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Logistics

Welcome!

Welcome to the class: Advanced Introduction to Machine Learning

An advanced introduction to machine learning and its applications in
data science and artificial intelligence.
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About the class name

Advanced Introduction to Machine Learning

Introduction: assumes little background ML knowledge

Advanced: requires good CS & Math and programming (mostly
python, maybe C++) background. Also, there is a lot of material to
cover!! Ambitious “(of a plan or piece of work) intended to satisfy
high aspirations and therefore difficult to achieve.”

Machine Learning: what this class is about.
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Logistics

Mon/Wed 10:30-12:30 via zoom.

Weekly virtual evening office hours: Thursdays, 10:00-11:00pm, via
zoom (same link).

our web page (https://canvas.uw.edu/courses/1372141), lecture
slides to appear both before and after lecture.

Use our discussion board
(https://canvas.uw.edu/courses/1372141/discussion_topics)
for all questions, comments, so that all will benefit from them being
answered. Please use that rather then email.
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Teaching Assistant

Ricky Zhang <yz325@uw.edu>
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Facts about the class

Prerequisites: knowledge in probability, statistics, linear algebra,
multivariate calculus, some information theory, mathematical
optimization

Text: We will be using class slides and drawing from material mostly
available for free on the web although there are some recommended
books as well (see other slide on references).

Grades and Assignments: We will have approximately one assignment
every two weeks. Each assignment is combination of math problems
and large programming project(s) (in python). Grades are based on
these assignments.

No in-class tests, no final exam. Grade is based entirely on quality,
clarity, and correctness in your HW problem sets and python ML
projects.
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More Facts about the class

COLLABORATION POLICY: Homework must be done individually:
each student must hand in their own answers. In addition, each
student must write and submit their own code in the programming part
of the assignment (we will run and test your code). It is acceptable,
however, for students to collaborate in figuring out answers and helping
each other solve the problems (but please use our assignment dropbox
(https://canvas.uw.edu/courses/1372141/assignments)). You
must also indicate on each homework with whom you collaborated.
Homework assigned asynchronously via canvas, must be submitted
electronically using our assignment dropbox
(https://canvas.uw.edu/courses/1372141/assignments).
Submissions: Single PDF file and, when relevant, .zip files with
code/data/ipynb. Photos of very neatly hand written solutions,
combined into one PDF, are fine
Lecture slides will appear on canvas before the class begins, and
updates post-lecture will also be posted with markups, as well as a
youtube recording of each lecture.
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Homework late policy
For every additional day you take for the submission, we would
subtract 5% of your grade.

This continues for a week, after which we will stop accepting
submissions and release the solutions.

Example: EffectiveGrade = OriginalGrade× (1− LateDays× 0.05)
where 0 ≤ LateDays ≤ 7.

If the homework is due on the 6th and you submit on the morning of
7th, you’ll get max 95% of your grade, and so on up till 11:59 on the
13th – your last day to submit – when you will get max 65% of your
grade.

We recommend that you submit however much you have completed by
the deadline.

If you resubmit your assignment after the deadline, please make note
of which problem(s) you have updated; we will only apply the
reduction to that problem (entirely, not the subproblems).

Also, note that we will not be giving any Late Days for the last
homework, since there would be a very short window for us to grade it.
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Religious Accommodations

Washington state law requires that UW develop a policy for
accommodation of student absences or significant hardship due to reasons
of faith or conscience, or for organized religious activities. The UW’s policy,
including more information about how to request an accommodation, is
available at Religious Accommodations Policy
(https://registrar.washington.edu/staffandfaculty/
religious-accommodations-policy/). Accommodations must be
requested within the first two weeks of this course using the Religious
Accommodations Request form (https://registrar.washington.edu/
students/religious-accommodations-request/).
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Other logistics

Almost all equations will have numbers.

Equations will be numbered with lecture number, and number within
lecture in the form (`.j) where ` is the lecture number and j is the jth

equation in lecture `. For example,

L(w) =

n∑

i=1

(yi − xiᵀw)2 + λ‖w‖22 (1.1)

Theorems, Lemmas, postulates, etc. will be numbered with (`.s.j)
where ` is the lecture number, s is the section number, and j is the
order within that section.

Theorem 1.1.1 (foo’s theorem)

foo

Exception to these rules is in the review sections, where theorems,
equation, etc. (even if repeated) will have new reference numbers.
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Class Road Map

W1(3/30,4/1): What is ML, Probability, Coins, Gaussians and linear
regression, Associative Memories, Supervised Learning
W2(4/6,4/8): More supervised, logistic regression, complexity and
bias/variance tradeoff
W3(4/13,4/15): Bias/Variance, Regularization, Ridge, CrossVal,
Multiclass
W4(4/20,4/22): Multiclass classification, ERM, Gen/Disc, Näıve Bayes
W5(4/27,4/29): Lasso, Regularizers, Curse of Dimensionality
W6(5/4,5/6): Curse of Dimensionality, Dimensionality Reduction, k-NN
W7(5/11,5/13): k-NN, LSH, DTs, Bootstrap/Bagging, Boosting &
Random Forests, GBDTs
W8(5/18,5/20): Graphs; Graphical Models (Factorization, Inference,
MRFs, BNs);
W9(5/27,6/1): Learning Paradigms; Clustering; EM Algorithm;
W10(6/3,6/8): Spectral Clustering, Graph SSL, Deep models, (SVMs,
RL); The Future.

Last lecture is 6/8 since 5/25 is holiday (or we could just have lecture on 5/25).
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Great Interest in Machine Learning/AI

see more at https://nips.cc/Conferences/2018/Sponsors
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Class Description

This is an ambitious class that will provide a broad overview of a large variety
of machine learning methods in a short amount of time. You will learn to
understand the basics of: linear regression; logistic regression; k-nearest
neighbors; PCA, LDA, and dimensionality reduction methods; feature selection
and engineering; cross validation; the bootstrap, bagging, and boosting;
decision trees and random forests; naive Bayes; generative vs. discriminative
models; support vector machines and kernel methods; neural networks; Bayesian
nonparametric methods; clustering; ensemble methods; reinforcement learning;
representation learning; information theory; Gaussian processes; supervised,
unsupervised, and semi-supervised learning; graphical models; sparsity and
compressed sensing; planning and control; information retrieval; structured
prediction; matrix factorization; Monte Carlo methods; time-series analysis and
HMMs; multi-agent learning; transfer and multi-task learning; active learning;
submodularity; and machine teaching. Along the way, we will motivate the
above using applications in computational biology, networks, computer vision,
speech recognition, and natural language processing. We will also touch on the
philosophy of machine learning and artificial intelligence, and discuss if we can
build a computer program having artificial general intelligence. The class will
require programming in python and the use of python libraries (e.g., numpy,
sklearn, and pytorch). Previous knowledge of linear algebra, calculus, and basic
probability theory and statistics is a must.
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Class (and Machine Learning) overview

1. Introduction
• What is ML
• What is AI
• Why are we so interested in these   
topics right now?

2. ML Paradigms/Concepts
• Over�tting/Under�tting, model complexity, bias/variance
• size of data, big data, sample complexity
• ERM, loss + regularization, loss functions, regularizers
• Supervised, unsupervised, and semi-supervised learning;
• reinforcement learning, RL, multi-agent, planning/control
• transfer and multi-task learning
• active learning
• machine teaching

3. Dealing with Features
• PCA, LDA, MDS, T-SNE, and dimensionality reduction methods
• Locality sensitive hashing (LSH)
• feature selection
• feature engineering
• matrix factorization & feature engineering
• representation learning

4. Evaluation
• accuracy/error, precision/recall, ROC,           
likelihood/posterior, cost/utility, margin 
• train/eval/test data splits
• n-fold cross validation
• method of the bootstrap

6. Inference Methods
• probabilistic inference
• MLE, MAP
• belief propagation
• forward/backpropagation
• Monte Carlo methods 

7. Models & Representation
• linear least squares, linear regression, logistic regression, 
sparsity, ridge, lasso
• generative vs. discriminative models
• Naive Bayes
• k-nearest neighbors
• clustering,  k-means, k-mediods, EM & GMMs, single linkage
• decision trees and random forests
• support vector machines, kernel methods, max margin
• perceptron, neural networks, DNNs
• Gaussian processes
• Bayesian nonparametric methods
• ensemble methods
• the bootstrap, bagging, and boosting
• graphical models
• time-series, HMMs, DBNs, RNNs
• structured prediction
• grammars (as in NLP)

12. Other Techniques
• compressed sensing
• submodularity, diversity/homogeneity modeling

8. Philosophy, Humanity, Spirituality
• arti�cial intelligence (AI)
• arti�cal general intelligence (AGI)
• arti�cial intelligence vs. science �ction

9. Applications
• computational biology
• social networks
• computer vision
• speech recognition
• natural language processing
• information retrieval
• collaborative �ltering/matrix factorization

10. Programming
• python
• libraries (e.g., NumPy, SciPy, matplotlib, 
scikit-learn (sklearn), pytorch, CNTK, 
Theano, tensor�ow, keras, H2O, etc.
• HPC: C/C++, CUDA, vector processing

11. Background
• linear algebra
• multivariate calculus
• probability theory and statistics
• information theory
• mathematical (e.g., convex) optimization
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5. Optimization Methods
• Unconstrained Continuous Optimization:  
(stochastic) gradient descent (SGD), adap-
tive learning rates, conjugate gradient, 2nd 
order Newton
• Constrained Continuous Optimization :  
Frank-Wolf (conditional gradient descent), 
projected gradient, linear, quadratic, and 
convex programming
• Discrete optimization - greedy, beam 
search, branch-and-bound, submodular 
optimization. 

Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F14/49 (pg.14/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Machine Learning (Grain of Salt) Cheat Sheet

from https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
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Recommended References

These class slides.

Free resources
https://towardsdatascience.com/list-of-free-must-read-machine-learning-books-89576749d2ff
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Machine Learning and Machine Intelligence
What is Machine Learning and Machine Intelligence?

Humans: not smart enough to directly program complex tasks.
Production of algorithms that, rather than directly human written, are
indirectly produced via mathematical optimization parameterized by data.
“All problems in computer science can be solved by another level of
indirection” David Wheeler.
IA: Indirect Algorithms
Grand challenges: education, poverty, energy/climate change, and health.
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Machine Learning and Machine Intelligence
What is Machine Learning and Machine Intelligence?
Humans: not smart enough to directly program complex tasks.
Production of algorithms that, rather than directly human written, are
indirectly produced via mathematical optimization parameterized by data.
“All problems in computer science can be solved by another level of
indirection” David Wheeler.

IA: Indirect Algorithms
Grand challenges: education, poverty, energy/climate change, and health.
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Traditional Computer Programming vs. ML

Let us change our traditional attitude to the construc-
tion of programs. Instead of imagining that our main 
task is to instruct a computer what to do, let us concen-
trate rather on explaining to human beings what we 
want a computer to do. -- Donald Knuth

writesHuman Programming 
a Computer

Algorithm/Computer 
Program

Computer

Something 
Seemingly 

Useful

produces
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Traditional Computer Programming vs. ML

writes

Machine Learning is the art of repeatedly 
telling a computer what one wants the 
computer to tell a second computer 
about a lot of data. This continues until 
the second computer gets it right.

Human Programming 
a Computer

Algorithm/Computer 
Program

Something 
Seemingly 
Intelligent

Data

writes producesAlgorithm/Computer 
Program

Computer

Computer
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Traditional Computer Programming vs. ML

https://imarticus.org/what-is-machine-learning-and-does-it-matter/

other defs of ML: https://www.kdnuggets.com/2018/12/essence-machine-learning.html
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The Ideal Machine Learning Methods

Simple to define

Mathematically expressive

Naturally suited to many
real-world applications

Efficient & scalable to large
problem instances
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Object Recognition/Classification

The goal is to make a distinction between objects in real world.

Humans easily do it every day and find it easy.

For example, what are the following objects:

And what are the following objects:
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Object Recognition/Classification

How to get a computer to do it? What is difference between a table
and a chair?

When is it not a chair and a table?

What about:

Sometimes it is easy.

Sometimes it is not so easy:
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Object Recognition/Classification

How to get a computer to do it? What is difference between a table
and a chair?

When is it not a chair and a table? What about:

Sometimes it is easy. Sometimes it is not so easy:
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Object Recognition

Sometimes it is a continuum
(Escher, Liberation, 1955)

What is foreground vs.
background? (Escher, Mosaic,
1957)
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Probability and Uncertainty

Key point: the world is a complicated place, we cannot know
everything, and even what we think we know we can (nor should) not
always be certain. Uncertainty abounds!

Need a representation of uncertainty.
Probability has a precise mathematical definition (Kolmogorov
axioms), but we use it in deference to the inevitable uncertainty
surrounding all decisions.
Simple and subjective working definition:

probability =
number of cases something happened

number of total cases
. (1.2)

Good for repeatable measurable events (e.g., coins flips, dice, etc.).
Harder for future events (probability it will rain tomorrow, probability
Manchester City wins Liverpool, etc.).
Despite shortcomings, used as representation of uncertainty/certainty
(i.e., probability that image x contains face of person y).
Machine learning often strives for the “best” probabilities in data using
learning algorithms.
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Coin Flipping and ML

D = {b1, b2, . . . , bn} is series of n independent and identical coin flips,
bi ∈ {H,T}.

k = |{i : bi = H}| is the count of the number of heads in D
How true, or likely, is it that θ is probability of heads?

Pr(D|θ) = θk(1− θ)n−k = Likelihood of D given θ (1.3)

How to find the most likely explanation of D? Maximum likelihood

θ̂MLE = argmax
θ∈[0,1]

Pr(D|θ) = argmax
θ∈[0,1]

log Pr(D|θ) (1.4)

How to find θ̂MLE, calculus, ∂
∂θ log Pr(D|θ) = 0 leads to

θ̂MLE = k/n (1.5)

Thus, computing k and dividing by n is a simple way to learn!

Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F24/49 (pg.46/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Coin Flipping and ML

D = {b1, b2, . . . , bn} is series of n independent and identical coin flips,
bi ∈ {H,T}.
k = |{i : bi = H}| is the count of the number of heads in D

How true, or likely, is it that θ is probability of heads?

Pr(D|θ) = θk(1− θ)n−k = Likelihood of D given θ (1.3)

How to find the most likely explanation of D? Maximum likelihood

θ̂MLE = argmax
θ∈[0,1]

Pr(D|θ) = argmax
θ∈[0,1]

log Pr(D|θ) (1.4)

How to find θ̂MLE, calculus, ∂
∂θ log Pr(D|θ) = 0 leads to

θ̂MLE = k/n (1.5)

Thus, computing k and dividing by n is a simple way to learn!

Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F24/49 (pg.47/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Coin Flipping and ML

D = {b1, b2, . . . , bn} is series of n independent and identical coin flips,
bi ∈ {H,T}.
k = |{i : bi = H}| is the count of the number of heads in D
How true, or likely, is it that θ is probability of heads?

Pr(D|θ) = θk(1− θ)n−k = Likelihood of D given θ (1.3)

How to find the most likely explanation of D? Maximum likelihood

θ̂MLE = argmax
θ∈[0,1]

Pr(D|θ) = argmax
θ∈[0,1]

log Pr(D|θ) (1.4)

How to find θ̂MLE, calculus, ∂
∂θ log Pr(D|θ) = 0 leads to

θ̂MLE = k/n (1.5)

Thus, computing k and dividing by n is a simple way to learn!

Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F24/49 (pg.48/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Coin Flipping and ML

D = {b1, b2, . . . , bn} is series of n independent and identical coin flips,
bi ∈ {H,T}.
k = |{i : bi = H}| is the count of the number of heads in D
How true, or likely, is it that θ is probability of heads?

Pr(D|θ) = θk(1− θ)n−k = Likelihood of D given θ (1.3)

How to find the most likely explanation of D? Maximum likelihood

θ̂MLE = argmax
θ∈[0,1]

Pr(D|θ) = argmax
θ∈[0,1]

log Pr(D|θ) (1.4)

How to find θ̂MLE, calculus, ∂
∂θ log Pr(D|θ) = 0 leads to

θ̂MLE = k/n (1.5)

Thus, computing k and dividing by n is a simple way to learn!

Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F24/49 (pg.49/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Coin Flipping and ML

D = {b1, b2, . . . , bn} is series of n independent and identical coin flips,
bi ∈ {H,T}.
k = |{i : bi = H}| is the count of the number of heads in D
How true, or likely, is it that θ is probability of heads?

Pr(D|θ) = θk(1− θ)n−k = Likelihood of D given θ (1.3)

How to find the most likely explanation of D? Maximum likelihood

θ̂MLE = argmax
θ∈[0,1]

Pr(D|θ) = argmax
θ∈[0,1]

log Pr(D|θ) (1.4)

How to find θ̂MLE, calculus, ∂
∂θ log Pr(D|θ) = 0 leads to

θ̂MLE = k/n (1.5)

Thus, computing k and dividing by n is a simple way to learn!

Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F24/49 (pg.50/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Coin Flipping and ML

D = {b1, b2, . . . , bn} is series of n independent and identical coin flips,
bi ∈ {H,T}.
k = |{i : bi = H}| is the count of the number of heads in D
How true, or likely, is it that θ is probability of heads?

Pr(D|θ) = θk(1− θ)n−k = Likelihood of D given θ (1.3)

How to find the most likely explanation of D? Maximum likelihood

θ̂MLE = argmax
θ∈[0,1]

Pr(D|θ) = argmax
θ∈[0,1]

log Pr(D|θ) (1.4)

How to find θ̂MLE, calculus, ∂
∂θ log Pr(D|θ) = 0 leads to

θ̂MLE = k/n (1.5)

Thus, computing k and dividing by n is a simple way to learn!
Prof. Jeff Bilmes EE511/Spring 2020/Adv. Intro ML - Week 1 - March 30th, 2020 F24/49 (pg.51/131)



Introduction Uncertainty & Probability Coins Gaussians AMs Supervised Linear Regression LLS, Batch vs. Online, SGD Fit

Random Learnt Model

Any function of a random variable is also potentially random.

D is a random sample, so our estimate θ̂MLE(D) is also random, as it
is a function of random sample D.
Since θ̂MLE(D) is random, we can measure the probability that it
deviates from truth. Let θ∗ be the true parameter, than Hoeffding’s
inequality states that:

Pr(|θ̂MLE(D)− θ∗| ≥ ε) ≤ 2e−2nε
2

(1.6)

This gets really good quickly as n (number of flips) gets large. Large
data sets lead to better (or at least no worse) learning!
“There’s no data like more data”, and big data is pretty good,
especially with lots of GPUs!
In general, concentration inequalities (such as Markov’s, Chebyshev’s,
Chernoff’s, Hoeffding’s, Bennet/Bernstein’s, etc.) are useful to
understanding properties of how quickly learning takes place. E.g.,
PAC learning is a form that allow us to compute the probability that a
learnt model deviates from the true model.
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Multivariate Gaussian (Normal), and samples thereof
D = {x1, x2, . . . , xn} is series of n independent and identically
distributed (i.i.d.) m-dimensional real-valued samples ∀i, xi ∈ Rm
from a Gaussian (or normal) distribution

xi ∼ Pr(x|µ,C) = 1

|2πC|1/2 exp
(
−1

2
(x− µ)ᵀC−1(x− µ)

)
(1.7)

where µ ∈ Rm is a mean vector and C is m×m a positive definite
covariance matrix.

Notationally, we often say x ∼ N (x;µ,C).

Symmetric matrix C ∈ Rm×m is positive definite (∈ P(m)) if all of its
Eigenvalues are positive (alternatively 〈x,Cx〉 > 0,∀x 6= 0).

Example sample of a 2D
Gaussian.

4 3 2 1 0 1 2 3
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7.5

5.0

2.5
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2.5

5.0

7.5

10.0
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Simple python code for sampling Gaussians

import numpy as np

import matplotlib.pyplot as plt

mean = [0,0]

cov = [[1, 1.5], [1.5, 10]]

X = np.random.multivariate_normal(mean, cov, 1000)

fig, ax = plt.subplots(figsize=(10, 10))

plt.scatter(X[:,0], X[:,1], c=’r’)

plt.grid()

plt.show()

fig.savefig("Gaussian_2D.pdf", bbox_inches=’tight’)

Useful environment for testing python: https://jupyter.org
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Learning Gaussians

Given the data sample D without knowing µ,C, how likely is the
sample under some hypothesized parameters µ̃, C̃.

log Pr(D|µ̃, C̃) =
n∑

i=1

log Pr(xi|µ̃, C̃) (1.8)

, log Likelihood of D given µ̃, C̃ (1.9)

How to find the most likely explanation of D? Maximum likelihood

[µ̂MLE, ĈMLE] = argmax
µ∈Rd,C∈P(n)

log Pr(D|µ,C) (1.10)

How to find MLE quantities, again calculus, ∂
∂µ log Pr(D|µ,C) = 0

and ∂
∂C log Pr(D|µ,C) = 0 leads to

µMLE =
1

n

n∑

i=1

xi and CMLE =
1

n

n∑

i=1

(xi − µMLE)(xi − µMLE)
ᵀ

(1.11)
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Associations and Associative Memories

Pavlov’s Dog
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Associations and Associative Memories

Associative memory, auto-associative memory, or hetero-associative
memory. In general, associate x ∈ X to y ∈ Y via h : X → Y.

Examples: memory subsystem (separate address for each x ∈ X ), data
structures like hash tables, or red-black trees, etc.

Often X , Y is very large, and we have only a sample associations
D = {(xi, yi)}ni=1 where xi ∈ X , yi ∈ Y where n� |X |.
We want to build an associative memory that works even outside of D.
That is, even for x /∈ {x : x = xi for some i ∈ [n], (xi, yi) ∈ D}.
Why? D might not be complete, variation, noise, or possible data
corruption not fully captured in D. Also, X might be infinitely large.
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Associations and Associative Memories

Machine learning: Write an algorithm that, given large enough D,
produces a program h that generalizes (works) well on unseen samples.

Respond reasonably to variation, noise, data corruption (be robust).
Do this computationally as efficiently as possible, and (ideally)
understand it mathematically.

Boils down to finding a good h : X → Y that can do the mapping
(association). Sometimes we choose some h ∈ H where H is large
collection of possible associators. More frequently, h is parameterized
via some parameters θ and we find a good θ leading to hθ.

Many ways to do this, depends on nature of X ,Y, how big the data is
(number of samples n), and available resources (compute, core
machine memory/RAM, storage/disk, communication
(latency/bandwidth), time, money, energy usage).

Often, x ∈ Rm is an m-dimensional vector of features. In general, x is
known as a feature vector.
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1D Example

Associating living area
with price, or learn to map
from living area to home
price.

Living area (feet2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540
...

...

Can plot this data
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Here X = Y = R.

These and next few examples from Andrew Ng’s class: http://cs229.stanford.edu/syllabus.html
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Higher Dimensions

Can use other inputs as
well.

Living area (feet2) #bedrooms Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
...

...
...

Tradeoff: The good: more inputs, more information, more potential for
accurate association. The bad: higher dimensional space, need for
much larger n, curse of dimensionality.
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Statistical parameter estimation
Training data D =

{
(x(i), y(i))

}n
i=1

where (x(i), y(i)) ∼ p(x, y) are

drawn from some distribution, x(i) ∈ Rm and y(i) ∈ R.

x(i) is m-dimensional column vector of features, y(i) is scalar.
Goal: find hθ : X → Y with minimum error, where

Errori = ei = hθ(x
(i))− y(i) (1.12)

E[e2] = Ep(x,y)[(hθ(x)− y)2] =
∫
p(x, y)(hθ(x)− y)2dxdy

(1.13)

=

∫
p(x)

∫
(hθ(x)− y)2p(y|x)dydx (1.14)

and θ ∈ Rm is a parameter vector, θ = (θ1, θ2, . . . , θm), θi ∈ R.
Taking derivatives and setting to zero, we get best solution:

hθ(x) =

∫
yp(y|x)dy = E[Y |x] = best association. (1.15)

This assumes we have the distribution p and also the resources to
compute E[Y |x].
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Linear estimator: Linear regression

We can find best solution under a linear model, where hθ(x) = θᵀx,
where θ is an m× 1 column vector of “regression” coefficients, in
which case ŷ = θᵀx

In general, assume hθ(x) , θᵀx is parameterized by parameters θ so

J(θ) =
1

n

n∑

i=1

(hθ(x
(i))− y(i))2 (1.16)

Bias: sometimes we fix x
(i)
m = 1 for all i so that θm is a bias, or offset

in the linear (or affine) model.

Taking derivative of error objective J(θ) w.r.t. θ and set to zero gets:

∂J

∂θ
=

2

n

n∑

n=1

(hθ(x
(i))− y(i))∂hθ(x

(i))

∂θ
= 0 (1.17)

Linear hθ(x) = xᵀθ assumption, yields ∂hθ(x
(i))

∂θ = x(i).
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Linear regression: feature vectors and transformations

Linear model, hθ(x) = θᵀx, linear both in θ and in x ∈ Rm.

x ∈ Rm is a feature vector but it might be derived from some other
(more raw) information sources, say z ∈ Rm′

for some m′ 6= m.

Example, z might be raw sensor values, pixel values, or audio sample
values (anything close to or at the sensor), and x might be some
deterministic (i.e., non-random) derived processing done on z.

Simple example: m′ = 2, z = (z1, z2), x = (x1, x2, . . . , xm), where
x1 = z1, x2 = z2, x3 = z21 , x4 = z22 , x5 = z1z2, x6 = z21z2, x7 = z1z

2
2 ,

x8 = z31 , x9 = z31z
2
2 , etc.

Whatever the transformation, lets say that x = φ(z) for some fixed,
non-learnt, transformation function φ : Rm′ → Rm. Sometimes this is
known as feature extraction. Sometimes learnt representation learning.

Thus, while hθ(x) = θᵀx = θᵀφ(z) is linear in θ and x, it need not be
linear (and is likely very non-linear) in z.

Offers linear models much more expressiveness, ability, complexity
(etc.), but also a risk for overfitting if too many features.
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Linear Least Squares

This gives objective to be minimized (smallest, or least of the sum of
squares of the errors).

∂J(θ)

∂θ
=

2

n

n∑

n=1

(x(i)
ᵀ
θ − y(i))x(i) = 0 (1.18)

We simplify this a bit by defining matrices associated with these
quantities. First define a n×m design matrix X and length-n column
vector ~y

X =




x(1)
ᵀ

x(2)
ᵀ

...

x(n)
ᵀ


 , and ~y =




y1
y2
...
yn


 (1.19)

Objective Equation (1.18), equivalent matrix-vector form:

J(θ) =
1

2
(Xθ − ~y)ᵀ(Xθ − ~y) (1.20)
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Normal Equations

With this, we get the “normal equations”

∇θJ(θ) = Xᵀ(Xθ − ~y) = ~0 (1.21)

i.e., modeling ~y to be in column space of matrix X (linear
combinations of columns of X), when ~y is being approximated by Xθ.

Called normal equations because column space of X is orthogonal to
the residual error E = (~y −Xθ), giving solution θ = θ̃ as shown.

what is to be
approximated

error

y y −Xθ̃

Xθ̃
actual
approximation,

closest point to y

{y
: y

=
X
θ, θ ∈

R m
} space of possible approximations, 

column space of X

If XᵀX invertible (typical
if n � m), solution has
form:

θ̃ = (XᵀX)−1Xᵀ~y

where (XᵀX)−1Xᵀ is
known as the Moore-
Penrose pseudo-inverse of
matrix X.
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Batch vs. Online

Linear least squares is a batch algorithm, it uses all of the data at the
same time and requires random access (for the matrix inversion).

It “learns” in one step, via an analytically solving a matrix equation.

For many types of models, there is no analytical solution to find the
solution. Also, we prefer an online or streaming method that adjusts
parameters as the data comes in, it does not require all data in
memory simultaneously nor does it require random access.

The approach taken is to move parameters θ in the direction of the
gradient ∇θJ(θ) a certain amount and to do that repeatedly.

Gradient descent can itself both be batch and online.
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Gradient descent can itself both be batch and online.
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Batch Gradient Descent

Start with initial estimate θ ∈ Rm and update it, for all j ∈ [m] via

θj ← θj − α
∂

∂θj
J(θ) (1.22)

where

∂

∂θj
J(θ) =

∂

∂θj

1

2
(hθ(x)− y)2 (1.23)

= (hθ(x)− y)
∂

∂θj
(hθ(x)− y) (1.24)

= (hθ(x)− y)
∂

∂θj
(
∑

j

θjxj − y) (1.25)

= (hθ(x)− y)xj (1.26)

This leads to update rule, for all j:

θj ← θj + α(y − hθ(x))xj (1.27)
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Batch Gradient Descent

Gradient updates for all elements of θ at the same time and for sample
pair (x(i), y(i))

θ ← θ + α(y(i) − hθ(x(i)))x(i) = θ + α(y(i) − θᵀx(i))x(i) (1.28)

move θ in the direction of x(i) weighted by α(y(i) − hθ(x(i))) ∈ R, α
times the error.

Called LMS (least mean squares) update rule, also called Widrow-Hoff
(early NN folks) learning rule.

Batch Gradient Descent

Algorithm 1: Batch Gradient descent learning

Input : Training data D, learning rate α, initial parameter estimate θ
Output: Learnt model parameters θ

1 for t = 1, · · · , T do
2 θ ← θ + α

∑n
i=1(y

(i) − hθ(x(i)))x(i)
Return : the final parameters θ
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Batch Gradient Descent

Gradient updates for all elements of θ at the same time and for sample
pair (x(i), y(i))

θ ← θ + α(y(i) − hθ(x(i)))x(i) = θ + α(y(i) − θᵀx(i))x(i) (1.28)

move θ in the direction of x(i) weighted by α(y(i) − hθ(x(i))) ∈ R, α
times the error.

Called LMS (least mean squares) update rule, also called Widrow-Hoff
(early NN folks) learning rule.

Batch Gradient Descent

Algorithm 2: Batch Gradient descent learning

Input : Training data D, learning rate α, initial parameter estimate θ
Output: Learnt model parameters θ

1 for t = 1, · · · , T do
2 θ ← θ + α

∑n
i=1(y

(i) − hθ(x(i)))x(i)
Return : the final parameters θ
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Batch Gradient Descent

Gradient updates for all elements of θ at the same time and for sample
pair (x(i), y(i))

θ ← θ + α(y(i) − hθ(x(i)))x(i) = θ + α(y(i) − θᵀx(i))x(i) (1.28)

move θ in the direction of x(i) weighted by α(y(i) − hθ(x(i))) ∈ R, α
times the error.

Called LMS (least mean squares) update rule, also called Widrow-Hoff
(early NN folks) learning rule.

Batch Gradient Descent

Algorithm 3: Batch Gradient descent learning

Input : Training data D, learning rate α, initial parameter estimate θ
Output: Learnt model parameters θ

1 for t = 1, · · · , T do
2 θ ← θ + α

∑n
i=1(y

(i) − hθ(x(i)))x(i)
Return : the final parameters θ
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Batch Gradient Descent

Batch training results (left) and resulting fit model (right).
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More visualization: Batch Gradient Descent
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Stochastic Gradient Descent (SGD)

Algorithm 4: Stochastic gradient descent (SGD) learning

Input : Training data D, learning rate α, initial parameter
estimate θ

Output: Learnt model parameters θ
1 for t = 1, · · · , T do
2 for i = 1, · · · , n do
3 θ ← θ + α(y(i) − hθ(x(i)))x(i)

Return : the final parameters θ

Optimization folks (e.g., Bertsekas) call this incremental gradient methods.
It is stochastic if we randomize (with or without replacement) the order of
the data items.
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More visualization: Stochastic Gradient Descent
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Mini-Batch Gradient Descent

Let V = {1, 2, . . . , n} be the index set of training points and let
V = {V1, V2, . . . , Vk} be a partition, V` ⊆ V and V` ∩ Vp = ∅ when
` 6= p. Normally we want |V`| ≈ |Vp| for all `, p.

Each V` is a mini-batch (or bunch) of data points, leading to:

Algorithm 5: Minibatch stochastic gradient descent learning

Input : Training data D, learning rate α, initial parameter estimate θ
Output: Learnt model parameters θ

1 for t = 1, · · · , T do
2 for ` = 1, · · · , k do
3 θ ← θ + α

∑
i∈V`(y

(i) − hθ(x(i)))x(i)

Return : the final parameters θ

Objective as sum of batch errors, of the form

J(θ) =
1

k

k∑

`=1

k

n
|V`|


 1

|V`|
∑

i∈V`

(hθ(x
(i))− y(i))2


 (1.29)
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Normal Equations and Gaussians

Assume y(i) = θᵀx(i) + ε(i) where

ε ∼ Pr(ε(i)) =
1√
2πσ

exp(−(ε(i))2

2σ2
) (1.30)

or that

p(y(i)|x(i); θ) = 1√
2πσ

exp(−(y(i) − θᵀx(i))2
2σ2

) (1.31)

Log likelihood of data given parameters

Likelihood(θ) = log
n∏

i=1

p(y(i)|x(i); θ) (1.32)

Taking derivatives and setting them = 0 yields exactly same normal
equations we saw earlier for solving linear least squares. Does not use
σ.
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Underfitting vs. Overfitting
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Fit a model with various input features, values of powers of x, goal is
to predict y based on xy-pair samples D = {(x(i), y(i)}i.

Fit models: left y = θ0 + θ1x; middle y = θ0 + θ1x+ θ2x
2; right

y =
∑5

j=0 θjx
j .

Left is underfitting. Right is overfitting.
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Underfitting vs. Overfitting
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Fit a model with various input features, values of powers of x, goal is
to predict y based on xy-pair samples D = {(x(i), y(i)}i.
Fit models: left y = θ0 + θ1x; middle y = θ0 + θ1x+ θ2x

2; right
y =

∑5
j=0 θjx

j .

Left is underfitting. Right is overfitting.
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Underfitting vs. Overfitting
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Fit a model with various input features, values of powers of x, goal is
to predict y based on xy-pair samples D = {(x(i), y(i)}i.
Fit models: left y = θ0 + θ1x; middle y = θ0 + θ1x+ θ2x

2; right
y =

∑5
j=0 θjx

j .

Left is underfitting. Right is overfitting.
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Overfitting definition (T. Mitchell)

We say that a hypothesis overfits the training examples if some other
hypothesis that fits the training examples less well actually performs
better over the entire distribution of instances (i.e., including instances
beyond the training set).

Definition 1.10.1 (overfitting)

Given a hypothesis space H, a hypothesis h ∈ H is said to overlit the
training data if there exists some alternative hypothesis h′ ∈ H, such that h
has smaller error than h′ over the training examples, but h′ has a smaller
overall error than h over the entire distribution (or data set) of instances.

We’ll visit this topic again when we discuss bias/variance, but first lets
discuss a few more models.
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