
EE512A – Advanced Inference in Graphical Models
— Fall Quarter, Lecture 10 —

http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

Nov 3rd, 2014

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 10 - Nov 3rd, 2014 F1/46 (pg.1/97)



Logistics Review

Announcements

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Read chapters 1,2, and 3 in this book!

Read first two chapters in above text.
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1): MRFs, elimination, Inference
on Trees

L3 (10/6): Tree inference, message
passing, more general queries, non-tree)

L4 (10/8): Non-trees, perfect elimination,
triangulated graphs

L5 (10/13): triangulated graphs, k-trees,
the triangulation process/heuristics

L6 (10/15): multiple queries,
decomposable models, junction trees

L7 (10/20): junction trees, begin
intersection graphs

L8 (10/22): intersection graphs, inference
on junction trees

L9 (10/27): inference on junction trees,
semirings,

L10 (10/29): conditioning, hardness, LBP

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Logistics Review

Recap

Message passing on junction tree nodes, definition of messages, divide
out old, multiply in new.

Messages in both directions.

For general tree, we have MPP like in 1-tree case.

Suff condition: locally consistent.

Thm: MPP renders cliques locally consistent between pairs.

In JT (r.i.p.) locally consistent ensures globally consistent.

In JT (r.i.p.), running MPP gives marginals.

Commutative semiring - other algebraic objects can be used.

Time and memory complexity is O(Nrω+1) where ω is the tree-width.
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Logistics Review

Forward/Backward Messages Along Cluster Tree Edge

Summarizing, forward and backwards messages proceed as follows:
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Recall: S = U ∩W , and we initialize ψU and ψW with factors that are
contained in U or W .
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Time-Space Tradeoffs
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Logistics Review

Recursive Conditioning, three cluster version

Example: 3-cluster version

1 α1 ← 0 ;
2 for xC1 ∈ DXC1

do

3 α2|1 ← 0 ; α3|1 ← 0 ;

4 for xC2\C1
∈ DXC2\C1

do

5 α2|1 += p(xC1∪C2)

6 for xC3\C1
∈ DXC3\C1

do

7 α3|1 += p(xC1∪C3)

8 α1 += α2|1α3|1

c1

c2 c3

Outer loop costs O(|DXC1
|). Inner loops each cost O(|DXC2\C1

|)
(assuming C1 and C2 are same size).

Total cost is O(|DXC1∪C2
|), better than O(|DXC1∪C2∪C3

|) = O(rN )

Memory: still linear.
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Recursive Conditioning with good order

We can order the cliques in a different way though. Note that this is
not necessarily a junction tree, although it might be. Rather, this is
more akin to a decomposition trees we saw earlier in the course, but it
is not that either. Instead, it is more of a “conditioning tree”

Depth of tree is d = O(logN)

c1

c2 c3 c4

c5 c6 c7 c8 c9 c10

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 10 - Nov 3rd, 2014 F8/46 (pg.8/97)



Logistics Review

Recursive Conditioning with good order

All α’s initialized to 0 before ’for’
loop where they are accumulated.

1 for xC1 ∈ DXC1
do

2 for xC2\C1
∈ DXC2\C1

do

3 for xC5\C1,2
∈ DXC5\C1,2

do

4 α5|1,2 += p(xC1,2,5)

5 for xC6\C1,2
∈ DXC6\C1,2

do

6 α6|1,2 += p(xC1,2,6)

7 for xC7\C1,2
∈ DXC7\C1,2

do

8 α7|1,2 += p(xC1,2,7)

9 α2|1 += α5|1,2α6|1,2α7|1,2

10 Include lines 12-22 here

11 Lines 12-22, include at line 10 above

12 for xC3\C1
∈ DXC3\C1

do

13 for xC8\C1,3
∈ DXC8\C1,3

do

14 α8|1,3 += p(xC1,3,8)

15 α3|1 += α8|1,3

16 for xC4\C1
∈ DXC4\C1

do

17 for xC9\C1,4
∈ DXC9\C1,4

do

18 α9|1,4 += p(xC1,4,9)

19 for xC10\C1,4
∈ DXC10\C1,4

do

20 α10|1,4 += p(xC1,4,10)

21 α4|1 += α9|1,4α10|1,4

22 α1 += α2|1α3|1α4|1
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Logistics Review

Recursive Conditioning with good order

When we’re all done, α1 = p(x̄E) (again, assuming evidence is treated
as multiplies by δ(x, x̄)).

How much space is needed? O(N) still since in worst case, depth of
the tree is number of maxcliques (which is O(N)).

How much time? Depends on number of α-accumulates, or number of
leaf-nodes in the tree. Depth is d = logN . Each clique gets run about
rw+1 times, and runs the nodes below it about that many times.

We get a time complexity of:

rw+1rw+1 . . . rw+1
︸ ︷︷ ︸

d times

= r(w+1) logN (10.21)
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Time-Space Tradeoffs
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Conditioning Hardness Approximation LBP Next phase of class Refs

Recursive Conditioning with good order

How to get other points on frontier?

Note that in previous algorithm, for each
set of variable values in intersection set
(square boxes), we were solving the
same sub-problem multiple times.

We can cache the solutions for each
value, at the cost of more memory. If
everything is cached, space complexity
will increase to O(Nrw) and time
complexity will decrease to O(Nrw)
(like the JT case).

c1

c2 c3

we need not solve each

entry in this intersection set

multiple times. Instead, we can

cache values. Total number of entries

is O(Nrw)
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Value-specific Caching

Many algorithms use value specific caching. I.e., depending on the
values of some variables currently conditioned on, we might actually
get an entirely different set of maxcliques (or set of sets of
maxcliques) below. Each should ideally be treated differently.

We can construct and memoize the dependency sets, the set of
variables and their values that induce particular sub-computations.
Each sub-computation might be a computation of a sum, or it might
even be a computation of zero (called a no-good, or a conflict). Each
of these can be memoized and re-used whenever the dependency set
becomes active again.

the order of the cliques and the order of the variables in the cliques
might dynamically change depending on previously instantiated values.
We might not even use cliques at all, and do this at the granularity of
variables and their values.
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Value-Elimination

This is the basis of the value elimination algorithm (Bacchus-2003), a
general procedure for probabilistic inference. It gets much of its
inspiration from the techniques used to produce fast SAT and
constraint satisfaction problem (CSP) engines.

This is especially useful if we have many zeros (sparsity) in the
distribution and/or if there is much value specific independence.
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Hardness

Even with conditioning, search, etc. Complexity of exact inference is
always exponential in at least the tree-width of any covering graph if
we do it as we’ve been describing.

Unfortunately, finding the best exponent (i.e., finding the best
covering triangulated graph (with minimal tree-width)) is, as we saw
in earlier lectures, an NP-complete optimization problem.

Even worse, inference itself is NP-complete. There are some graphs
that can’t be solved in polynomial time unless P=NP (so it seems
exponential cost is probably inevitable).
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Hardness of Inference

Consider the 3-SAT problem (which is a canonical NP-complete
problem). Given list of N variables, and a collection of M clauses
(constraints), where each clause is a disjunction (“or”) of 3 literals (a
variable or its negation). Clauses are organized in a conjunction
(“and”).

Question: is there a satisfying truth assignment of the variables
(assignment of variable values that makes the conjunction of
disjunctions true).

Two examples:

(x1 ∨ x4 ∨ x̄5) ∧ (x̄2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄4 ∨ x3) ∧ (x̄3 ∨ x̄4 ∨ x̄5)

∧ (x̄1 ∨ x4 ∨ x2) ∧ (x̄1 ∨ x̄2 ∨ x3) (10.1)

and also

(x1 ∨ x̄2 ∨ x3) ∧ (x̄3 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x̄6 ∨ x̄7) ∧ (x7 ∨ x8 ∨ x9)

∧ (x̄9 ∨ x10 ∨ x11) ∧ (x̄11 ∨ x̄12 ∨ x̄3) (10.2)
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Hardness of Inference

In the general case, we have N variables and M clauses, either of
which might be very large. If we can solve this problem in polynomial
time in N , then all NP-complete problems can be solved in polynomial
time.

To show that inference in Bayesian networks is NP-complete, all we
need to do is find a BN or MRF that encodes this problem using the
appropriate commutative semiring (which in our case, we’ll take to be
the max-product semiring).

Let {xi}Ni=1 be the set of variables, and let Cj be the index set of the
variables for clause 0 ≤ j ≤ M .

Define binary-valued functions fj(xCj ) such that fj = 1 iff the clause
is satisfied by the current values of the variables xCj , otherwise fj = 0.
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Hardness of Inference

With this formulation, we get factorization as follows
∏

j

fj(xCj ) (10.3)

which is possible to evaluate to unity iff the logic formula is satisfiable.

Next, consider BN with N binary variables {xi}Ni=1 and M additional

variables {yj}Mj=1 with M CPTS of the form:

p(yj = 1|xCj ) =

{
1 if fj(xCj ) = 1

0 else
, and for xi p(xi = 1) = 0.5

(10.4)

This gives joint distribution that factorizes

p(x1:N , y1:M ) =
∏

i

p(xi)
∏

j

p(yj |xCj )
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Hardness of Inference

Create following BN, as evidence set use yj = 1 for all j ∈ 1 . . .M

Use max-sum semi-ring, so goal is to find the assignment to the x
variables that maximize the joint probability.

Resulting max evaluation is 1 iff original 3-SAT formula is satisfiable.
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Hardness of Inference

Example: N = 5,M = 6 in following 3-SAT formula and BN

(x1∨x4∨x̄5)∧(x̄2∨x̄3∨x̄4)∧(x̄1∨x̄4∨x3)∧(x̄3∨x̄4∨x̄5)∧(x̄1∨x4∨x2)∧(x̄1∨x̄2∨x3)

x1 x2 x3 x4 x5

y1 y2 y4y3 y5 y6

MPE/Viterbi assignment to x1:5 has non-zero probability iff original
formula is SAT, BN inference (in general) NP-complete.

Doesn’t mean exact inference is always intractable, rather can’t hope
for a polynomial solution in all cases unless P = NP .

Moreover, even low tree-width graphs can be computationally
challenging (i.e., large state space or random variable domain size).
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Recap

Time and memory complexity is O(Nrω+1) where ω is the tree-width.

We can use conditioning (e.g., cutset conditioning) to get other
points. E.g., condition on a set that renders the remainder of the set
a tree. Same computation less memory.

Recursive conditioning (and similar such algorithms) allows is to get
linear memory but a time complexity of O(r(w+1) logN ).

In general, many time-space tradeoffs for exact inference. Many
algorithms along the achievable/unachievable frontier are SAT/CSP
based, and use conditioning combined with various caching, and
clause learning/deduction (e.g., nogood learning).

To get a better time/space profile, need to do approximation.

For any given degree of distortion, there is a time/space tradeoff
profile.
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In general, many time-space tradeoffs for exact inference. Many
algorithms along the achievable/unachievable frontier are SAT/CSP
based, and use conditioning combined with various caching, and
clause learning/deduction (e.g., nogood learning).

To get a better time/space profile, need to do approximation.

For any given degree of distortion, there is a time/space tradeoff
profile.
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Approximation: Two general approaches

exact solution to approximate problem - approximate problem

1 learning with or using a model with a structural restriction, structure
learning, using a k-tree for a lower k than one knows is true. Make sure
k is small enough so that exact inference can be performed, and make
sure that, in that low tree-width model, one has best possible graph

2 Functional restrictions to the model (i.e., use factors or potential
functions that obey certain properties). Then certain fast algorithms
(e.g., graph-cut) can be performed.

approximate solution to exact problem - approximate inference

1 Message or other form of propagation, variational approaches, LP
relaxations

2 sampling
3 etc.

Both methods only guaranteed approximate quality solutions.

No longer in the achievable region in time-space tradoff graph, new
set of time/space tradeoffs to achieve a particular accuracy.
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Belief Propagation

Generic message definition

µi→j(xj) =
∑

xi

ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi) (10.5)

If graph is a tree, and if we obey MPP order, then we will reach a
point where we’ve got marginals. I.e.,

p(xi) ∝
∏

j∈δ(i)

µj→i(xi) (10.6)

and

p(xi, xj) ∝ ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi)
∏

#∈δ(j)\{i}

µ#→j(xj)M (10.7)
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Belief Propagation

Often, we see that nodes have potential functions as well. I.e., we have
edge potentials ψi,j(xi, xj) for (i, j) ∈ E(G) and ψi(xi) for i ∈ V (G).
Also we might normalize each step (for numerical reasons). We get:

µi→j(xj) ∝
∑

xi

ψi,j(xi, xj)ψi(xi)
∏

k∈δ(i)\{j}

µk→i(xi) (10.8)

such that µi→j(xj) sums to 1. If G is a tree, and we obey MPP, we get

p(xi) ∝ ψi(xi)
∏

j∈δ(i)

µj→i(xi) (10.9)

and

p(xi, xj) ∝ ψi,j(xi, xj)
∏

k∈δ(i)\{j}

µk→i(xi)
∏

#∈δ(j)\{i}

µ#→j(xj) (10.10)
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Belief Propagation: Generality

So far, the “belief propagation” (BP) messages are done along edges,
pairwise interaction, factors of the form ψij(xi, xj). What about
higher order interaction ψC(xC) where |C| > 2?

Recall a factor graph, where the factors themselves are represented on
the right hand side of a bipartite graph.

It is common to define a form of BP on a factor graph, going back
and forth, between left and right nodes.
Recall, an MRF doesn’t distinguish between multiple pairwise
interactions vs. one higher-order interaction.
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Generality and Specificity

Consider the following three graphical models, the first two factor
graphs and the third a MRF.

Left: any distribution that can be written as

p1(x1, x2, x3) = f1(x1, x2)f2(x2, x3)f3(x3, x1) (10.11)

Center: any distribution that can be written as

p2(x1, x2, x3) = f1(x1, x2)f2(x2, x3)f3(x3, x1)f4(x1, x2, x3) (10.12)

example

log p(x1, x2, x3) = c+ c12x1x2 + c23x2x3 + c13x1x3 + c123x1x2x3
(10.13)
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Generality and Specificity

Right figure: all distributions that can be written:

p3(x1, x2, x3) = ψ(x1, x2, x3) (10.14)

We have p1, p2, p3 ∈ F(G2,M
(fg)) and that p1 ∈ F(G1,M

(fg)) but
that p2, p3 "∈ F(G1,M

(fg)). Moreover, it is clear that
p1, p2, p3 ∈ F(G3,M

(f)).

Can we stay with an MRF with this limitation (i.e., MRF’s inability to
discern order of interaction amongst variables in a clique)?
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Pairwise MRF representing higher order MRF
We can transform an MRF with higher order potentials to an MRF
with only pairwise potentials, but with more variables.

Suppose we have ψC(xC) where |C| > 2. Define a new (single,
scalar) variable zC where zC ∈ DZC

and where |DZC
| = |DXC

|.
Each scalar value zC ∈ DZC

represents a vector of values xC ∈ DXC
,

and let xi(zC) represent the value of xi associated with zC , and let
zC(xC) represent the value of zC corresponding to vector xC .
Remove all edges between variables in xC and add pairwise factors
(and edges) of the form ψzC ,xi(zC , xi) for i ∈ C where
ψzC ,xi(zC , xi) = 1{xi = xi(zC)}.
Create new unary factor ψZ(zC) = ψ(x1(zC), x2(zC), . . . ).
Then model of the form

. . .ψC(xC) . . .

has same function as a model
of the form

. . .ψZ(zC)
∏

i∈C
ψzC ,xi(zC , xi) . . .

but

uses only pairwise factors.
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Suppose we have ψC(xC) where |C| > 2. Define a new (single,
scalar) variable zC where zC ∈ DZC

and where |DZC
| = |DXC

|.
Each scalar value zC ∈ DZC

represents a vector of values xC ∈ DXC
,

and let xi(zC) represent the value of xi associated with zC , and let
zC(xC) represent the value of zC corresponding to vector xC .

Remove all edges between variables in xC and add pairwise factors
(and edges) of the form ψzC ,xi(zC , xi) for i ∈ C where
ψzC ,xi(zC , xi) = 1{xi = xi(zC)}.
Create new unary factor ψZ(zC) = ψ(x1(zC), x2(zC), . . . ).
Then model of the form

. . .ψC(xC) . . .

has same function as a model
of the form

. . .ψZ(zC)
∏

i∈C
ψzC ,xi(zC , xi) . . .

but

uses only pairwise factors.
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Higher order MRF choices

So, to deal with MRFs with higher order factors, we can:

transform MRF to have only pairwise interactions, we can keep using
BP on MRF edges (as done above), makes the math a bit easier, does
not change the computation.

Alternatively, we can define BP on factor graphs.

Alternatively, could define BP directly on the maxcliques of the MRF
(but maxcliques are not easy to get in a MRF when not triangulated).

For any given p, we know the interaction terms. If it has higher order
factors, for the remainder of this term, we’ll assume we’ve done the
pair-wise transformation.
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Reparameterization

We start with a general p ∈ F(G,M(f)) in terms of factors that might
not alone have any inherent meaning or normalization.

Goal: We reparamterize p so that the factor decomposition is the
same but the factors are now marginals – marginal reparameterization

Tree graph is such that we can reparameterize so that the edges and
nodes are true marginals. e.g., φi(xi) =

∑
xV \{i}

p(x).

Can we always do this? Only when graph is triangulated and we do it
in terms of cliques and separators. When graph is not triangulated,
not possible in general to do this. Eg., 4-cycle.
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Reparameterization

In a tree, we achieve true marginal reparameterization by sending
messages according to MPP until all messages are sent in both
directions.

Alternatively, we could, say, initialize all messages to unity
µi→j(xj) = 1 or some other set of values, and sending all messages in
parallel. Each parallel send of all message is considered one step.

Let D be the diameter of the tree (length of longest path).

Once we have done D steps, we will have “converged.” Any
additional messages will not change the state.

If we have a tree, we have achieved marginal reparameterization.
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State representation

Consider the set of messages {µi→j(xj)}i,j as a large state vector µt

with 2|E(G)|r scalar elements.

Each sent message moves the state vector from µt at time t to µt+1

at next time step.

A parallel message (sending multiple messages at the same time)
moves the state vector as well.

Convergence means that any set or subset of messages sent in parallel
is such that µt+1 = µt.
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Messages as matrix multiply

µi→j(xj) ∝
∑

xi

ψi,j(xi, xj)ψi(xi)
∏

k∈δ(i)\{j}

µk→i(xi) (10.15)

=
∑

xi

ψ′
i,j(xi, xj)µ¬j→i(xi) (10.16)

= (ψ′
i,j)

Tµ¬j→i (10.17)

Here, ψ′
i,j is a matrix and µ¬j→i is a column vector.

Going from state µt to µt+1 is like matrix-vector multiply — group
messages from µt together into one vector representing µ¬j→i for
each (i, j) ∈ E, do the matrix-vector update, and store result in new
state vector µt+1.

If G is tree, µt will converged after D steps.
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Belief Propagation and Cycles

What if graph has cycles?

MPP causes deadlock since there is no way to start sending messages

Like before, we can assume that messages have an initial state, e.g.,
µi→j(xj) = 1 for all (i, j) ∈ E(G) - note this is bi-directional. This
breaks deadlock.

We can then start sending messages. Will we converge after D steps?
What does D even mean here?

No, in fact we could oscillate forever.
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Belief Propagation, Cycles, and Oscillation

Consider odd length cycle (e.g., C3, C5, etc.), C3 is sufficient
i j k i

Assume all messages start out at state µi→j = [1, 0]T .

Consider (pairwise) edge functions, for each i, j

ψij(xi, xj) =

[
0 1
1 0

]
(10.18)

then we have

µj→k(xk) =
∑

xj

ψj,k(xj , xk)µi→j(xj) (10.19)

or in matrix form

µj→k = (ψj,k)
Tµi→j (10.20)
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Belief Propagation, Cycles, and Oscillation

Let µt
i→j be the tth formed message, with µ0

i→j being the starting

state at [1, 0]T .

Then µ1
i→j = [0, 1]T , µ2

i→j = [1, 0]T , µ3
i→j = [0, 1]T , and so on, never

converging. In fact,

µt+1
i→j = (ψi,j)

Tµt
k→i (10.21)

= (ψi,j)
T (ψk,i)

Tµt
j→k (10.22)

= (ψi,j)
T (ψk,i)

T (ψj,k)
Tµt

i→j (10.23)

=

[
0 1
1 0

]3
µt
i→j (10.24)

=

[
0 1
1 0

]
µt
i→j (10.25)
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Belief Propagation, Cycles, and Oscillation

Thus, each time we go around the loop in the cycle, the message
configuration for each (i, j) will flip, thereby never converging.

Damping the messages? I.e., Let 0 ≤ γ < 1 and treat messages as

µt
i→j ← γµt

i→j + (1− γ)µt−1
i→j (10.26)

Empirical Folklore - if we converge quickly without damping, the
quality of the resulting marginals might be good. If we don’t converge
quickly, w/o damping, might indicate some problem.

Ways out of this problem: Other message schedules, other forms of
the interaction matrices, and other initializations.
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Belief Propagation, Cycles, and Oscillation

If we initialize messages differently, things will turn out better.

If µ0
i→j = [0.5, 0.5]T then µt+1

i→j = µt
i→j .

Damping the messages appropriately will also end up at this
configuration.

Is there a better way to characterize this?
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Belief Propagation, Single Cycle

Consider a graph with a single cycle C".

It could be a cycle with trees hanging off of each node. We send
messages from the leaves of those dangling trees to the cycle (root)
nodes, leaving only a cycle remaining.

Consider what happens to µt
i→j as t increases. w.l.o.g. consider µt

"→1

Let the cycle be nodes (1, 2, 3, . . . , $, 1)

µt+1
"→1 =

(
"−1∏

i=1

(ψi,i+1)
T

)
µt
"→1 (10.27)

= Mµt
"→1 (10.28)

Will this converge to anything?
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Belief Propagation, Single Cycle

Theorem 10.6.1 (Power method lemma)

Let A be a matrix with eigenvalues λ1, . . . ,λn (sorted in decreasing
order) and corresponding eigenvectors x1, x2, . . . , xn. If |λ1| > |λ2|
(strict), then the update xt+1 = αAxt converges to a multiple of x1
starting from any initial vector x0 =

∑
i βixi provided that β1 "= 0. The

convergence rate factor is given by |λ2/λ1|.
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Belief Propagation, Single Cycle

From this, we the following theorem follows almost immediately.

Theorem 10.6.2

1. µ"→1 converges to the principle eigenvector of M .
2. µ2→1 converges to the principle eigenvector of MT .
3. The convergence rate is determined by the ratio of the largest and
second largest eigenvalue of M .
4. The diagonal elements of M correspond to correct marginal p(x1)
5. The steady state “pseudo-marginal” b(x1) is related to the true
marginal by b(x1) = βp(x1) + (1− β)q(x1) where β is the ratio of the
largest eigenvalue of M to the sum of all eigenvalues, and q(x1) depends
on the eigenvectors of M .

Proof.

See Weiss2000.
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What’s going on with our oscillating example?

We had M =

[
0 1
1 0

]
which has row-eigenvector matrix

[
−1/

√
2 1/

√
2

1/
√
2 1/

√
2

]
with corresponding eigenvalues −1 and 1.

Note that any uniform vector will be “converged”, i.e., any vector of
the form [aa].

However, we don’t have the guaranteed property of convergence since
we don’t have that |λ1| > |λ2|.
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Belief Propagation, arbitrary graph

This works for a graph with a single cycle, or a graph that contains a
single cycle

It still does not tell us that we end up with correct marginals, rather
we get “pseudo-marginals”, which are locally normalized, but might
not be the correct marginals.

Moreover, they might not be the correct marginals for any probability
distribution.

Also, we’d like a characterization of LBP’s convergence (if it happens)
for more general graphs, with an arbitrary number of loops.
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Graphical Models, Exponential Families, and Variational
Inference

We’re going to start covering our book:
Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

We will start on chapter 3 (we assume you will read chapters 1 and 2
on your own).

We’ll follow the Wainwright and Jordan notation, will point out where
it conficts a bit with the current notation we’ve been using.
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Sources for Today’s Lecture

Most of this material comes from a variety of sources. Best place to
look is in our standard reading material.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 10 - Nov 3rd, 2014 F46/46 (pg.97/97)


