
we can keep using BP on MRF edges (as done above), makes the
math a bit easier, does not change fundamental computational cost.
Possible since for any given p, we know the interaction terms.

2 Alternatively, we can define BP on factor graphs.

3 Alternatively, could define BP directly on the maxcliques of the MRF
(but maxcliques are not easy to get in a MRF when not triangulated).

For the remainder of this term, we’ll assume we’ve done the pair-wise
transformation (i.e., option 1 above).
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Logistics Review

State representation

Consider the set of messages {µi→j(xj)}i,j as a large state vector µt

with 2|E(G)|r scalar elements.

Each sent message moves the state vector from µt at time t to µt+1

at next time step.

A parallel message (sending multiple messages at the same time)
moves the state vector as well.

Convergence means that any set or subset of messages sent in parallel
is such that µt+1 = µt.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 11 - Nov 5th, 2014 F7/60 (pg.7/166)



Logistics Review

Messages as matrix multiply

µi→j(xj) ∝
∑

xi

ψi,j(xi, xj)ψi(xi)
∏

k∈δ(i)\{j}

µk→i(xi) (11.9)

=
∑

xi

ψ′
i,j(xi, xj)µ¬j→i(xi) (11.10)

= (ψ′
i,j)

Tµ¬j→i (11.11)

Here, ψ′
i,j is a matrix and µ¬j→i is a column vector.

Going from state µt to µt+1 is like matrix-vector multiply — group
messages from µt together into one vector representing µ¬j→i for
each (i, j) ∈ E, do the matrix-vector update, and store result in new
state vector µt+1.

If G is tree, µt will converged after D steps.
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Logistics Review

Belief Propagation and Cycles

What if graph has cycles?

MPP causes deadlock since there is no way to start sending messages

Like before, we can assume that messages have an initial state, e.g.,
µi→j(xj) = 1 for all (i, j) ∈ E(G) - note this is bi-directional. This
breaks deadlock.

We can then start sending messages. Will we converge after D steps?
What does D even mean here?

No, in fact we could oscillate forever.
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LBP Next phase of class exponential models µ Param./Marg. Polytope Refs

Belief Propagation, Cycles, and Oscillation

Consider odd length cycle (e.g., C3, C5, etc.), C3 is sufficient
i j k i

Assume all messages start out at state µi→j = [1, 0]T .

Consider (pairwise) edge functions, for each i, j

ψij(xi, xj) =

[
0 1
1 0

]
(11.1)

then we have

µj→k(xk) =
∑

xj

ψj,k(xj , xk)µi→j(xj) (11.2)

or in matrix form

µj→k = (ψj,k)
Tµi→j (11.3)
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Belief Propagation, Cycles, and Oscillation

Let µt
i→j be the tth formed message, with µ0

i→j being the starting

state at [1, 0]T .

Then µ1
i→j = [0, 1]T , µ2

i→j = [1, 0]T , µ3
i→j = [0, 1]T , and so on, never

converging. In fact,

µt+1
i→j = (ψi,j)

Tµt
k→i (11.4)

= (ψi,j)
T (ψk,i)

Tµt
j→k (11.5)

= (ψi,j)
T (ψk,i)

T (ψj,k)
Tµt

i→j (11.6)

=

[
0 1
1 0

]3
µt
i→j (11.7)

=

[
0 1
1 0

]
µt
i→j (11.8)
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Belief Propagation, Cycles, and Oscillation

Thus, each time we go around the loop in the cycle, the message
configuration for each (i, j) will flip, thereby never converging.

Damping the messages? I.e., Let 0 ≤ γ < 1 and treat messages as

µt
i→j ← γµt

i→j + (1− γ)µt−1
i→j (11.9)

Empirical Folklore - if we converge quickly without damping, the
quality of the resulting marginals might be good. If we don’t converge
quickly, w/o damping, might indicate some problem.

Ways out of this problem: Other message schedules, other forms of
the interaction matrices, and other initializations.
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Belief Propagation, Cycles, and Oscillation

If we initialize messages differently, things will turn out better.

If µ0
i→j = [0.5, 0.5]T then µt+1

i→j = µt
i→j .

Damping the messages appropriately will also end up at this
configuration.

Is there a better way to characterize this?
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Belief Propagation, Single Cycle

Consider a graph with a single cycle C".

It could be a cycle with trees hanging off of each node. We send
messages from the leaves of those dangling trees to the cycle (root)
nodes, leaving only a cycle remaining.

Consider what happens to µt
i→j as t increases. w.l.o.g. consider µt

"→1

Let the cycle be nodes (1, 2, 3, . . . , #, 1)

µt+1
"→1 =

(
"−1∏

i=1

(ψi,i+1)
T

)
µt
"→1 (11.10)

= Mµt
"→1 (11.11)

Will this converge to anything?
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Belief Propagation, Single Cycle

Theorem 11.3.1 (Power method lemma)

Let A be a matrix with eigenvalues λ1, . . . ,λn (sorted in decreasing
order) and corresponding eigenvectors x1, x2, . . . , xn. If |λ1| > |λ2|
(strict), then the update xt+1 = αAxt converges to a multiple of x1
starting from any initial vector x0 =

∑
i βixi provided that β1 &= 0. The

convergence rate factor is given by |λ2/λ1|.
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 11.3.2

1. µ"→1 converges to the principle eigenvector of M .
2. µ2→1 converges to the principle eigenvector of MT .
3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M .
4. The diagonal elements of M correspond to correct marginal p(x1)
5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = βp(x1) + (1− β)q(x1) where β is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M .

Proof.

See Weiss2000.
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What’s going on with our oscillating example?

We had M =

[
0 1
1 0

]
which has row-eigenvector matrix

[
−1/

√
2 1/

√
2

1/
√
2 1/

√
2

]
with corresponding eigenvalues −1 and 1.

Note that any uniform vector will be “converged”, i.e., any vector of
the form [aa].

However, we don’t have the guaranteed property of convergence since
we don’t have that |λ1| > |λ2|.
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Belief Propagation, arbitrary graph

This works for a graph with a single cycle, or a graph that contains a
single cycle

It still does not tell us that we end up with correct marginals, rather
we get “pseudo-marginals”, which are locally normalized, but might
not be the correct marginals.

Moreover, they might not be the correct marginals for any probability
distribution.

Also, we’d like a characterization of LBP’s convergence (if it happens)
for more general graphs, with an arbitrary number of loops.
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Graphical Models, Exponential Families, and Variational
Inference

We’re going to start covering our book:
Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

We start with chapter 3 (we assume you will read chapters 1 and 2 on
your own).

We’ll follow the Wainwright and Jordan notation, will point out where
it conficts a bit with the current notation we’ve been using.
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exponential family models

φ = (φα,α ∈ I) is a collection of functions known as potential
functions, sufficient statistics, or features. I is an index set of size
d = |I|.

Each φα is a function of x, φα(x) but it usually does not use all of x
(only a subset of elements). Notation φα(xCα) assumed implicitly
understood, where Cα ⊆ V (G).

θ is a vector of canonical parameters (same length, |I|). θ ∈ Ω ⊆ Rd

where d = |I|.
We can define a family as

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (11.12)

Note that we’re using φ here in the exponent, before we were using it
out of the exponent.

Note that φ(x) = (φ1(x),φ2(x), . . . ,φ|I|) where again each φi(x)

might use only some of the elements in vector x. φ : DX
m → Rd.
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Note that we’re using φ here in the exponent, before we were using it
out of the exponent.

Note that φ(x) = (φ1(x),φ2(x), . . . ,φ|I|) where again each φi(x)

might use only some of the elements in vector x. φ : DX
m → Rd.
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exponential family models and clique features

Given a graph G = (V,E) we have a set of cliques C of the graph.

In order to respect the graph, we have to make sure that α ∈ I
respects the cliques.

That is, for any α ∈ I, and feature function φα(xCα) there must be a
clique C ∈ C such that Cα ⊆ C.

On the other hand, by having a different index set I we can have
more than one feature (sufficient statistic) for a given clique.

That is, for any given C ∈ C we might have multiple α1,α2 ∈ I such
that Cα1 = Cα2 = C for some clique C ∈ C.
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exponential family models and clique features

Example: single scalar discrete random variable X ∈ {1, 2, . . . , k}
might have indicator feature for all possible values αi(x) ! 1(x = i)
— in this case |Cα| = 1 for all α ∈ I.

Could even think of {Cα}α∈I as cliques of some graph, but not
necessarily maxcliques.

Likely not dealing with triangulated models. Could be based on
cliques, or cliques and subsets of cliques (consider 4-cycle with edges
and vertices).

Key: p ∈ F(G,M(f)) by Hammersley-Clifford theorem,

where G = (V,E) where V is the nodes corresponding to vector x,
and E is formed by using {Cα}α∈I as an edge clique cover: ∃ an α ∈ I
such that u, v ∈ Cα where u, v ∈ V (G) ⇔ there is an edge
(u, v) ∈ E(G).
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exponential family models

exponential models are in our sense sufficient to deal with the
computational aspects graphical models.

We can have p ∈ F((V,E),M(f)) implies p ∈ F((V,E + E1),M
(f))

but in some sense, for any G, we want to deal with the models for
which G is tight (we don’t want to use overly complex graph to deal
with family that is simpler)

Exponential models can represent any factorization, given any
factorization in terms of φ, we can do exp(log φ) to get potentials.

We can often make them log-linear models as well with the right
potential functions which won’t increase tree-width of the graph.

Moreover, exponential family models are incredibly flexible and have a
number of desirable properties (e.g., aspects of the log partition
function which we will see)
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absolutely continuous

Underlying base measure ν, so that
∫
f(x)ν(dx) corresponds to∑

i f(xi) for a counting measure, or
∫
f(x)dx if not.

Underlying base measure ν, p is absolutely continuous w.r.t. ν

A measure ν is absolutely continuous with respect to µ if for each
A ∈ F , µ(A) = 0 implies ν(A) = 0. In this case ν is also said to be
dominated by µ (if µ goes to zero, so must ν), and the relation is
indicated by ν ) µ.

If ν ) µ and µ ) ν, the measures are equivalent, indicated by ν ≡ ν.
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exponential family models

Based on underlying set of parameters θ, we have family of models

pθ(x) =
1

Z(θ)
exp

{
∑

α∈I
θαφα(x)

}
= exp(〈θ,φ(x)〉 −A(θ)) (11.13)

To ensure normalized, we use log partition (cumulant) function

A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (11.14)

with θ ∈ Ω
∆
=

{
θ ∈ Rd|A(θ) < +∞

}

A(θ) is convex function of θ, so Ω is convex.

Exponential family for which Ω is open is called regular
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exponential family models

Based on underlying set of parameters θ, we have family of models

pθ(x) =
1

Z(θ)
exp

{
∑

α∈I
θαφα(x)

}
= exp(〈θ,φ(x)〉 −A(θ)) (11.15)

family can arise for a number of reasons, e.g., distribution having
maximum entropy but that satisfies certain (moment) constraints.

Given data D = {x̄(i)E }Mi=1, form the expected statistics (requirements)
of a model, witih x̄(i) ∼ p(x)

µ̂α =
1

M

M∑

i=1

φα(x̄
(i)) (11.16)

Thus, limM→∞ µ̂α = Ep[φα(X)] = µα
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Exponential family models

Goal (“estimation”, or “machine learning”) is to find

p∗ ∈ argmax
p∈U

H(p) s.t. Ep[φα(X)] = µ̂α ∀α ∈ I (11.17)

where ∀α ∈ I

Ep[φα(X)] =

∫

DX

φα(x)p(x)ν(dx) (11.18)

Ep[φα(X)] is mean value as measured by potential function, so above
is a form of moment matching.

Maximum entropy (MaxEnt) distribution is solved by taking
distribution in form of Eq. 11.15, by finding θ that solves

Epθ [φα(X)] = µ̂α for all α ∈ I (11.19)
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Minimal Representation of Exponential Family

Solution as form:

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (11.20)

where A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (11.21)

Exercise: show that solution to Eqn (11.17) has this form.

Minimal representation - Does not exist a nonzero vector γ ∈ Rd for
which 〈γ,φ(x)〉 is constant ∀x (that are ν-measurable).

I.e., guarantee that, for all γ ∈ RD, there exists x1 .= x2, with
ν(x1), ν(x2) > 0, such that 〈γ,φ(x1)〉 .= 〈γ,φ(x2)〉.
essential idea: that for a set of sufficient stats I, there is not a
lower-dimensional vector |I ′| < |I| that is also sufficient (a min suf
stat is a function of all other suf stats).

We can’t reduce the dimensionality d without changing the family.
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Minimal Representation of Exponential Family

Solution as form:

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (11.20)

where A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (11.21)

Exercise: show that solution to Eqn (11.17) has this form.

Minimal representation - Does not exist a nonzero vector γ ∈ Rd for
which 〈γ,φ(x)〉 is constant ∀x (that are ν-measurable).

I.e., guarantee that, for all γ ∈ RD, there exists x1 .= x2, with
ν(x1), ν(x2) > 0, such that 〈γ,φ(x1)〉 .= 〈γ,φ(x2)〉.
essential idea: that for a set of sufficient stats I, there is not a
lower-dimensional vector |I ′| < |I| that is also sufficient (a min suf
stat is a function of all other suf stats).

We can’t reduce the dimensionality d without changing the family.
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Overcomplete Representation

pθ(x) = exp(〈θ,φ(x)〉 −A(θ)) (11.22)

where A(θ) = log

∫

DX

exp (〈θ,φ(x)〉) ν(dx) (11.23)

Overcomplete representation d = |I| higher than need be

I.e., ∃γ .= 0 s.t. 〈γ,φ(x)〉 = c, ∀x where c = constant.
I.e., Exists affine hyperplane of different parameters that induce
exactly same distribution. Assume overcomplete, given γ .= 0 s.t.,
〈γ,φ(x)〉 = c and some other parameters θ, we have , we have

pθ+γ(x) = exp(〈(θ + γ),φ(x)〉 −A(θ + γ)) (11.24)

= exp(〈θ,φ(x)〉+ 〈γ,φ(x)〉 −A(θ + γ)) (11.25)

= exp(〈θ,φ(x)〉+ c−A(θ + γ)) (11.26)

= exp(〈θ,φ(x)〉 −A(θ)) = pθ(x) (11.27)

True for any λγ with λ ∈ R, so affine set of identical distributions!
We’ll see later, this useful in understanding BP algorithm.
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Exponential family models

Minimal representation of Bernoulli distribution is

p(x|γ) = exp(γx−A(γ)) (11.28)

overcomplete rep of Bernoulli dist.

p(x|θ0, θ1) = exp(〈θ,φ(x)〉) (11.29)

= exp(θ0(1− x) + θ1x−A(γ)) (11.30)

where θ = (θ0, θ1) and φ(x) = (1− x, x).

Is there a vector a s.t. 〈a,φ(x)〉 = c for all x, ν-a.e.?

If a = (1, 1) then 〈a,φ(x)〉 = (1− x) + x = 1

This is overcomplete since there is a linear combination of feature
functions that are constant.

Since θ0(1− x) + θ1x = θ0 + x(θ1 − θ0), any parameters of form
θ1 − θ0 = γ gives same distribution.
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Famous Example - Ising Model

Famous example is the Ising model in statistical physics. We have a
grid network with pairwise interactions, each variable is 0/1-valued
binary, and parameters associated with pairs being both on. Model
becomes

pθ(x) = exp





∑

v∈V
θvxv +

∑

(s,t)∈E

θstxsxt −A(θ)




 , (11.31)

with

A(θ) = log
∑

x∈{0,1}m
exp





∑

v∈V
θvxv +

∑

(s,t)∈E

θstxsxt −A(θ)






(11.32)

Note that this is in minimal form. Any change to parameters will
result in different distribution
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Ising Model and Immediate Generalization

Note, in this case I is all singletons (unaries) and all pairs, so that

{Cα}α =
{
{xi}i, {xixj}(i,j)∈E

}
.

We can easily generalize this via a set system. I.e., consider (V,V),
where V =

{
V1, V2, . . . , V|V|

}
and where ∀i, Vi ⊆ V .

We can form sufficient statistic set via {Cα}α =
{
{xV }V ∈V

}
.

Higher order factors/interaction functions/potential
functions/sufficient statistics.
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Multivalued variables

Variables need not binary, instead DX = {0, 1, . . . , r − 1} for r > 2.
We can define aset of indicator functions constituting minimal
sufficient statistics. That is

1s;j(xs) =

{
1 if xs = j

0 else
(11.33)

and

1st;jk(xs, xt) =

{
1 if xs = j and xt = k,

0 else
(11.34)

Model becomes

pθ(x) = exp





∑

v∈V

r−1∑

i=0

θv;j1s;j(xv) +
∑

(s,t)∈E

∑

j,k

θst;ij1st;jk(xs, xt)−A(θ)




 ,

(11.35)

Is this overcomplete?

Yes. Why?
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Multivariate Gaussian

Usually, multivariate Gausisan is parameterized via mean and
covariance matrix. For canonical exponential form, we use mean and
correlation matrix. I.e.

pθ(x) = exp

{
〈θ, x〉+ 1

2
〈〈Θ, xxᵀ〉〉 −A(θ,Θ)

}
(11.36)

〈〈Θ, xxᵀ〉〉 =
∑

ij Θijxixj is Frobenius norm.

So sufficient statistics are (xi)
n
i=1 and (xixj)i,j

Θs,t = 0 means identical to missing edge in corresponding graph
(marginal independence).

Any other constraints on Θ?

negative definite

Mixtures of Gaussians can also be parameterized in exponential form
(but note, key is that it is the joint distribution pθs(ys, xs)).
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Other examples

A few other examples in the book

Mixture models

Latent Dirichlet Allocation, and general hierarchical Bayesian models.
Key here is that it is for one expansion, not variable.

Models with hard constraints - key thing is to place the hard
constraints in the ν measure. Sufficient statistics become easy if
complexity is encoded in the measure. Alternative is to allow features
over extended reals (i.e., a feature can provide −∞ but this leads to
certain technical difficulties that they would rather not deal with).
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over extended reals (i.e., a feature can provide −∞ but this leads to
certain technical difficulties that they would rather not deal with).
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Mean Parameters, Convex Cores

Consider quantities µα associated with statistic φα defined as:

µα = Ep[φα(X)] =

∫
φα(x)p(x)ν(dx) (11.37)

this defines a vector of “mean parameters” (µ1, µ2, . . . , µd) with
d = |I|.
Define all the possible such vectors

M(φ) = M ∆
=

{
µ ∈ Rd : ∃p s.t. µα = Ep[φα(X)], ∀α ∈ I

}

(11.38)

We don’t say p was necessarily exponential family

M is convex since expected value is a linear operator. So convex
combinations of p and p′ will lead to convex combinations of µ and µ′

M is like a “convex core” of all distributions expressed via φ.
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Mean Parameters and Gaussians

Here, we have E[XXᵀ] = C and µ = EX. Question is, how to define
M?

Given definition of C and µ, then C − µµᵀ must be valid covariance
matrix (since this is E[X − EX][X − EX]ᵀ = C − µµᵀ).

Thus, C − µµᵀ / 0, thus p.s.d. matrix.

On the other hand, if this is true, we can form a Gaussian using
C − µµᵀ as the covariance matrix.

Thus, for Gaussian MRFs, M has the form

M =
{
(µ,C) ∈ Rm × Sm

+ |C − µµᵀ / 0
}

(11.39)

where Sm
+ is the set of symmetric positive semi-definite matrices.
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Mean Parameters and Gaussians

“Illustration of the set M for a scalar Gaussian: the model has two mean
parameters µ = E[X] and Σ11 = E[X2], which must satisfy the quadratic
contraint Σ11 − µ2 ≥ 0. Notice that M is convex, which is a general
property.”

Also, don’t confuse the “mean parameters” with the means of a Gaussian.
The typical means of Gaussians are means in this new sense, but those
means are not all of the means. !
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Mean Parameters and Polytopes

When X is discrete, we get a polytope since

M =

{
µ ∈ Rb : µ =

∑

x

φ(x)p(x) for some p ∈ U
}

(11.40)

= conv {φ(x), x ∈ DX (that are ν-measurable),} (11.41)

where conv {·} is the convex hull of the items in argument set.

So we have a convex polytope
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Mean Parameters and Polytopes

Polytopes can be represented as a set of linear inequalities, i.e., there
is a |J |× d matrix A and |J |-element column vector b with

M =
{
µ ∈ Rd : Aµ ≥ b

}
=

{
µ ∈ Rd : 〈aj , µ〉 ≥ bj , ∀j ∈ J

}

(11.42)

with A having rows aj .

M

j

〈a j,
m〉

=
b

ψ(x)

〈a
j,
m
〉 ≥

b j

a j 〈aj ,m〉 ≤ bj
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Mean Parameters and Polytopes

Example: Ising mean parameters. Given sufficient statistics

φ(x) = {xs, s ∈ V ;xsxt, (s, t) ∈ E(G)} ∈ R|V |+|E| (11.43)

we get

µv = Ep[Xv] = p(Xv = 1) ∀v ∈ V (11.44)

µs,t = Ep[XsXt] = p(Xs = 1, Xt = 1) ∀(s, t) ∈ E(G) (11.45)

Mean parameters lie in a polytope that represent the probabilities of a
node being 1 or a pair of adjacent nodes being 1, 1 for each node and
edge in the graph = conv {φ(x), x ∈ {0, 1}m}.
Gives complete marginal since ps(1) = 1− ps(0),
ps,t(1, 0) = ps(1)− ps,t(1, 1), ps,t(0, 1) = pt(1)− ps,t(1, 1), etc.

Recall: marginals are often the goal of inference.

Coincidence?
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Example: 2-variable Ising

“Ising model with two variables (X1, X2) ∈ {0, 1}2. Three mean
parameters µ1 = E[X1], µ2 = E[X2], µ12 = E[X2X2], must satisfy
constraints 0 ≤ µ12 ≤ µi for i = 1, 2, and 1 + µ12 − µ1 − µ2 ≥ 0.
These constraints carve out a polytope with four facets, contained
within the unit hypercube [0, 1]3.”
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Mean Parameters and Overcomplete Representation

We can use overcomplete representation and get a “marginal
polytope”, a polytope that represents the marginal distributions at
each potential function.

Example: Ising overcomplete potential functions (generalization of
Bernoulli example we saw before)

∀v ∈ V (G), j ∈ {0 . . . r − 1}, define φv,j(xv) ! 1(xv = j) (11.46)

∀(s, t) ∈ E(G), j, k ∈ {0 . . . r − 1}, we define: (11.47)

φst,jk(xs, xt) ! 1(xs = j, xt = k) = 1(xs = j)1(xt = k)
(11.48)

So we now have |V |r + 2|E|r2 functions each with a corresponding
parameter.
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Mean Parameters and Marginal Polytopes

Mean parameters are now true (fully specified) marginals, i.e.,
µv(j) = p(xv = j) and µst(j, k) = p(xs = j, xt = k) since

µv,j = Ep[1(xv = j)] = p(xv = j) (11.49)

µst,jk = Ep[1(xs = j, xt = k)] = p(xs = j, xt = k) (11.50)

Such an M is called the marginal polytope. Any µ must live in the
polytope that corresponds to node and edge true marginals!!

We can also associate such a polytope with a graph G, where we take
only (s, t) ∈ E(G). Denote this as M(G).

This polytope can help us to characterize when BP converges (there
might be an outer bound of this polytope), or it might characterize
the result of a mean-field approximation (an inner bound of this
polytope) as we’ll see.
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Marginal Polytopes and Facet complexity

Number of facets (faces) of a polytope is often (but not always) a
good indication of its complexity.

Corresponds to number of linear constraints in set of linear inequalities
describing the polytope.

“facet complexity” of M depends on the graph structure.

For 1-trees, marginal polytope characterized by local constraints only
(pairs of variables on edges of the tree) and has linear growth with
graph size.

For k-trees, complexity grows exponentially.

Key idea: use polyhedral approximations to produce model and
inference approximations.
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Learning is the dual of Inference

We can view the inference problem as moving from the canonical
parameters θ to the point in the marginal polytope, called forward
mapping, moving from θ ∈ Ω to µ ∈ M.

We can view the (maximum likelihood) learning problem as moving
from a point in the polytope (given by the empirical distribution) to
the canonical parameters. Called backwards mapping

graph structure (e.g., tree-width) makes this easy or hard, and also
characterizes the polytope (how complex it is in terms of number of
faces).
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Learning is the dual of Inference

Ex: Estimate θ with θ̂ based on data D = {x̄(i)E }Mi=1 of size M ,
likelihood function

'(θ,D) =
1

M

M∑

i=1

log pθ(x̄
(i)) = 〈θ, µ̂〉 −A(θ) (11.51)

where empirical means given by

µ̂ = Ê[φ(X)] =
1

M

M∑

i=1

φ(x̄(i)) (11.52)

By taking derivatives of the above, it is easy to see that solution is the
point θ̂ such that (empirical matches expected means)

Eθ̂[φ(X)] = µ̂ (11.53)

this is the the backward mapping problem, going from µ to θ.

This is identical to the maximum entropy problem.
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Learning is the dual of Inference

I.e., solution to the maximum likelihood problem is one that satisfies
the moment constraints and has the exponential model form.

The exponential model form arises when we find the maximum entropy
distribution over distributions satisfying the moment constraints.

Thus, maximum entropy learning under a set of constraints (given by
Eθ[φ(X)] = µ̂) is the same as maximum likelihood learning of an
exponential model form.

If we do maximum entropy learning, where does the exp(·) function
come from?

From the entropy function. I.e., the exponential form is
the distribution that has maximum entropy having those constraints.
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Dual Mappings: Summary

Summarizing these relationships

Forward mapping: moving from θ ∈ Ω to µ ∈ M, this is the inference
problem, getting the marginals.

Backwards mapping: moving from µ ∈ M to θ ∈ Ω, this is the
learning problem, getting the parameters for a given set of empirical
facts (means).

In exponential family case, this is maximum entropy and is equivalent
to maximum likelihood learning on an exponential family model.

Turns out log partition function A, and its dual A∗ can give us these
mappings, and the mappings have interesting forms . . .
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Log partition (or cumulant) function

A(θ) = log

∫

DX

〈θ,φ(x)〉 ν(dx) (11.54)

If we know the log partition function, we know a lot for an exponential
family model. In particular, we know

A(θ) is convex in θ (strictly so if minimal representation).

It yields cumulants of the random vector φ(X)

∂A

∂θα
(θ) = Eθ[φα(X)] =

∫
φα(X)pθ(x)ν(dx) = µα (11.55)

in general, derivative of log part. function is expected value of feature

Also, we get

∂2A

∂θα1∂θα2

(θ) = Eθ[φα1(X)φα2(X)]− Eθ[φα1(X)]Eθ[φα2(X)]

(11.56)

Proof given in book.
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Log partition function

So derivative of log partition function w.r.t. θ is equal to our mean
parameter µ in the discrete case.

Given A(θ), we can recover the marginals for each potential function
φα,α ∈ I (when mean parameters lie in the marginal polytope).

If we can approximate A(θ) with Ã(θ) then we can get approximate
marginals. Perhaps we can bound it without inordinate compute
resources.

The Bethe approximation (as we’ll see) is such an approximation and
corresponds to fixed points of loopy belief propagation.

In some rarer cases, we can bound the approximation (current
research trend).
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Log partition function

So ∇A : Ω → M′, where M′ ⊆ M, and where
M =

{
µ ∈ Rd|∃p s.t. Ep[φ(X)] = µ

}
.

For minimal exponential family models, this mapping is one-to-one,
that is there is a unique pairing between µ and θ.

For non-minimal exponential families, more than one θ for a given µ
(not surprising since multiple θ’s can yield the same distribution).

For non-exponential families, other distributions can yield µ, but the
exponential family one is the one that has maximum entropy.

ex1:
Gaussian, a distribution with maximum entropy amongst all other
distributions with same mean and covariance. ex2: Consider the
maximum entropy optimization problem, yields a distribution with
exactly this property.

Key point: all mean parameters are realizable by member of exp.
family.
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Mappings - one-to-one

In fact, we have

Theorem 11.6.1

The gradient map ∇A is one-to-one iff the exponential representation is
minimal.

Proof basically uses property that if representation is non-minimal,
and 〈a,φ(x)〉 = c for all x, then we can form an affine set of
equivalent parameters θ + γa.

Other direction, uses strict convexity.
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Mappings - onto

Moreover,

Theorem 11.6.2

In a minimal exponential family, the gradient map ∇A is onto the interior
of M (denoted M◦). Consequently, for each µ ∈ M◦, there exists some
θ = θ(µ) ∈ Ω such that Eθ[φ(X)] = µ.

Example: consider, for example, a Gaussian.

Any mean parameter (set of means E[X] and correlations E[XXT ])
can be realized by a Gaussian having those same mean parameters
(moments).

The Gaussian won’t nec. be the “true” distribtuion (in such case, the
“true” distribution would not be an exponential family model with
those moments).

The theorem here is more general and applies for any set of sufficient
statistics.
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Conjugate Duality

Consider maximum likelihood problem for exp. family

θ∗ ∈ argmax
θ

(〈θ, µ̂〉 −A(θ)) (11.57)

Convex conjugate dual of A(θ) is defined as:

A∗(µ)
∆
= sup

θ∈Ω
(〈θ, µ〉 −A(θ)) (11.58)

So dual is optimal value of the ML problem, when µ ∈ M
Key: when µ ∈ M, dual is negative entropy of exp. model pθ(µ) where
θ(µ) is the unique set of canonical parameters satisfying this matching
condition

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ (11.59)

When µ /∈ M, then A∗(µ) = +∞, optimization with dual need
consider points only in M.
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θ∈Ω
(〈θ, µ〉 −A(θ)) (11.58)

So dual is optimal value of the ML problem, when µ ∈ M

Key: when µ ∈ M, dual is negative entropy of exp. model pθ(µ) where
θ(µ) is the unique set of canonical parameters satisfying this matching
condition

Eθ(µ)[φ(X)] = ∇A(θ(µ)) = µ (11.59)

When µ /∈ M, then A∗(µ) = +∞, optimization with dual need
consider points only in M.
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Conjugate Duality

Theorem 11.6.3 (Relationship between A and A∗)

(a) For any µ ∈ M◦, θ(µ) unique canonical parameter sat. matching
condition, then conj. dual takes form:

A∗(µ) = sup
θ∈Ω

(〈θ, µ〉 −A(θ)) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ ∈ M̄
(11.60)

(b) Partition function has variational representation (dual of dual)

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (11.61)

(c) For θ ∈ Ω, sup occurs at µ ∈ M◦ at moment matching conditions

µ =

∫

DX

φ(x)pθ(x)ν(dx) = Eθ[φ(X)] = ∇A(θ) (11.62)
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Conjugate Duality

Note that A∗ isn’t exactly entropy, only entropy sometimes, and
depends on matching parameters to µ via the matching mapping θ(µ)
which achieves

Eθ(µ)[φ(X)] = µ (11.63)

A(θ) in Equation 11.61 is the “inference” problem (dual of the dual)
for a given θ, since computing it involves computing the desired
node/edge marginals.

Whenever µ /∈ M, then A∗(µ) returns ∞ which can’t be the resulting
sup, so Equation 11.61 need only consider M.
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Conjugate Duality

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (11.61)

computing A(θ) in this way corresponds to the inference problem
(finding mean parameters, or node and edge marginals). Key: we
compute the log partition function simultaneously with solving
inference, given the dual.

Good news: problem is concave objective over a convex set. Should
be easy. In simple examples, indeed, it is easy. !
Bad news: M is quite complicated to characterize, depends on the
complexity of the graphical model. "
More bad news: A∗ not given explicitly in general and hard to
compute. "
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Conjugate Duality

A(θ) = sup
µ∈M

{〈θ, µ〉 −A∗(µ)} (11.61)

Some good news: The above form gives us new avenues to do
approximation. !

For example, we might either relax M (making it less complex), relax
A∗(µ) (making it easier to compute over), or both. !
Surprisingly, this is strongly related to belief propagation (i.e., the
sum-product commutative semiring). !!
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Sources for Today’s Lecture

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001
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