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Logistics Review

Announcements

Welcome to the class!
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Logistics Review

Class information

Mon, Wed, 11:30-1:30 in PCAR-297 (this room).

Lectures will also appear on youtube. See youtube channel
https://www.youtube.com/channel/UCvPnLF7oUh4p-m575fZcUxg

Lecturer: Prof. Jeff Bilmes, office hours Mondays 1:35-2:35pm,
EEB-418.
Also available online by appointment (e.g., skype, google hangouts).
TA: Jounsup Park <jsup517@uw.edu>, office hours Tuesdays 12:00pm
- 2:00pm, EEB-333.
On our web page (http:
//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/),
we will have announcements, readings, homework assignments, copies
of these slides, bboard, and so on.
We’ll have 3-5 homeworks this quarter. You’ll have about a week to
turn them in.
Copies of lecture slides available on the web.
Copies of (most) readings available on the web
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Logistics Review

Homework

Again, about 3-5 this quarter.

Problem sets: answer a question, prove a theorem, etc.

Alternatively programming projects, so you should be familiar with at
least one programming language (e.g., C, C++, or matlab).

All homework must be turned in electronically in PDF form via canvas
at our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014 F4/34 (pg.12/106)

https://canvas.uw.edu/courses/914697/assignments


Logistics Review

Homework

Again, about 3-5 this quarter.

Problem sets: answer a question, prove a theorem, etc.

Alternatively programming projects, so you should be familiar with at
least one programming language (e.g., C, C++, or matlab).

All homework must be turned in electronically in PDF form via canvas
at our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014 F4/34 (pg.13/106)

https://canvas.uw.edu/courses/914697/assignments


Logistics Review

Homework

Again, about 3-5 this quarter.

Problem sets: answer a question, prove a theorem, etc.

Alternatively programming projects, so you should be familiar with at
least one programming language (e.g., C, C++, or matlab).

All homework must be turned in electronically in PDF form via canvas
at our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014 F4/34 (pg.14/106)

https://canvas.uw.edu/courses/914697/assignments


Logistics Review

Homework

Again, about 3-5 this quarter.

Problem sets: answer a question, prove a theorem, etc.

Alternatively programming projects, so you should be familiar with at
least one programming language (e.g., C, C++, or matlab).

All homework must be turned in electronically in PDF form via canvas
at our assignment dropbox
(https://canvas.uw.edu/courses/914697/assignments).

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014 F4/34 (pg.15/106)

https://canvas.uw.edu/courses/914697/assignments


Logistics Review

Final Project Possibility

There will be a final project, consisting of a 4-page conference-style
paper, and a 10-minute final presentation.

There will be a few milestones (1-page project proposal, 1-page
progress summaries) during the quarter. These are graded.

The final project should be regarding graphical models - either as a
user in an application, or as a researcher (i.e., new inference method,
new proof, etc.).

The date of the final project is tentatively Wednesday, December 10,
2014, 230-420 pm, PCAR 297.

Final project reports due Tuesday, Dec 9th, at 11:45pm.

All final project relate assignment must be turned in electronically via
our class web page.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014 F5/34 (pg.16/106)



Logistics Review

Final Project: Alternate

There is a chance we will do a graphical model inference contest as the
final project. More on this as the class progresses.
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Logistics Review

Our texts

There will be three sources of reading material we’ll use this term.

Handouts written by me (these are being prepared/updated now, and
are not entirely finished). Material here will be mostly on GM semantics
and exact inference methods.
Two text books (next page). One is available for free electronically.
Research papers (links will be given in the class slides and on the web).

Also might pick up a copy of the recent book by Koller and Friedman.

Lauritzen 1996 is a classic book on GMs.

Two other books on Bayesian networks include Jensen 1996 and 2001.

Two nice books on machine learning and pattern recognition are
Bishop 2006 and Murphy 2012.
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Logistics Review

Our two main texts

Wainwright and Jordan Graphical Models, Exponential Families, and
Variational Inference http://www.nowpublishers.com/product.
aspx?product=MAL&doi=2200000001

Markov Random Fields for Vision and Image Processing
http://mitpress.mit.edu/catalog/item/default.asp?ttype=

2&tid=12668 edited by Andrew Blake, Pushmeet Kohli and Carsten
Rother
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Logistics Review

Announcements

Reading assignment: Read the “trees.pdf” chapter soon to be posted
on our canvas announcements page
(https://canvas.uw.edu/courses/914697/announcements).

Slides from previous time this course was offered are at our previous
web page (http:
//j.ee.washington.edu/~bilmes/classes/ee512a_fall_2011/)
and even earlier at
http://melodi.ee.washington.edu/~bilmes/ee512fa09/.
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Logistics Review

Class Road Map - EE512a

L1 (9/29): Introduction, Families,
Semantics

L2 (10/1):

L3 (10/6):

L4 (10/8):

L5 (10/13):

L6 (10/15):

L7 (10/20):

L8 (10/22):

L9 (10/27):

L10 (10/29):

L11 (11/3):

L12 (11/5):

L13 (11/10):

L14 (11/12):

L15 (11/17):

L16 (11/19):

L17 (11/24):

L18 (11/26):

L19 (12/1):

L20 (12/3):

Final Presentations: (12/10):

Finals Week: Dec 8th-12th, 2014.
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Review

This is where we will review previous lectures.
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The Class Inference and Learning Graphical Models GM Inference Summary

Probabilistic Inference

Probabilistic Inference involves computing quantities of interest based
on probability distributions. E.g., marginalization

∑
x1
p(x1, x2) or

maximization maxx1 p(x1, x̄2).

Probabilistic inference is hard,

often NP-hard or even inapproximable

.

Best of cases, exact inference is doable in polynomial time (trees).

Worst of cases, exact inference is infeasible, so approximation is
necessary

Plethora of approximation methods are possible.

The course this term will mostly concentrate on graphical model
semantics, exact inference methods, and two broad approximation
inference methods based on graphical models.
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Approximation Method: Variational

The general variational approach encompasses many standard approximate
inference methods, including:

sum-product

cluster variational methods

expectation-propagation

mean field methods

max-product

linear programming relaxations

conic programming relaxations

and is therefore worthy of study. Of particular interest is for the class of
exponential models (which have strong relationships to convexity).
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Approximation Method: Move making

Many inference methods from computer vision have appeared recently.

Simplest of the ideas: use an efficient graph-cut approach to find the
minimum energy configuration in a pairwise binary Markov random
field.

When is this optimal? When is this an approximation? How can we
generalize this to non-binary variables, non-pairwise potentials, and
richer potentials?

Many generalizations, including move making algorithms such as
alpha-beta swaps, alpha expansions, fusion moves, and other recent
more sophisticated and energy aware “move making” algorithms.

Computer vision and beyond.
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Other inference methods

Sampling, Monte Carlo, MCMC methods, importance sampling

Search based methods, cut condition, value elimination, as done in
CSP/SAT communities. This includes AND/OR search trees,
sum/product networks, where the network represents the operations
necessary to do inference.

Also, other modern search based methods.

Beam pruning methods often go hand-in-hand with search based
methods.
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Some notation

Distributions

p(x) ≡ p(x1:N ) ≡ p(x1, . . . , xN ) ≡ PX1,...,XN
(X1 = x1, . . . , XN = xN )

Subsets

V
∆
= {1, 2, . . . , N} A,B ⊆ V A =

{
a1, . . . , a|A|

}
(1.1)

XA
∆
= {Xa1 , Xa2 , . . . , Xa|A|} (1.2)

Example: If A = {1, 3, 7} then XA = {X1, X3, X7} and

p(XA = xA|XB = xB) ≡ p(x1, x2|x3, x4)

if A = {1, 2}, B = {3, 4}

p(xA) requires table of size r|A|, r = |DX | where ∀i, xi ∈ DX

x̄(i) and x̄(j) are different vector samples for i 6= j.

Prof. Jeff Bilmes EE512a/Fall 2014/Graphical Models - Lecture 1 - Sep 29th, 2014 F16/34 (pg.48/106)



The Class Inference and Learning Graphical Models GM Inference Summary

What might we want to do with p(x)?

Marginal quantities

Given x̄ compute p(x̄)
Given E ⊆ V , and F ∪H = V \E with F and H disjoint, then compute

p(xF , x̄E) =
∑
xH

p(xF , xH , x̄E). (1.3)

Model relationship between two signals x1 and x2 (e.g., x1 a feature
vector, x2 is a class or regression variable).

compute p(x̄1, x̄2).
Given x̄1 compute

x∗2 ∈ argmax
x2

p(x̄1, x2) or equivalently x∗2 ∈ argmax
x2

p(x2|x̄1) (1.4)
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What might we want to do with p(x)?

Machine Learning is adjusting a model based on data.

Machine Learning almost always requires being able to do inference
efficiently.

We are given set of training samples D =
{
x(1), x(2), . . .

}
.

Then find θ∗ ∈ argminθ R(D, θ) where R(D, θ) is a risk.

Given θ∗, we may we interpret its values (generative learning)?

Given θ∗, could form distribution pθ∗(x) or marginal pθ∗(x1, x2), etc.
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Learning depends on loss functions, but needs inference

Generative learning if

R(D, θ) = − 1

|D|

|D|∑
j=1

log pθ(x
(j)) + λ‖θ‖ (1.5)

where ‖ · ‖ is some norm. This includes the case of maximum
likelihood learning.

Discriminative learning results when

R(D, θ) = − 1

|D|

|D|∑
j=1

log pθ(x
(j)
2 |x

(j)
1 ) + λ‖θ‖ (1.6)

and includes the case of maximum conditional likelihood learning.
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Learning depends on loss functions, but needs inference

Another form of discriminative learning, max-margin learning, occurs
when if

R(D, θ) =
1

|D|

|D|∑
i=1

[
max
x2

(
log pθ(x2, x

(j)
1 ) + ∆(x

(j)
2 , x′2)

)
− log pθ(x

(j)
2 , x

(j)
1 )

]
+ λ‖θ‖ (1.7)

where ∆(x
(j)
2 , x′2) is a normalizing labeling cost. Overall, this

corresponds to a generalized hinge-loss.

Optimizing each risk is unique, but each invariably entails computing
quantities over p(x) like the aforementioned inference.

The need to efficiently compute with p(x) is critical for most machine
learning problems.
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The Class Inference and Learning Graphical Models GM Inference Summary

Machine learning within restricted families

Let U be the universe of all distributions over N r.v.s.

Sample data, along with domain knowledge, used to select resulting
p(x) from U that is “close enough” to ptrue(x1, . . . , xN ).

Searching within U is infeasible/intractable/impossible.

Desire a restricted but useful family F ⊂ U .

Size of U too large,
complex, and with many
local optima.

Obtainable solution in F
better than feasible
solution in U
Graphical models provide
a framework for
specifying F ⊆ U

U
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p(x) from U that is “close enough” to ptrue(x1, . . . , xN ).

Searching within U is infeasible/intractable/impossible.

Desire a restricted but useful family F ⊂ U .

Size of U too large,
complex, and with many
local optima.

Obtainable solution in F
better than feasible
solution in U

Graphical models provide
a framework for
specifying F ⊆ U

U
F Ideal - hard to find

Poor - what is found

Sufficiently good - 
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Graphical Models

A graphical model is a visual, abstract, and mathematically formal
description of properties of families of probability distributions
(densities, mass functions)

There are many types of graphical models, for example Markov random
fields (left), factor graphs (center), and Bayesian networks (right):
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Graphical Models

Graphical models are encodings of families of probability distributions.
For the most part, the encodings are done via a graph that formally
specifies either a set (conditional) independence properties, or more
fundamentally, a set of factorization properties.

This is a crucial idea to understand: a graphical model is a set of
constraints that all family members must obey.

Graphical Models encode constraints by factorization requirements
that all members of the family must obey.

Factorization requirements are often identical to conditional
independence requirements.

Factorization, in general, allows sums to be distributed into products
thereby making (exact) inference quantities more efficient than if
factorization properties did not exist.
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Graph Theory

We’ll define what we need as we go along.

Graph G = (V,E) where V is set of nodes (or vertices) and
E ⊆ V × V is a set of edges. If i, j ∈ V then (i, j) ∈ E means that
nodes i and j are connected.

Nodes are in one-to-one correspondence to a set of random variables.
For each v ∈ V we have that Xv is a random variable (r.v.). XV is the
complete set of r.v.’s.

A graphical model describes a family of distributions p(xV ) over XV .
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Graphical Models

A graphical model consists of a graph and a set of rules or properties
M (often called Markov properties).

Unlike U , which is the family of all distributions over n r.v.s,
F(G,M) ⊆ U is a subset of distributions.

Any member of F(G,M) must respect the constraints that are
specified by the GM.

Any distribution that does not respect even one of the GM’s
constraints is not a member of the family.

In a GM, the constraints take the form of factorization (which are
most often, conditional independence constraints).

Factorization is useful since it allows for the distributive law to enable
the use of dynamic programming for much faster exact inference than
naive.

Finding best way of doing inference is entirely graph theoretic
operation.
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Graphical Model

Each type of graphical model requires a certain type of graph (e.g.,
undirected, or DAG) and a set of rules (or “Markov properties”) to
define the GM.

A graphical model is a pair (G,M) = ((V,E),M), a graph G and a set
of properties M that define what the graphical model means.

Conceptually, one can think of a property r ∈M is a predicate on a
graph and a distribution, so r(p,G) ∈ {true, false}.
(G,M) consists of a family of distributions over xV where all
predicates hold. That is

F(G,M) = {p : p is a distribution over XV and ,

r(p,G) = true,∀r ∈M} (1.8)

F(G,M) ⊆ U
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Markov Properties

Markov properties are rules that specify what are required of every
family member. Any p ∈ F(G,M) satisfies all properties/rules r ∈M

for G. Any p ∈ U \ F(G,M) violates at least one property for G.

A p ∈ U might have more properties. M is like a filter, lets in those p
that satisfy, but will let in those that satisfy more.

UF(      ,M
)

Example r ∈M might be “if there are two nodes u, v ∈ V that are
neither directly nor indirectly connected in G (i.e., there no path
leading from u to v in G) then the corresponding random variables in
p are independent”
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Questions about Properties
Needing to be mathematically proven

For a given type of graphical model, can the property set M be listed
in finite space and computed efficiently? (answer, yes).

For a given type of graphical model, are there more than one set of
rules that define a family? In other words, are there rule sets M1 and
M2 such that F(G,M1) = F(G,M2) for all G? Answer, yes.

Much of the Lauritzen 1996 book studies graphs, rules (or Markov
properties) and proves when the corresponding families are either
identical, or subsets of each other.
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Questions about Properties (cont.)
Needing to be mathematically proven

Is there a smallest rule set? In other words, are there rules sets
M1 ⊂M2 such that F(G,M1) = F(G,M2), and can we compute the
smallest set M′ so that F(G,M′) = F(G,M) where |M′| is minimal?

Are there rule sets that are non-equivalent? I.e. M1 and M2 such that
F(G,M1) 6= F(G,M2) for some G? Answer, yes.

In general, much of graphical model theory is regarding deducing
properties of rules and corresponding properties of graphs and the
distributions they represent. This allows us to reason about graphs as
a means of reasoning about families of distributions.
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A society of properties

GN = set of all undirected graphs over N nodes.

Consider
FN (M) = ∪G∈GNF(G,M) (1.9)

and
F(M) = ∪∞N=1FN (M) (1.10)

family of all distributions over any number of random variables that
obeys rules M for some undirected graph G.

M determines the type of graphical model.

M(mrf) rules for MRF, then F(M(mrf)) are the distributions
representable by MRF.

M(bn) rules for Bayesian network, then F(M(bn)) are the distributions
representable by BN.
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Different families

Families may be different.

For a given graph G, we might have neither
F(G,M(mrf)) ⊂ F(G,M(bn)) nor F(G,M(bn)) ⊂ F(G,M(mrf)).

The relationship for the family in its entirety might be different. I.e.,
when we compare the set of all MRFs vs. the set of all BNs, i.e.,
F(M(mrf)) vs. F(M(bn)).

Large part of GM research is understanding these relationships.
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What is graphical model inference?

Inference, as we saw, is computing probabilistic queries such as:

1 probability of evidence (marginalize the hidden variables)

p(x̄E) (1.11)

2 posterior probability, for S ⊆ V \ E do

p(xS |x̄E) (1.12)

3 most probable assignment, for S ⊆ V \ E do

argmax
xS∈DXS

p(xS , x̄E). (1.13)

Given a graph G, we want to derive this just based just on (G,M) and
derive this automatically.

We want to understand the computational complexity of the procedure
based just on (G,M).

amortization: we want to derive a procedure that works for any
p ∈ F(G,M) for a given rule set.
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Graphical model inference diagrammatically

(G,M)

Produce Graphical
Model Inference

Procedure

inference(p)

an algorithm
for doing
Inference

A particular
probabilistic query

Correct answer

p ∈ F(G,M)Any

Observed
Data
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Sources for Today’s Lecture

Most of this material comes from the reading handouts that will soon
be made available.
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